TEST REPORT

For

Mini PCI Type 3A Single Band 802.11b WLAN Adapter Model Number: WM3A2100

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING EMISSIONS STANDARD

47 CFR Part 15, Subpart C (Section 15.247)

Test Method:

ANSI C63.4: 1992 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

CERTIFICATE NUMBER: 1111.01

To view a copy of the Scope of Accreditation visit www.A2LA2.net

PREPARED FOR:

PREPARED BY:

Intel Corporation 2300 Corporate Center Drive Thousand Oaks, California 91320

Contact(s): James K. Baer

Aegis Labs, Inc. 22431 Antonio Parkway B160-417 Rancho S. Margarita, CA 92688

Agent(s): Mr. Steve Kuiper

Mr. Rick Candelas

Test Report #: INTEL-021028FTest Date: Oct 28 – Nov 1, 2002

	REPORT	APPENDICES	TOTAL
	BODY	I	
PAGES	19	59	78

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.

AEGIS LABS, INC 22431 Antonio Parkway B160-417, Rancho Santa Margarita, CA 92688 949-459-7886 TEL 949-459-7869 FAX www.aegislabsinc.com

Page 1 of 19 Report Number: INTEL-021028F FCC ID: PD9WM3A2100

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
		02
1.0	CERTIFICATION OF TEST DATA	03
2.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	04
3.0	DESCRIPTION OF EUT CONFIGURATION	05
3.1	EUT Description	05
3.1.1	Channel Number and Frequencies	06
3.2	EUT Configuration.	07
3.3	EUT and Sub-Assemblies List	08
3.4	Accessory / Host Equipment List	08
3.5	Cabling Diagram and Description	09
4.0	TEST EQUIPMENT SETTINGS AND TEST SETUPS	10
4.1	Conducted Emissions At AC Mains Port	10
4.1.1	Conducted Emissions At AC Mains Port – Test Setup	11
4.2	Radiated Emissions (Spurious and Harmonics)	12
4.2.1	Radiated Emissions (Spurious and Harmonics) – Test Setup	13
4.3	Occupied Bandwidth Measurement	14
4.3.1	Occupied Bandwidth Measurement– Test Setup	14
4.4	Maximum Peak Output Power Measurement	15
4.4.1	Maximum Peak Output Power Measurement- Test Setup	15
4.5	Spectral Power Density Measurement	16
4.5.1	Spectral Power Density Measurement– Test Setup	16
4.6	Spurious Emissions Measurement At The Antenna Terminal	17
4.6.1	Spurious Emissions Measurement At The Antenna Terminal– Test Setup	17
4.7	Band Edge Measurement At The Antenna Terminal	18
4.7.1	Band Edge Measurement At The Antenna Terminal– Test Setup	18
5.0	MODIFICATIONS AND RECOMMENDATIOS	19
APPENDI	CES	
I	Data Sheets	
II	Accreditation Certificate (Removed to maintain 4.0 MB file upload size limitation)	

Report Number: INTEL-021028F FCC ID: PD9WM3A2100

1.0 CERTIFICATION OF TEST DATA

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual.

Testing and engineering functions provided by Aegis Labs are furnished through the use of part-time, full-time or consulting engineers with the appropriate qualifications to carry out their duties. The intended purpose of this test report is to describe the measurement procedure and to determine whether the equipment under test "EUT" complies with both the conducted and radiated limits. Limits for emissions testing are described under 47 CFR Part 15, Subpart C (Section 15.247).

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the Equipment Under Test (EUT) under the requirements specified in the emissions standard as described below. The test results contained in this report are only representative of the test sample tested as described in Section 2.0 of this report.

The test results provided within this report, indicate that the information technology equipment has been found to be in **COMPLIANCE** with the test specifications based upon the following RF compliance standards:

Pass/Fail determination is based upon the nominal values of the test data.

EMISSIONS STANDARDS	ONS STANDARDS DESCRIPTION	
		RESULTS
FCC 47 CFR, Part 15.207	Conducted Emissions At AC Mains Port	PASSED
CISPR22 Class B Limits	Radiated Emissions (30-1000 MHz)	PASSED
FCC 47 CFR, Part 15.247(c), 15.209	Radiated Emissions (1-26.5 GHz)	PASSED
FCC 47 CFR, Part 15.247(a)(2)	Occupied Bandwidth Measurement	PASSED
FCC 47 CFR, Part 15.247(b)	Maximum Peak Output Power Measurement	PASSED
FCC 47 CFR, Part 15.247(d)	Spectral Power Density Measurement	PASSED
FCC 47 CFR, Part 15.247(c)	Spurious Emissions Measurement At The	PASSED
	Antenna Terminal	
FCC 47 CFR, Part 15.247(c)	Band Edge Measurement At The Antenna	PASSED
	Terminal	

Prepared By: Report Approved By:

Rick Candelas Date:

Staff Engineer Aegis Labs, Inc. Steve J. Kuiper Q/A Manager

Aegis Labs, Inc.

Page 3 of 19

Report Number: INTEL-021028F

12/02/02

Date:

FCC ID: PD9WM3A2100

2.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED: Trade Name: Mini PCI Type 3A Single Band 802.11b WLAN

Adapter

Model Number: WM3A2100 Serial Number: 000423455AB8 FCC ID: PD9WM3A2100

TEST DATE(S): October 28 – November 1, 2002

DATE EUT RECEIVED: October 28, 2002

ORIGIN OF TEST

SAMPLE(S): Pre-Production

RESPONSIBLE PARTY: Intel Corporation

2300 Corporate Center Drive Thousand Oaks, California 91320

CLIENT CONTACT: Mr. Jim Baer
MANUFACTURER: Intel Corporation

TEST LOCATION: Aegis Labs, Inc.

32231 Trabuco Creek Road Trabuco Canyon, CA 92678

Conducted Site #2 Radiated Site #2

A2LA CERTIFICATE: 1111.01, Valid until February 28, 2004

PURPOSE OF TEST: To demonstrate compliance with the relevant standards described

in Section 1.0 of this report.

TEST(S) PERFORMED: Refer to Table in Section 1 of this report.

All calibration vendors were responsible for certifying Aegis Labs, Inc. test equipment as per the manufacturer's specifications and that the equipment is calibrated using instruments and standards where the accuracy is traceable to the National Institute of Standards and Technology (NIST). Calibration of all test equipment conforms to ANSI/NCSL Z540-1 and ISO 10012-1 and/or ISO/IEC Guide 17025 compliance (Additionally, other pertinent test equipment will carry MIL-STD-45662A). All calibration documents are on file with Aegis Labs, Inc., with copies provided upon request.

3.0 DESCRIPTION OF EUT

3.1 EUT Description

Equipment Under Test (EUT)				
Trade Name:	Mini PCI Type 3A Single Band 802.11b WLAN Adapter			
Model Number:	WM3A2100			
Frequency Range:	2.412 – 2.462 GHz			
Type of Transmission:	Direct Sequence Spread Spectrum			
Transfer Rate: 1/5.5/11 Mbps				
Number of Channels:	11			
Modulation Type:	DBPSK, DQPSK, CCK			
Hirose U.FL-R-SMT mates with cable connector U.FL-L Antenna Type: 066				
Antenna Gain (See Note 2):	Hitachi Antenna = 1.67dBi (gain) – 1.56dB (cable loss) = 0.11dBi Ethertronics Antenna = 1.18dBi with cable loss			
Transmit Output Power:	16 dBm (Typical) Please see Appendix I (Data Sheets) for actual output power.			
Power Supply: 3.3VDC from computer MPCI slot.				
Number of External Test Ports Exercised:	2 Antenna Ports (1 Main & 1 Auxiliary)			

The Mini PCI Type 3A Single Band 802.11b WLAN Adapter is an embedded 2.4 GHz Wireless Local Area Network Mini-PCI adapter. The Mini-PCI Type 3A form factor is designed for notebook computer systems where overall thickness must be kept to an absolute minimum. It is capable of a data rate of up to 11 Mbps at 2.4 GHz. Please refer to Section 3.2 of this report for a further description of the configuration tested.

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: The EUT was tested separately with two different sets of antennas (Hitachi and Ethertronics). The "Hitachi Antenna Specification" list a 1.67dBi peak gain and the "Hitachi Antenna Cable Loss Measurement" list a cable loss of 1.56dB. The "Ethertronics Antenna Specification With Cable Loss" list a 1.18dBi gain, which was measured with the cable installed at the main antenna port. (Refer to each antenna specifications).

3.1.1 Channel Number and Frequencies

Eleven channels are provided for the EUT.

Channel	Frequency (MHz)
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

3.2 EUT Configuration

The EUT was set-up according to the ANSI C63.4: 1992 guidelines for emissions testing. For emissions testing the EUT (Mini PCI Type 3A Single Band 802.11b WLAN Adapter, Model Number: WM3A2100) had a loaded antenna connected to both its receive and transmit ports. All the appropriate test ports were exercised during both the pre-qualification and final evaluation scans.

The EUT was tested installed in the Mini-PCI slot of the IBM host computer as a modular device using a PCI extender board to extend the EUT outside the computer chassis. The EUT was then connected to a set of antennas via its transmit and receive Hirose U.FL-R-SMT ports. Data for a set of Hitachi and Ethertronics dual band antennas can be found in Appendix I (Data Sheets)

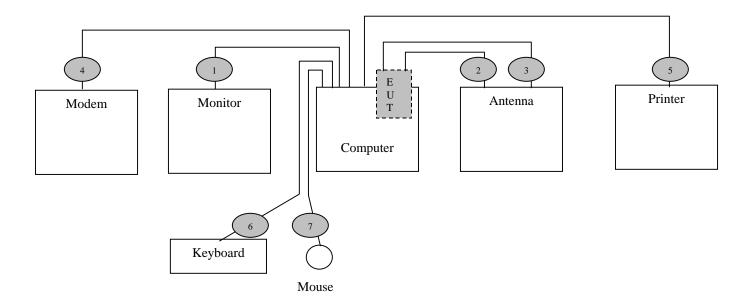
For conducted emissions at the AC mains port and radiated emissions, the IBM host computer was connected to a Hayes modem, Canon printer, NEC monitor, IBM keyboard, IBM mouse via its serial, parallel, video, keyboard, and mouse ports respectively. For conducted emissions at the antenna port, the IBM host computer as described in the previous configuration with the exception of the modem and printer.

The low (channel 1), middle (channel 6, and high (channel 11) were tested. The EUT was transmitting and receiving on a continuous basis.

The final conducted as well as radiated data was taken in this mode of operation. The external cables were bundled and routed as shown in the photographs in Appendix I (Data Sheets).

