

FCC PART 15.247 TEST REPORT

For

Murata Manufacturing Co., Ltd.

10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan

FCC ID: VPYLBAA0QB1SJ

Report Type:		Product Type:	
Original Report		LoRa Module	
Project Engineer:	Chao Gao	Chac) Gao
Report Number:	RKSA21041600	01-00A	
Report Date:	2021-05-28		
Reviewed By:	Oscar Ye EMC Manager	Gscar	Ye
Prepared By:		88934268	

TABLE OF CONTENTS

Report No.: RKSA210416001-00A

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	6
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §1.1310& §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	12
APPLICABLE STANDARD	12
CALCULATED FORMULARY:	12
CALCULATED DATA:	12
FCC §15.203 – ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	13
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & OVER LIMIT CALCULATION.	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PACE.	
TEST DATA	
FCC §15.247(a) (1) (i)– 20 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	34

FCC §15.247(a) (1) (i) - QUANTITY OF HOPPING CHANNEL TEST	37
APPLICABLE STANDARD TEST PROCEDURE TEST DATA	37
FCC §15.247(f) - TIME OF OCCUPANCY (DWELL TIME) OF HYBRID SYSTEMS	39
APPLICABLE STANDARD	39
TEST PROCEDURE	39
TEST DATA	39
FCC §15.247(f) - POWER SPECTRAL DENSITY OF HYBRID SYSTEMS	43
APPLICABLE STANDARD	43
Test Procedure	
TEST DATA	43
FCC §15.247(b)(3)-MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	46
APPLICABLE STANDARD	46
TEST PROCEDURE	46
TEST DATA	46
FCC §15.247(d) - BAND EDGES TESTING	48
APPLICABLE STANDARD	48
TEST PROCEDURE	
TEST DATA	48

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Murata Manufacturing Co., Ltd.
Tested Model	1SJ
Product Type	LoRa Module
Power Supply	DC 3.3V
Maximum Output Power	21.77dBm
RF Function	LoRa (125kHz)
Operating Frequency	902.3-914.9MHz
Channel Number	64
Channel Separation	200kHz
Modulation Type	LoRa
Antenna Type	PCB antenna, FPC antenna with IPEX connector
Maximum Antenna Gain	PCB antenna/ FPC antenna: 1dBi
Firmware Version	Test FW V0.0.15

Report No.: RKSA210416001-00A

Objective

This test report is prepared on behalf of *Murata Manufacturing Co.*, *Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine Compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

Part 15.247 DTS submissions with FCC ID: VPYLBAA0QB1SJ

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 51

^{*}All measurement and test data in this report was gathered from production sample serial number: RKSA210416001-1. (Assigned by the BACL. The EUT supplied by the applicant was received on 2021-04-16)

Measurement Uncertainty

	Item	Uncertainty	
AC Power Line	es Conducted Emissions	3.19dB	
RF conduct	ed test with spectrum	0.9dB	
RF Output Po	ower with Power meter	0.5dB	
	30MHz~1GHz	6.11dB	
Dadistad amissism	1GHz~6GHz	4.45dB	
Radiated emission	6GHz~18GHz	5.23dB	
	18GHz~40GHz	5.65dB	
Оссир	pied Bandwidth	0.5kHz	
T	emperature	1.0℃	
	Humidity	6%	

Report No.: RKSA210416001-00A

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01), the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 51

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The frequencies is F(MHz)=902.3+0.2*n (0<=n<=63). The lowest, middle, highest channel numbers of the EUT used and tested in this report are below:

Report No.: RKSA210416001-00A

Channel	Frequency (MHz)
0	902.3
32	908.7
63	914.9

EUT Exercise Software

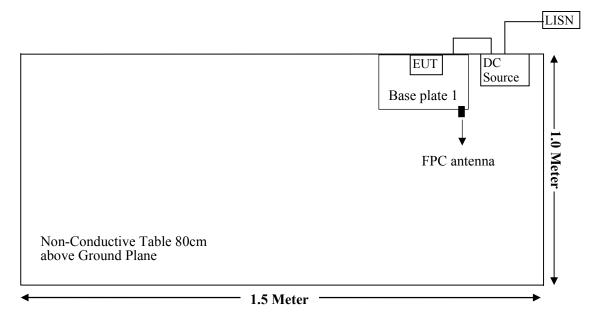
RF test software: FSKLoRaCmd

Power level: 22. Data rate: SF7.

Support Equipment List and Details

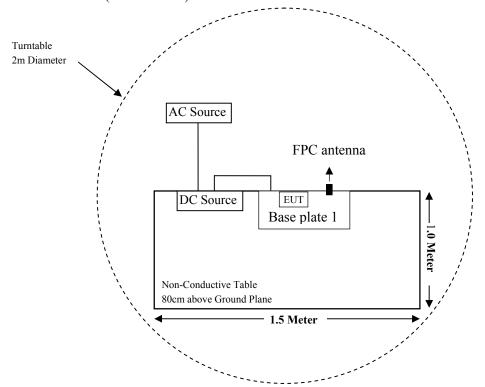
Manufacturer	Description	Model	Serial Number
Murata Manufacturing Co., Ltd.	Base plate 1	JS-0909 Type1SJ EVB_PCB Antenna	/
Molex	FPC antenna	2111400100	/
ZHAOXIN	DC Power Supply	RXN-605D	DC002

External I/O Cable


Cable Description	Length (m)	From Port	To Port	
DC Cable	1.0	Base plate 1	DC Source	

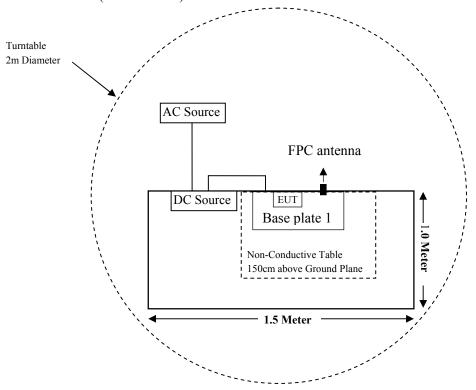
FCC Part 15.247 Page 6 of 51

Block Diagram of Test Setup

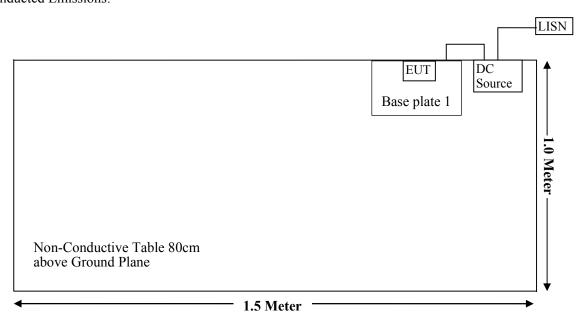

For FPC antenna:

For Conducted Emissions:

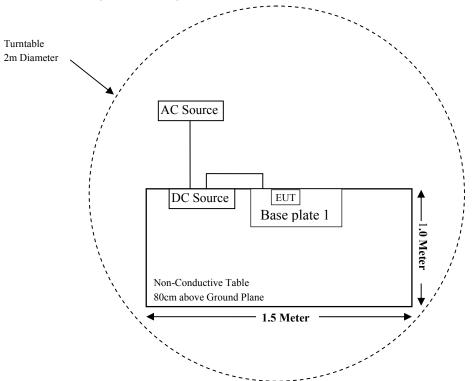
Report No.: RKSA210416001-00A


For Radiated Emissions(Below 1GHz):

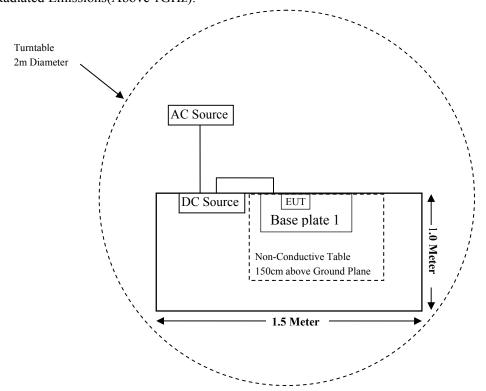
FCC Part 15.247 Page 7 of 51


Report No.: RKSA210416001-00A

For Radiated Emissions(Above 1GHz):


For PCB antenna:

For Conducted Emissions:



FCC Part 15.247 Page 8 of 51

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.247 Page 9 of 51

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §1.1310& §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(i)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)(i)	Quantity of Hopping Channel Test	Compliant
§15.247(f)	Time of Occupancy (Dwell Time) of hybrid systems	Compliant (See Note)
§15.247(f)	Power Spectral Density of hybrid systems	Compliant (See Note)
§15.247(b)(3)	Maximum conducted(average) output power	Compliant
§15.247(d)	Band edges Testing	Compliant

Report No.: RKSA210416001-00A

Note: The EUT use a hybrid systems in the band.

FCC Part 15.247 Page 10 of 51

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration	Calibration	
Manufacturer	<u> </u>			Date	Due Date	
	Radiated Emission Test (Chamber 3#)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2020-12-14	2021-12-13	
Sunol Sciences	Hybrid Antenna	JB3	A090314-1	2020-08-05	2023-08-04	
Sonoma Instrunent	Pre-amplifier	310N	185700	2020-08-14	2021-08-13	
Audix	Test Software	e3	V9	/	/	
MICRO-TRONICS	Band Reject Filter	BRC50722	G013	2020-08-05	2021-08-04	
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14	
	Radiated En	Radiated Emission Test (Chamber 2#)				
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2021-04-01	2022-03-31	
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2020-07-15	2023-07-14	
A.H.Systems, inc	Amplifier	2641-1	491	2021-02-20	2022-02-19	
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-TRONICS	Band Reject Filter	BRC50722	G013	2020-08-05	2021-08-04	
MICRO-COAX	Coaxial Cable	Cable-6	006	2020-12-12	2021-12-11	
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14	
RF Conducted Test						
Agilent	Power Meter	N1912A	MY5000492	2020-11-18	2021-11-17	
Agilent	Power Sensor	N1921A	MY54210024	2020-11-18	2021-11-17	
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2020-07-28	2021-07-27	
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14	
Murata	RF Cable	Murata C01	C01	Each Time	/	
	Conc	lucted Emission To	est			
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2020-08-05	2021-08-04	
Audix	Test Software	e3	V9	/	/	
Rohde & Schwarz	LISN	ENV216	101115	2020-12-14	2021-12-13	
Rohde & Schwarz	Pulse limiter	ESH3-Z5	862770/011	2020-11-30	2021-11-29	
MICRO-COAX	Coaxial Cable	Cable-15	015	2020-08-15	2021-08-14	

Report No.: RKSA210416001-00A

FCC Part 15.247 Page 11 of 51

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310& §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RKSA210416001-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/		f/1500	30		
1500-100,000	/		1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

For worst case:

Mode	Frequency Range	Anter	average Power Distance Den		Conducted average Power Evaluation Distance		Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
LoRa (125kHz)	902.3-914.9	1	1.26	22.00	158.49	20	0.0397	0.60
LoRa (500kHz)	903-914.2	1	1.26	22.00	158.49	20	0.0397	0.60

Conclusion: The EUT meets requirement - RF exposure evaluation greater than 20cm distance specified in § 2.1091. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by § 2.1093.

FCC Part 15.247 Page 12 of 51

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RKSA210416001-00A

Antenna Connector Construction

The EUT has been tested with two antennas for Lora, one FPC antenna with IPEX connector which the antenna gain is 1dBi and one PCB antenna which the antenna gain is 1dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC Part 15.247 Page 13 of 51

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RKSA210416001-00A

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the DC Source was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 14 of 51

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of 7dB means the emission is 7 dB above the limit. The equation for over limit calculation is as follows:

Report No.: RKSA210416001-00A

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

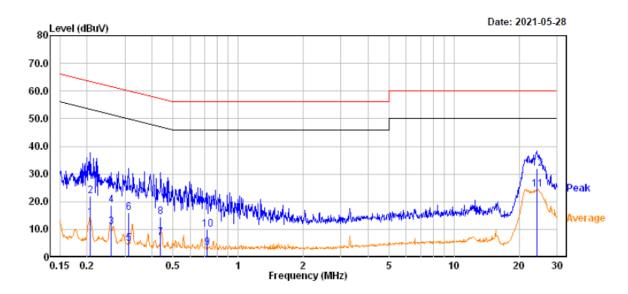
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	22 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

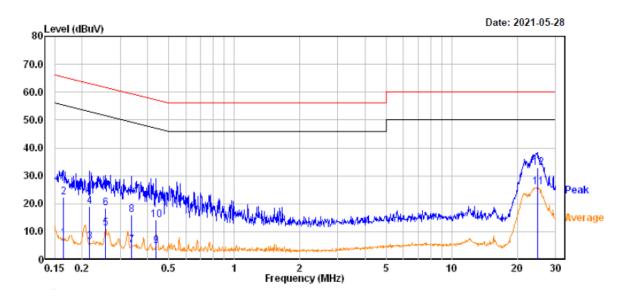

The testing was performed by Chao Gao on 2021-05-28.

