

FCC TEST REPORT FCC ID: 2AV4T-QY-M2

PMN	:	LED CONTROLLER			
Model Name	:	QY-M2			
Brand	:	N/A			
Report No.	:	PTC20031001402E-FC01			
		Prepared for			
	GAZE ART LIGHTING CO.,LTD				
SHI SHA Road NO.48,SHI SHA Village,DA LANG Town,DONG GUAN City,GUANG DONG Province,CHINA					
Prepared by					
Precise Testing & Certification Co., LTD.					
Building 1, No.6 Tongxin Road, Dongcheng Street, Dongguan, China					

Report No.: PTC20031001402E-FC01

TEST RESULT CERTIFICATION

Applicant's name : GAZE ART LIGHTING CO.,LTD

Address SHI SHA Road NO.48,SHI SHA Village,DA LANG Town,DONG GUAN

City, GUANG DONG Province, CHINA

Manufacture's name : GAZE ART LIGHTING CO.,LTD

Address SHI SHA Road NO.48,SHI SHA Village,DA LANG Town,DONG GUAN

City, GUANG DONG Province, CHINA

PMN : LED CONTROLLER

Model name : QY-M2

Standards : FCC PART 15C

Test procedure : ANSI C63.10:2013

Test Date : Mar. 28, 2020 to Apr. 12,2020

Date of Issue : Apr. 13, 2020

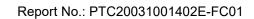
Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang / Engineer


Technical Manager:

Chris Du / Manager

TABLE OF CONTENTS

1.	Summary of test results	5
2.	General test information	6
2.1.	Description of EUT	6
2.2.	Assistant equipment used for test	6
2.3.	Block diagram of EUT configuration for test	6
2.4.	Deviations of test standard	6
2.5.	Test environment conditions.	6
2.6.	Test laboratory	7
2.7.	Measurement uncertainty	7
3.	Equipment used during test	8
4.	Occupied Bandwidth	9
4.1.	Block diagram of test setup	9
4.2.	Limits	9
4.3.	Test Procedure	9
4.4.	Test Result	9
5.	Duty Cycle	11
5.1.	Block diagram of test setup	11
5.2.	Test Procedure	11
5.3.	Test Result	11
6.	Automatically deactivate	13
6.1.	Block diagram of test setup	13
6.2.	Test Procedure	13
6.3.	Test Result	13
7.	Radiated emission	14
7.1.	Block diagram of test setup	14
7.2.	Limit	15
7.3.	Test Procedure	16
7.4.	Test result	17
8.	Power Line Conducted Emission	22
8.1.	Block diagram of test setup	22
8.2.	Power Line Conducted Emission Limits	22
8.3.	Test Procedure	22
8 4	Test Result	23

9.	Antenna Requirements	24
9.1.	Limit	24
9.2.	Result	24
9.3.	Test setup photograph	25
10.	Photos of the EUT	26

1. Summary of test results

Description of Test Item	Standard	Results		
Occupied Bandwidth	FCC Part 15: 15.231(c) ANSI C63.10:2013	PASS		
Transmission time and silent time	FCC Part 15: 15.231(e)	PASS		
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.231(e) ANSI C63.10:2013	PASS		
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.10:2013	N/A		
Antenna requirement	FCC Part 15: 15.203	PASS		
Note: N/A is an abbreviation for Not Applicable.				

2. General test information

2.1. Description of EUT

EUT* Name	:	LED CONTROLLER
Model Number	:	QY-M2
EUT function description	:	Please reference user manual of this device
Power supply	:	DC 3V from CR2032 battery
Operation frequency	:	433.92MHz
Modulation	:	FSK
Antenna Type	:	Integrated antenna, maximum PK gain: 0dBi
Sample Type	:	Single production

Note 1: EUT is the ab. of equipment under test.

2.2. Assistant equipment used for test

Assistant equipment	Brand	Model number	Serial No.	Other
N/A	N/A	N/A	N/A	N/A

2.3. Block diagram of EUT configuration for test

EUT

The test software was used to control EUT work in Continuous TX mode, and select test channel, wireless mode as blow table.

Tested mode, channel, information			
Mode Channel Frequency (MHz)			
Tx Mode	/	433.92	

2.4. Deviations of test standard

No Deviation.

2.5. Test environment conditions

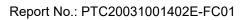
During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

Report No.: PTC20031001402E-FC01

2.6. Test laboratory

Precise Testing & Certification Co., LTD.

