

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

MINI PCI 802.11 B/G TRANSCEIVER

MODEL NUMBER: AR5BMB5

FCC ID: PPD-AR5BMB5

REPORT NUMBER: 04U2805-1

ISSUE DATE: JULY 1, 2004

Prepared for ATHEROS COMMUNICATIONS, INC. 529 ALMANOR AVENUE SUNNYVALE, CALIFORNIA 94085 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	5
4.	FACILITIES AND ACCREDITATION	5
5.	CALIBRATION AND UNCERTAINTY	6
5.	.1. MEASURING INSTRUMENT CALIBRATION	6
5.	.2. MEASUREMENT UNCERTAINTY	6
5.	.3. TEST AND MEASUREMENT EQUIPMENT	7
6.	SETUP OF EQUIPMENT UNDER TEST	8
7.	APPLICABLE LIMITS AND TEST RESULTS	10
7.	.1. 6 dB BANDWIDTH	
7.	.2. 99% BANDWIDTH	
7.	.3. PEAK OUTPUT POWER	
7.	.4. MAXIMUM PERMISSIBLE EXPOSURE	
7.	.5. AVERAGE POWER	
7.	.6. PEAK POWER SPECTRAL DENSITY	
7.	.7. CONDUCTED SPURIOUS EMISSIONS	
7.	.8. RADIATED EMISSIONS	
	7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ7.8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
7		
/.	.9. POWERLINE CONDUCTED EMISSIONS	
8.	SETUP PHOTOS	

Page 2 of 96

1. TEST RESULT CERTIFICATION

COMPANY NAME:	ATHEROS COMMUNICATIONS, INC. 529 ALMANOR AVE. SUNNYVALE, CA 94085, USA
EUT DESCRIPTION:	MINI PCI 802.11 B/G TRANSCEIVER
MODEL:	AR5BMB5
DATE TESTED:	MAY 20 – JUNE 30, 2004

APPLICABLE STANDARDS

TEST RESULTS

FCC PART 15 SUBPART C

STANDARD

NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 3 of 96

2. EUT DESCRIPTION

The EUT is an 802.11b/g Mini PCI transceiver module, operating the 2400-2483.5 MHz band.

The transmitter has a maximum peak conducted output power as follows

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	22.41	174.18
2412 - 2462	802.11g	22.97	198.15
2437	802.11g Turbo	23.66	232.27

The radio utilizes a Hitachi HFT24S0 Omnidirectional antenna, with a maximum antenna gain of 4 dBi (excluding cable loss). Other lower gain antennas of the same type that may be used with this module are listed in a separate document.

Page 4 of 96

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 5 of 96

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 96

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005	
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004	
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/2004	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2005	
PreAmplifier 1-26GHz	MITEQ	NSP2600-SP	924341	4/25/2005	
4.0GHz High Pass Filter	Micro-tronics	HPM13351	SN-001	N/A	
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/20/2004	
RF Filter Section	HP	85420E	3705A00256	11/20/2004	
Antenna, Bicon/Log, 30 ~ 2000 MHz	Sunol Sciences	JB1	A121003	12/22/2004	
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/2004	
Line Filter	Lindgren	LMF-3489	497	CNR	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/2004	
10dB Attenuator	Weinchel	56-10	K1648	CNR	
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/04	
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29301	12/26/04	
PreAmplifier 1-26GHz	MITEQ	NSP2600-SP	924341	4/25/05	

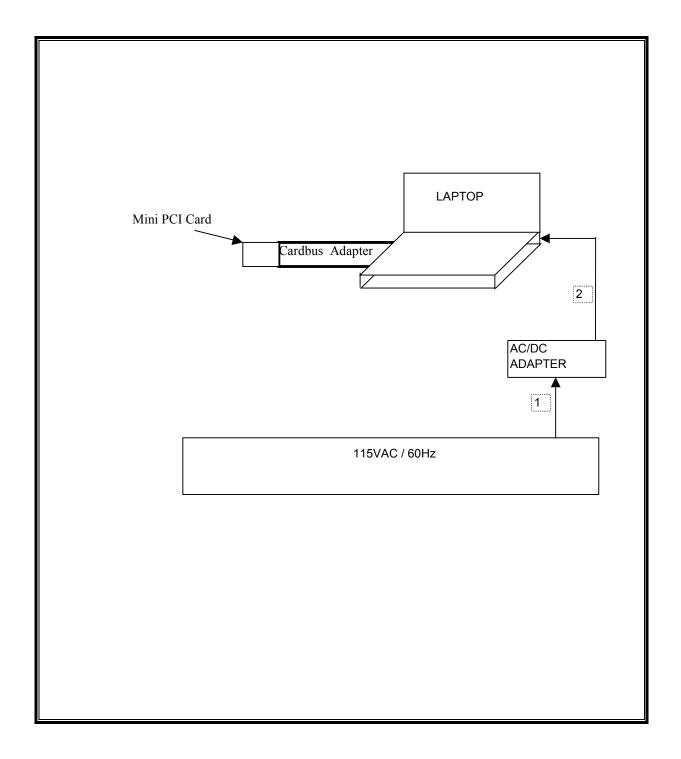
Page 7 of 96

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
LAPTOP	IBM	Thinkpad	NA	DOC
AC ADAPTER	IBM	NA	NA	DOC
CARDBUS ADAPTER	VYTEK	STCBMP13	NA	NA

I/O CABLES


I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	2	US115	UNSHIELDED	2m	NO
2	DC	1	DC	UNSHIELDED	2m	NO

TEST SETUP

The EUT is installed in a host laptop computer via a cardbus-to-miniPCI adapter / extension board during the tests. Test software exercised the radio card

Page 8 of 96

SETUP DIAGRAM FOR TESTS

Page 9 of 96

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMIT</u>

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

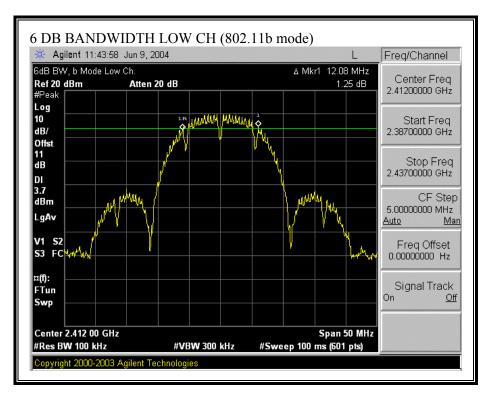
RESULTS

No non-compliance noted:

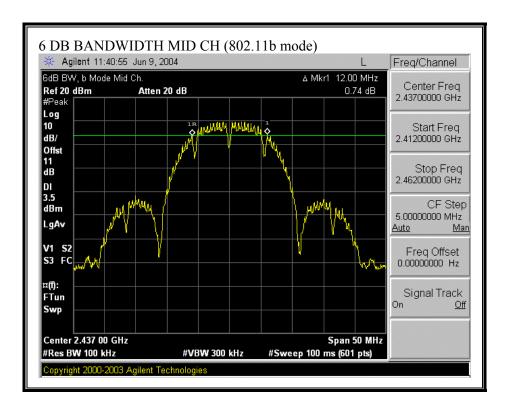
802.11b Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	12080	500	11580
Middle	2437	12000	500	11500
High	2462	12080	500	11580