EUT operation mode: Transmitting in low channel (worst case)

FCC Part 15.247 Page 15 of 51

For FPC antenna

AC 120V/60 Hz, Line



Report No.: RKSA210416001-00A

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	——dB	
1	0.207	-5.70	19.82	14.12	53.31	-39.19	Average
2	0.207	2.30	19.82	22.12	63.31	-41.19	QP
3	0.260	-9.10	19.82	10.72	51.45	-40.73	Average
4	0.260	-1.00	19.82	18.82	61.45	-42.63	QP
5	0.312	-15.00	19.82	4.82	49.91	-45.09	Average
6	0.312	-3.70	19.82	16.12	59.91	-43.79	QP
7	0.438	-12.90	19.75	6.85	47.10	-40.25	Average
8	0.438	-5.40	19.75	14.35	57.10	-42.75	QP
9	0.717	-16.40	19.74	3.34	46.00	-42.66	Average
10	0.717	-9.90	19.74	9.84	56.00	-46.16	QP
11	24.213	4.70	19.73	24.43	50.00	-25.57	Average
12	24.213	12.20	19.73	31.93	60.00	-28.07	OP

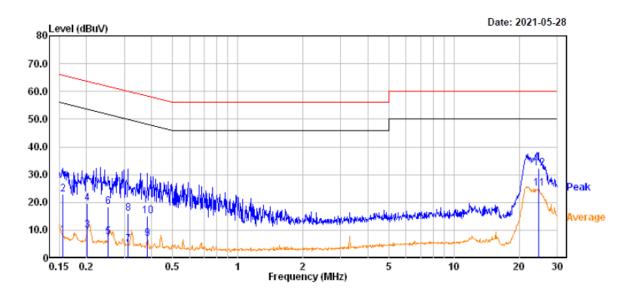
FCC Part 15.247 Page 16 of 51

AC 120V/60 Hz, Neutral

Report No.: RKSA210416001-00A

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	——dB	
1	0.164	-12.40	19.83	7.43	55.25	-47.82	Average
2	0.164	2.50	19.83	22.33	65.25	-42.92	QP
3	0.216	-13.60	19.82	6.22	52.98	-46.76	Average
4	0.216	-0.70	19.82	19.12	62.98	-43.86	QP
5	0.256	-8.80	19.82	11.02	51.57	-40.55	Average
6	0.256	-1.30	19.82	18.52	61.57	-43.05	QP
7	0.336	-14.81	19.82	5.01	49.29	-44.28	Average
8	0.336	-3.91	19.82	15.91	59.29	-43.38	QP
9	0.436	-14.90	19.75	4.85	47.14	-42.29	Average
10	0.436	-5.60	19.75	14.15	57.14	-42.99	QP
11	24.824	6.40	19.70	26.10	50.00	-23.90	Average
12	24.824	13.20	19.70	32.90	60.00	-27.10	QP

Note:


1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15.247 Page 17 of 51

For PCB antenna

AC 120V/60 Hz, Line

Report No.: RKSA210416001-00A

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.156	-11.60	19.82	8.22	55.67	-47.45	Average
2	0.156	3.10	19.82	22.92	65.67	-42.75	QP
3	0.202	-10.00	19.82	9.82	53.52	-43.70	Average
4	0.202	-0.10	19.82	19.72	63.52	-43.80	QP
5	0.252	-12.40	19.82	7.42	51.69	-44.27	Average
6	0.252	-1.50	19.82	18.32	61.69	-43.37	QP
7	0.311	-15.01	19.83	4.82	49.96	-45.14	Average
8	0.311	-3.81	19.83	16.02	59.96	-43.94	QP
9	0.383	-12.80	19.76	6.96	48.22	-41.26	Average
10	0.383	-4.70	19.76	15.06	58.22	-43.16	QP
11	24.577	5.20	19.71	24.91	50.00	-25.09	Average
12	24.577	12.50	19.71	32.21	60.00	-27.79	QP

FCC Part 15.247 Page 18 of 51

AC 120V/60 Hz, Neutral

Report No.: RKSA210416001-00A

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.171	-12.50	19.83	7.33	54.92	-47.59	Average
2	0.171	1.80	19.83	21.63	64.92	-43.29	QP
3	0.204	-6.90	19.82	12.92	53.43	-40.51	Average
4	0.204	2.10	19.82	21.92	63.43	-41.51	QP
5	0.263	-10.10	19.82	9.72	51.32	-41.60	Average
6	0.263	-1.70	19.82	18.12	61.32	-43.20	QP
7	0.322	-10.30	19.82	9.52	49.67	-40.15	Average
8	0.322	-3.30	19.82	16.52	59.67	-43.15	QP
9	0.465	-15.70	19.75	4.05	46.60	-42.55	Average
10	0.465	-6.70	19.75	13.05	56.60	-43.55	QP
11	25.072	5.40	19.69	25.09	50.00	-24.91	Äverage
12	25.072	11.70	19.69	31.39	60.00	-28.61	OP

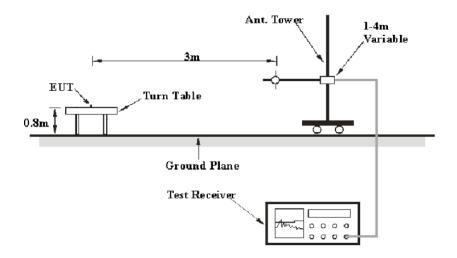
Note:

FCC Part 15.247 Page 19 of 51

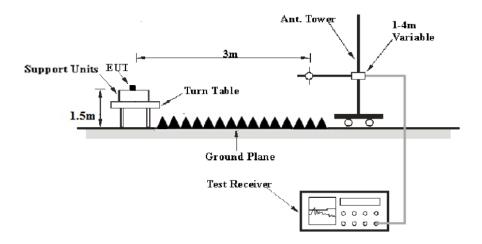
¹⁾ Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

²⁾ Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS


Report No.: RKSA210416001-00A

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 20 of 51

EMI Test Receiver Setup

The system was investigated from 30 MHz to 10 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
About 1CH-	1MHz	3 MHz	/	PK
Above 1GHz	1MHz	3 MHz	1MHz	AVG.