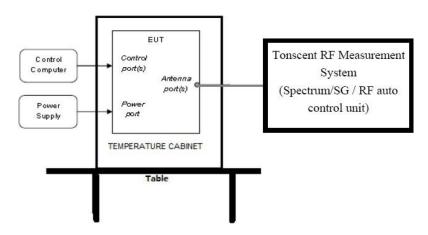

Address: Building 1, No.6 Tongxin Road, Dongcheng Street, Dongguan, China

FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

2.7. Measurement uncertainty

Test Item	Uncertainty		
Bandwidth	1.1%		
Peak Output Power(Conducted)(Spectrum analyzer)	0.86dB(10 MHz ≤ f < 3.6GHz);		
reak Output Fower(Conducted)(Spectrum analyzer)	1.38dB(3.6GHz≤ f < 8GHz)		
Peak Output Power(Conducted)(Power Sensor)	0.74dB		
Dwell Time	0.6%		
	0.86dB(10 MHz ≤ f < 3.6GHz);		
Conducted spurious emissions	1.40dB(3.6GHz≤ f < 8GHz)		
	$1.66dB(8GHz \le f < 22GHz)$		
Uncertainty for radio frequency (RBW<20KHz)	3×10 ⁻⁸		
Temperature	0.4°C		
Humidity	2%		
Uncertainty for Radiation Emission test	4.70 dB (Antenna Polarize: V)		
(30MHz-1GHz)	4.84 dB (Antenna Polarize: H)		
Uncertainty for Radiation Emission test	4.10dB(1-6GHz)		
(1GHz-18GHz)	4.40dB (6GHz-18Gz)		
Uncertainty for Power line conduction emission test	3.32dB (150KHz-30MHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95%			

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3. Equipment used during test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
RF Connected Test							
Spectrum analyzer	R&S	FSU26	1166.1660.26	Sep. 19, 2019	1Year		
Vector Signal Generator	Agilent	E8267D	MY52098743	Sep. 19, 2019	1Year		
Vector Signal Generator	Agilent	N5182A	MY48180737	Sep. 19, 2019	1Year		
Power Sensor	Agilent	U2021XA	MY55150010	Sep. 19, 2019	1Year		
Power Sensor	Agilent	U2021XA	MY55150011	Sep. 19, 2019	1Year		
DC Power Source	MATRIS	MPS-3005L-3	D813058W	Sep. 19, 2019	1Year		
Attenuator	Mini-Circuits	BW-S10W2	101109	Sep. 19, 2019	1Year		
RF Cable	Micable	C10-01-01-1	100309	Sep. 19, 2019	1Year		
Test Software	JS Tonscend	JS1120-2	Ver.2.5	N/A	N/A		
USB Data acquisition	Agilent	U2531A	TW55043503	N/A	N/A		
Auto control Unit	JS Tonscend	JS0806-2	158060010	N/A	N/A		
Radiated Emission Te	st						
EMI Test Receiver	R&S	ESU8	100316	Sep. 19, 2019	1Year		
Spectrum analyzer	R&S	FSU26	1166.1660.26	Sep. 19, 2019	1Year		
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	Sep. 19, 2019	1 Year		
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Sep. 19, 2019	1 Year		
Double Ridged Horn Antenna	R&S	HF907	100276	Sep. 19, 2019	1 Year		
Pre-amplifier	A.H.	PAM-0118	360	Sep. 19, 2019	1 Year		
RF Cable	HUBSER	CP-X2	W11.03	Sep. 19, 2019	1Year		
RF Cable	HUBSER	CP-X1	W12.02	Sep. 19, 2019	1 Year		
MI Cable	HUBSER	C10-01-01-1M	1091629	Sep. 19, 2019	1 Year		
Test software	Audix	E3	V 6.11111b	/	/		
Power Line Conducted Emissions Test							
Test Receiver	R&S	ESU8	100316	Sep. 19, 2019	1 Year		
LISN 1	R&S	ENV216	101109	Sep. 19, 2019	1 Year		
LISN 2	R&S	ESH2-Z5	100309	Sep. 19, 2019	1 Year		
Pulse Limiter	R&S	ESH3-Z2	101242	Sep. 19, 2019	1 Year		
CE Cable 1	HUBSER	ESU8/RF2	W10.01	Sep. 19, 2019	1 Year		
Test software	Audix	E3	V 6.11111b	/	/		

