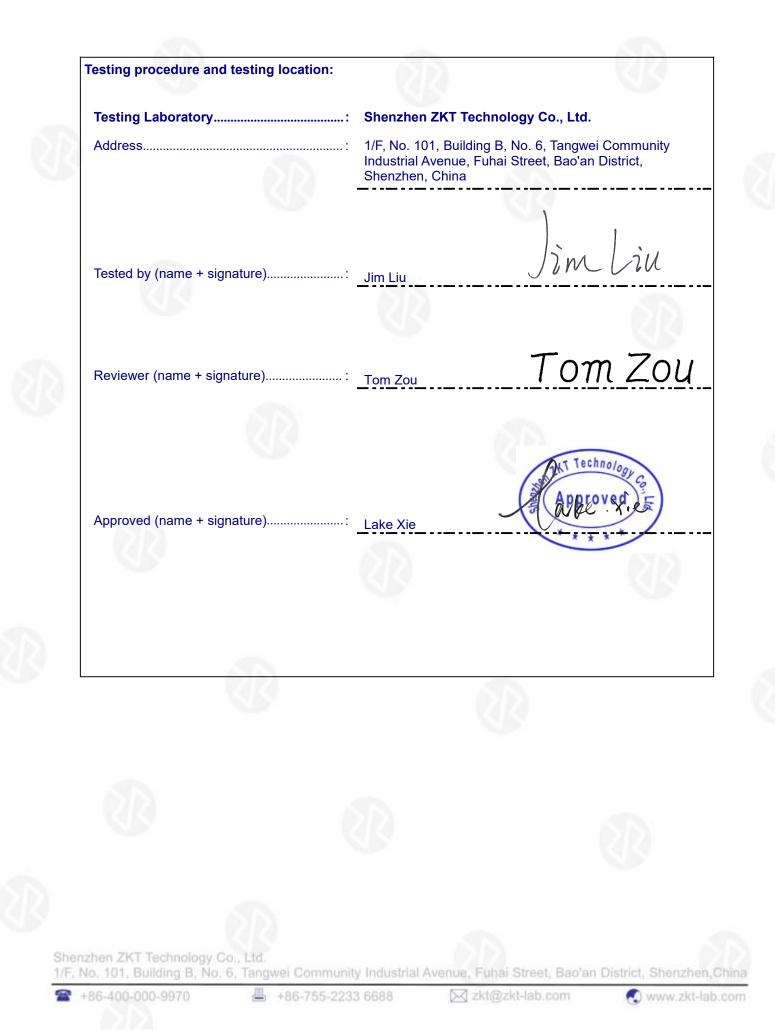


Project No.: ZKT-2305093364E Page 1 of 39

FCC TEST REPORT FCC ID:2A6FW-A80


Report Number	ZKT-2305093364E
Date of Test	. May. 09, 2023- May. 16, 2023
Date of issue	May. 16, 2023
Total number of pages	39
Test Result:	PASS
Testing Laboratory:	Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name:	Xiamen Print Future Technology Co.,Ltd.
Address:	Area C,Room 502,No.17 kengping Road,GuanKou Town, Jimei District,Xiamen City
Manufacturer's name:	Xiamen Print Future Technology Co.,Ltd.
Address:	Area C,Room 502,No.17 kengping Road,GuanKou Town, Jimei District,Xiamen City
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure:	
Non-standard test method:	N/A
Test Report Form No:	TRF-EL-111_V0
Test Report Form(s) Originator :	
Master TRF:	
test (EUT) is in compliance with the F identified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may
Product name:	al only, and shall be noted in the revision of the document. Thermal Printer
Trademark	
Model/Type reference:	
	D80,B8,Y8,A80 Pro,Y8 Pro,B8 Pro,T200M,A81,D80 Pro, A8 Pro,S8 Pro,S8,A8
Ratings:	Input:DC 5V Battery:DC 7.4V

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

7		Project No.:	ZKT-2305093364E Page 3 of 39
	Table of	Contents	Page
	1.VERSION		5
	2.SUMMARY OF TEST RESULTS		6
	2.1 TEST FACILITY		7
	2.2 MEASUREMENT UNCERTAINT	Y	7
	3. GENERAL INFORMATION		8
	3.1 GENERAL DESCRIPTION OF E	EUT	8
	3.2 DESCRIPTION OF TEST MODE	ES	9
	3.3 BLOCK DIGRAM SHOWING TH	IE CONFIGURATION OF SYSTEM TE	ESTED 9
	3.4 DESCRIPTION OF SUPPORT L		10
	3.5 EQUIPMENTS LIST FOR ALL T	EST ITEMS	11
	4. EMC EMISSION TEST		13
	4.1 CONDUCTED EMISSION MEAS 4.1.1 1POWER LINE CONDUCT	-	13 13
	4.1.2 TEST PROCEDURE		13
	4.1.3 DEVIATION FROM TEST S	STANDARD	13
	4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDIT	TIONS	14 14
	4.1.6 TEST RESULTS		13
	4.2 RADIATED EMISSION MEASUR		15
	4.2.1 RADIATED EMISSION LIM 4.2.2 TEST PROCEDURE	IITS	17 18
	4.2.3 DEVIATION FROM TEST S	STANDARD	18
	4.2.4 TEST SETUP		18
	4.2.5 EUT OPERATING CONDIT		19
	5.RADIATED BAND EMISSION ME 5.1 TEST REQUIREMENT:	ASUREMENT	24 24
	5.2 TEST PROCEDURE		24
	5.3 DEVIATION FROM TEST ST 5.4 TEST SETUP	ANDARD	24 25
	5.5 EUT OPERATING CONDITIO	ONS	25 25
	5.6 TEST RESULT		26
	6.POWER SPECTRAL DENSITY TE		27
	6.1 APPLIED PROCEDURES / L 6.2 TEST PROCEDURE	IMIT	27 27
	6.3 DEVIATION FROM STANDA	RD	27
	6.4 TEST SETUP		27

