

RF TEST REPORT

Applicant	Phillips Connect Technologies, LLC
FCC ID	2ASKH-DL02
Product	AssetTrac-LA
Brand	Phillips Connect
Model	77-6400
Report No.	R2404A0350-R1
Issue Date	May 16, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2023)/ FCC CFR 47 Part 22H (2023). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Zhu Chentao

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	t Laboratory	.4
1.1.	Notes of the Test Report	4
1.2.	Test Facility	4
1.3.	Testing Location	4
2. Ger	neral Description of Equipment Under Test	.5
2.1.	Applicant and Manufacturer Information	5
2.2.	General Information	5
3. App	lied Standards	.6
4. Tes	t Configuration	.7
5. Tes	t Case	.8
5.1.	RF Power Output and Effective Radiated Power	
5.2.	Radiated Spurious Emission	9
6. Tes	t Result1	2
6.1.	RF Power Output and Effective Radiated Power1	2
6.2.	Radiated Spurious Emission1	3
7. Mai	n Test Instruments1	4
ANNEX	A: The EUT Appearance1	5
ANNEX	B: Test Setup Photos1	6

Summary of Measurement Results

No.	Test Case	Clause in FCC rules	Verdict			
1	RF Power Output and Effective Radiated Power	2.1046	DAGO			
I	RF Fower Output and Effective Radiated Fower	22.913(a)(5)	PASS			
2	Radiated Spurious Emission2.1053 / 22.917 (a)PASS					
Date of Testing: April 12, 2024 ~ April 17, 2024						
Date of Sample Received: April 10, 2024						
Note: PASS: The EUT complies with the essential requirements in the standard.						
FAIL: The EUT does not comply with the essential requirements in the standard.						
All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai)						
Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were						
not taken into account and are published for informational purposes only.						

This report only tests the RF Power Output and Effective Radiated Power and Radiated Spurious Emission of the 77-6400.

Other test items refer to the Module report (Report No.: R1805A0226-R1V3, FCC ID: XMR201606EC21A).

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of Eurofins TA

Technology (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3. Testing Location

Company:	Eurofins TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	Phillips Connect Technologies, LLC		
Applicant address	5231 California Avenue, Suite 110 Irvine, CA 92617, USA		
Manufacturer	Phillips Connect Technologies, LLC		
Manufacturer address	5231 California Avenue, Suite 110 Irvine, CA 92617, USA		

2.2. General Information

EUT Description					
Model	77-6400				
Lab internal SN	R2404A0350/S01				
Hardware Version	Freight-LA P3				
Software Version	Freight-LA V1				
Power Supply	Battery / External powe	r supply			
Antenna Type	PIFA Antenna				
Antenna Gain	0 dBi				
Test Mode(s)	WCDMA Band V				
Test Modulation	(WCDMA) BPSK, QPSł	Κ ;			
HSDPA UE Category	24				
HSUPA UE Category	6	6			
DC-HSDPA UE Category	24	24			
Maximum E.R.P.	21.20 dBm	21.20 dBm			
Rated Power Supply Voltage	12V	12V			
Operating Voltage	Minimum: 10V Maxin	Minimum: 10V Maximum: 32V			
Operating Temperature	Lowest: -30°C High	est: +75°C			
Testing Temperature	Lowest: -30°C High	est: +50°C			
Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)		
Frequency Range(s)	WCDMA Band V	824 ~ 849	869 ~ 894		
EUT Accessory					
Battery	Manufacturer: Ramway				
Model: ER14505-3+RHC1550					
Note: 1. The EUT is sent from the	applicant to Eurofins TA an	d the information of t	he EUT is declared		
by the applicant.					

🛟 eurofins

RF Test Report

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards: FCC CFR 47 Part 22H (2023)

FCC CFR47 Part 2 (2023)

Reference standard: ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Y axis, horizontal polarization) and the worst case was recorded.

All mode and data rates and positions and RB size and modulations were investigated. Subsequently, only the worst case emissions are reported.

The following testing in WCDMA is set based on the maximum RF Output Power.

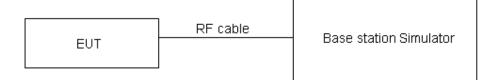
Test modes are chosen to be reported as the worst case configuration below:

Test items	Modes/Modulation		
	WCDMA Band V		
	RMC		
RF Power Output and Effective Radiated power	HSDPA/HSUPA		
	DC-HSDPA		
Radiated Spurious Emission	RMC		

5. Test Case

5.1. RF Power Output and Effective Radiated Power

Ambient Condition


Temperature Relative humidity		Pressure		
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa		

Methods of Measurement

During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.

ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) + Antenna Gain (dBi) EIRP (dBm) = ERP (dBm) + 2.15 (dB).

Test Setup

Limits

No specific RF power output requirements in part 2.1046.

Rule Part 22.913(a)(5) specifies that "Mobile/portable stations are limited to 7 watts ERP".

Limit	≤ 7 W (38.45 dBm)
-------	-------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 0.4 dB for RF power output, k = 2, U= 1.19 dB for ERP.

Test Results

Refer to the section 6.1 of this report for test data.

5.2. Radiated Spurious Emission

Ambient Condition

Temperature	Relative humidity	Pressure		
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa		

Method of Measurement

1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26-2015.

2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100kHz, VBW=300kHz, and the maximum value of the receiver should be recorded as (Pr).