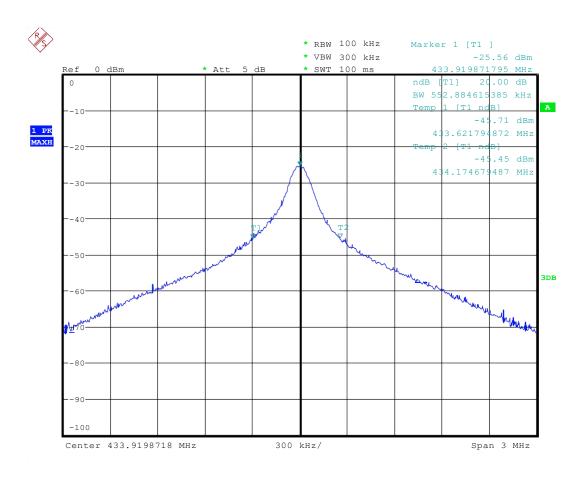
4. Occupied Bandwidth

4.1. Block diagram of test setup

4.2. Limits

According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.3. Test Procedure


- (1) According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.
- (2) Set to the maximum power setting and enable the EUT transmit continuously.
- (3) Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- (4) Measure and record the results in the test report.

4.4. Test Result

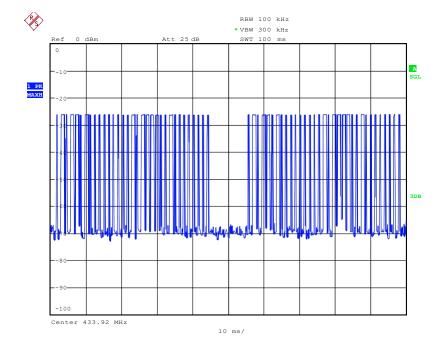
Mode	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion	
Tx mode	552.9	1084.8	PASS	
Note: Limit = 433.92MHz *0.25% = 1084.8 kHz				

Test plots as follows:

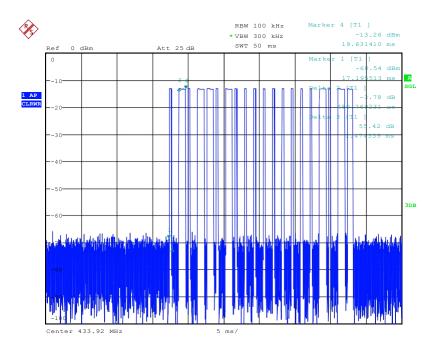
5.1. Block diagram of test setup

Same as section 4.1

5.2. Test Procedure


The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

The Duty Cycle Was Determined By the Following Equation: To Calculate The Actual Field Intensity, The Duty Cycle Correction Factor In Decibel is needed for later use and can be obtained from following convwesion


Duty Cycle (%)=Total on interval in A complere pulse train/Length of A complete pulse train*% Duty Cycle Correction Factor (dB)= 20*Log10(Duty Cycle (%))

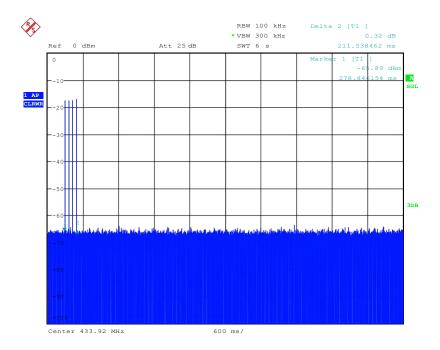
5.3. Test Result

Total On interval in a complete pulse train(ms)	(13*0.48)*2+(0.96*7)*2
Length of a complete pulse train(ms)	100
Duty Cycle (%)	25.92%
Duty Cycle Correction Factor (dB)	-11.73

6. Automatically deactivate

6.1. Block diagram of test setup

Same as section 4.1

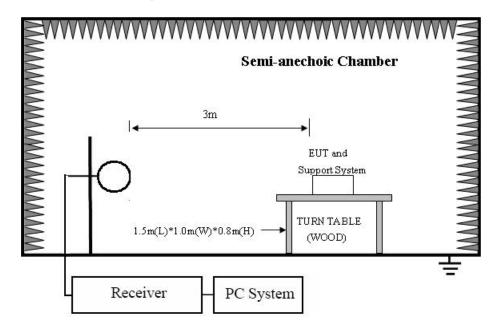

6.2. Test Procedure

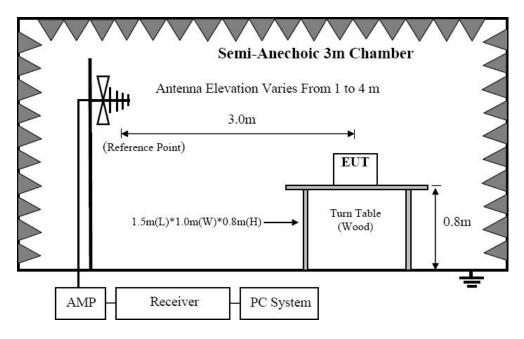
The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