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🕄 www.zkt-lab.com

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	27 28
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	30 30 30 30 30 30 31
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	33 33 33 33 33 33 33 34
 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS 	35 35 35 35 35 35
10.ANTENNA REQUIREMENT	38
11. TEST SETUP PHOTO	39
12. EUT CONSTRUCTIONAL DETAILS	39

1.VERSION

	Report No.	Version	Description	Approved
	ZKT-2305093364E	Rev.01	Initial issue of report	May. 16, 2023
				9
-				

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	FCC Part15 (15.247) , Subpart C		
Standard Section	Test Item	Judgment	Remark
FCC part 15.203/15.247 (c)	Antenna requirement	PASS	
FCC part 15.207	AC Power Line Conducted Emission	PASS	
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS	
FCC part 15.247 (a)(2)	Channel Bandwidth& -6dB OCB	PASS	
FCC part 15.247 (e)	Power Spectral Density	PASS	SD
FCC part 15.247(d)	Band Edge	PASS	
FCC part 15.205/15.209	Spurious Emission	PASS	

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty	
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB	
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB	
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB	
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB	
5	Conducted disturbance	U=3.2dB	
6	RF Band Edge	U=1.68dB	
7	RF power conducted	U=1.86dB	
8	RF conducted Spurious Emission	U=2.2dB	
9	RF Occupied Bandwidth	U=1.8dB	
10	RF Power Spectral Density	U=1.75dB	
11 humidity uncertainty		U=5.3%	
12	Temperature uncertainty	U=0.59°C	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Thermal Printer	
Model No.:	A80	
	D80,B8,Y8,A80 Pro,Y8 Pro,B8 Pro,T200M,A81,D80) Pro,
	A8 Pro,S8 Pro,S8,A8	
Model Different .:	Only the colors are different	
Serial No.:	N/A	
Hardware Version:	H1.0	
Software Version:	S1.0	
Sample(s) Status:	Engineer sample	1
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	
Channel Separation:	2MHz	
Modulation Type:	GFSK	
Antenna Type:	PCB ANT	
Antenna gain:	3.14dBi	
Power supply:	Input:DC 5V	
	Battery:DC 7.4V	
SWITCHING POWER	N/A	
ADAPTER:		100

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and

the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
Charging mode	Keep the EUT in Charging mode.
•	the test voltage was tuned from 85% to 115% of the nominal rated supply ne worst case was under the nominal rated supply condition. So the report just ta.

Test Software	BLE Test Tool
Power level setup	<0dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

Radiated Emission

Conducted Spurious

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Thermal Printer	N/A	PBS002	N/A	EUT
A-1	AC Adapter	HuaWei	ZKT-01	N/A	Auxiliary
		$\sim \sim$			

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

🔊 www.zkt-lab.com

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted	emissions Tes	t

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Oct. 21, 2022	Oct. 20, 2023
2	LISN	CYBERTEK	EM5040A	E185040014 9	N/A	Oct. 21, 2022	Oct. 20, 2023
3	Test Cable	N/A	C-01	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
4	Test Cable	N/A	C-02	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
5	Test Cable	N/A	C-03	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Oct. 28, 2022	Oct. 27, 2023
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Oct. 31, 2022	Oct. 30, 2023
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	1	1