EUT and Sub-Assemblies List 3.3

EUT and Sub-Assemblies List							
Manufacturer Equipment Name Model Number Serial Numb							
Intel Corporation	Mini PCI Type 3A Single Band	WM3A2100	000423455AB8				
	802.11b WLAN Adapter						
Sub-Assemblies							
Hitachi Dual Band Antenna None None							
Ethertronics	Dual Band Antenna	PCI01001	10				


Accessory / Host Equipment List 3.4

Accessory / Host Equipment List						
Manufacturer Equipment Name Model Number Serial Number						
NetVista Computer	IBM	21U	KAOL42K			
Monitor	NEC	JC-1575VMA	2Y785821			
Keyboard	IBM	SK-8811	1922408			
Mouse	IBM	MU295	23-161493			
Modem	Hayes	5362US	A02153623145			
Printer	Canon	BJC-4200	0048			

NOTE: All the power cords of the above support equipment are standard non-shielded, 1.8 meters long.

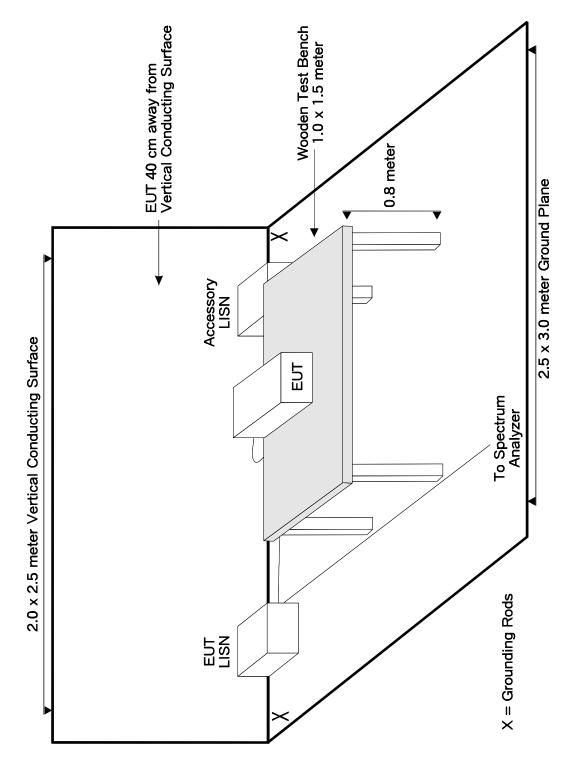
FCC ID: PD9WM3A2100

3.5 Cabling Diagram and Description

- Cable 1: This is a 6-foot braid and foil shielded round cable connecting the host IBM computer with the NEC monitor. It has metallic DB-15 type connector at the computer end and is hardwired to the monitor. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cables 2-3: These are rolled copper with Kapton tape on both sides round coax cables connecting the EUT transmit and receive antenna ports to the loaded antennas. They have a metallic Hirose U.FL-LP-006 type of connectors at the EUT end and are hardwired to the loaded antennas.
- Cable 4: This is a 6-foot braid and foil shielded round cable connecting the IBM host computer to the Hayes modem. It has a metallic DB-9 type connector at the computer end and a metallic DB-25 type connector at the modem end. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 5: This is a 6-foot braid and foil shielded round cable connecting the IBM host computer to the Canon printer. It has a metallic DB-25 type connector at the computer end and a metallic 36-pin centronics type connector at the printer end. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 6: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM keyboard. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the keyboard end. The shield of the cable is grounded to the chassis via the connector shell.
- Cable 7: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM mouse. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the mouse end. The shield of the cable is grounded to the chassis via the connector shell.

4.0 TEST EQUIPMENT AND TEST SETUPS

The test equipment settings and functions are selected using the guidance of ANSI C63.4-1992. All test equipment setups and operations during conducted and radiated emissions testing are in accordance with this reference document.


4.1 Conducted Emissions At AC Mains Port

During conducted emissions measurements, a spectrum analyzer was used as the measuring instrument along with a preselector and quasi-peak detector. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage. The conducted emissions from the EUT in the frequency range from 150 kHz to 30 MHz were captured for graphical display through the use of automated LABVIEW EMI measurement software. All graphical readings were measured in the "Peak" mode only to reduce testing time. Upon completion of the graphical scan, the test lab personnel performed the conducted measurement scan manually using the spectrum analyzer front panel keys. All peak measurements coming within 3 dB of the limit line were "Averaged" and/or "Quasi-Peaked" and denoted appropriately in the EXCEL spreadsheet.

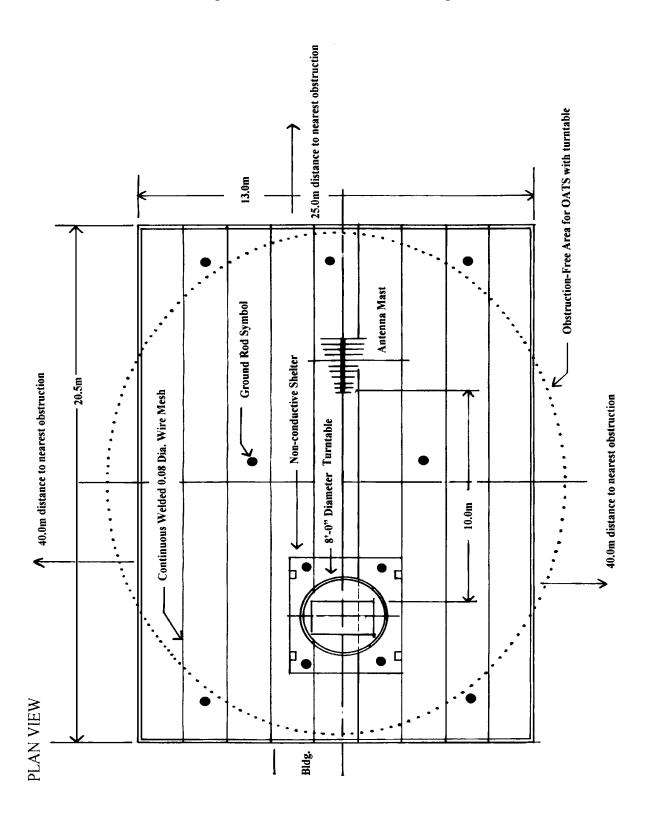
The Equipment Under Test (EUT) was configured as a system with peripherals connected, so that at least one interface port of each type is connected to one external peripheral when tested for conducted emissions according to ANSI C63.4: 1992. The EUT was tested in a tabletop configuration.

The six highest emission readings for Line 1 and Line 2 are highlighted on the data sheets in Appendix I. The graphical scans only reflects peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak readings which ever applies.

4.1.1 Conducted Emissions At AC Mains Port – Test Setup

Page 11 of 19 Report Number: INTEL-021028F FCC ID: PD9WM3A2100

CONDUCTED EMISSIONS TEST SETUP

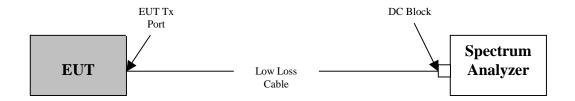

4.2 Radiated Emissions (Spurious and Harmonics)

A spectrum analyzer was used as the measuring instrumentation along with a preselector and quasi-peak-detector. The pre-amplifiers were used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detector mode with the "max-hold" feature activated and in Positive Peak mode. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak detector was used only for those readings, which are marked accordingly in the data sheet. The effective measurement bandwidth used for the radiated emissions test was 120 kHz for (30 MHz- 1000 MHz). The spectrum analyzer operated such that the modulation of the signal was filtered out to set the analyzer in linear mode. For testing beyond 1000 MHz a spectrum analyzer capable of taking reading above 1000 MHz was connected to the high frequency amplifier, where these measurement readings were taken with the transducer placed at a 3-meter test distance from the EUT.

The Open Area Test Sites (OATS) was used for radiated emission testing. These test sites are designed according to ANSI C63.4: 1992 and ANSI C63.7: 1992 guidelines. The Measurements were conducted in accordance with ANSI C63.4: 1992 and ANSI C63.7: 1992 requirements.

Broadband biconical, log periodic, and horn antennas were used as transducers during the measurement reading phase. The frequency spans were wide (30 MHz-88 MHz, 88 MHz-216 MHz, 216 MHz-300 MHz, and 300 MHz-1000 MHz). After 1000 MHz the horn antenna was used to measure emissions. The six highest emission readings in both horizontal and vertical polarities are highlighted on the data sheets in Appendix I.

4.2.1 Radiated Emissions (Spurious and Harmonics) – Test Setup


Page 13 of 19 Report Number: INTEL-021028F FCC ID: PD9WM3A2100

4.3 Occupied Bandwidth Measurement

A spectrum analyzer was used to measure the occupied bandwidth. The bandwidth was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

The EUT bandwidth is at least 500 kHz. Please refer to Appendix I for graphical plots.

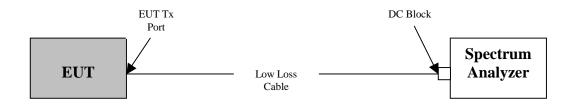
4.3.1 Occupied Bandwidth Measurement – Test Setup

4.4 Maximum Peak Output Power Measurement

A power meter along with a power sensor was used to measure the maximum peak output power. The low (channel 1), middle (channel 6), and high (channel 11) were measured as well as data rates 1, 5.5, and 11 Mbps.

The EUT maximum peak output power is less than 1 Watt. Please refer to Appendix I for the data sheets.

4.4.1 Maximum Peak Output Power Measurement – Test Setup

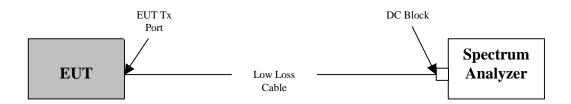


4.5 Spectral Power Density Measurement

A spectrum analyzer was used to measure the spectral power density. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 3 kHz and the video bandwidth was 10 kHz. The highest 4.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

The EUT spectral power density does not exceed 8 dBm in any 3 kHz band. Please refer to Appendix I for graphical plots.

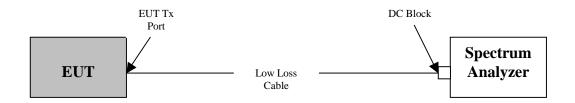
4.5.1 Spectral Power Density Measurement – Test Setup



4.6 Spurious Emissions Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the spurious emissions at the antenna terminal. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 1 MHz and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

The EUT RF power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Please refer to Appendix I for graphical plots.


4.6.1 Spurious Emissions Measurement At The Antenna Terminal – Test Setup

4.7 Band Edge Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the band edge measurements at the antenna terminal with the EUT transmitting at 2412 MHz (channel 1) and 2462 MHz (channel 11). It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 1 MHz and the video bandwidth was 1 MHz. It was verified that the band edge measurements were not above the limit in the restricted bands below 2390 MHz and above 2483.5 MHz. Please refer to Appendix I for graphical plots.

4.7.1 Band Edge Measurement At The Antenna Terminal – Test Setup

5.0 MODIFICATIONS AND RECOMMENDATIONS

There were no modifications done to the EUT.