Spectrum Setting: RBW=100kHz, VBW =300kHz, Sweep time=Auto

6.3. Test Result

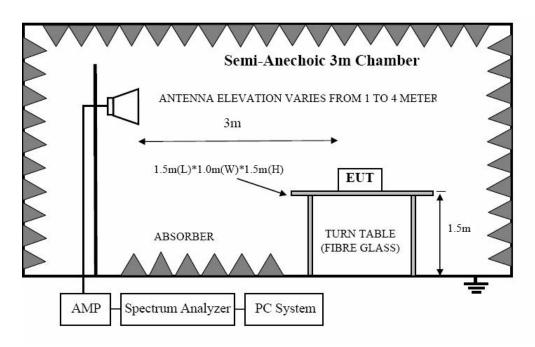
Activation time	Limit (Sec)	Test conclusion
0.211s	5s	Pass




7. Radiated emission

7.1. Block diagram of test setup

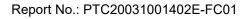
In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz



In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.


7.2. Limit

(1) FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

(2) FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	$\mu V/m$	$dB(\mu V)/m$	
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)	
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)	

1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

Above 1000	3	74.0 dB(μV)/m (Peak) 54.0 dB(μV)/m (Average)
------------	---	---

Note: (1)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz.Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

(3) Limit for this EUT

(0)		
Fundamental Frequency	Filed Strength of Fundamental	Filed Strength of Spurious
(MHz)	(microvolts/meter)	Emission(dBµV/m)
433.92	80.83	60.83

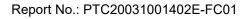
Note

- 1. Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions.
- 2.According to 15.35, on any frequency or frequencies below or equal to 1000 MHz, the limits Shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test.
- 3. According to 15.231(b), The limits on the field strength of the spurious emissions in the above table is based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits one higher field strength.

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber.
- (2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.


Test frequency range	Test antenna used		
9KHz-30MHz	Active Loop antenna		

Report No.: PTC20031001402E-FC01

30MHz-1GHz	Trilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of

Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

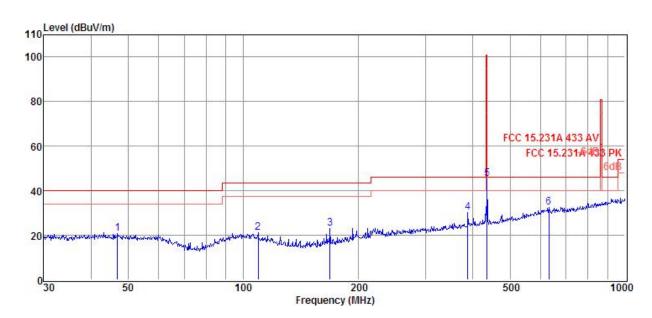
- (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
 - (b) Change work frequency or channel of device if practicable.
 - (c) Change modulation type of device if practicable.
 - (d) Change power supply range from 85% to 115% of the rated supply voltage
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9KHz to 18GHz.

- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (5) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(7) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RMS detector RBW 1MHz VBW 3MHz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure).

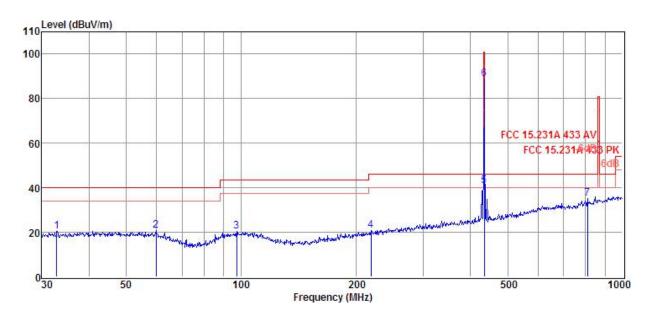

(8) X axis, Y axis, Z axis are tested, and worse setup X axis is reported.