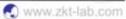
20

R

Ð

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

昌



Radiated emissions Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	A.17.05	Oct. 28, 2022	Oct. 27, 2023
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Oct. 28, 2022	Oct. 27, 2023
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	4.32	Oct. 28, 2022	Oct. 27, 2023
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	N/A	Nov. 02, 2022	Nov. 01, 2023
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Nov. 01, 2022	Oct. 31, 2023
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Oct. 28, 2022	Oct. 27, 2023
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Nov. 01, 2022	Oct. 31, 2023
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	N/A	Nov. 15, 2022	Nov. 14, 2023
9	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	N/A	Oct. 28, 2022	Oct. 27, 2023
10	Amplifier (500MHz-40GHz)	全聚达	DLE-161	097	N/A	Oct. 28, 2022	Oct. 27, 2023
11	Test Cable	N/A	R-01	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
12	Test Cable	N/A	R-02	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
13	Test Cable	N/A	R-03	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
14	Test Cable	N/A	RF-01	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
15	Test Cable	N/A	RF-02	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
16	Test Cable	N/A	RF-03	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
17	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Oct. 21, 2022	Oct. 20, 2023
18	Signal Generator	Agilent	N5182A	N/A	A.01.87	Oct. 21, 2022	Oct. 20, 2023
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 15, 2022	Nov. 14, 2023
20	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Oct. 28, 2022	Oct. 27, 2023
21	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	١	\
23	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	λ	١
24	RF Software	MW	MTS8310	V2.0.0.0	N/A	N State	\
25	Turntable	MF	MF-7802BS	N/A	<u>N/A</u>	N N	\
26	Antenna tower	MF	MF-7802BS	N/A	N/A		۱

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

	Test Requirement:	FCC Part15 C Section 15.207
n	Test Method:	ANSI C63.10:2013
k	Test Frequency Range:	150KHz to 30MHz
-	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

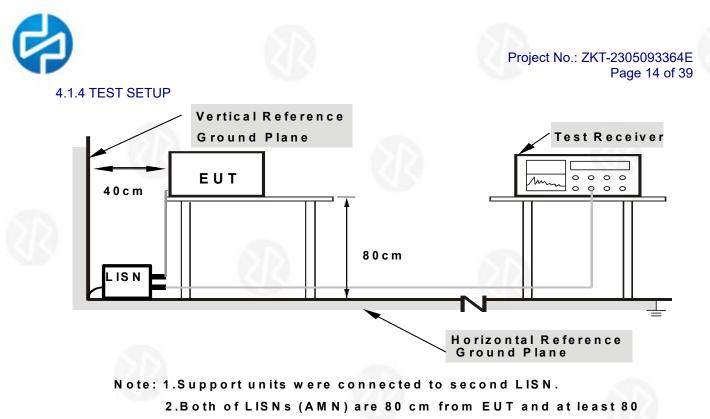
4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Standard	
FREQUENCY (MHz)	Quas-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

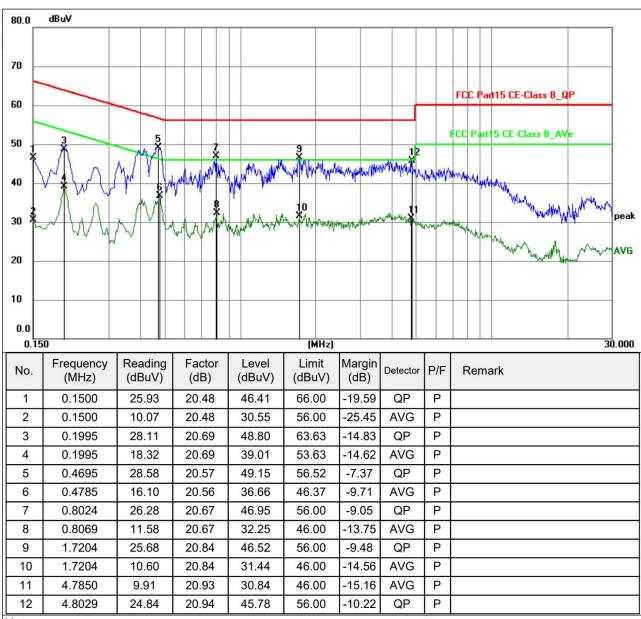
4.1.3 DEVIATION FROM TEST STANDARD

No deviation

from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

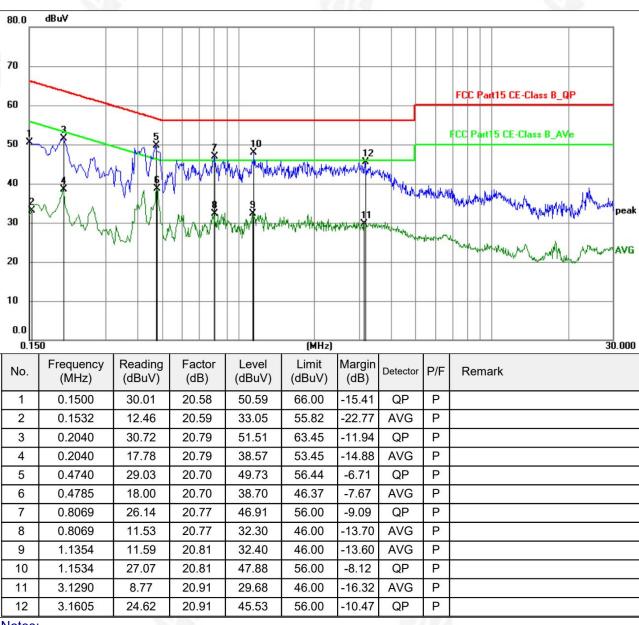
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.