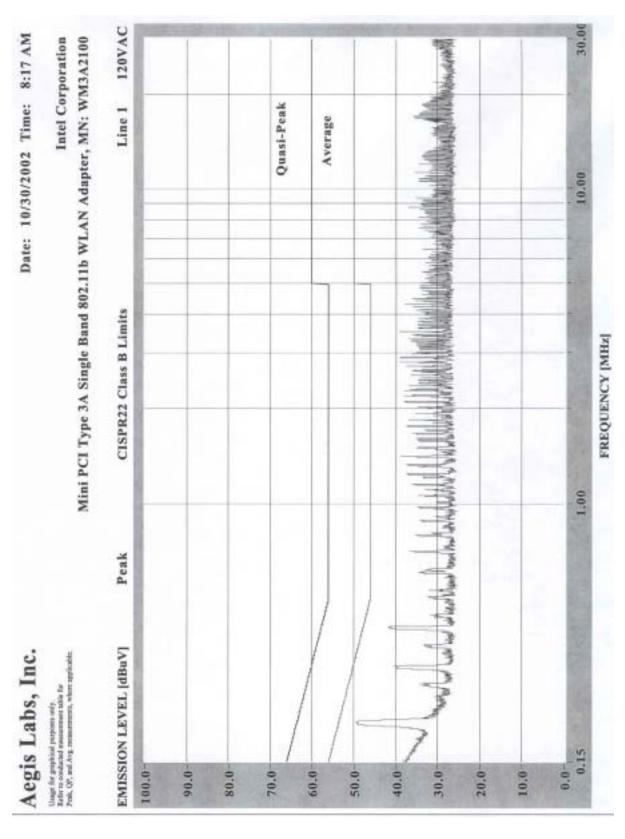
APPENDIX I

DATA SHEETS

CONDUCTED EMISSIONS AT AC MAINS PORT

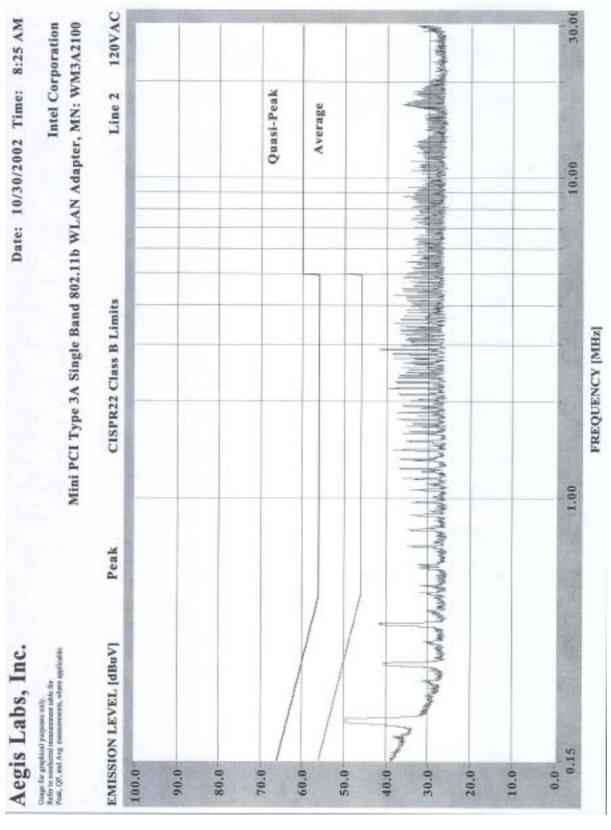
CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028-18
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION: Installed in IBM NetVista Desktop		TEMPERATURE:	15 C
	Computer, SN: KAOL42K	HUMIDITY:	62% RH
		TIME:	8:00 AM

Standard:	FCC CFR 47, Part 15.207
Description:	AC Power Conducted Emissions
Results:	Passes FCC Limits


NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Ethertronics antennas were used for final testing.

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

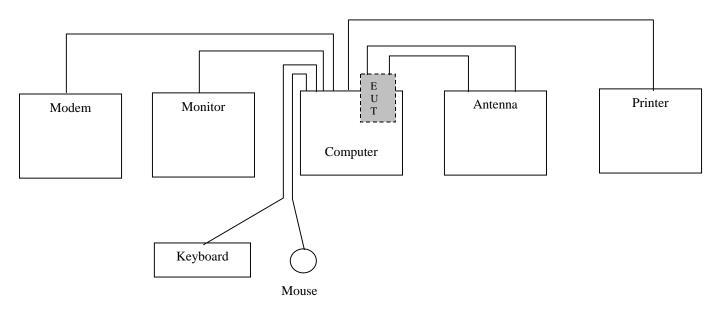
	FCC CLASS B CONDUCTED EMISSIONS – LINE 1						
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak	
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)	
0.2064	49.10	PK	54.39	-5.29	64.39	-15.29	
0.3093	41.20	PK	51.45	-10.25	61.45	-20.25	
0.4113	41.50	PK	48.53	-7.03	58.53	-17.03	
1.4150	39.70	PK	46.00	-6.30	56.00	-16.30	
2.2150	41.70	PK	46.00	-4.30	56.00	-14.30	
17.3750	38.90	PK	50.00	-11.10	60.00	-21.10	


	FCC CLASS B CONDUCTED EMISSIONS – LINE 2						
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak	
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)	
0.2052	50.50	PK	54.42	-3.92	64.42	-13.92	
0.3096	42.00	PK	51.44	-9.44	61.44	-19.44	
0.4110	39.80	PK	48.54	-8.74	58.54	-18.74	
1.2400	39.10	PK	46.00	-6.90	56.00	-16.90	
2.9200	41.50	PK	46.00	-4.50	56.00	-14.50	
16.9950	38.60	PK	50.00	-11.40	60.00	-21.40	

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

Page 4 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)


Page 5 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

	TEST EQUIPMENT USED						
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle		
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year		
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	1833A00389	11/27/02	1 Year		
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year		
RF Preselector	Hewlett Packard	85685A	2620A00281	05/10/03	1 Year		
Attenuator - 5W-10dB	Pasternack	PE7014-10	N/A	11/03/02	1 Year		
LISN (EUT)	FCC	FCC-LISN- 50-25-2	9931	12/12/02	1 Year		
LISN (Access)	Com-Power	LI-200	12019	01/25/03	1 Year		
LISN (Access)	Com-Power	LI-200	12018	01/25/03	1 Year		
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year		

ACCESSORIES EQUIPMENT									
Equipment Name Manufacturer Model Number Serial Numb									
NetVista Computer	IBM	21U	KAOL42K						
Monitor	NEC	JC-1575VMA	2Y785821						
Keyboard	IBM	SK-8811	1922408						
Mouse	IBM	MU295	23-161493						
Modem	Hayes	5362US	A02153623145						
Printer	Canon	BJC-4200	001						

BLOCK DIAGRAM

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

PHOTOGRAPHS

Page 7 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100

RADIATED EMISSIONS (SPURIOUS AND HARMONICS)

CLIENT:	Intel Corporation	DATE:	10/28/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028-07
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	22 C
	Computer, SN: KAOL42K	HUMIDITY:	38% RH
		TIME:	1:00 PM

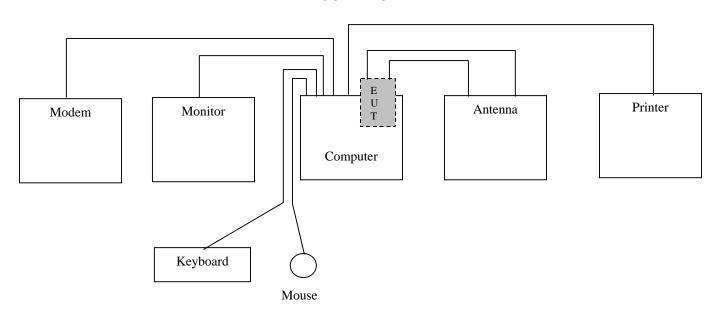
Standard:	CISPR22 Class B Limits
Description:	Spurious Emissions Measurements - Radiated
Results:	-3.03 dB margin @ 60.08 MHz

NOTE: During preliminary scans, there wasn't any difference which channel, data rate, or which set of antennas were used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps with the Ethertronics antennas were used for final testing.

SPURIOUS EMISSIONS MEASUREMENTS – RADIATED (Continued)

	Horizontal Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk	Corrected	Limits	Diff(dB)	
(MHz)	$Reading\ (dBuV)$	Height (cm)	(degrees)	orAVG(dBuV)	Reading (dBuV)	(dBuV)	+=FAIL	
33.20	32.30	300	180		16.76	30.00	-13.24	
99.59	47.80	300	270		25.40	30.00	-4.60	
110.03	39.80	400	0		19.35	30.00	-10.65	
132.02	33.50	400	0		15.46	30.00	-14.54	
199.82	30.80	400	180		15.79	30.00	-14.21	
231.94	35.80	400	45		21.63	37.00	-15.37	
264.04	38.40	400	180		25.37	37.00	-11.63	
298.40	36.10	400	180		24.96	37.00	-12.04	
308.02	41.40	300	45		24.60	37.00	-12.40	
320.04	39.60	300	135		23.32	37.00	-13.68	
336.07	41.00	250	270		25.02	37.00	-11.98	
352.05	39.20	250	225		23.35	37.00	-13.65	
366.47	42.90	200	225		27.30	37.00	-9.70	
368.10	38.90	200	225		23.33	37.00	-13.67	
384.10	38.60	150	270		23.45	37.00	-13.55	
396.04	36.90	150	225		22.15	37.00	-14.85	
400.20	39.60	100	225		24.98	37.00	-12.02	
433.10	41.00	100	225		27.14	37.00	-9.86	
499.44	38.70	100	225		27.42	37.00	-9.58	

	Vertical Open Field Maximized Data									
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading (dBuV)	Height (cm)	(degrees)	or AVG (dBuV	7)	Reading (dBuV)	(dBuV)	+=FAIL		
33.23	37.60	100	0			22.05	30.00	-7.95		
53.17	50.30	100	270	46.40	Q	23.88	30.00	-6.12		
60.08	54.90	100	315	51.49	Q	26.97	30.00	-3.03		
99.58	52.20	100	0	49.21	Q	26.81	30.00	-3.19		
110.04	45.60	100	0			25.15	30.00	-4.85		
132.03	38.30	100	180			20.26	30.00	-9.74		
199.63	35.60	100	270			20.58	30.00	-9.42		
233.16	39.60	100	270			25.46	37.00	-11.54		
264.00	39.00	100	180			25.96	37.00	-11.04		
308.04	39.40	100	90			22.60	37.00	-14.40		
320.06	44.00	100	0			27.72	37.00	-9.28		
336.06	45.10	100	0			29.12	37.00	-7.88		
352.08	43.20	100	45			27.35	37.00	-9.65		
366.47	41.00	100	90			25.40	37.00	-11.60		
368.09	42.60	100	45			27.03	37.00	-9.97		
384.03	39.60	100	315			24.45	37.00	-12.55		
396.04	34.50	100	90			19.75	37.00	-17.25		
400.07	37.10	100	45			22.48	37.00	-14.52		
430.65	41.30	100	180			27.31	37.00	-9.69		
496.98	37.00	100	180	-		25.63	37.00	-11.37		