Report No.: RKSA210416001-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C</u>, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 21 of 51

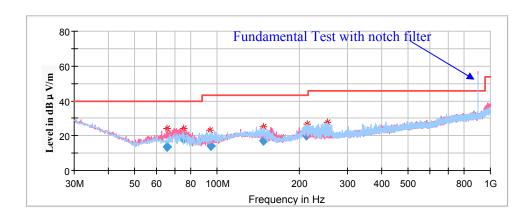
Test Data

Environmental Conditions

Temperature:	21.8~23.2 ℃
Relative Humidity:	48~50 %
ATM Pressure:	101.2~101.3 kPa

The testing was performed by Chao Gao from 2021-04-25 to 2021-04-30.

EUT operation mode: Transmitting


For FPC antenna:

Spurious Emission Test:

30MHz-1GHz

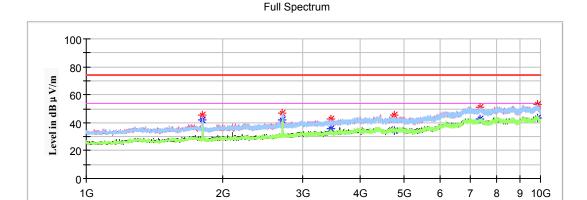
Pre-scan with low, middle, high channel of operation in the X,Y and Z axes of orientation, the worst case **low channel** in X-axis of orientation was recorded

Report No.: RKSA210416001-00A

Frequency	Corrected Amplitude Rx Antenna Turntable		Turntable	Corrected	Limit	Margin	
(MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polar Degree (H/V)		Factor (dB/m)	(dBµV/m)	(dB)
65.552400	13.69	100.0	V	0.0	-15.8	40.00	26.31
75.606200	18.35	100.0	V	262.0	-17.0	40.00	21.65
94.843100	14.27	199.0	Н	223.0	-15.8	43.50	29.23
147.919800	17.34	199.0	Н	235.0	-12.7	43.50	26.16
212.367650	20.00	100.0	Н	260.0	-12.0	43.50	23.50
254.238950	23.21	100.0	Н	248.0	-11.8	46.00	22.79

FCC Part 15.247 Page 22 of 51

1GHz-10GHz


Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded.

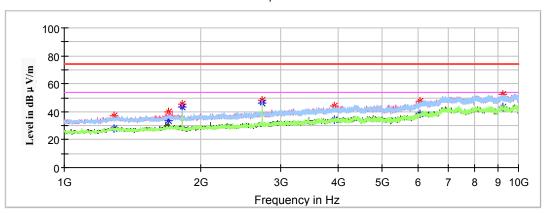
Note:

- 1. The test was performed with a 10dB Attenuator.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) + Attenuator(dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) Corrected Amplitude (dBμV/m)

Report No.: RKSA210416001-00A

Low Channel: 902.3MHz

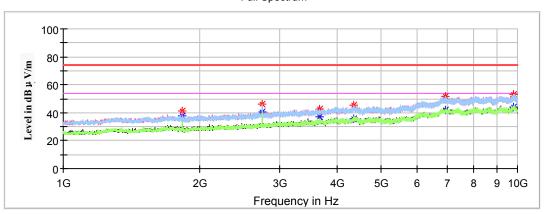
Frequency in Hz


Corrected Amplitude Rx Antenna Corrected Limit Frequency Turntable Margin **Factor** MaxPeak Average Height **Polar** (MHz) **Degree** $(dB\mu V/m)$ (dB) (dB/m)(H/V) $(dB\mu V/m)$ $(dB\mu V/m)$ (cm) 1804.600000 41.80 V -8.3 54.00 12.20 200.0 41.0 1804.600000 45.53 200.0 V 41.0 -8.3 74.00 28.47 ---2706.400000 42.17 150.0 Η 353.0 -4.7 54.00 11.83 2706.400000 150.0 Η 353.0 74.00 47.07 ----4.7 26.93 3456.100000 150.0 Η 262.0 -1.9 54.00 18.32 35.68 ---3456.100000 42.88 150.0 Η 262.0 -1.9 74.00 31.12 4756.600000 150.0 V 323.0 54.00 34.37 1.0 19.63 4756.600000 45.53 150.0 V 323.0 1.0 74.00 28.47 ---V 7365.700000 42.39 150.0 115.0 9.1 54.00 11.61 150.0 V 115.0 9.1 74.00 7365.700000 51.14 22.86 9833.500000 43.55 150.0 Η 29.0 11.9 54.00 10.45 9833.500000 52.96 150.0 Η 29.0 11.9 74.00 21.04

FCC Part 15.247 Page 23 of 51

Middle Channel: 908.7MHz

Report No.: RKSA210416001-00A


Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1288.000000		28.05	150.0	V	2.0	-10.7	54.00	25.95
1288.000000	36.83		150.0	V	2.0	-10.7	74.00	37.17
1695.700000	39.85		150.0	V	270.0	-8.7	74.00	34.15
1695.700000		33.23	150.0	V	270.0	-8.7	54.00	20.77
1817.200000	45.34		200.0	V	36.0	-8.3	74.00	28.66
1817.200000		43.33	200.0	V	36.0	-8.3	54.00	10.67
2726.200000	48.60		200.0	Н	0.0	-4.6	74.00	25.40
2726.200000		46.19	200.0	Н	0.0	-4.6	54.00	7.81
3927.700000	43.99		150.0	Н	353.0	0.1	74.00	30.01
3927.700000		34.02	150.0	Н	353.0	0.1	54.00	19.98
6079.600000		38.59	200.0	Н	90.0	5.4	54.00	15.41
6079.600000	47.68		200.0	Н	90.0	5.4	74.00	26.32
9226.900000	52.48		200.0	V	345.0	11.2	74.00	21.52
9226.900000		43.24	200.0	V	345.0	11.2	54.00	10.76