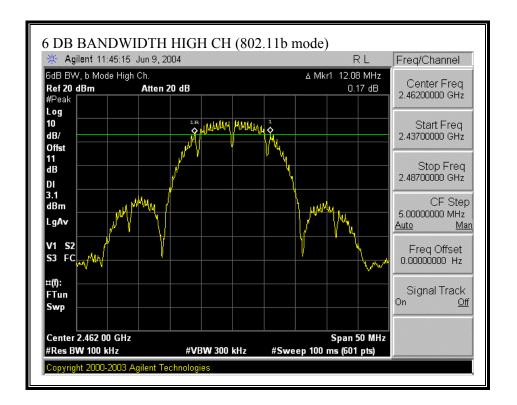
802.11g Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	16420	500	15920
Middle	2437	16420	500	15920
High	2462	16330	500	15830

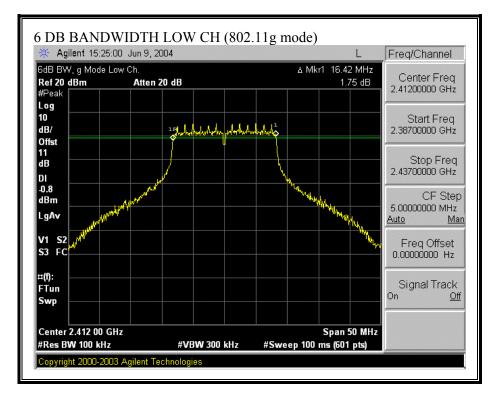
802.11g Turbo Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2437	25170	500	24670

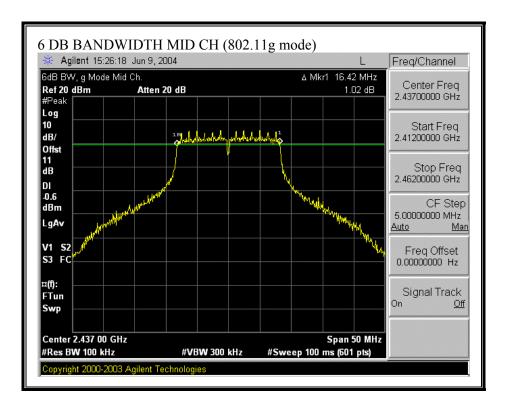
Page 10 of 96


6 DB BANDWIDTH (802.11b MODE)

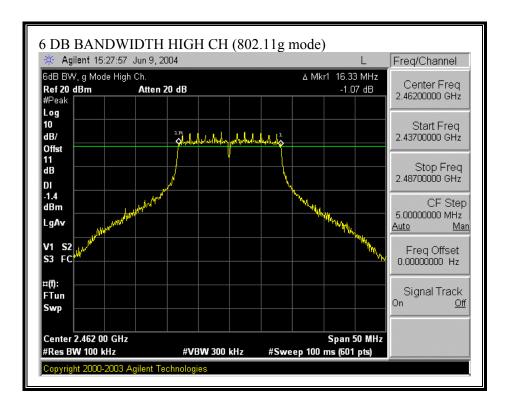
Page 11 of 96



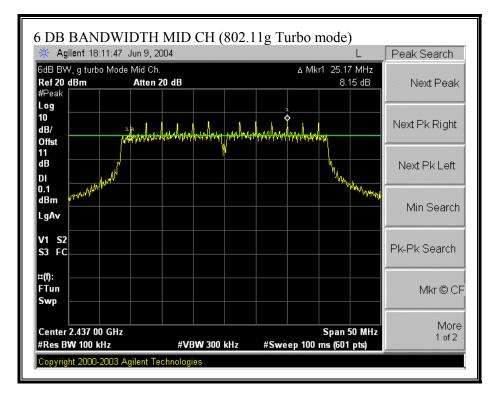
Page 12 of 96



Page 13 of 96


6 DB BANDWIDTH (802.11g MODE)

Page 14 of 96



Page 15 of 96

Page 16 of 96

6 DB BANDWIDTH (802.11g TURBO MODE)

Page 17 of 96

7.2. 99% **BANDWIDTH**

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

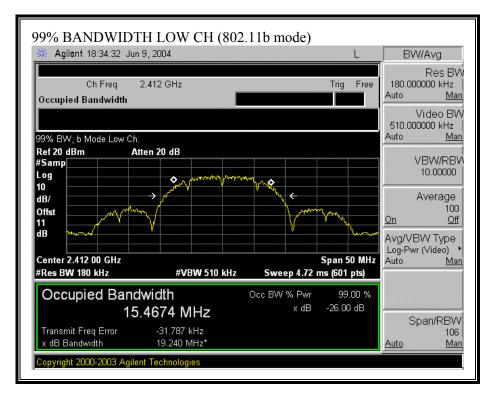
RESULTS

No non-compliance noted:

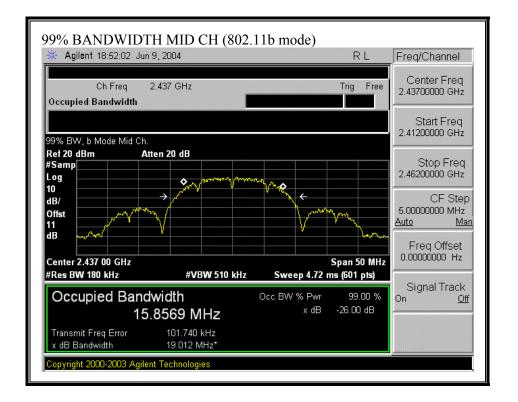
802.11b Mo	de
Channel	Frequen

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	15.4674
Middle	2437	15.8569
High	2462	15.933

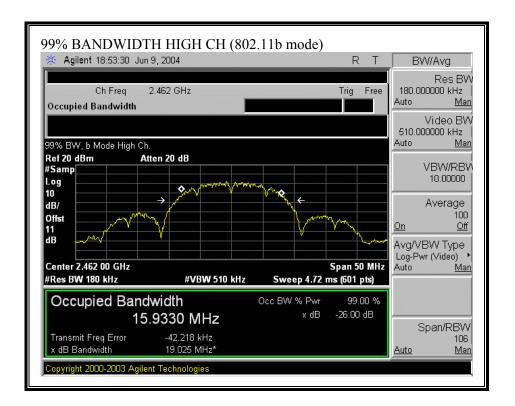
802.11g Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.3643
Middle	2437	16.3837
High	2462	16.3927

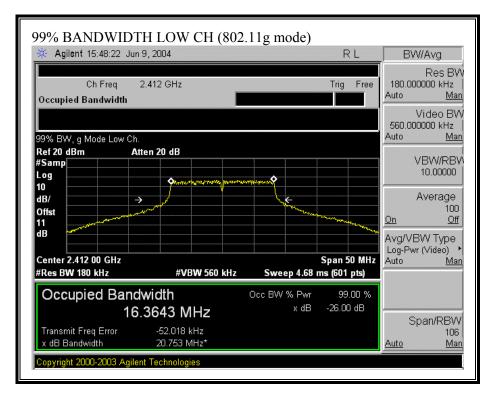
802.11g Turbo Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Middle	2437	32.8383