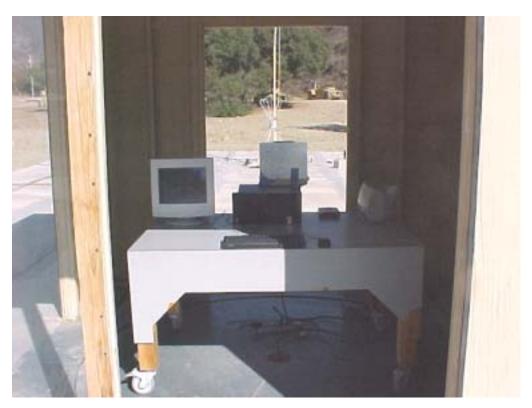

Page 9 of 59

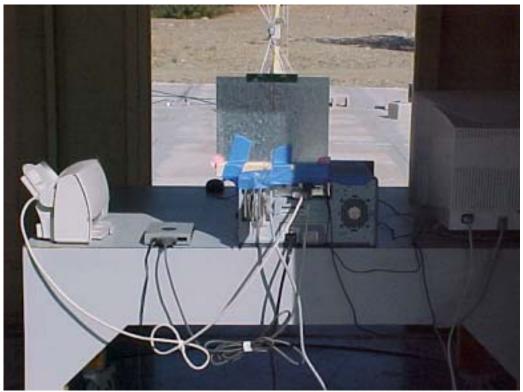
Report Number: INTEL-021001F FCC ID: PD9WM3B2100

	TEST	EQUIPMENT	USED		
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/02	1 Year
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	1833A00389	11/27/02	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/02	1 Year
RF Preselector	Hewlett Packard	85685A	2620A00281	05/10/03	1 Year
Preamplifier	Com-Power	PA-102	1438	04/29/03	1 Year
Cable - 10m underground	Andrew	N/A	N/A	11/03/03	1 Year
Antenna - Biconical	EMCO	3110	9108-1421	10/02/03	1 Year
Antenna - Log Periodic	EMC Test Systems 3148		4947	10/12/03	1 Year
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year

EUT ACCESSORIES									
Equipment Name	Manufacturer	Model Number	Serial Number						
NetVista Computer	IBM	21U	KAOL42K						
Monitor	NEC	JC-1575VMA	2Y785821						
Keyboard	IBM	SK-8811	1922408						
Mouse	IBM	MU295	23-161493						
Modem	Hayes	5362US	A02153623145						
Printer	Canon	BJC-4200	001						

BLOCK DIAGRAM




Page 10 of 59

 $Report\ Number:\ INTEL-021001F$

FCC ID: PD9WM3B2100

PHOTOGRAPHS

Page 11 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

CLIENT:	Intel Corporation	DATE:	10/28/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGUARTION:	Installed in IBM NetVista Desktop	TEMPERATURE:	22 C
	Computer, SN: KAOL42K	HUMIDITY:	42% RH
		TIME:	1:30 PM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator is at
	least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level
	of the desired power, based on either an RF conducted or a radiated measurement.

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 with Hitachi Dual Band Antennas
INTEL-021028-02

	Horizontal Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)				Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL
2411.04	75.67	100	225			109.30				
2390.00	30.67	100	225			64.23	74.00	-9.77		
2390.00				18.89	A	52.45	54.00	-1.55		
2435.97	75.50	100	225			109.20				
2460.99	74.00	100	315			107.78				
2483.50	30.50	100	315			64.35	74.00	-9.65		
2483.50				16.58	A	50.43	54.00	-3.57		

	Vertical Open Field Maximized Data									
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
2411.01	73.00	100	90			106.63				
2390.00	31.33	100	90			64.89	74.00	-9.11		
2390.00				16.00	A	49.56	54.00	-4.44		
2436.00	73.17	100	90			106.87				
2461.04	74.33	100	90			108.11				
2483.50	30.83	100	90			64.68	74.00	-9.32		
2483.50				17.76	A	51.61	54.00	-2.39		

Harmonic Measurements at Channels 1, 6, & 11 with Hitachi Dual Band Antennas INTEL-021028-03

	Horizontal Open Field Maximized Data									
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
4824.11	44.00	100	45			48.25	74.00	-25.75		
4824.11				33.63	A	37.88	54.00	-16.12		
7236.20	43.50	100	90			51.71	74.00	-22.29		
7236.20				30.32	A	38.53	54.00	-15.47		
9647.63	45.00	100	180			54.17	89.30	-35.13		
4874.07	43.33	100	135			47.70	74.00	-26.30		
4874.07				34.46	A	38.83	54.00	-15.17		
7314.63	43.33	100	180			51.66	74.00	-22.34		
7314.63				30.28	A	38.61	54.00	-15.39		
9748.32	45.00	200	90			54.29	89.20	-34.91		
4923.85	42.83	100	90			47.31	74.00	-26.69		
4923.85				32.78	A	37.26	54.00	-16.74		
7385.72	44.33	100	45			52.76	74.00	-21.24		
7389.77				31.65	A	40.09	54.00	-13.91		
9847.81	45.50	100	90			54.91	87.78	-32.87		

	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)			
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	$\iota V)$	Reading (dBuV)	(dBuV)	+=FAIL			
	(dBuV)										
4823.80	45.83	150	180			50.08	74.00	-23.92			
4823.80				38.78	A	43.03	54.00	-10.97			
7237.36	43.00	100	180			51.22	74.00	-22.78			
7237.36				30.28	A	38.50	54.00	-15.50			
9648.29	45.33	100	180			54.50	86.63	-32.13			
4874.08	47.50	200	180			51.87	74.00	-22.13			
4874.08				41.67	A	46.04	54.00	-7.96			
7313.33	43.33	100	180			51.66	74.00	-22.34			
7313.33				30.41	A	38.74	54.00	-15.26			
9747.62	45.17	100	90			54.46	86.87	-32.41			
4923.89	44.33	100	180			48.81	74.00	-25.19			
4923.89				36.64	A	41.12	54.00	-12.88			
7391.13	43.00	100	180			51.44	74.00	-22.56			
7391.13				31.07	A	39.51	54.00	-14.49			
9848.20	45.67	100	135			55.08	88.11	-33.03			

Page 14 of 59

Report Number: INTEL-021001F FCC ID: PD9WM3B2100

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 with Ethertronics Dual Band Antennas
INTEL-021028-04

Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
2412.94	77.00	100	135			110.63				
2390.00	30.67	100	135			64.23	74.00	-9.77		
2390.00				18.97	A	52.53	54.00	-1.47		
2435.98	79.67	100	225			113.37				
2459.42	78.67	100	225			112.45				
2483.50	30.17	100	225			64.02	74.00	-9.98		
2483.50				18.48	A	52.33	54.00	-1.67		

Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
2411.01	76.00	125	90			109.63				
2390.00	30.50	125	90			64.06	74.00	-9.94		
2390.00				18.20	A	51.76	54.00	-2.24		
2435.98	74.50	100	270			108.20				
2459.40	73.50	100	270			107.27				
2483.50	29.83	100	270			63.68	74.00	-10.32		
2483.50				15.17	A	49.02	54.00	-4.98		

Harmonic Measurements at Channels 1, 6, & 11 with Ethertronics Dual Band Antennas INTEL-021028-05

Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBi	uV)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
4823.92	44.00	100	135			48.25	74.00	-25.75		
4823.92				33.78	A	38.03	54.00	-15.97		
7236.41	42.83	100	135			51.05	74.00	-22.95		
7236.41				30.13	A	38.35	54.00	-15.65		
9647.76	44.33	100	45			53.50	90.63	-37.13		
4873.80	43.67	100	180			48.04	74.00	-25.96		
4873.80				35.08	A	39.45	54.00	-14.55		
7312.46	42.50	100	180			50.83	74.00	-23.17		
7312.46				29.46	A	37.79	54.00	-16.21		
9747.62	46.33	100	90			55.62	93.37	-37.75		
4923.81	44.50	100	135			48.98	74.00	-25.02		
4923.81				35.33	A	39.81	54.00	-14.19		
7389.50	43.33	100	225			51.77	74.00	-22.23		
7389.50				31.67	A	40.11	54.00	-13.89		
9848.01	45.17	100	90			54.58	92.45	-37.87		

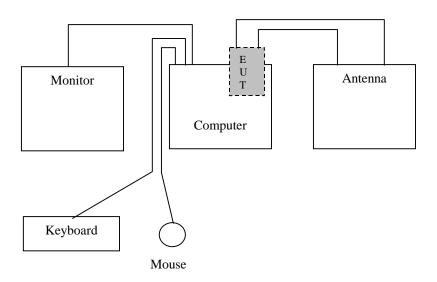
	Vertical Open Field Maximized Data										
Freq. (MHz)	Meter Reading	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL			
4823.78	(dBuV) 46.17	100	180			50.42	74.00	-23.58			
4823.78 7240.30	43.00	100	180	39.80	A	44.05 51.22	54.00 74.00	-9.95 -22.78			
7240.30 9648.14	44.33	100	180	30.71	A	38.93 53.50	54.00 89.63	-15.07 -36.13			
4873.98 4873.98	47.50	100	180	42.56	A	51.87 46.93	74.00 54.00	-22.13 -7.07			
7311.42 7311.42	41.34	100	225	29.27	A	49.66 37.59	74.00 54.00	-24.34 -16.41			
9747.72	44.67	100	90			53.96	98.20	-44.24			
4924.08	47.00	100	225			51.48	74.00	-22.52			
4924.08 7388.49	43.50	100	180	41.88	A	46.36 51.94	54.00 74.00	-7.64 -22.06			
7388.49 9847.71	45.17	100	90	30.86	A	39.30 54.58	54.00 87.27	-14.70 -32.69			

Page 16 of 59

Report Number: INTEL-021001F FCC ID: PD9WM3B2100

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate using Hitachi Dual Band Antennas
INTEL-021028-24

Horizontal Open Field Maximized Data										
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Corrected Reading (dBuV)	Limits (dBuV)	$Diff (dB) \\ +=FAIL$		
1122.96	50.83	200	225			42.69	74.00	-31.31		
1122.96				40.28	A	32.14	54.00	-21.86		
1199.85	55.67	100	180			47.72	74.00	-26.28		
1199.85				38.89	A	30.94	54.00	-23.06		
1347.79	50.17	100	180			42.57	74.00	-31.43		
1347.79				36.34	A	28.74	54.00	-25.26		
1465.32	53.67	100	270			46.82	74.00	-27.18		
1465.32				34.48	A	27.63	54.00	-26.37		
1529.96	57.00	100	225			50.39	74.00	-23.61		
1529.96				45.45	A	38.84	54.00	-15.16		
1595.82	61.00	100	225			54.41	74.00	-19.59		
1595.82				53.43	A	46.84	54.00	-7.16		
1736.39	54.00	100	180			48.73	74.00	-25.27		
1736.39				48.32	A	43.05	54.00	-10.95		


Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)		
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL		
	(dBuV)									
1123.26	49.33	100	180			41.19	74.00	-32.81		
1123.26				35.97	A	27.83	54.00	-26.17		
1195.95	50.67	100	270			42.72	74.00	-31.28		
1195.95				35.64	A	27.69	54.00	-26.31		
1531.85	59.67	100	270			53.07	74.00	-20.93		
1531.85				53.73	Α	47.13	54.00	-6.87		
1595.42	61.50	100	270			54.91	74.00	-19.09		
1595.42				53.84	A	47.25	54.00	-6.75		

RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration				
		Number	Number	Due Date	Cycle				
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years				
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year				
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year				
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year				

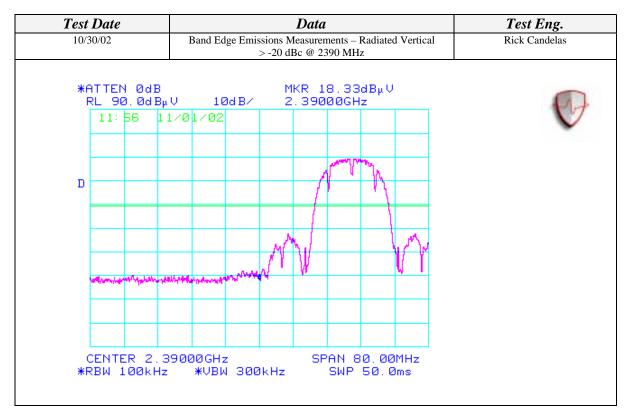
EUT ACCESSORIES								
Equipment Name Manufacturer Model Number Serial Number								
NetVista Computer	IBM	21U	KAOL42K					
Monitor	NEC	JC-1575VMA	2Y785821					
Keyboard	IBM	SK-8811	1922408					
Mouse	IBM	MU295	23-161493					


BLOCK DIAGRAM

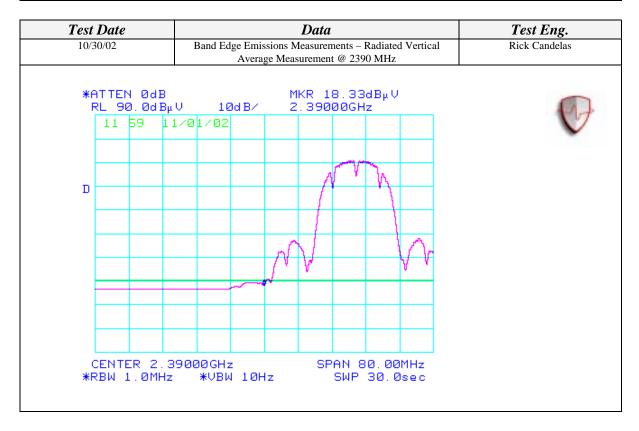
RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

PHOTOGRAPHS

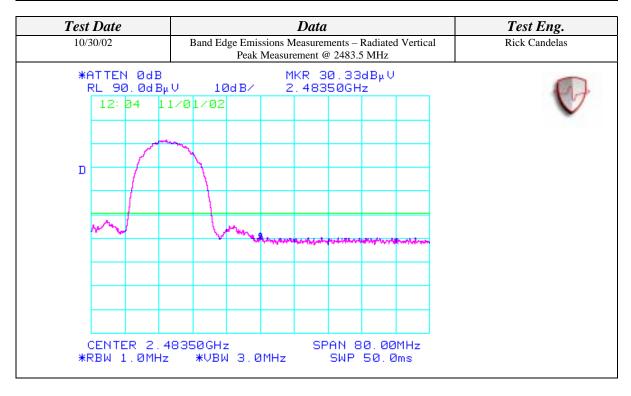
Page 19 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100


BAND EDGE EMISSIONS MEASUREMENT - RADIATED

CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	24 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	9:00 AM

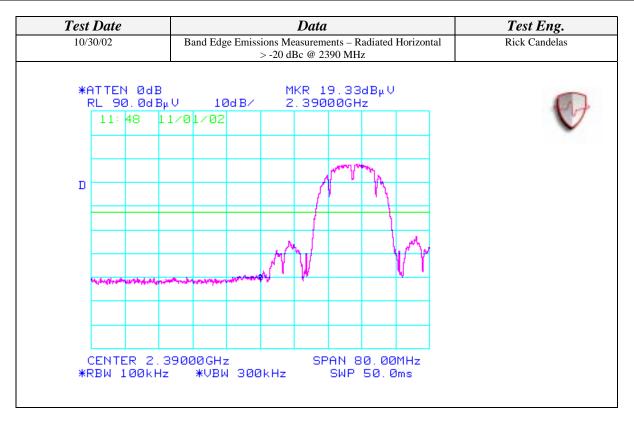

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Band Edge Emissions Measurement - Radiated
Results:	Radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also
	comply with the radiated emission limits specified in Sec. 15.209(a) (see Sec. 15.205(c)).

With the Hitachi Dual Band Antennas

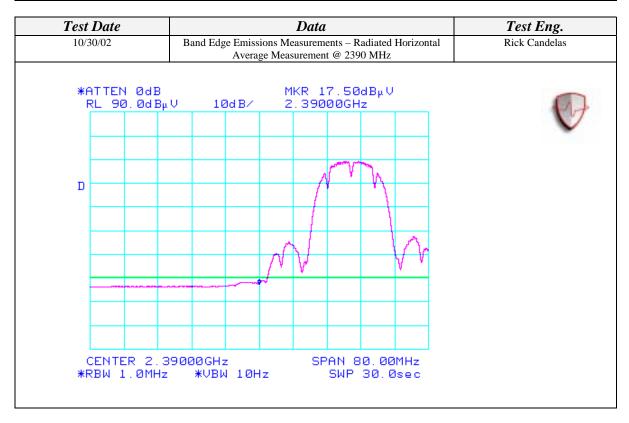

	Vertical Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL		
2390.00	30.00	100	225			63.56	74.00	-10.44		
2390.00				18.33	A	51.89	54.00	-2.11		
2483.50	30.33	100	225			64.18	74.00	-9.82		
2483.50				17.60	A	51.45	54.00	-2.55		

Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdBμ 11.57 1		0
Д		
Amount Mary and a second and		
CENTER 2.3		
*RBW 1.0MHz		

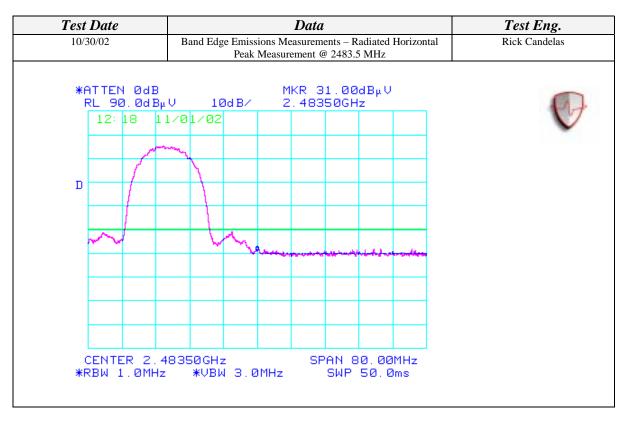
Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdBμ 12.Ø1 1:		1
D Arman		
W	the first of the second control of the secon	
CENTER 2.4	8350GHz SPAN 80. 00MHz	

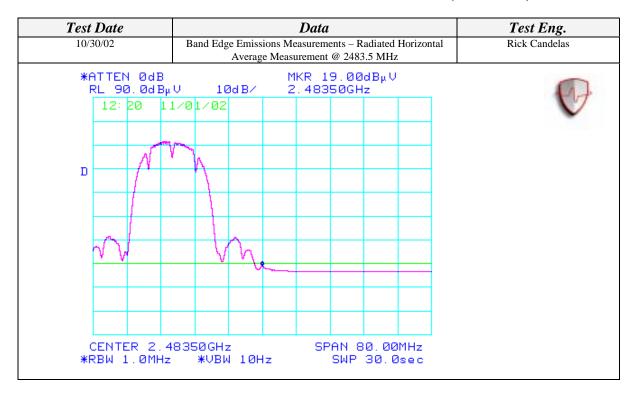


BAND EDGE EMISSIONS MEASUREMENT - RADIATED (Continued)

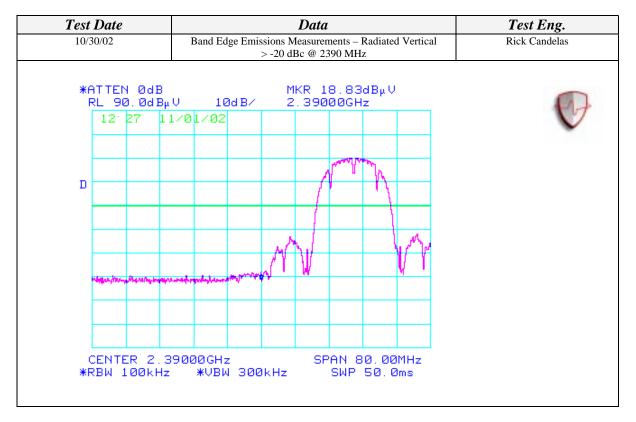

Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Vertical Average Measurement @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.0dΒμ 12 Ø7 11	MKR 17.67dBμV V 10dB/ 2.48350GHz ./01/02	(An)
12 01 11	761762	
D		
\sim		
CENTER 2.4 *RBW 1.0MHz		

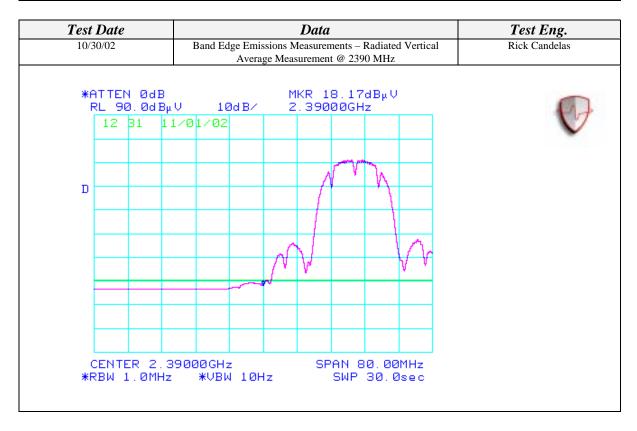
With the Hitachi Dual Band Antennas


	Horizontal Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL		
2390.00	29.83	100	225			63.39	74.00	-10.61		
2390.00				17.50	A	51.06	54.00	-2.94		
2483.50	31.00	100	225			64.85	74.00	-9.15		
2483.50				19.00	Α	52.85	54.00	-1.15		