FCC Part 15.247 Page 24 of 51

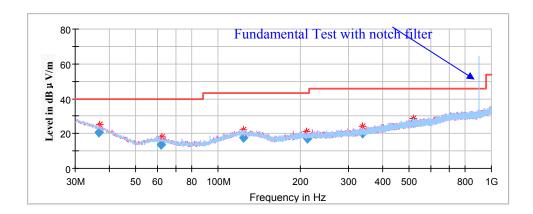
High Channel: 914.9MHz

Report No.: RKSA210416001-00A

Full Spectrum

Fraguency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1829.800000		37.73	150.0	V	73.0	-8.3	54.00	16.27
1829.800000	41.54		150.0	V	73.0	-8.3	74.00	32.46
2744.200000		40.47	200.0	Н	357.0	-4.5	54.00	13.53
2744.200000	46.21		200.0	Н	357.0	-4.5	74.00	27.79
3659.500000		37.00	200.0	V	95.0	-1.1	54.00	17.00
3659.500000	42.94		200.0	V	95.0	-1.1	74.00	31.06
4370.500000		35.38	200.0	V	46.0	0.8	54.00	18.62
4370.500000	45.50		200.0	V	46.0	0.8	74.00	28.50
6942.700000		41.93	150.0	Н	0.0	8.7	54.00	12.07
6942.700000	51.71		150.0	Н	0.0	8.7	74.00	22.29
9813.700000		43.84	150.0	V	197.0	11.9	54.00	10.16
9813.700000	53.40		150.0	V	197.0	11.9	74.00	20.60

FCC Part 15.247 Page 25 of 51


For PCB antenna:

Spurious Emission Test:

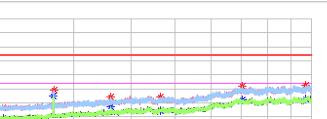
30MHz-1GHz

Pre-scan with low, middle, high channel of operation in the X,Y and Z axes of orientation, the worst case **low channel** in X-axis of orientation was recorded

Report No.: RKSA210416001-00A

Frequency	Frequency Corrected Amplitude Rx Antenna Turntable		Turntable	Corrected	Limit	Margin		
(MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)	
36.738550	20.58	100.0	V	352.0	-7.5	40.00	19.42	
61.818150	13.39	199.0	V	164.0	-14.9	40.00	26.61	
123.947150	17.46	199.0	V	70.0	-11.0	43.50	26.04	
212.184300	17.09	100.0	V	64.0	-12.0	43.50	26.41	
337.469750	20.27	100.0	V	106.0	-9.8	46.00	25.73	
517.443650	26.38	100.0	Н	231.0	-5.4	46.00	19.62	

FCC Part 15.247 Page 26 of 51


1GHz-10GHz

Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded.

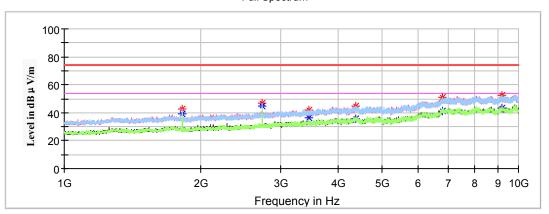
- 1. The test was performed with a 10dB Attenuator.
- 2. Corrected Factor (dB/m) = Antenna factor (RX)(dB/m) + Cable Loss (dB) Amplifier Factor (dB) + Attenuator (dB)Corrected Amplitude ($dB\mu V/m$) = Corrected Factor (dB/m) + Reading ($dB\mu V$) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Low Channel: 902.3MHz

Full Spectrum

Report No.: RKSA210416001-00A

100						
80						
60		ale.			*	an add a fine
40	*		*	Mary Company of the C		Promise for
+						
0 1 1G	2G	3G	4G	5G 6	7	8 9
		Frequency	in Hz			

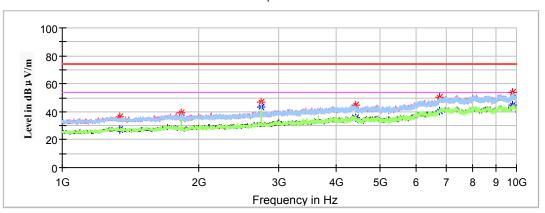

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1804.600000		36.73	150.0	Н	2.0	-8.3	54.00	17.27
1804.600000	41.68		150.0	Н	2.0	-8.3	74.00	32.32
2707.300000		44.79	150.0	Н	359.0	-4.7	54.00	9.21
2707.300000	48.65		150.0	Н	351.0	-4.7	74.00	25.35
3609.100000	44.13		150.0	Н	359.0	-1.3	74.00	29.87
3609.100000		37.29	150.0	Н	359.0	-1.3	54.00	16.71
4646.800000		34.15	200.0	Н	115.0	1.0	54.00	19.85
4646.800000	44.40		200.0	Н	115.0	1.0	74.00	29.60
7026.400000	51.49		150.0	Н	122.0	8.9	74.00	22.51
7026.400000		42.13	150.0	Н	122.0	8.9	54.00	11.87
9724.600000		42.80	150.0	V	63.0	11.9	54.00	11.20
9724.600000	52.54		150.0	V	63.0	11.9	74.00	21.46

FCC Part 15.247 Page 27 of 51

Middle Channel: 908.7MHz

Report No.: RKSA210416001-00A

Full Spectrum


Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1817.200000		39.47	150.0	Н	0.0	-8.3	54.00	14.53
1817.200000	42.60		150.0	Н	0.0	-8.3	74.00	31.40
2726.200000		44.57	150.0	Н	357.0	-4.6	54.00	9.43
2726.200000	46.89		150.0	Н	357.0	-4.6	74.00	27.11
3456.100000		36.48	150.0	V	326.0	-1.9	54.00	17.52
3456.100000	41.74		150.0	V	326.0	-1.9	74.00	32.26
4385.800000		35.79	150.0	Н	14.0	0.8	54.00	18.21
4385.800000	44.71		150.0	Н	14.0	0.8	74.00	29.29
6797.800000		40.99	150.0	Н	357.0	8.0	54.00	13.01
6797.800000	50.80		150.0	Н	357.0	8.0	74.00	23.20
9199.000000		43.10	150.0	Н	293.0	11.2	54.00	10.90
9199.000000	52.63		150.0	Н	293.0	11.2	74.00	21.37