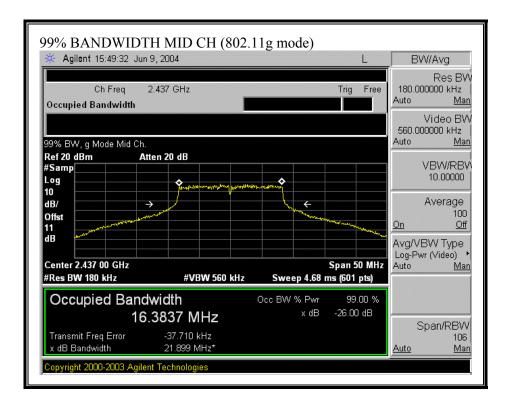
Page 18 of 96


99% BANDWIDTH (802.11b MODE)

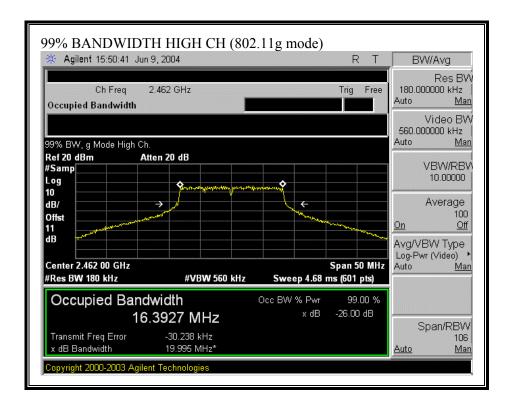
Page 19 of 96



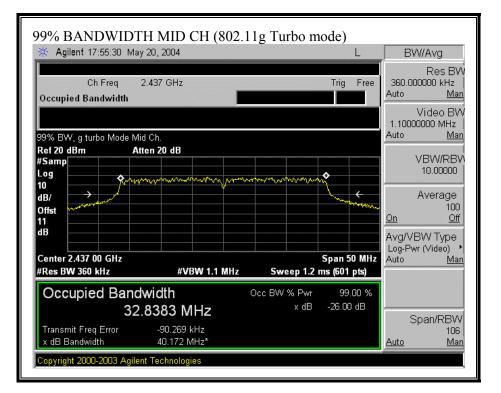
Page 20 of 96



Page 21 of 96


99% BANDWIDTH (802.11g MODE)

Page 22 of 96



Page 23 of 96

Page 24 of 96

99% BANDWIDTH (802.11g TURBO MODE)

Page 25 of 96

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4 dBi (excluding cable loss), therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 26 of 96

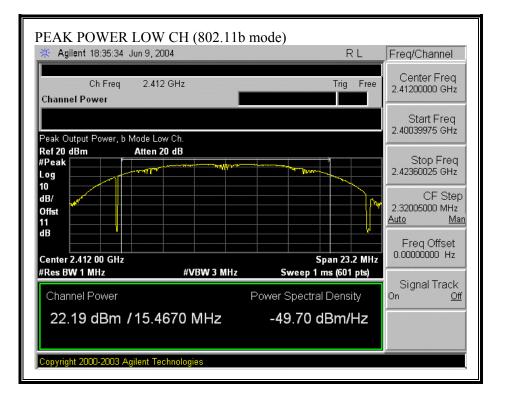
RESULTS

No non-compliance noted:

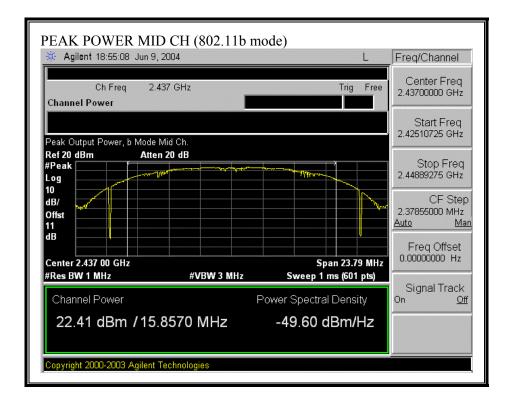
802.11b Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	22.19	30	-7.81
Middle	2437	22.41	30	-7.59
High	2462	21.91	30	-8.09

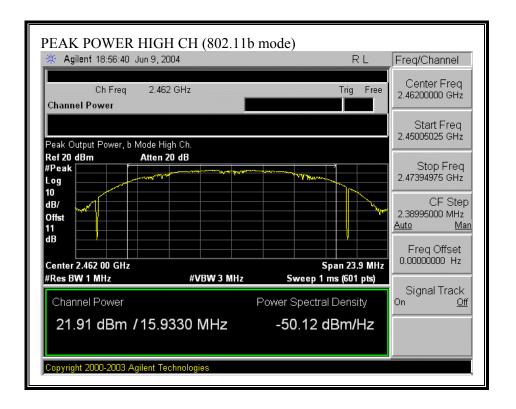
802.11g Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	19.83	30	-10.17
Middle	2437	22.97	30	-7.03
High	2462	18.71	30	-11.29

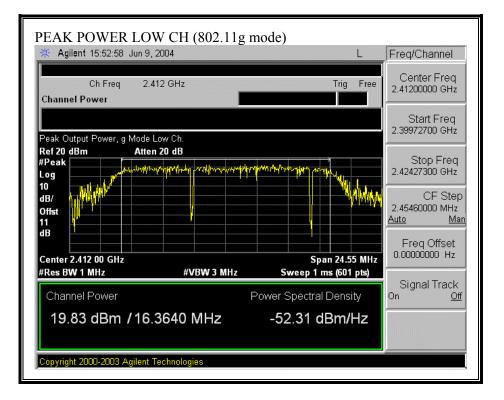
802.11g Turbo Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	23.66	30	-6.34

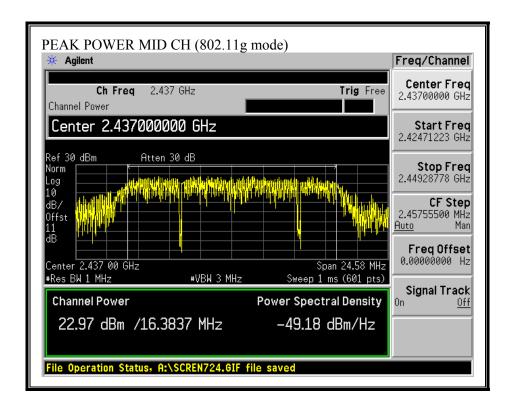
Page 27 of 96


OUTPUT POWER (802.11b MODE)

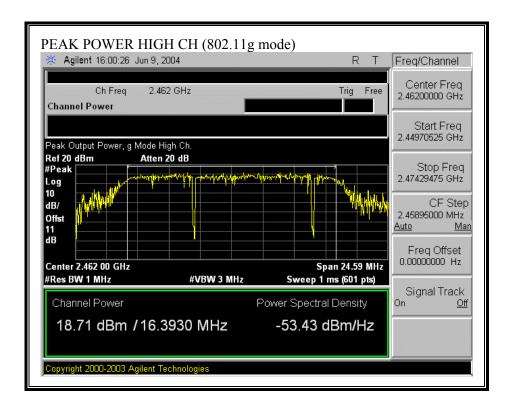
Page 28 of 96



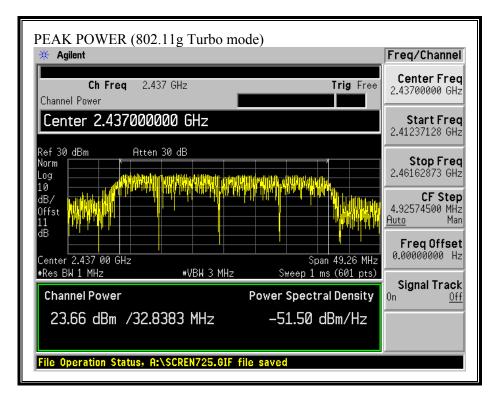
Page 29 of 96



Page 30 of 96


OUTPUT POWER (802.11g MODE)