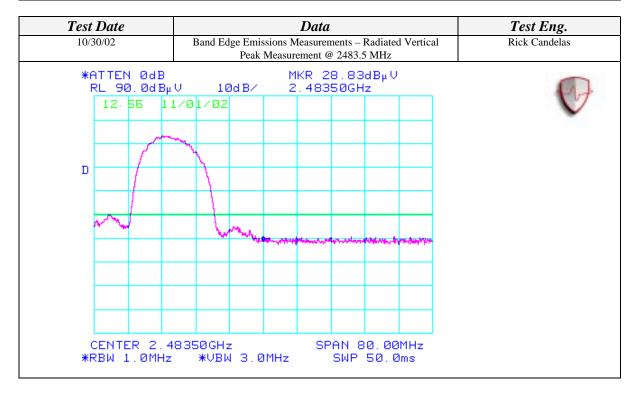
Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdBµ		
11-51 1.	1/01/02	
_		
D		
September of the second	Nach Hard Brown and Brown	
CENTER 2.3		
*RBW 1.0MHz	*VBW 3.0MHz SWP 50.0ms	

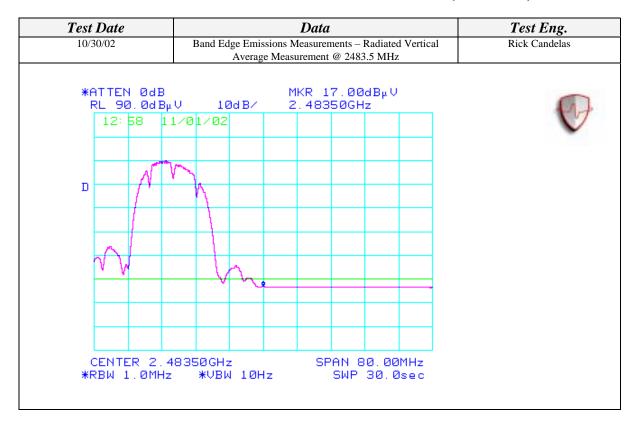

Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ		
12: 15 1:	1/01/02	
200		
Д /		
Manage of the second	A PART OF THE PART	
V VV	* Marine many property and the second	
CENTER 2.4	8350GHz SPAN 80.00MHz	
*RBW 100kHz		



With the Ethertronics Dual Band Antenna

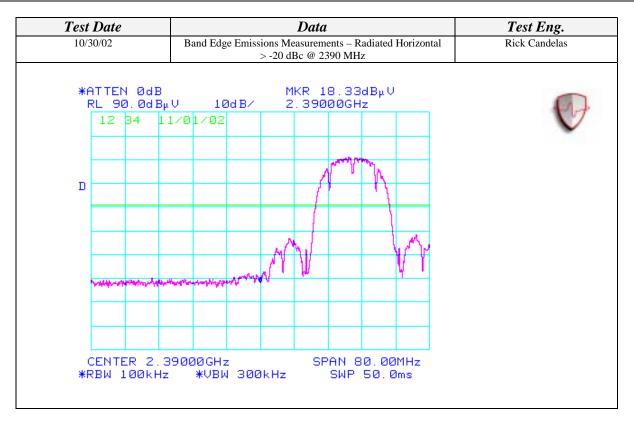
	Vertical Open Field Maximized Data									
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL		
2390.00	31.50	100	225			65.06	74.00	-8.94		
2390.00				18.17	A	51.73	54.00	-2.27		
2483.50	28.83	100	225			62.68	74.00	-11.32		
2483.50				17.00	A	50.85	54.00	-3.15		

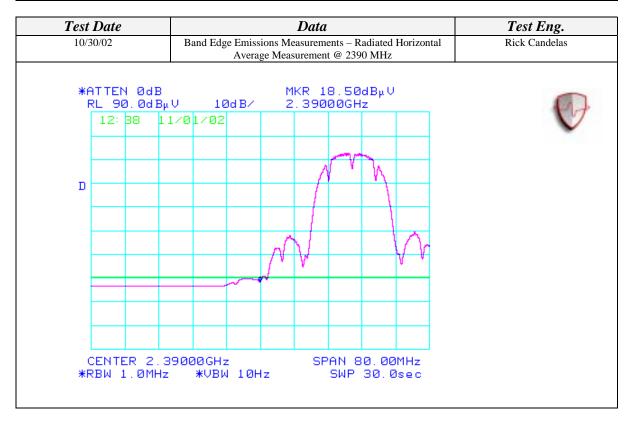

Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Vertical Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdВµ 12 29 1		(P)
		•
а		
man matter of many many many	The state of the s	
CENTER 2.3 *RBW 1.0MHz		



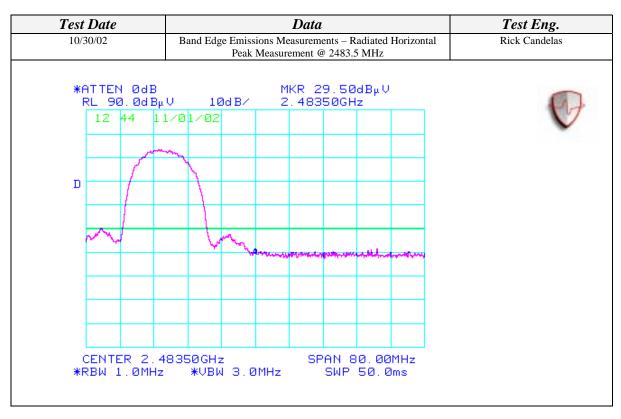
Page 30 of 59

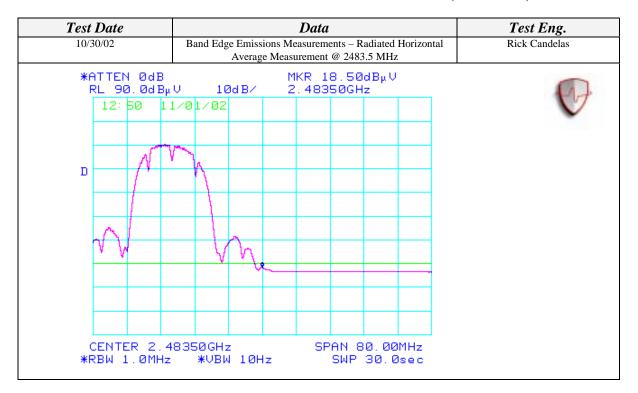
Report Number: INTEL-021001F


Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdΒμ 12 54 1.		
Д		
	Wayne .	
CENTER 2.4 *RBW 100kHz		



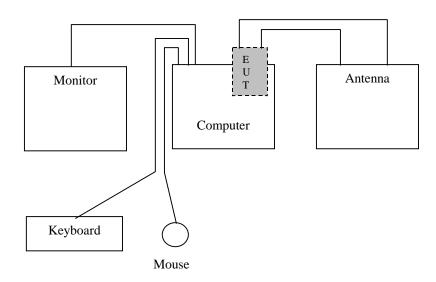
With the Ethertronics Dual Band Antenna


	Horizontal Open Field Maximized Data							
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBu	V)	Corrected Reading (dBuV)	Limits (dBuV)	Diff(dB) +=FAIL
2390.00	30.50	100	225			64.06	74.00	-9.94
2390.00				18.50	A	52.06	54.00	-1.94
2483.50	29.50	100	225			63.35	74.00	-10.65
2483.50				18.50	A	52.35	54.00	-1.65



Test Date	Data	Test Eng.
10/30/02	Band Edge Emissions Measurements – Radiated Horizontal Peak Measurement @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdB _l 12 [.] B6 1		(P)
12 50 1	., 01, 02	
Д		
Approximation of the	opti di manifesta di manifesta di di por	
CENTER 2.3 *RBW 1.0MHz		

Test Date		Data		Test Eng.
10/30/02		ssions Measurements - > -20 dBc @ 2483.5	- Radiated Horizontal MHz	Rick Candelas
*ATTEN Ød RL 90.0d		MKR 19.6 2.483500	67dBμV GHz	
12: 42	11/01/02			
			*	
	March			
	- 1			
N/M	1,000			
↓ \/	₩ ₩	and a second color designed to the second col	الازامد والمرابط والم	
	48350GHz Hz *VBW 30		80.00MHz P 50.0ms	



RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

TEST EQUIPMENT USED					
Equipment Name	Equipment Name Manufacturer Model Serial Calibration Calibration				
		Number	Number	Due Date	Cycle
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year
Antenna - Horn	EMCO	3115	2230	09/14/03	1 Year
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/03	1 Year

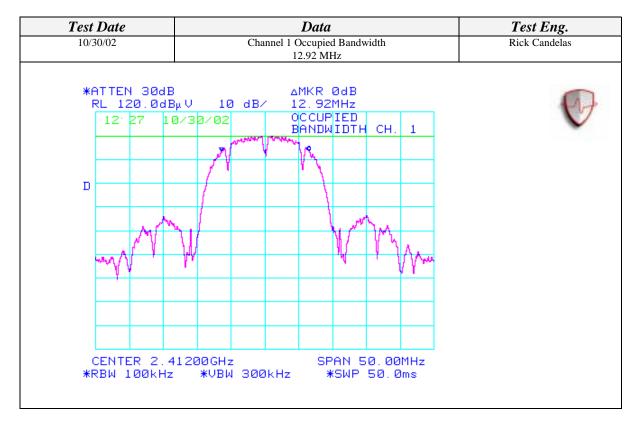
EUT ACCESSORIES				
Equipment Name	Manufacturer	Model Number	Serial Number	
NetVista Computer	IBM	21U	KAOL42K	
Monitor	NEC	JC-1575VMA	2Y785821	
Keyboard	IBM	SK-8811	1922408	
Mouse	IBM	MU295	23-161493	


BLOCK DIAGRAM

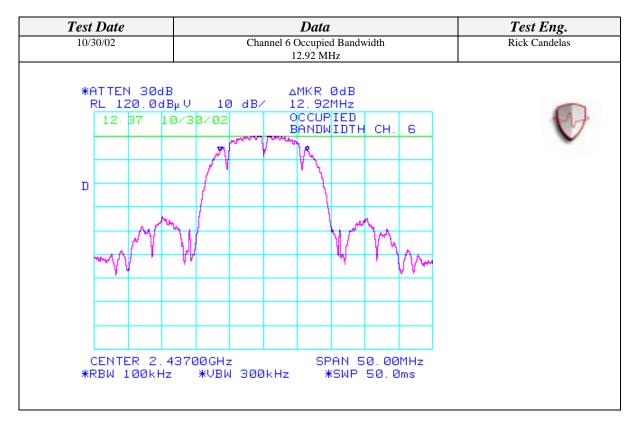
RADIATED EMISSIONS (SPURIOUS AND HARMONICS) (Continued)

PHOTOGRAPHS

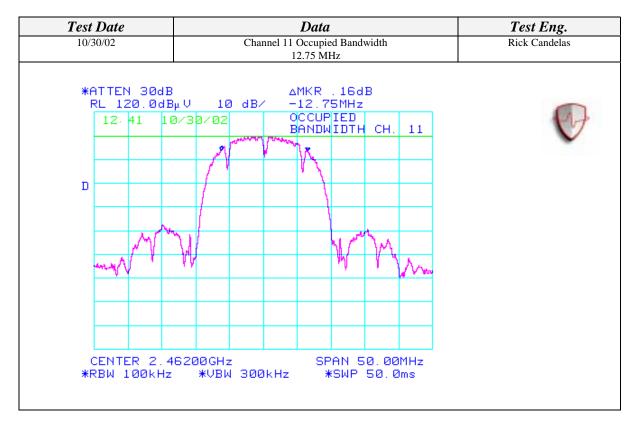
Page 38 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100


OCCUPIED BANDWIDTH MEASUREMENT

CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	23 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	8:00 AM


Standard:	FCC CFR 47, Part 15, 15.247(a)(2)
Description:	Occupied Bandwidth Measurement
Results:	6dB bandwidth is at least 500 kHz.