FCC Part 15.247 Page 28 of 51

High Channel: 914.9MHz

Report No.: RKSA210416001-00A

Enggueney	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1341.100000		27.60	200.0	V	248.0	-10.4	54.00	26.40
1341.100000	36.08		200.0	V	248.0	-10.4	74.00	37.92
1829.800000		35.38	200.0	V	161.0	-8.3	54.00	18.62
1829.800000	38.91		200.0	V	161.0	-8.3	74.00	35.09
2744.200000		43.53	150.0	Н	15.0	-4.5	54.00	10.47
2744.200000	47.09		150.0	Н	15.0	-4.5	74.00	26.91
4419.100000		35.41	200.0	V	224.0	0.8	54.00	18.59
4419.100000	44.92		200.0	V	224.0	0.8	74.00	29.08
6769.900000		40.61	150.0	Н	123.0	7.9	54.00	13.39
6769.900000	50.09		150.0	Н	123.0	7.9	74.00	23.91
9827.200000		45.03	150.0	Н	160.0	11.9	54.00	8.97
9827.200000	54.12		150.0	Н	160.0	11.9	74.00	19.88

FCC Part 15.247 Page 29 of 51

Bandedge Emissions Test:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded.)

Note:

- 1. The test is performed with a 10dB Attenuator.
- 2. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor+ Attenuator Corrected Amplitude = Corrected Factor + Reading Margin = Limit Corrected. Amplitude

For FPC antenna:

	Corrected Amplitude	Rx An	tenna	T	G . I.F.			
Frequency (MHz)	QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Corrected Factor (dB/m)	Limit (dBµV/m)	Margin (dB)	
	902.3MHz							
902.00	35.11	200	Н	143	1.02	46	10.89	
902.00	33.61	100	V	36	1.02	46	12.39	
914.9MHz								
928.00	36.23	100	Н	304	1.68	46	9.77	
928.00	34.49	200	V	110	1.68	46	11.51	

Report No.: RKSA210416001-00A

For PCB antenna:

	Corrected Amplitude	Rx An	tenna	T. (11)	G IF .	** •		
Frequency (MHz)	QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Corrected Factor (dB/m)	Limit (dBµV/m)	Margin (dB)	
	902.3MHz							
902.00	32.61	100	Н	357	1.02	46	13.39	
902.00	37.34	100	V	162	1.02	46	8.66	
	914.9MHz							
928.00	33.15	200	Н	149	1.68	46	12.85	
928.00	36.53	100	V	201	1.68	46	9.47	

FCC Part 15.247 Page 30 of 51

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: RKSA210416001-00A

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth (VBW) ≥ RBW.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Test Data

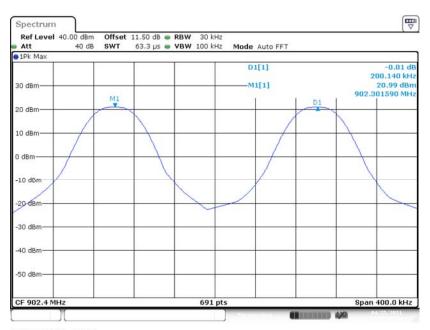
Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa

The testing was performed by Chao Gao on 2021-04-25.

EUT operation mode: Transmitting

Test Result: Compliant.

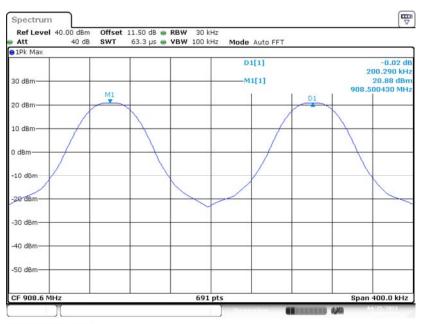

FCC Part 15.247 Page 31 of 51

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result	
Low	902.3	0.200	0.138	Pass	
Adjacent	902.5	0.200	0.136		
Middle	908.7	0.200	0.138	Pass	
Adjacent	908.5	0.200	0.136	rass	
High	914.9	0.200	0.120	Dogg	
Adjacent	914.7	0.200	0.138	Pass	

Report No.: RKSA210416001-00A

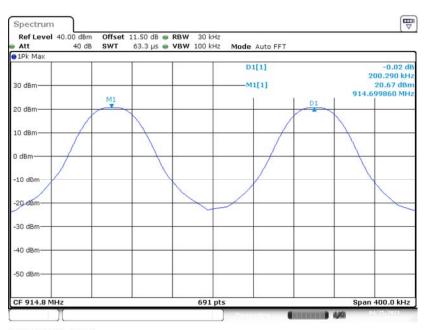
Note: Limit = 20 dB bandwidth

Low Channel



Date; 25.APR.2021 13:51:06

FCC Part 15.247 Page 32 of 51


Middle Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 13:50:09

High Channel

Date; 25.APR.2021 13:54:10

FCC Part 15.247 Page 33 of 51

FCC §15.247(a) (1) (i)- 20 dB EMISSION BANDWIDTH

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Report No.: RKSA210416001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

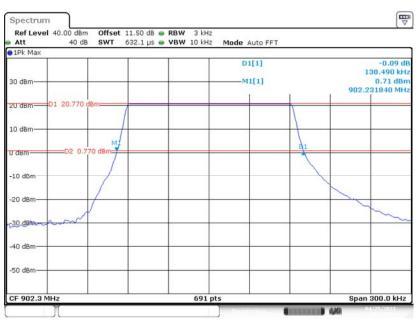
Test Data

Environmental Conditions

Temperature:	23.2 ℃		
Relative Humidity:	48 %		
ATM Pressure:	101.2 kPa		

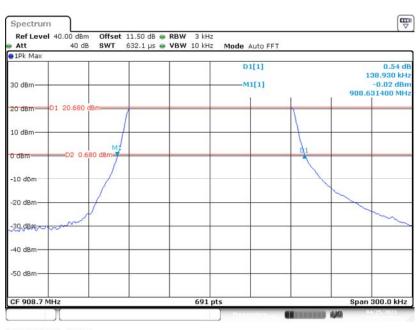
The testing was performed by Chao Gao on 2021-04-25.