5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 6. A amplifier should be connected to the Signal Source output port. And the cable should be connected to the signal Source output port.

between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

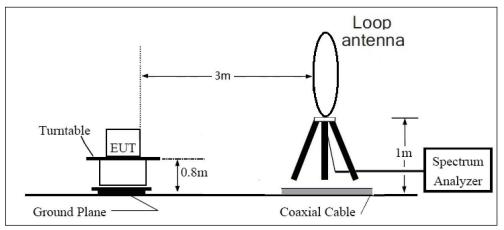
7. The measurement results are obtained as described below:

Power (EIRP) = PMea - PAg - Pcl + Ga

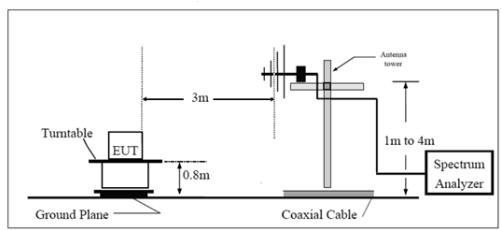
The measurement results are amend as described below:

Power (EIRP) = PMea - Pcl + Ga

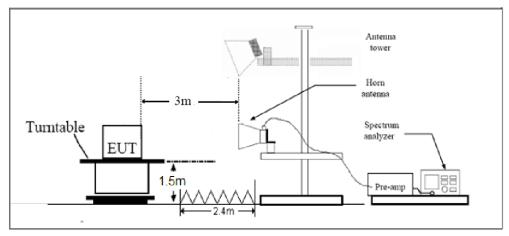
8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dB.


🛟 eurofins

RF Test Report


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test Setup


9KHz~ 30MHz

Above 1GHz

Note: Area side: 2.4mX3.6m

🛟 eurofins

RF Test Report

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) Db."

Limit -13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U= 3.55 Db.

Test Results

Refer to the section 6.2 of this report for test data.

RF Test Report

6. Test Result

6.1. RF Power Output and Effective Radiated Power

		Maximum Output Power (dBm)		ERP (dBm)			
		Channel	Channel	Channel	Channel	Channel	Channel
WCDMA	WCDMA Band V		4183	4233	4132	4183	4233
			836.6	846.6	826.4	836.6	846.6
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
RM	IC	23.30	23.33	23.35	21.15	21.18	21.20
	Sub - Test 1	22.72	22.75	22.77	20.57	20.60	20.62
HSDPA	Sub - Test 2	22.71	22.74	22.76	20.56	20.59	20.61
ISDFA	Sub - Test 3	22.20	22.23	22.25	20.05	20.08	20.10
	Sub - Test 4	22.19	22.22	22.24	20.04	20.07	20.09
	Sub - Test 1	21.68	21.71	21.73	19.53	19.56	19.58
	Sub - Test 2	19.67	19.70	19.72	17.52	17.55	17.57
HSUPA	Sub - Test 3	20.65	20.69	20.71	18.50	18.54	18.56
	Sub - Test 4	19.64	19.68	19.70	17.49	17.53	17.55
	Sub - Test 5	23.13	23.17	23.19	20.98	21.02	21.04
DC-HSDPA	Sub - Test 1	22.64	22.69	22.69	20.49	20.54	20.54
	Sub - Test 2	22.63	22.68	22.68	20.48	20.53	20.53
	Sub - Test 3	22.21	22.17	22.19	20.06	20.02	20.04
	Sub - Test 4	22.20	22.16	22.18	20.05	20.01	20.03

6.2. Radiated Spurious Emission

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)	
2	1675.20	-45.39	1.70	8.70	Horizontal	-40.54	-13.00	27.54	192	
3	2512.73	-63.08	2.30	12.00	Horizontal	-55.53	-13.00	42.53	143	
4	3346.40	-67.81	2.70	12.70	Horizontal	-59.96	-13.00	46.96	0	
5	4183.00	-65.85	3.00	12.50	Horizontal	-58.50	-13.00	45.50	45	
6	5019.60	-62.76	3.40	12.50	Horizontal	-55.81	-13.00	42.81	178	
7	5856.20	-60.50	3.40	12.80	Horizontal	-53.25	-13.00	40.25	90	
8	6692.80	-57.85	4.10	11.50	Horizontal	-52.60	-13.00	39.60	156	
9	7529.40	-55.27	4.20	12.20	Horizontal	-49.42	-13.00	36.42	40	
10	8366.00	-54.98	4.30	12.50	Horizontal	-48.93	-13.00	35.93	272	
Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.										
2. The worst emission was found in the antenna is Horizontal position.										

WCDMA Band V CH-Middle

7. Main Test Instruments

Name	Name Manufacturer		Serial Number	Calibration Date	Expiration Date						
Wireless Communication Tester	R&S	CMW500	150415	2023-05-12	2024-05-11						
Wireless Communication Tester	Agilent	E5515C	MY48367192	2023-05-12	2024-05-11						
Radiated Spurious Emission											
Spectrum Analyzer	R&S	FSV30	100815	2023-12-05	2024-12-04						
High-pass filter	Chengyi	HPF 1000MHz	2024021	2024-02-21	2025-02-21						
High-pass filter	R&S	HPF 1500MHz	HPF 002	2024-02-21	2025-02-21						
High-pass filter	R&S	HPF 3000MHz	HPF 003	2024-02-21	2025-02-21						
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15						
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	391	2022-09-29	2025-09-28						
Horn Antenna	SCHWARZBECK	BBHA 9120D	1594	2023-12-05	2026-12-04						
Software	R&S	EMC32	10.35.10	/	/						

RF Test Report

ANNEX A: The EUT Appearance

The EUT Appearance is submitted separately.

RF Test Report

ANNEX B: Test Setup Photos

The Test Setup Photos is submitted separately.

****** END OF REPORT ******