2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-2305093364E Page 16 of 39

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
 Test Method.	ANSI C03. 10.2013	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
		Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCT (MILZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

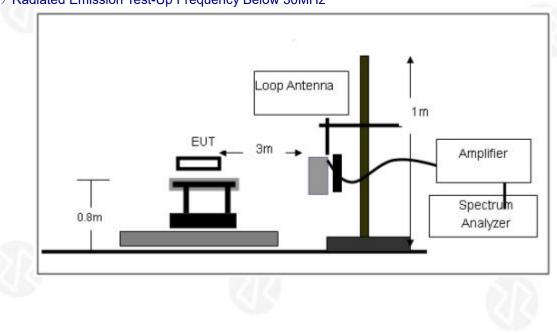
(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:
- Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

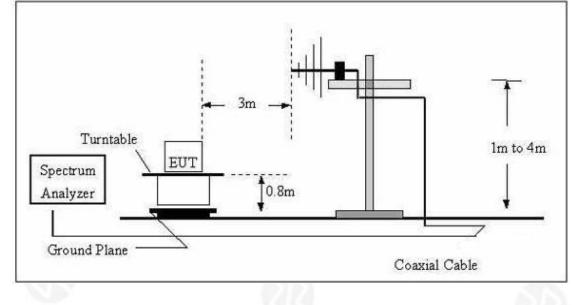

Note:

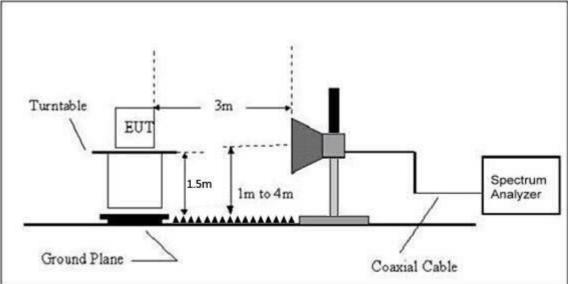
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz





Project No.: ZKT-2305093364E Page 19 of 39

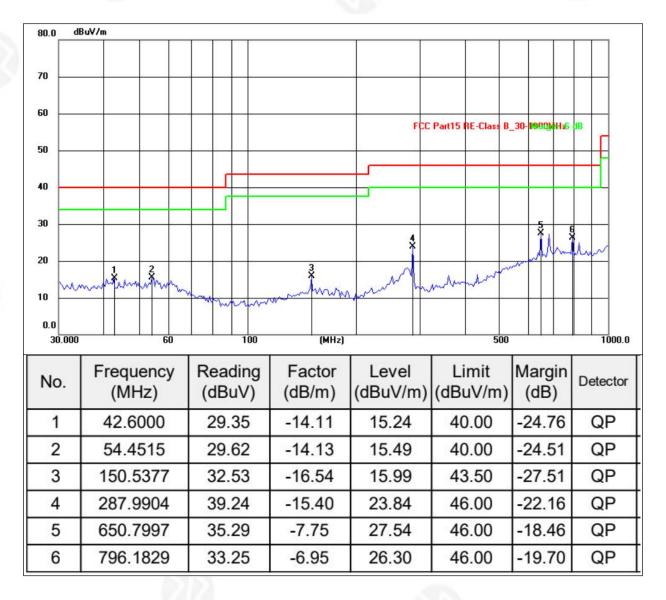
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

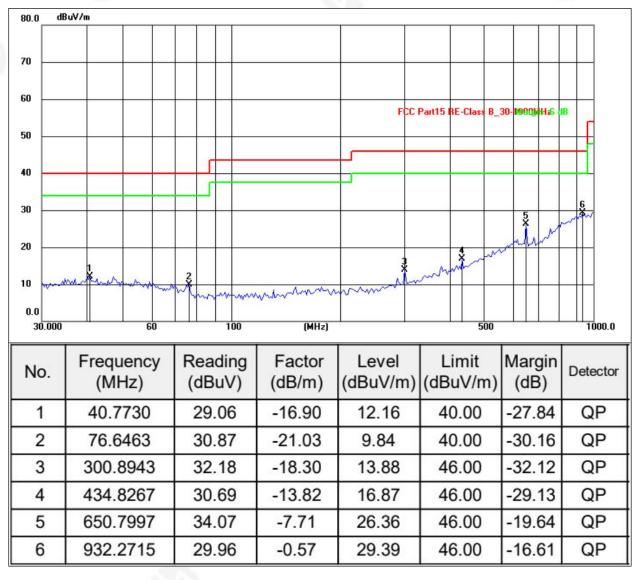
4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz - 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 7.4V	7.42	