Page 31 of 96



Page 32 of 96

Page 33 of 96

OUTPUT POWER (802.11g TURBO MODE)

Page 34 of 96

7.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f²)	6
30–300	61.4	0.163	1.0	6
300–1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposed are the exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 35 of 96

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 36 of 96

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Power Density Limit	Output Power	Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	22.41	4.00	5.90
802.11g	1.0	22.97	4.00	6.29
802.11g Turbo	1.0	23.66	4.00	6.81

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 37 of 96

7.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	19.82
Middle	2437	19.64
High	2462	19.10

802.11g Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	16.20
Middle	2437	19.20
High	2462	16.70

802.11g Turbo Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Middle	2437	19.10

Page 38 of 96

7.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

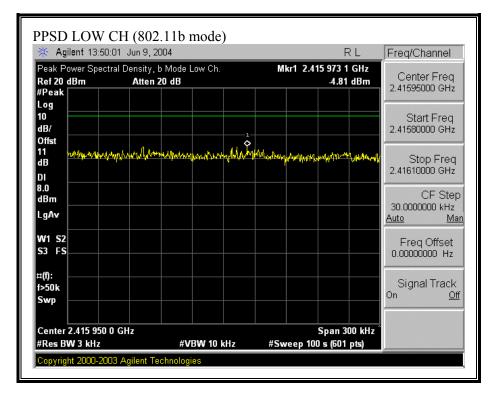
RESULTS

No non-compliance noted:

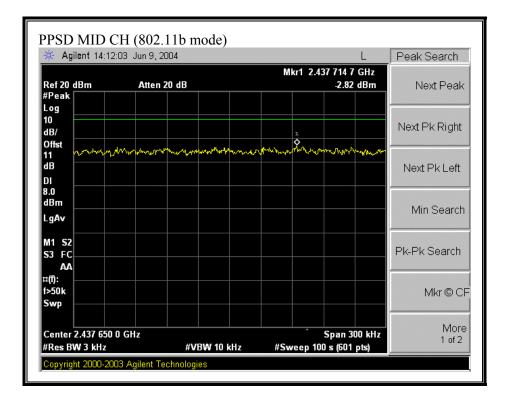
802.11b Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-4.81	8	-12.81
Middle	2437	-2.82	8	-10.82
High	2462	-4.51	8	-12.51

802.11g Mode


Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-7.92	8	-15.92
Middle	2437	-7.80	8	-15.80
High	2462	-8.17	8	-16.17

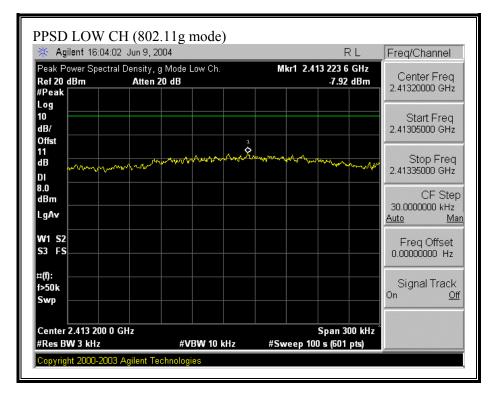
802.11g Turbo Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	-9.47	8	-17.47

Page 39 of 96

PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 40 of 96



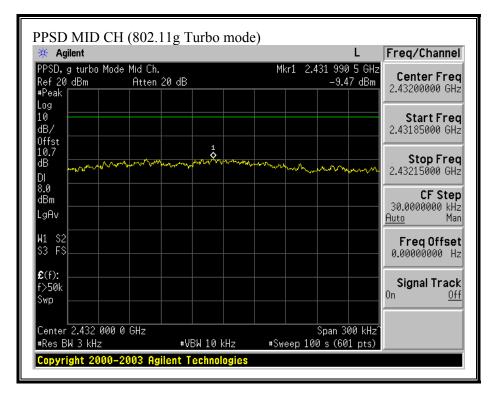
Page 41 of 96

🔆 Agilent 14:15	5:15 Jun 9, 2004			RT	Peak Search
Ref 20 dBm #Peak	Atten 20 dB		Mkr1 2.463	713 4 GHz -4.51 dBm	Next Peak
Log 10 dB/			11		Next Pk Right
dB	Mhatalland Mchartan	whicherry	hangen	mpunutananana	Next Pk Left
DI 8.0 dBm					Min Search
LgAv					
M1 S2 S3 FC AA					Pk-Pk Search
¤(f): f>50k					Mkr © CF
Swp					
Center 2.463 650 #Res BW 3 kHz		3W 10 kHz	Sp #Sweep 100 s	an 300 kHz (601 pts)	More 1 of 2

Page 42 of 96

PEAK POWER SPECTRAL DENSITY (802.11g MODE)

Page 43 of 96


🔆 Agilent		L	Peak Search
Peak Power Spec Ref 20 dBm #Peak		Mkr1 2.435 723 6 GHz -7.80 dBm	
Log 10 dB/ Offst			Next Pk Right
10.7	van warden w	1 Anton Marine and Anton	Next Pk Left
dBm LgAv			Min Search
W1 S2 S3 FS			Pk-Pk Search
€(f): f>50k Swp			Mkr → CF
Center 2.435 70 #Res BW 3 kHz	0 0 GHz #VBW 10 kHz	Span 300 kHz #Sweep 100 s (601 pts)	

Page 44 of 96

🔆 Agilent 16:09	9:58 Jun 9, 2004	L	Freq/Channel
Ref 20 dBm #Peak	tral Density, g Mode High Ch. Atten 20 dB	Mkr1 2.462 603 0 GHz -8.17 dBm	Center Freq 2.46260000 GHz
Log 10 dB/ Offst			Start Freq 2.46245000 GHz
11	and want when the	ener man han man many	Stop Freq 2.46275000 GHz
8.0 dBm LgAv			CF Step 30.000000 kHz <u>Auto Mar</u>
W1 S2 S3 FS			Freq Offset 0.00000000 Hz
¤(f): f>50k Swp			Signal Track On <u>Off</u>
Center 2.462 600 #Res BW 3 kHz	0 GHz #VBW 10 kHz	Span 300 kHz #Sweep 100 s (601 pts)	

Page 45 of 96

PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)

Page 46 of 96

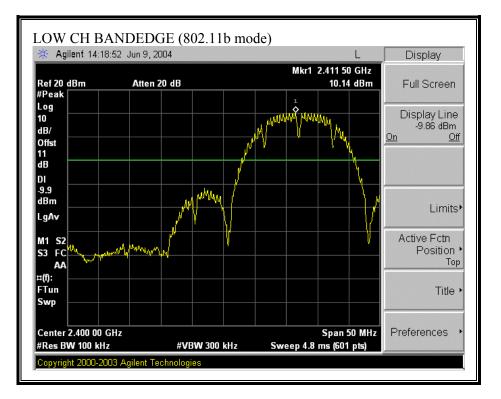
7.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