EUT operation mode: Transmitting


Test Result: Compliant.

Channel	Frequency (MHz) 20 dB Emission Bandwidth (MHz)		Limit (MHz)
Low	902.3	0.138	≤0.25
Middle	908.7	0.138	≤0.25
High	914.9	0.138	≤0.25

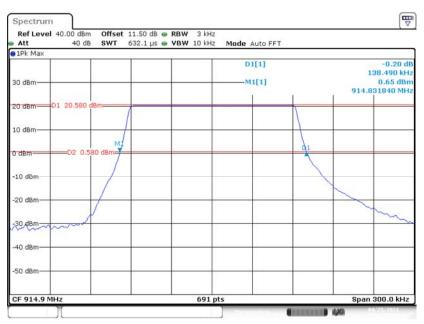
FCC Part 15.247 Page 34 of 51


Low Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 13:30:20

Middle Channel



Date: 25.APR.2021 13:31:56

FCC Part 15.247 Page 35 of 51

High Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 13:32:59

FCC Part 15.247 Page 36 of 51

FCC §15.247(a) (1) (i) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Report No.: RKSA210416001-00A

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c. $VBW \ge RBW$.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

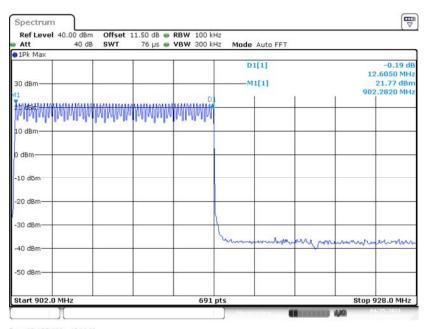
Test Data

Environmental Conditions

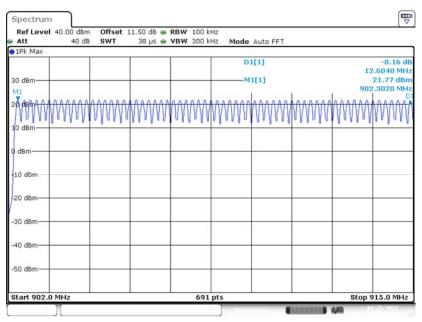
Temperature:	24.0 ℃
Relative Humidity:	49 %
ATM Pressure:	101.6 kPa

The testing was performed by Chao Gao on 2021-04-25.

EUT operation mode: Hopping


Test Result: Compliant.

Frequency Range	Number of Hopping Channel	Limit
(MHz)	(CH)	(CH)
902~928MHz	64	≥50


FCC Part 15.247 Page 37 of 51

Number of Hopping Channels

Report No.: RKSA210416001-00A

Date: 25.APR.2021 15:36:20

Date: 25.APR.2021 15:37:46

FCC Part 15.247 Page 38 of 51

FCC §15.247(f) - TIME OF OCCUPANCY (DWELL TIME) OF HYBRID SYSTEMS

Report No.: RKSA210416001-00A

Applicable Standard

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a Span: Zero span, centered on a hopping channel.
- b RBW shall be \leq channel spacing and where possible RBW should be set ≥ 1 / T, where T is the expected dwell time per channel.
- c Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d Detector function: Peak.

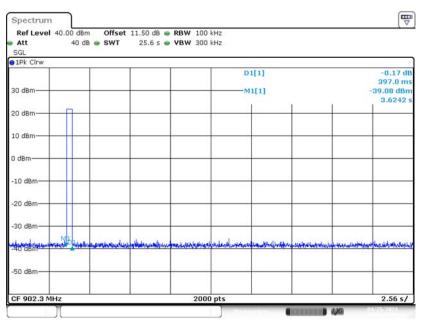
e Trace: Max hold.

Test Data

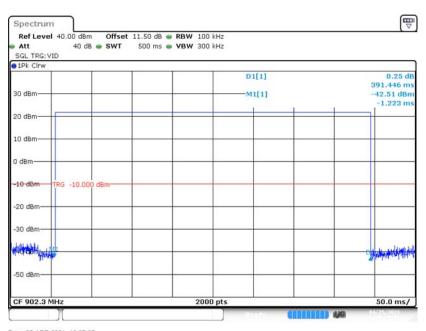
Environmental Conditions

Temperature:	23.8℃
Relative Humidity:	48 %
ATM Pressure:	101.1kPa

The testing was performed by Chao Gao on 2021-04-25.


EUT operation mode: Hopping

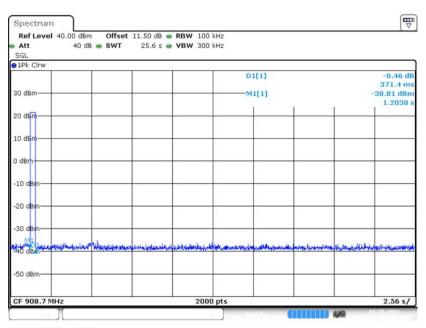
Channel	Dwell Time (s)	Limit (s)	Result
Low	0.391	0.4	Pass
Middle	0.371	0.4	Pass
High	0.391	0.4	Pass


FCC Part 15.247 Page 39 of 51

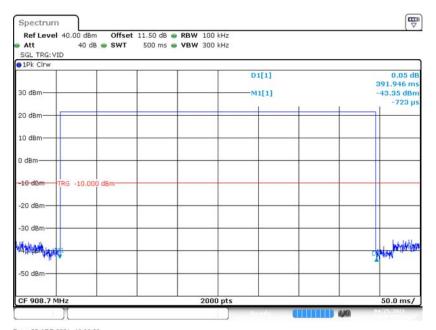
Low Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 16:07:43