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 7.4V		212

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK mode

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
		•		Low Cha	nnel:2402N	IHz			
V	4804.00	53.24	30.55	5.77	24.66	53.12	74.00	-20.88	Pk
V	4804.00	43.53	30.55	5.77	24.66	43.41	54.00	-10.59	AV
V	7206.00	54.29	30.33	6.32	24.55	54.83	74.00	-19.17	Pk
V	7206.00	43.57	30.33	6.32	24.55	44.11	54.00	-9.89	AV
V	9608.00	50.29	30.85	7.45	24.69	51.58	74.00	-22.42	Pk
V	9608.00	43.74	30.85	7.45	24.69	45.03	54.00	-8.97	AV
V	12010.00	52.83	31.02	8.99	25.57	56.37	74.00	-17.63	Pk
V	12010.00	43.88	31.02	8.99	25.57	47.42	54.00	-6.58	AV
Н	4804.00	51.47	30.55	5.77	24.66	51.35	74.00	-22.65	Pk
Н	4804.00	43.30	30.55	5.77	24.66	43.18	54.00	-10.82	AV
Н	7206.00	51.02	30.33	6.32	24.55	51.56	74.00	-22.44	Pk
Н	7206.00	43.66	30.33	6.32	24.55	44.20	54.00	-9.80	AV
Н	9608.00	52.30	30.85	7.45	24.69	53.59	74.00	-20.41	Pk
Н	9608.00	43.11	30.85	7.45	24.69	44.40	54.00	-9.60	AV
Н	12010.00	53.05	31.02	8.99	25.57	56.59	74.00	-17.41	Pk
Н	12010.00	43.59	31.02	8.99	25.57	47.13	54.00	-6.87	AV
	Frequency	Meter	Pre-ampli	Cable	Antenna	Emission	Limite	Margin	
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
Polar (H/V)	Frequency (MHz)						Limits (dBuV/m)	Margin (dB)	Detector Type
		Reading	fier (dB)	Loss (dB)	Factor (dB)	Level (dBuV/m)			
	(MHz)	Reading (dBuV)	fier (dB) M	Loss (dB) liddle Ch	Factor (dB) annel:2440	Level (dBuV/m) MHz	(dBuV/m)	(dB)	
(H/V)	(MHz) 4880.00	Reading (dBuV) 53.22	fier (dB) 30.55	Loss (dB) 1iddle Ch 5.77	Factor (dB) annel:2440 24.66	Level (dBuV/m) MHz 53.10	(dBuV/m) 74.00	(dB)	Type Pk
(H/V)	(MHz) 4880.00 4880.00	Reading (dBuV) 53.22 43.38	fier (dB) 30.55 30.55	Loss (dB) 1iddle Ch 5.77 5.77	Factor (dB) annel:2440 24.66 24.66	Level (dBuV/m) MHz 53.10 43.26	(dBuV/m) 74.00 54.00	(dB) -20.90 -10.74	Type Pk AV
(H/V) V V	(MHz) 4880.00	Reading (dBuV) 53.22	fier (dB) 30.55 30.55 30.33	Loss (dB) 1iddle Ch 5.77	Factor (dB) annel:2440 24.66	Level (dBuV/m) MHz 53.10	(dBuV/m) 74.00	(dB)	Type Pk
(H/V) V V V	(MHz) 4880.00 4880.00 7320.00 7320.00	Reading (dBuV) 53.22 43.38 52.75 43.87	fier (dB) 30.55 30.55 30.33 30.33	Loss (dB) 1iddle Ch 5.77 5.77 6.32 6.32	Factor (dB) annel:2440 24.66 24.66 24.55 24.55	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59	Type Pk AV Pk AV
(H/V) V V V V	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85	Loss (dB) 1iddle Ch 5.77 6.32 6.32 7.45	Factor (dB) annel:2440 24.66 24.66 24.55 24.55 24.69	Level (dBuV/m) (dBuV/m) (dBuV/m) (dBu7/m) (dBu7/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52	Type Pk AV Pk AV Pk
(H/V) V V V V V V	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85 30.85	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45	Factor (dB) annel:2440 24.66 24.66 24.55 24.55 24.69 24.69	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44	Type Pk AV Pk AV Pk AV
(H/V) V V V V V V V	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11	fier (dB) 30.55 30.55 30.33 30.33 30.85 30.85 30.85 31.02	Loss (dB) liddle Ch 5.77 5.77 6.32 6.32 7.45 7.45 8.99	Factor (dB) annel:2440 24.66 24.66 24.55 24.55 24.69 24.69 25.57	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35	Type Pk AV Pk AV Pk AV Pk
(H/V) V V V V V V V V V	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85 30.85 30.85 31.02 31.02	Loss (dB) 1iddle Ch 5.77 6.32 6.32 6.32 7.45 7.45 8.99 8.99	Factor (dB) annel:2440 24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24	Type Pk AV Pk AV Pk AV Pk AV
(H/V) V V V V V V V V H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85 30.85 31.02 31.02 30.55	Loss (dB) 1iddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 8.99 5.77	Factor (dB) annel:2440 24.66 24.55 24.55 24.69 24.69 24.69 25.57 25.57 24.66	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73	Type Pk AV Pk AV Pk AV Pk AV Pk AV
(H/V) V V V V V V H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66	fier (dB) 30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 8.99 5.77 5.77	Factor (dB) annel:2440 24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57 25.57 24.66 24.66	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46	Type Pk AV Pk AV Pk AV Pk AV Pk AV
(H/V) V V V V V V V H H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66 51.62	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85 30.85 31.02 31.02 31.02 30.55 30.55 30.55 30.33	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32	Factor (dB) annel:2440 24.66 24.55 24.55 24.69 24.69 25.57 25.57 25.57 24.66 24.66 24.66 24.55	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46 -21.84	Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk
(H/V) V V V V V V H H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66 51.62 43.18	fier (dB) 30.55 30.55 30.33 30.33 30.33 30.85 30.85 31.02 31.02 31.02 30.55 30.55 30.33 30.33	Loss (dB) 1iddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32 6.32	Factor (dB) annel:2440 24.66 24.55 24.55 24.69 24.69 25.57 25.57 25.57 24.66 24.66 24.55 24.55	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46 -21.84 -10.28	Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV
(H/V) V V V V V V H H H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00 9760.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66 51.62 43.18 50.58	fier (dB) 30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02 31.02 31.02 30.55 30.55 30.33 30.33 30.33 30.33	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32 6.32 7.45	Factor (dB) annel:2440 24.66 24.66 24.55 24.69 24.69 25.57 25.57 25.57 25.57 24.66 24.66 24.55 24.55 24.55 24.69	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46 -21.84 -10.28 -22.13	Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk
(H/V) V V V V V V V H H H H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66 51.62 43.18 50.58 43.06	fier (dB) 30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02 31.02 30.55 30.55 30.55 30.33 30.33 30.85 30.85	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 6.32 6.32 7.45 6.32 7.45 7.45	Factor (dB) annel:2440 24.66 24.65 24.55 24.69 24.69 25.57 25.57 25.57 24.66 24.66 24.55 24.69 24.69 24.69 24.69	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46 -21.84 -10.28 -22.13 -9.65	Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV
(H/V) V V V V V V H H H H	(MHz) 4880.00 4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00 9760.00	Reading (dBuV) 53.22 43.38 52.75 43.87 52.19 43.27 51.11 43.22 53.39 43.66 51.62 43.18 50.58	fier (dB) 30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02 31.02 31.02 30.55 30.55 30.33 30.33 30.33 30.33	Loss (dB) liddle Ch 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32 6.32 7.45	Factor (dB) annel:2440 24.66 24.66 24.55 24.69 24.69 25.57 25.57 25.57 25.57 24.66 24.66 24.55 24.55 24.55 24.69	Level (dBuV/m) (dBuV/	(dBuV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	(dB) -20.90 -10.74 -20.71 -9.59 -20.52 -9.44 -19.35 -7.24 -20.73 -10.46 -21.84 -10.28 -22.13	Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk

Project No.: ZKT-2305093364E Page 23 of 39

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	High Channel:2480MHz								
V	4960.00	54.09	30.55	5.77	24.66	53.97	74.00	-20.03	Pk
V	4960.00	43.32	30.55	5.77	24.66	43.20	54.00	-10.80	AV
V	7440.00	53.42	30.33	6.32	24.55	53.96	74.00	-20.04	Pk
V	7440.00	43.35	30.33	6.32	24.55	43.89	54.00	-10.11	AV
V	9920.00	53.92	30.85	7.45	24.69	55.21	74.00	-18.79	Pk
V	9920.00	43.43	30.85	7.45	24.69	44.72	54.00	-9.28	AV
V	12400.00	51.48	31.02	8.99	25.57	55.02	74.00	-18.98	Pk
V	12400.00	43.22	31.02	8.99	25.57	46.76	54.00	-7.24	AV
Н	4960.00	53.56	30.55	5.77	24.66	53.44	74.00	-20.56	Pk
Н	4960.00	43.24	30.55	5.77	24.66	43.12	54.00	-10.88	AV
Н	7440.00	53.34	30.33	6.32	24.55	53.88	74.00	-20.12	Pk
Н	7440.00	43.14	30.33	6.32	24.55	43.68	54.00	-10.32	AV
Н	9920.00	50.24	30.85	7.45	24.69	51.53	74.00	-22.47	Pk
Н	9920.00	43.95	30.85	7.45	24.69	45.24	54.00	-8.76	AV
Н	12400.00	54.27	31.02	8.99	25.57	57.81	74.00	-16.19	Pk
Н	12400.00	43.88	31.02	8.99	25.57	47.42	54.00	-6.58	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:	ANSI C63.10: 2013				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above	Peak	1MHz	3MHz	Peak	
	1GHz	Average	1MHz	3MHz	Average	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