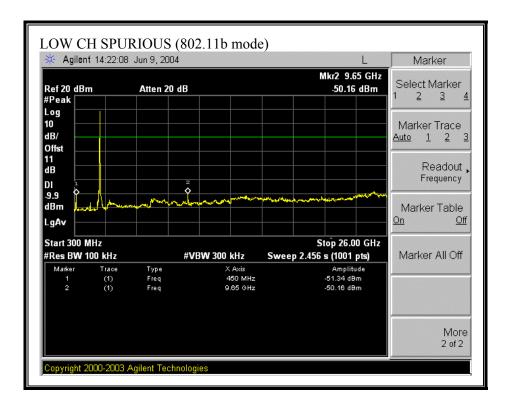
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

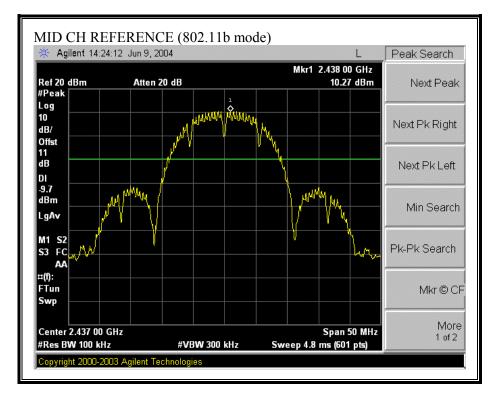

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

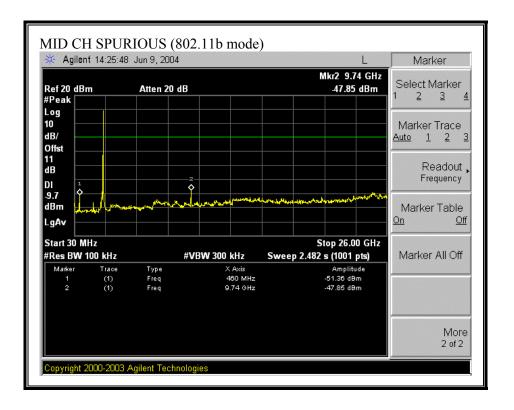

No non-compliance noted:

Page 47 of 96

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

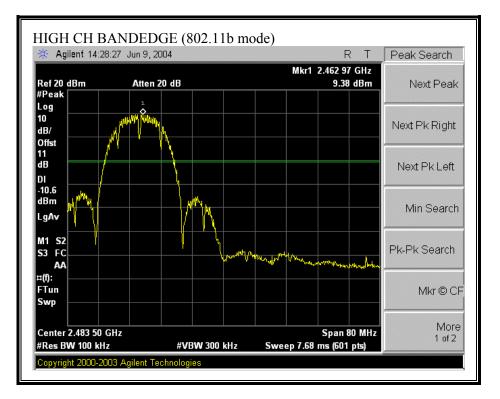


Page 48 of 96

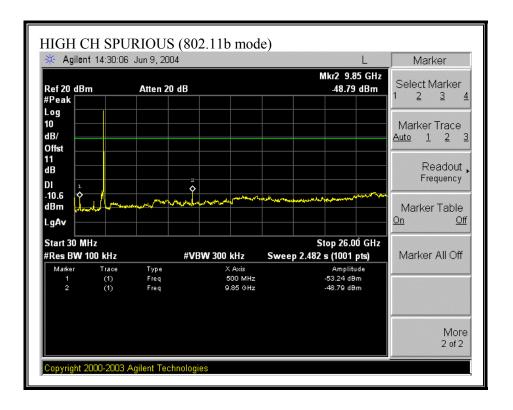


Page 49 of 96

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

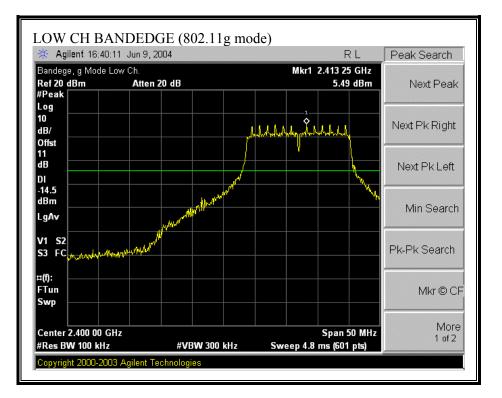


Page 50 of 96

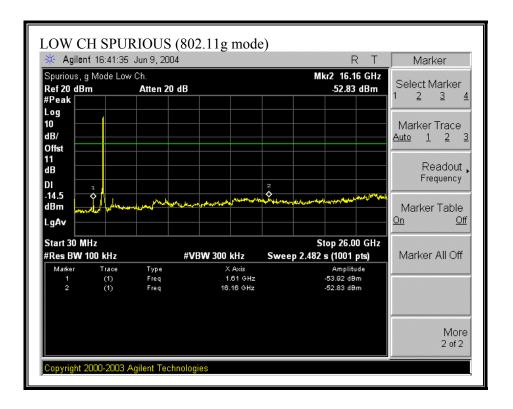


Page 51 of 96

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

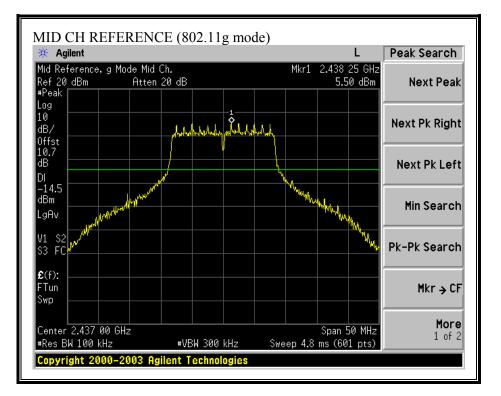


Page 52 of 96

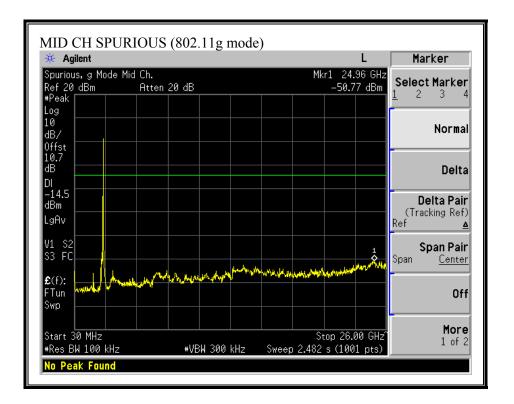


Page 53 of 96

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

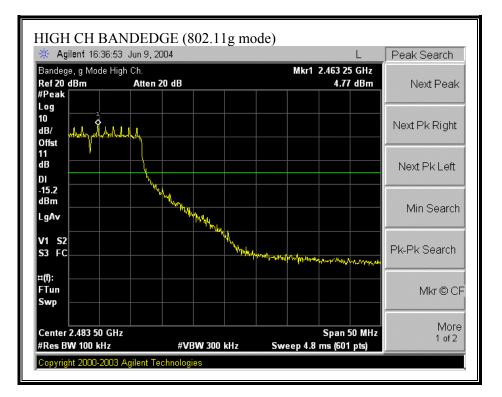


Page 54 of 96

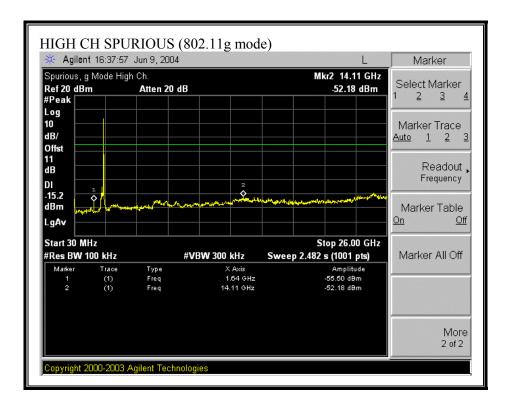


Page 55 of 96

SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

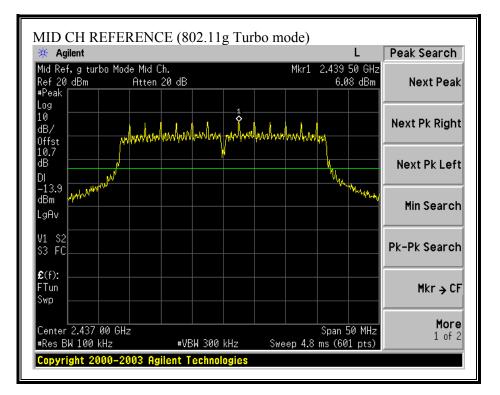


Page 56 of 96

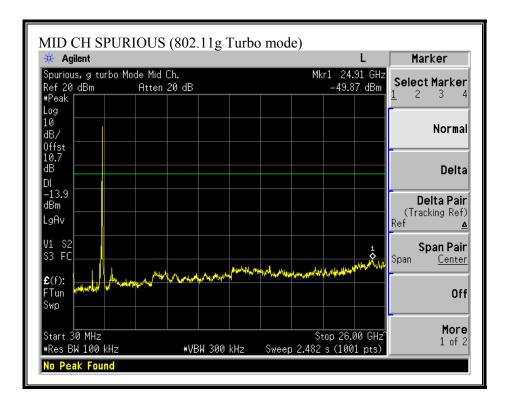


Page 57 of 96

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)



Page 58 of 96



Page 59 of 96

SPURIOUS EMISSIONS, MID CHANNEL (802.11g TURBO MODE)

Page 60 of 96

Page 61 of 96

7.8. RADIATED EMISSIONS

7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 62 of 96

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 63 of 96

TEST PROCEDURE

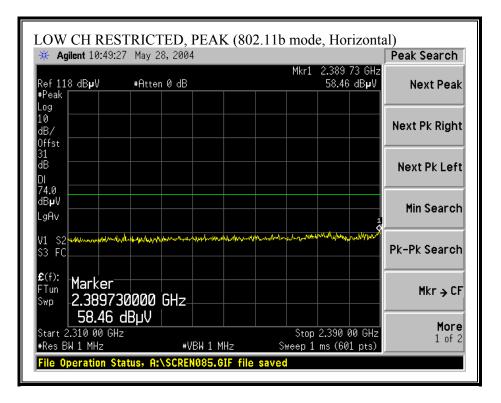
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

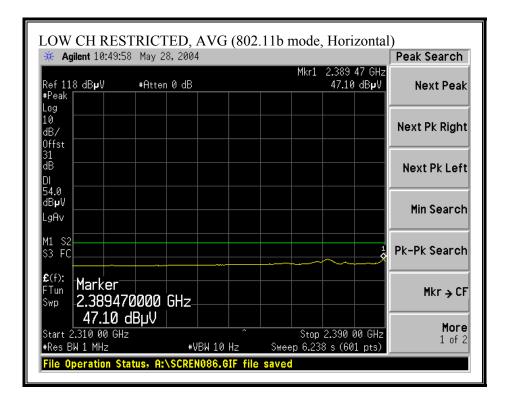
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

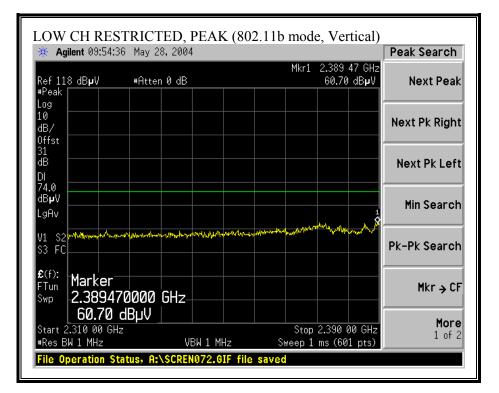

RESULTS

No non-compliance noted:

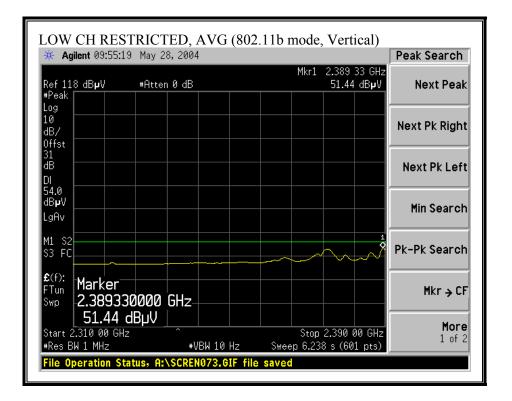

Page 64 of 96

7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

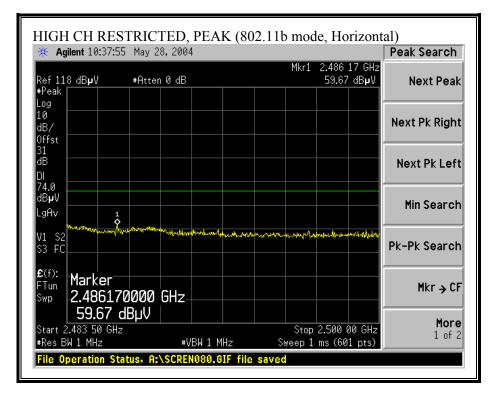


Page 65 of 96

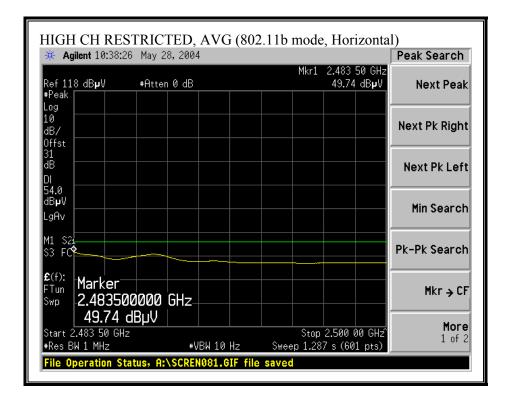


Page 66 of 96

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)