TEST RESULTS SUMMARY			
Data	Result		
Channel 1 Occupied Bandwidth	12.92 MHz 6 dB Bandwidth		
Channel 6 Occupied Bandwidth	12.92 MHz 6 dB Bandwidth		
Channel 11 Occupied Bandwidth	12.75 MHz 6dB Bandwidth		


OCCUPIED BANDWIDTH MEASUREMENT (Continued)

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

MAXIMUM PEAK OUTPUT POWER MEASUREMENT

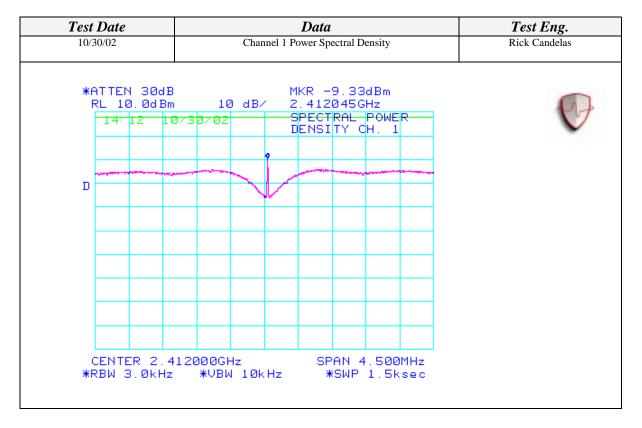
CLIENT:	Intel Corporation	DATE:	10/28/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028-01
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGUARTION:	Installed in IBM NetVista Desktop	TEMPERATURE:	16 C
	Computer, SN: KAOL42K	HUMIDITY:	59% RH
		TIME:	10:30 AM

Standard:	FCC CFR 47, Part 15, 15.247(b)
Description:	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	44.87 mW @ Channel 6 at a data rate of 1 Mbps

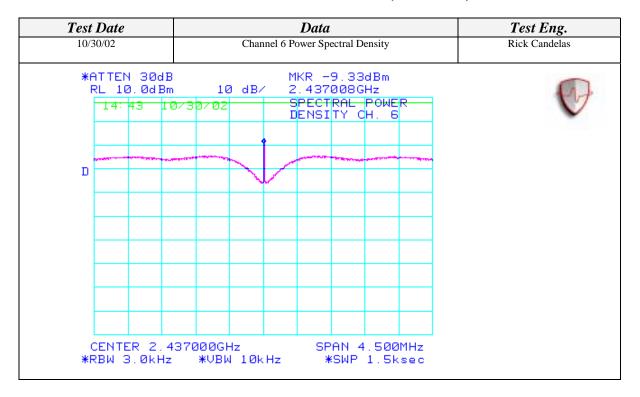
Frequency (MHz)	Rate (Mbps)	Power (dBm)	Power Corrected (dBm)	Power (mW)
2412.00	1	16.29	16.44	44.06
2412.00	5.5	16.26	16.41	43.75
2412.00	11	16.00	16.15	41.21
2437.00	1	16.20	16.35	43.15
2437.00	5.5	16.02	16.17	41.40
2437.00	11	16.00	16.15	41.21
2462.00	1	16.28	16.43	43.95
2462.00	5.5	16.10	16.25	42.17
2462.00	11	16.02	16.17	41.40

NOTE: Using CRTU Ver. 1.1.3 software provided by Intel Corporation to set power limits.

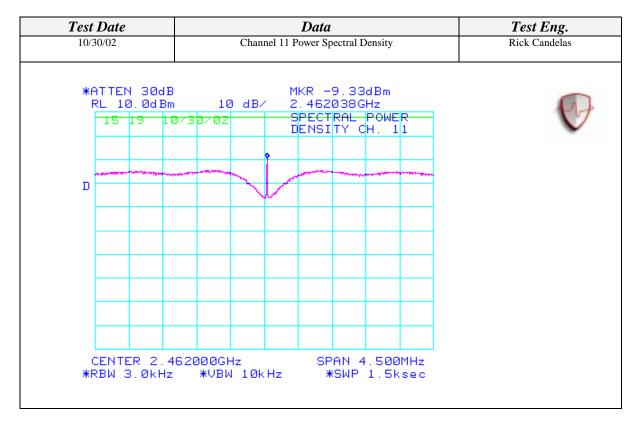
SPECTRAL POWER DENSITY MEASUREMENT


CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	26 C
	Computer, SN: KAOL42K	HUMIDITY:	32% RH
		TIME:	2:00 PM

Standard:	FCC CFR 47, Part 15, 15.247(D)
Description:	Power Spectral Density Measurement
Results:	Transmitted power density averaged over any 1 second interval is not greater than 8 dBm in
	any 3 kHz bandwidth within these bands


TEST RESULTS SUMMARY										
Data	Result									
Channel 1 Power Spectral Density	-9.33 dBm – Pass									
Channel 6 Power Spectral Density	-9.33 dBm – Pass									
Channel 11 Power Spectral Density	-9.33 dBm - Pass									

Report Number: INTEL-021001F

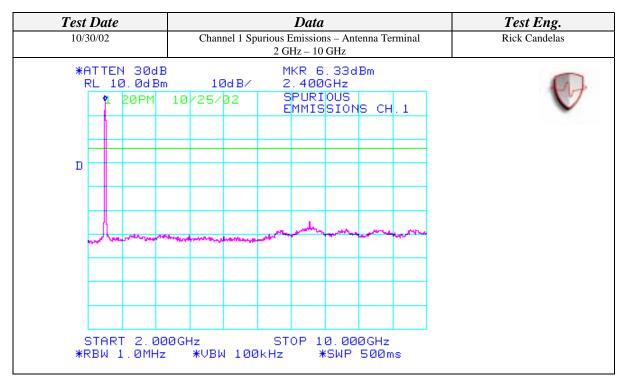

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

Report Number: INTEL-021001F

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

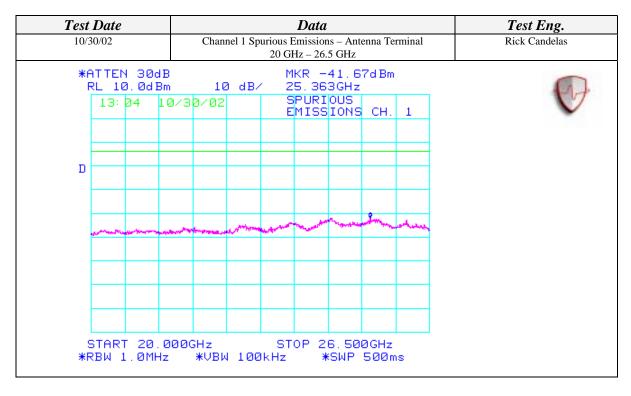

CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band	PROJECT	INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	23 C
	Computer, SN: KAOL42K	HUMIDITY:	31% RH
		TIME:	8:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Spurious Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator
	shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the
	highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST RESULTS SUMMARY									
Data	Result								
Channel 1 Spurious Emissions –	Max Spur Signal @ -51.83 dBm – Pass								
Antenna Terminal - 30MHz – 2GHz									
Channel 1 Spurious Emissions –	Max Spur Signal @ -45.00 dBm – Pass								
Antenna Terminal - 2GHz – 10GHz									
Channel 1 Spurious Emissions –	Max Spur Signal @ -45.50 dBm – Pass								
Antenna Terminal - 10GHz – 20GHz									
Channel 1 Spurious Emissions –	Max Spur Signal @ -41.67 dBm – Pass								
Antenna Terminal - 20GHz – 26.5GHz									
Channel 6 Spurious Emissions –	Max Spur Signal @ -52.00 dBm – Pass								
Antenna Terminal - 30MHz – 2GHz									
Channel 6 Spurious Emissions –	Max Spur Signal @ -42.00 dBm – Pass								
Antenna Terminal - 2GHz – 10GHz									
Channel 6 Spurious Emissions –	Max Spur Signal @ -45.83 dBm – Pass								
Antenna Terminal - 10GHz – 20GHz									
Channel 6 Spurious Emissions –	Max Spur Signal @ -41.67 dBm – Pass								
Antenna Terminal - 20GHz – 26.5GHz									
Channel 11 Spurious Emissions –	Max Spur Signal @ -52.17 dBm – Pass								
Antenna Terminal - 30MHz – 2GHz									
Channel 11 Spurious Emissions –	Max Spur Signal @ -43.00 dBm – Pass								
Antenna Terminal - 2GHz – 10GHz									
Channel 11 Spurious Emissions –	Max Spur Signal @ -45.67 dBm – Pass								
Antenna Terminal - 10GHz – 20GHz									
Channel 11 Spurious Emissions –	Max Spur Signal @ -42.00 dBm – Pass								
Antenna Terminal - 20GHz – 26.5GHz									

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test Do	ate					Test Eng.			
10/30/0	2		Chanr	nel 1 Sp	urious I 30 N	Rick Candelas			
RL	TEN 30 10.0d 3.00	Bm	10 0/02	ı dB∕	' 1 S	.780 PURI			0
D									
river, h.	,, <u>)</u>	, and the second second		والمسرسانية وا	hangy (April an	, prince of the species	egyyyath, J	 	
	ART 30 V 1.0M		*VBW	100			. 000 (SWP	ıs	