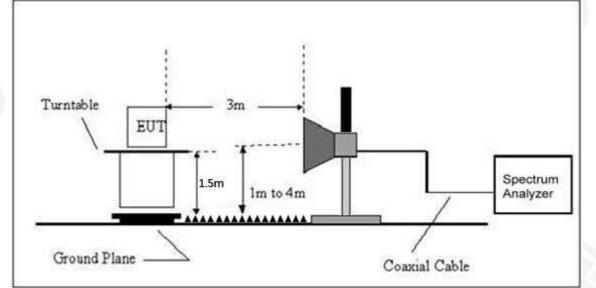
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
				Low	Channe	I: 2402MHz	<u>r</u>			
	Н	2390.00	53.41	30.22	4.85	23.98	52.02	74.00	PK	PASS
- A.	Н	2390.00	44.53	30.22	4.85	23.98	43.14	54.00	AV	PASS
1.1	Н	2400.00	54.05	30.22	4.85	23.98	52.66	74.00	PK	PASS
	Н	2400.00	44.77	30.22	4.85	23.98	43.38	54.00	AV	PASS
	V	2390.00	53.92	30.22	4.85	23.98	52.53	74.00	PK	PASS
	V	2390.00	44.45	30.22	4.85	23.98	43.06	54.00	AV	PASS
	V	2400.00	54.99	30.22	4.85	23.98	53.60	74.00	PK	PASS
GFSK	V	2400.00	44.57	30.22	4.85	23.98	43.18	54.00	AV	PASS
GFSK			High Channel: 2480MHz							
	Н	2483.50	53.39	30.22	4.85	23.98	52.00	74.00	PK	PASS
	Н	2483.50	44.43	30.22	4.85	23.98	43.04	54.00	AV	PASS
	Н	2500.00	53.93	30.22	4.85	23.98	52.54	74.00	PK	PASS
	Н	2500.00	44.76	30.22	4.85	23.98	43.37	54.00	AV	PASS
	V	2483.50	53.96	30.22	4.85	23.98	52.57	74.00	PK	PASS
	V	2483.50	44.52	30.22	4.85	23.98	43.13	54.00	AV	PASS
	V	2500.00	53.10	30.22	4.85	23.98	51.71	74.00	PK	PASS
	V	2500.00	44.20	30.22	4.85	23.98	42.81	54.00	AV	PASS

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Www.zkt-lab.com

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

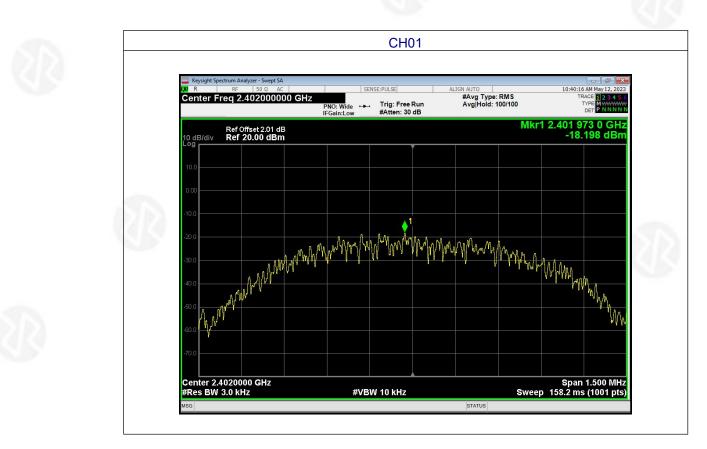
6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

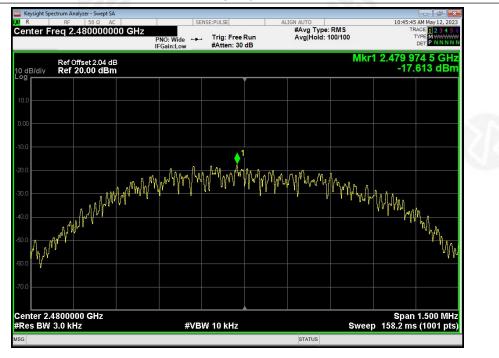




6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 7.4V

	Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402 MHz	-18.198	8	PASS
	2440 MHz	-17.784	8	PASS
ß	2480 MHz	-17.613	8	PASS



CH40

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS				

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

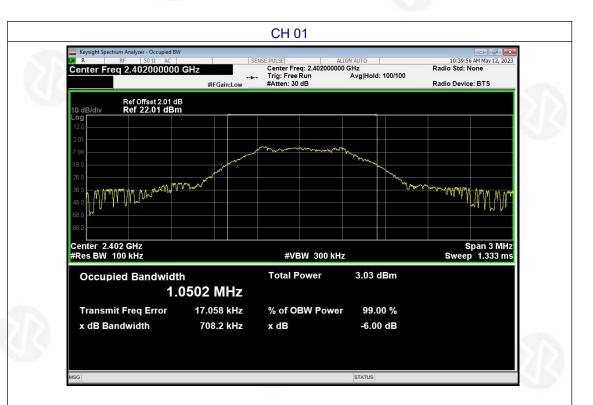
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