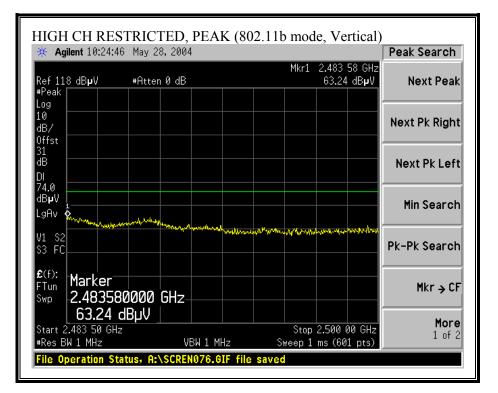


Page 67 of 96

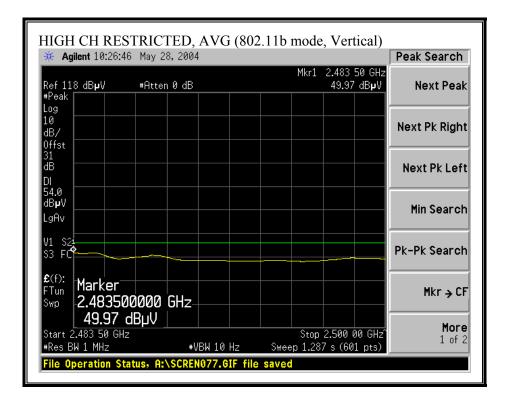


Page 68 of 96

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



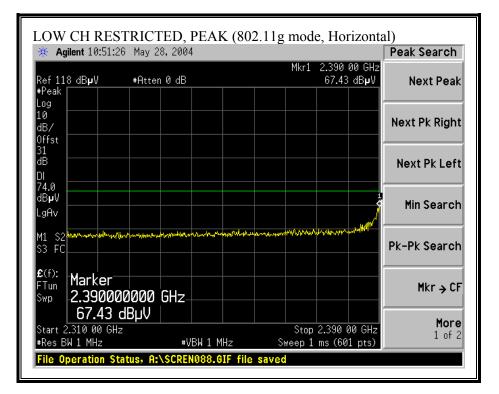
Page 69 of 96



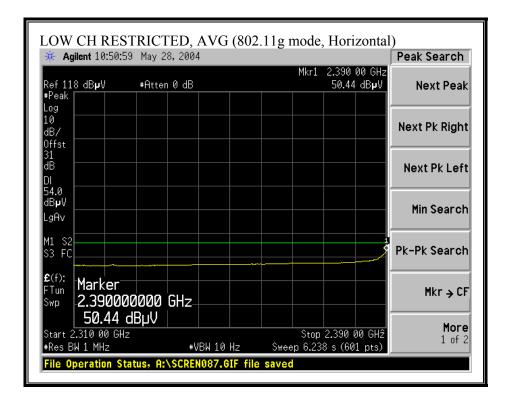
Page 70 of 96

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 71 of 96

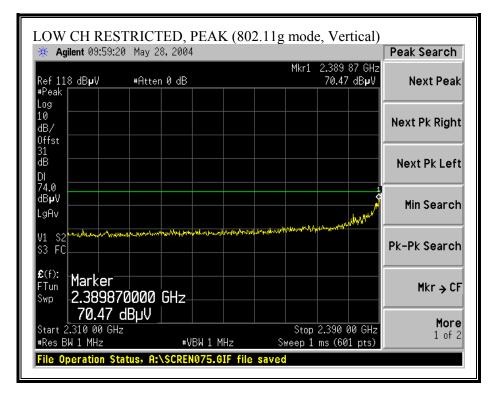

Page 72 of 96

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

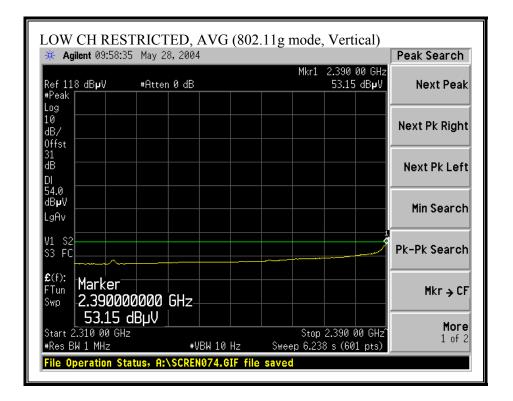

roject #:			ini PCI												
fest Targ Aode Op		CC Class B													
Fest Equi	ipment:														
EMCO Horn 1-18GHz Spectrum Analyzer						Pre-amp	lifer 1-2	6GHz	Pre-am	lifer 26-40GI	tz		Horn >18	GHz	
	N: 6717 @.		Agilent E	4446A An	ıalyzer	•	T87 Mite					-			
🖛 Hi Frequ	uency Cables		1				I			I		_			
(2			(4 ~ 6 ft)	🔽 (12 ft)							Peak Mease 1 MHz Resol 1 MHz Video	ution Bandwi	dth		asurements: ation Bandwidth Bandwidth
f GHz	feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes
LOW CH. 1.824	ANNEL 9.8	44.8	39.9	33.4	3.0	-44.7	0.0	1.0	37.5	32.6	74.0	54.0	-36.5	-21.4	v
.236	9.8	41.1	30.2	35.7	3.8	-44.6	0.0	1.0	37.0	26.1	74.0	54.0	-37.0	-27.9	v
4.824 MID CHA	9.8	40.3	31.0	33.4	3.0	-44.7	0.0	1.0	33.0	23.7	74.0	54.0	-41.0	-30.3	H, Noise floor
4.874	9.8	45.7	35.0	33.4	3.0	-44.7	0.0	1.0	38.4	27.7	74.0	54.0	-35.6	-26.3	Н
.311	9.8	39.0	27.0	35.8	3.8	-44.5	0.0	1.0	35.1	23.1	74.0	54.0	-38.9	-30.9	H, Noise floor
1.874	9.8	44.8	40.0	33.4	3.0	-44.7	0.0	1.0	37.5	32.7	74.0	54.0	-36.5	-21.3	V
7.311 HIGH CH	9.8	42.5	34.0	35.8	3.8	-44.5	0.0	1.0	38.6	30.1	74.0	54.0	-35.4	-23.9	V
4.924	9.8	41.5	35.5	33.5	3.0	-44.8	0.0	1.0	34.2	28.2	74.0	54.0	-39.8	-25.8	v
7.386	9.8	41.8	32.2	36.0	3.9	-44.5	0.0	1.0	38.1	28.5	74.0	54.0	-35.9	-25.5	v
4.924	9.8	41.9	35.8	33.5	3.0	-44.8	0.0	1.0	34.6	28.5	74.0	54.0	-39.4	-25.5	Н
7.386	9.8	38.4	26.5	36.0	3.9	-44.5	0.0	1.0	34.7	22.8	74.0	54.0	-39.3	-31.2	H, Noise floor
Note: No o	ther emissi	ions were de	tected the syste	m noise f	loor										
	Dist I Read A AF A	Measureme Distance to Analyzer Ro Antenna Fa Cable Loss	eading			Amp D Corr Avg Peak HPF	Average l	Correct Field St d Peak	to 3 meters rength @ 3 Field Strenş	m		Pk Lim	Peak Field Margin vs	Field Strength d Strength Lin Average Lin Peak Limit	nit

Page 73 of 96

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)