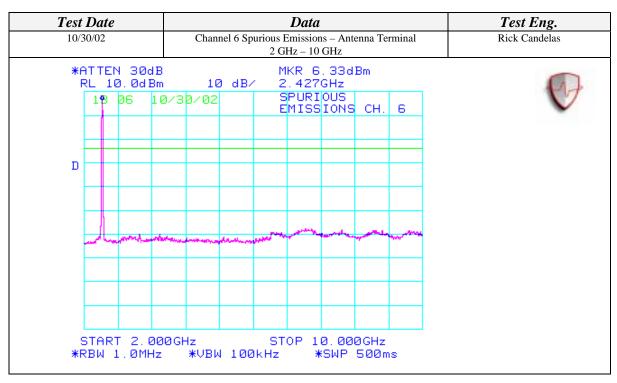


Page 49 of 59

 $Report\ Number:\ INTEL-021001F$

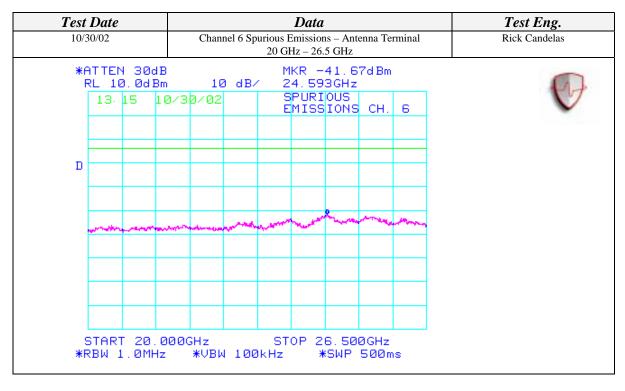
SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test	Date					Test Eng.					
10/3	0/02			Chanı	nel 1 Sp		Emissio GHz - 20	ns – Ant	enna Te	rminal	Rick Candelas
						10 (JHZ - 20) GHZ			
***			LTD.			N.	uze.	45 5	0.10		
		1 30d 2.0dI		10	dB/	, l	.4. 25	·45.5 GHz	ша вт		100
ĺ				0/02		9	PURI		СН	1	
							11100	10113	CIT.		
П											
٦											
					0						
ļ	A PARTY NAMED IN	A PROPERTY.			AN NAME OF	مداريه عبدالم	· very guilder		يسبسي	(September)	
		T 10.						0.00			
**	BM]	L. ØMF	1Z	*VBW	1 106	IKHZ	,	∜SWP	500m	IS	

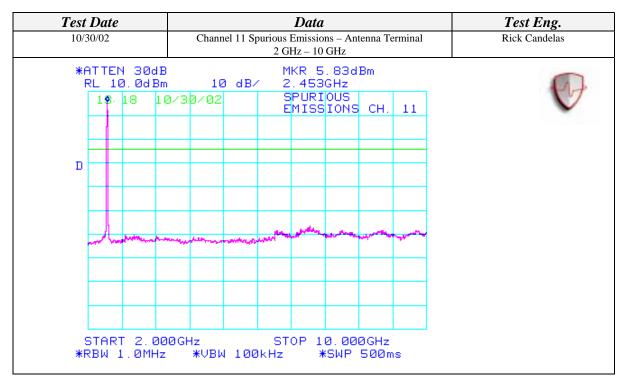


Page 50 of 59

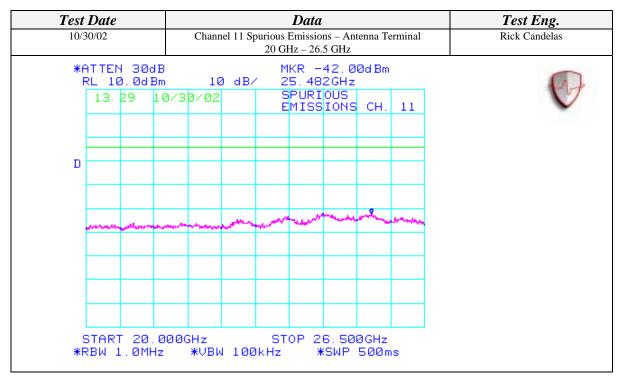
Report Number: INTEL-021001F


SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test	Test Date						Test Eng.				
10/3	80/02			Chanı	nel 6 Sp	urious I 30 N	Rick Candelas				
	ATTEN RL 10	3. Ød1) dB∕	′ 1 S	.846 PURI				0
										_	
D											
	PHILIP SECTION	_r ate producer and	antificant L.	harangalagili fribi	القسراح لقانوي	riinan milayaha	and the Backson	, Philogograph, Ag		L.P. Admir	
9	START	 F 301	MHz			ST	OP 2	. 000	GHz		
			lz	*∨BW	100			SWP		ıs	


SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test Date	Data	Test Eng.
10/30/02	Channel 6 Spurious Emissions – Antenna Terminal 10 GHz - 20 GHz	Rick Candelas
*ATTEN 30dB RL 10.0dBm 13:12 10	10 dB/ 13.37GHz	0
Д		
and the same of th	ham the same and t	
START 10.0 *RBW 1.0MHz		

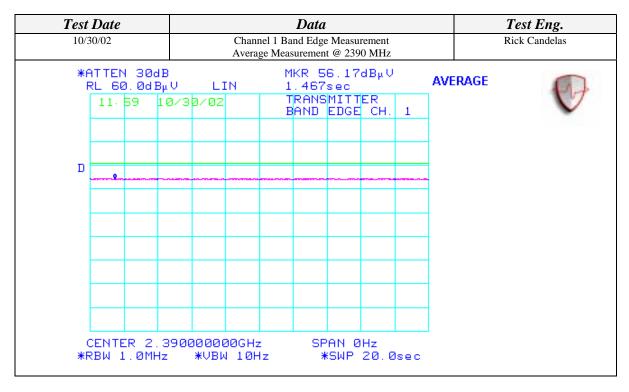

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test	Date			1	Test Eng.				
10/3	30/02	Cl	nannel 11 S	purious En 30 Ml	Rick Candelas				
	ATTEN 30 RL 10.0d		10 dB	/ 60 SF	SMH:	ous		11	0
					1100	10113	CIT.	-11	
D									
	grange, and design the second				الديد الدي	a, i ji jamina.	a proposition de la constitución	المراجعة ا	
	START 30 RBW 1.0M		BW 100			. 000 SWP	GHz 500m	s	

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL (Continued)

Test Date				Data				Test Eng. Rick Candelas				
10/30/02				Channel 11 Spurious Emissions – Antenna Terminal								
				10 GHz - 20 GHz								
Ψ.	AT TE	u aa	u D			M	IVD.	45.6	7 J D.,			
	71 IEI RL 11			10	dB/		3. 38		rabm			10
	13	27	10/3	0/02		9 E	PUR] MISS	OUS IONS	CH.	11		
D	-											
		-										
			Ι.	Real	المسيوا	والتراجي والما		a Maria		بعطالسن		
	-		"Almostageton						- m	,		
	-											
			. ØØG					0.00				
*F	RBW .	1.0M	Hz	*∪BÞ	1 100	kHz	3	kSWP	500m	IS		

BAND EDGE EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

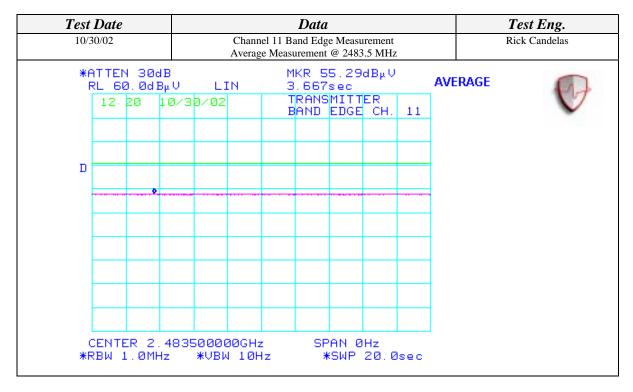

CLIENT:	Intel Corporation	DATE:	10/30/02
EUT:	Mini PCI Type 3A Single Band		INTEL-021028
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3A2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423455AB8	SITE #:	2
CONFIGURATION:	Installed in IBM NetVista Desktop	TEMPERATURE:	27 C
	Computer, SN: KAOL42K	HUMIDITY:	32% RH
		TIME:	11:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Band Edge Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator
	shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the
	highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST RESULTS SUMMARY					
Data	Result				
Channel 1 Band Edge Measurement	>20 dBc – Pass				
Peak Measurement @ 2390 MHz					
Channel 1 Band Edge Measurement	56.17 dBuV - Pass				
Average Measurement @ 2390 MHz					
Channel 11 Band Edge Measurement	>20 dBc – Pass				
Peak Measurement @ 2483.5 MHz					
Channel 11 Band Edge Measurement	55.29 dBuV - Pass				
Average Measurement @ 2483.5 MHz					

CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)

Test Date	Test Eng.	Data Channel 1 Band Edge Measurement Peak Measurement @ 2390 MHz				
10/30/02	Rick Candelas					
*ATTEN 30dE RL 120.0dE 11 56 1	PEAK	MKR 64.67dBµV 2.390ØGHz TRANSMITTER BAND EDGE CH. 1 SPAN 100.0MHz WHz SWP 50.0ms				



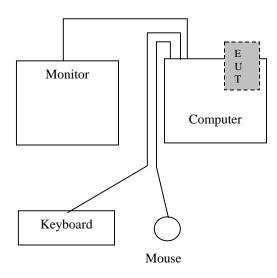
Page 56 of 59

Report Number: INTEL-021001F FCC ID: PD9WM3B2100

CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)

Test Date	Data	Test Eng.	
10/30/02	Channel 11 Band Edge Measurement	Rick Candelas	
*ATTEN 30dB RL 120.0dB 12:03 10	Peak Measurement @ 2483.5 MHz MKR 63.67dBμV μV 1Ø dB / 2.4835GHz PEAK TRANSMITTER BAND EDGE CH. 11	•	
CENTER 2.4 *RBW 1.0MHz	835GHz SPAN 100.0MHz *VBW 1.0MHz *SWP 50.0ms		

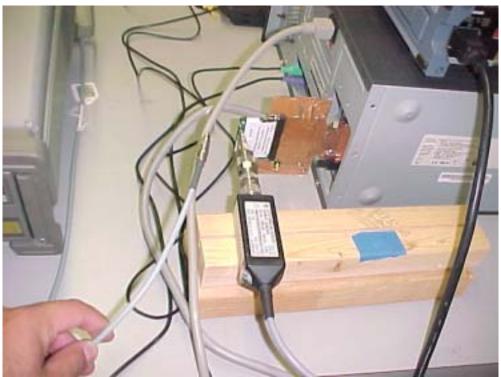
Page 57 of 59


Report Number: INTEL-021001F FCC ID: PD9WM3B2100

ALL CONDUCTED MEASUREMENTS SETUP

TEST EQUIPMENT USED							
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration		
		Number	Number	Due Date	Cycle		
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years		
DC Block	Inmet	8039	N/A	N/A	N/A		
Power Meter	Rohde & Schwarz	NRVS	DE30863	11/24/03	1 Year		
Power Sensor	Leistungsmesskoph	NRV-Z5	844855/012	11/24/03	1 Year		
Temperature /	Dickson	TH550	7255185	01/08/03	1 Year		
Humidity Monitor							

EUT ACCESSORIES							
Equipment Name	Manufacturer	Model Number	Serial Number				
NetVista Computer	IBM	21U	KAOL42K				
Monitor	NEC	JC-1575VMA	2Y785821				
Keyboard	IBM	SK-8811	1922408				
Mouse	IBM	MU295	23-161493				


BLOCK DIAGRAM

ALL CONDUCTED MEASUREMENTS SETUP (Continued)

PHOTOGRAPHS

Page 59 of 59 Report Number: INTEL-021001F FCC ID: PD9WM3B2100