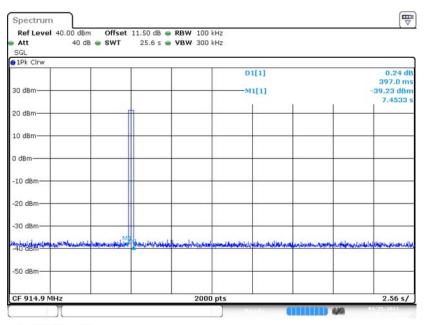
Date: 25.APR.2021 16:37:25


FCC Part 15.247 Page 40 of 51

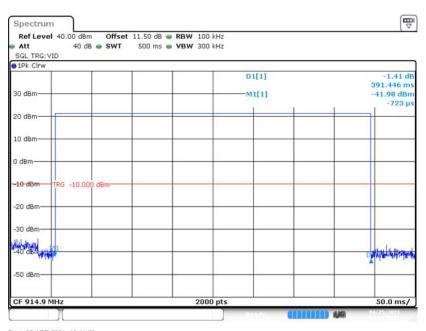
Middle Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 16:12:08



Date: 25.APR.2021 16:38:39


FCC Part 15.247 Page 41 of 51

High Channel

Report No.: RKSA210416001-00A

Date: 25.APR.2021 16:15:53

Date: 25.APR.2021 16:44:59

FCC Part 15.247 Page 42 of 51

FCC §15.247(f) - POWER SPECTRAL DENSITY OF HYBRID SYSTEMS

Applicable Standard

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: RKSA210416001-00A

Test Procedure

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set VBW \geq [3 \times RBW].
- e) Detector = power averaging (rms)
- f) Ensure that the number of measurement points in the sweep \geq [2 \times span / RBW].
- g) Manually set the sweep time to: \geq [10 \times (number of measurement points in sweep) \times (transmission symbol period)], but no less than the auto sweep time.
- h) Perform the measurement over a single sweep.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Test Data

Environmental Conditions

Temperature:	24.2 ℃
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa

The testing was performed by Chao Gao on 2021-05-17.

EUT operation mode: Transmitting

Test Result: Compliant.

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	902.3	7.61	≤ 8
Middle	908.7	7.50	≤ 8
High	914.9	7.11	≤ 8

FCC Part 15.247 Page 43 of 51

Low Channel

Report No.: RKSA210416001-00A

Date: 17.MAY.2021 12:31:11

Middle Channel

Date: 17.MAY.2021 12:38:43

FCC Part 15.247 Page 44 of 51

High Channel

Report No.: RKSA210416001-00A

Date: 17.MAY.2021 12:54:47

FCC Part 15.247 Page 45 of 51

FCC §15.247(b)(3)-MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, Compliant with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RKSA210416001-00A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.9.2.3.1

The maximum average conducted output power may be measured using a wideband RF average power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add duty factor to the display.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa

The testing was performed by Chao Gao on 2021-04-25.

EUT operation mode: Transmitting

FCC Part 15.247 Page 46 of 51

Channel	Frequency (MHz)	Average Output Power (dBm)	Limit (dBm)	Result
Low	902.3	21.77	30	Pass
Middle	908.7	21.69	30	Pass
High	914.9	21.58	30	Pass

Report No.: RKSA210416001-00A

Note: The antenna gain is 1dBi for FPC antenna and 1dBi for PCB antenna.

FCC Part 15.247 Page 47 of 51

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RKSA210416001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

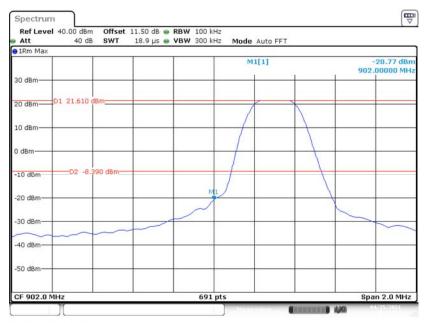
Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa

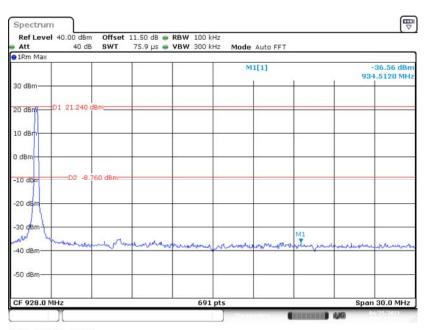
The testing was performed by Chao Gao on 2021-04-25.

EUT operation mode: Transmitting & Hopping


Test Result: Compliant.

FCC Part 15.247 Page 48 of 51

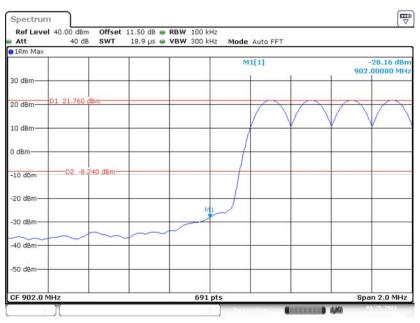
Band Edge


Left Side - Transmitting

Report No.: RKSA210416001-00A

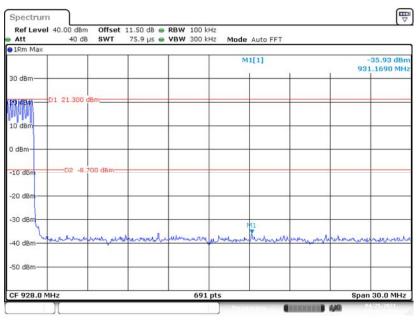
Date: 25.APR.2021 13:00:25

Right Side - Transmitting



Date: 25.APR.2021 12:57:27

FCC Part 15.247 Page 49 of 51


Left Side - Hopping

Report No.: RKSA210416001-00A

Date: 25.APR.2021 15:43:49

Right Side- Hopping

Date: 25.APR.2021 15:47:32

FCC Part 15.247 Page 50 of 51

Declarations

Report No.: RKSA210416001-00A

- 1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk'*'. Customer model name, addresses, names, trademarks etc. are not considered data.
- 2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
- 3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
- 4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.
- 5: This report cannot be reproduced except in full, without prior written approval of the Company.
- 6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****

FCC Part 15.247 Page 51 of 51