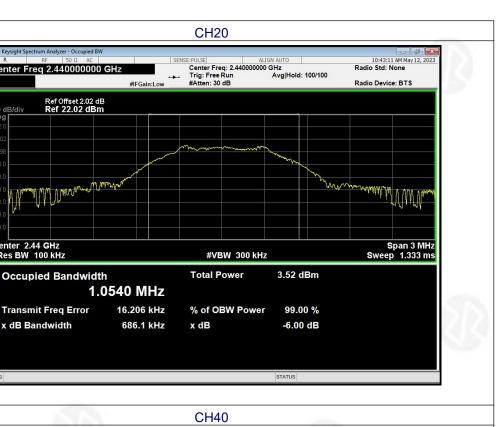


7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 7.4V

100	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
211	Lowest	0.708		
	Middle	0.686	>500	Pass
	Highest	0.696	212	

Keysight Spe


Center 2.44 GHz #Res BW 100 kHz


Transmit Freq Error

x dB Bandwidth

Cente

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS			

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 7.4V

	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
5	Lowest	-2.52		
	Middle	-2.121	30.00	Pass
2	Highest	-2.007		

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- \dot{C}) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

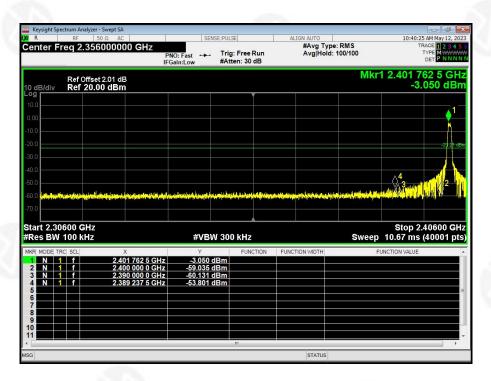
9.3 DEVIATION FROM STANDARD

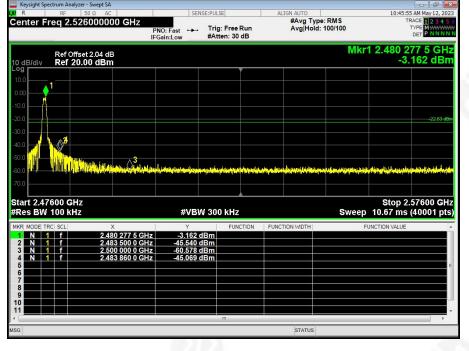
No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

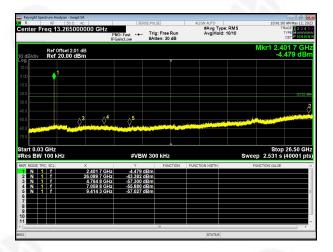

9.6 TEST RESULTS



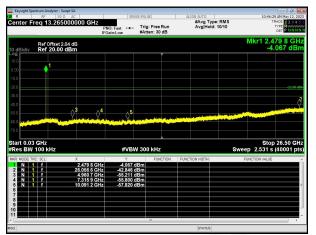
GFSK: Band Edge, Left Side

GFSK: Band Edge, Right Side

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


🔊 www.zkt-lab.com

Lowest channel


Middle channel

R R	RF 50 Q AC	s	ENSE:PULSE	ALIGN AUTO	02:36:44 PM Apr 07, 2023
enter Fr	eq 2.44000000	PNO: Wide	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 2 3 4 5 TYPE M DET P NNNN
0 dB/div	Ref Offset 2.02 dB Ref 20.00 dBm			Mkr1	2.440 225 62 GHz 2.084 dBm
10.0					
.00		and the second second		1 million	
0.0	and the second second	and a start of the		and the second second	·····
0.0	www.				. when when a
0.0 /					C. N. W.
0.0					
0.0					
0.0					
0.0					
enter 2.4 Res BW 1	400000 GHz 100 kHz	#VE	300 kHz	Sweep	Span 1.500 MH 1.335 ms (10010 pts
9G				STATUS	

Keysight Sp R	RECTRUM A	Analyzer - Swept S			SENSE:PU	ee.		IGN AUTO			
		13.265000	0000 GHz	PNO: Fast IFGain:Low	Tri	g: Free Run Itten: 30 dB	A	#Avg Type Avg Hold:		10:44	TRACE 2 3 4 TYPE M
dB/div	Ref Ref	Offset 2.02 of 20.00 dB	iB m			Ļ					440 1 GI 4.701 dB
		1									
1											
° 0											-22.00
o											
о п			3 .4		5						
0		a Hatana	and at a bal	the second				<u>identificant</u>			
.0											
art 0.03 es BW				#	VBW 30	0 KHz			Swe	Sto ep 2.531	op 26.50 Gl s (40001 p
R MODE T	RC SCL		× 2.440 1 GH		Y 701 dBm	FUNCTION	FUNC	TION WIDTH		FUNCTION VALU	E
	1 f 1 f		26.185 7 GH 4.879 3 GH	z -42.	986 dBm 784 dBm						
N N	1 f 1 f		7.200 7 GH 9.662 4 GH	z -56.	242 dBm 789 dBm						
		_				m					

Highest channel

10.ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB ANT, the best case gain of the antennas is 3.14dBi, reference to the appendix II for details

Project No.: ZKT-2305093364E Page 39 of 39

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT ****