7.4. Test result

PASS. (See below detailed test result)

Radiated Emission test (below 1GHz)

VERTICAL


Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	$(dB\mu V/m)$	(dB)		
1	46.83	4.55	12.24	3.86	20.65	40.00	-19.35	Peak	VERTICAL
2	109.41	5.61	11.07	4.35	21.03	43.50	-22.47	Peak	VERTICAL
3	169.01	10.12	8.36	4.71	23.19	43.50	-20.31	Peak	VERTICAL
4	387.99	8.87	15.44	5.75	30.06	46.00	-15.94	Peak	VERTICAL
5	433.92	22.93	16.37	5.93	45.23	100.83	-55.60	Peak	VERTICAL
6	631.69	6.35	19.38	6.61	32.34	46.00	-13.66	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

HORIZONTAL

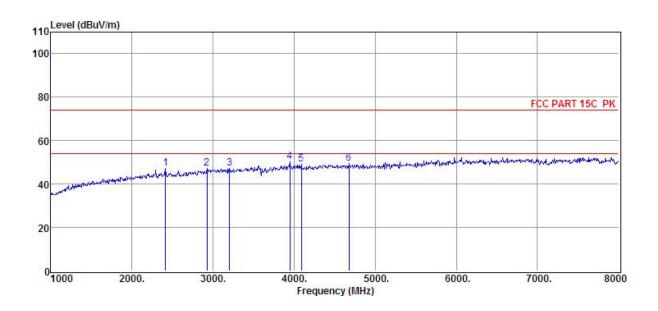
Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	32.86	5.24	11.49	3.71	20.44	40.00	-19.56	Peak	HORIZONTAL
2	59.86	5.17	11.70	3.98	20.85	40.00	-19.15	Peak	HORIZONTAL
3	97.46	4.17	11.80	4.28	20.25	43.50	-23.25	Peak	HORIZONTAL
4	219.08	4.71	11.25	4.99	20.95	46.00	-25.05	Peak	HORIZONTAL
5	433.92	/	/	/	77.20	80.83	-4.23	Average	HORIZONTAL
6	433.92	66.68	16.32	5.93	88.93	100.83	-11.90	Peak	HORIZONTAL
7	810.27	6.68	21.21	7.15	35.04	46.00	-10.96	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Note: AV of 433. 92MHZ=PK-dutycycle factor=88. 93-11. 73=77. 2dB μ V/m

Test Frequency: Below 30MHz

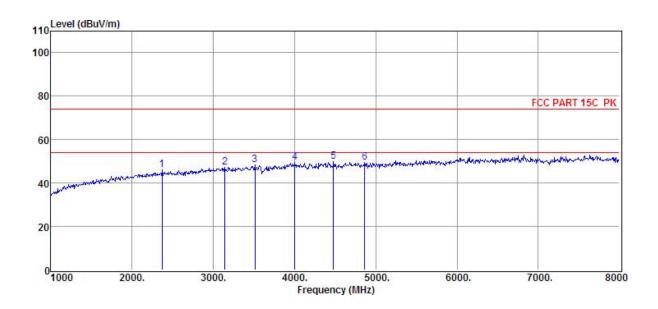

The measurements were more thean 20dB below the limit and not reported.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB Lower, than the limit line per 15.31(o) was not reported.

Radiated Emission test (above 1GHz)

VERTICAL

Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)		
1	2414.00	40.87	29.87	29.48	6.03	47.29	74.00	-26.71	Peak	VERTICAL
2	2925.00	39.08	31.49	30.17	6.68	47.08	74.00	-26.92	Peak	VERTICAL
3	3205.00	38.68	31.79	30.04	6.98	47.41	74.00	-26.59	Peak	VERTICAL
4	3947.00	38.38	33.25	29.07	7.58	50.14	74.00	-23.86	Peak	VERTICAL
5	4087.00	37.14	33.47	29.06	7.69	49.24	74.00	-24.76	Peak	VERTICAL
6	4675.00	36.80	33.76	29.28	8.33	49.61	74.00	-24.39	Peak	VERTICAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

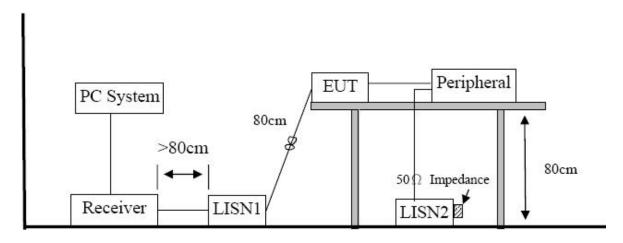
HORIZONTAL



Item	Freq.	Read	Antenna	PRM	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	$(dB\mu V/m)$	(dBµV/m)	(dB)		
1	2372.00	39.67	29.71	29.37	6.01	46.02	74.00	-27.98	Peak	HORIZONTAL
2	3142.00	38.84	31.76	30.10	6.94	47.44	74.00	-26.56	Peak	HORIZONTAL
3	3513.00	38.49	31.94	29.51	7.30	48.22	74.00	-25.78	Peak	HORIZONTAL
4	4003.00	37.54	33.40	29.04	7.61	49.51	74.00	-24.49	Peak	HORIZONTAL
5	4479.00	37.21	33.78	29.20	8.12	49.91	74.00	-24.09	Peak	HORIZONTAL
6	4864.00	36.62	33.73	29.33	8.56	49.58	74.00	-24.42	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

8. Power Line Conducted Emission

8.1. Block diagram of test setup

8.2. Power Line Conducted Emission Limits

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Note 1: * Decreasing linearly with logarithm of frequency.

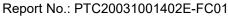
Note 2: The lower limit shall apply at the transition frequencies.

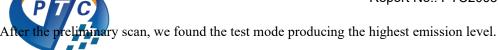
8.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.


All support equipment power received from a second LISN.


Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

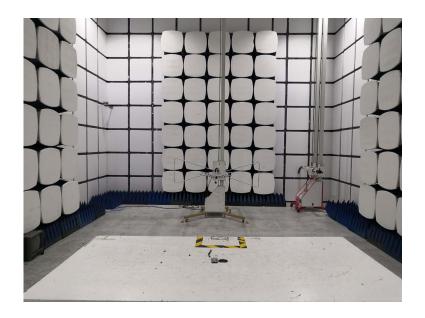
The bandwidth of test receiver is set at 9 KHz.

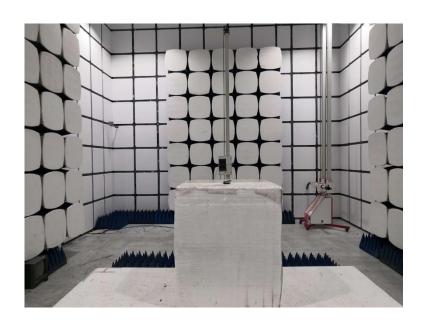
8.4. Test Result

Not Applicable

9. Antenna Requirements

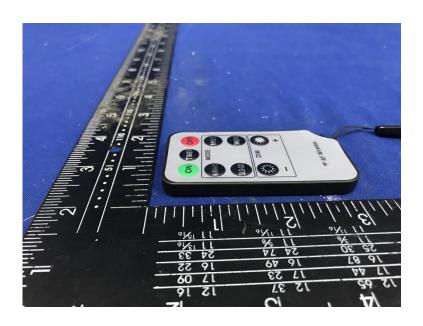
9.1. Limit


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

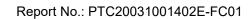

9.2. Result

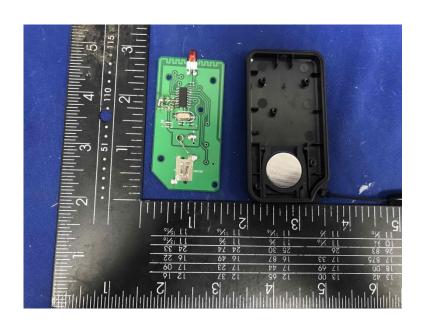
The antennas used for this product are integrated antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0dBi.

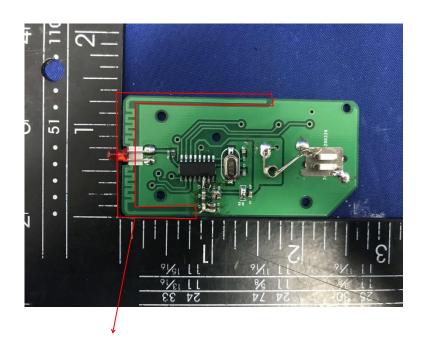
10. Test setup photograph

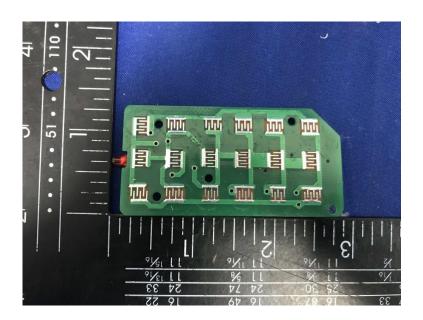


11. Photos of the EUT









ANTENNA

END OF REPORT