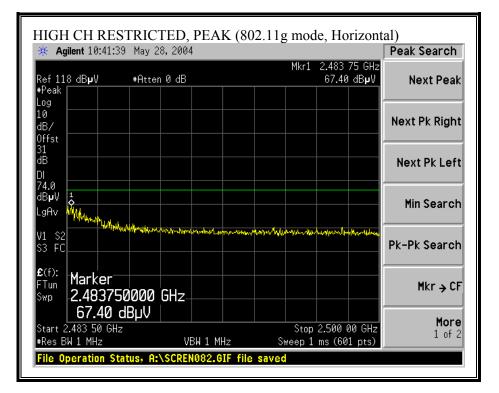


Page 74 of 96

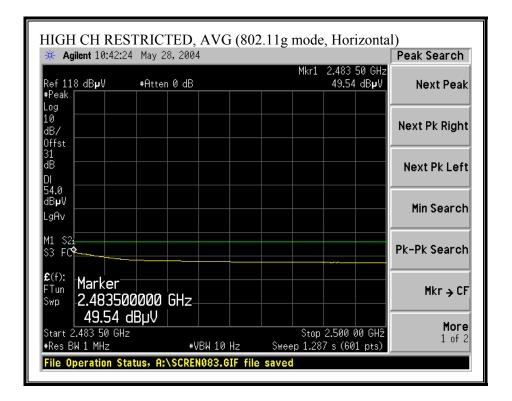


Page 75 of 96

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

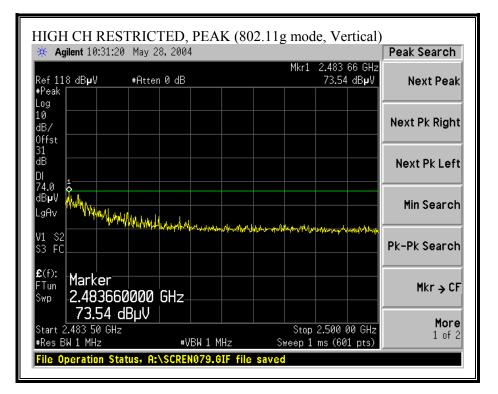


Page 76 of 96

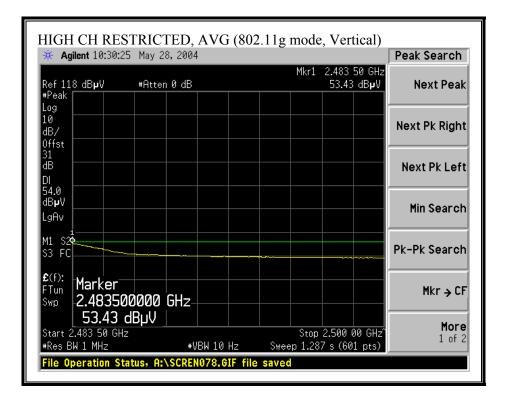


Page 77 of 96

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)



Page 78 of 96



Page 79 of 96

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

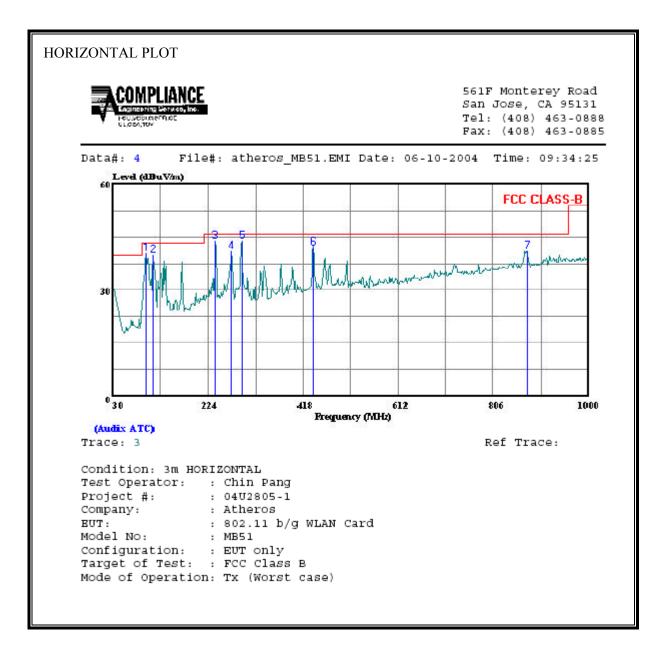
Page 80 of 96

Page 81 of 96

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

)6/30/04 C omplia			Measureme Services, Mo		(ill Op	en Field	Site								
Fest Engr Project #: Company EUT Desc EUT M/N Fest Targ Mode Op	Chin I 04U28 Ather rip.: :	Pang 05-1	lini PCI	8											
<u> Fest Equi</u>	pment:														
ЕМСО	Horn 1-	-18GHz	Spec	trum An:	alyzer		Pre-am	difer 1-3	26GHz	Pre-am	plifer 26-40G	Hz		Horn >1	8GHz
T73; S/N	N: 6717 (@3m 🖕	Agilent F	4446A A	nalyzer	-	T63 Mit					-			-
Hi Frequencies (2) 1	iency Cabl ft)		☐ (4 ~ 6 ft)	▼ (12 ft)							Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	idth		easurements: ution Bandwidth Bandwidth
f	Dist	Read Pk	Read Avg.	AF	CL dB	Amp	D Corr	HPF		Avg		Avg Lim			Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
Low Ch															
4.824 4.824	9.8 9.8	47.4 45.0	35.0 33.0	33.4 33.4	2.4	-35.3 -35.3	0.0	1.0 1.0	48.8 46.4	36.4 34.4	74.0 74.0	54.0 54.0	-25.2 -27.6	-17.6 -19.6	<u></u> Н
.024	9.8	45.0	33.0	33.4	2.4	-35.3	0.0	1.0	40.4	34.4	/4.0	54.0	-27.0	-19.0	Н
nid Ch															
.874	9.8	49.0	35.0	33.4	2.4	-35.3	0.0	1.0	50.5	36.5	74.0	54.0	-23.5	-17.5	V
.323	9.8 9.8	50.5 46.0	34.6 33.0	35.9 33.4	3.0	-34.6 -35.3	0.0	1.0	55.7 47.5	39.8 34.5	74.0 74.0	54.0 54.0	-18.3 -26.5	-14.2 -19.5	<u></u> Н
.323	9.8 9.8	46.0	33.0	35.9	3.0	-35.5	0.0	1.0	47.5	34.5	74.0	54.0	-20.5	-19.5	Н
igh ch	9.8	45.0	33.0	33.5	24	25.2	0.0	1.0	16.5	24.5	74.0	54.0	27.5	10.5	v
.924	9.8 9.8	45.0	33.0	33.5	2.4	-35.3 -34.5	0.0	1.0	46.5 52.5	34.5 39.4	74.0	54.0 54.0	-27.5 -21.5	-19.5 -14.6	<u>v</u> v
.924	9.8	44.0	34.0	33.5	2.4	-34.5	0.0	1.0	45.5	33.5	74.0	54.0	-21.5	-14.0	v
.384	9.8	44.0	32.0	36.0	3.0	-34.5	0.0	1.0	49.4	37.4	74.0	54.0	-24.6	-16.6	v
Letter No.	4		letected above	d		A									
ore: NO O	mer em	issions were c	letected above	the syste	in noise	поог.									
	Dist Read AF	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	y		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 mete Strength @ c Field Stre r	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Streng d Strength L s. Average L s. Peak Limi	imit imit

Page 82 of 96

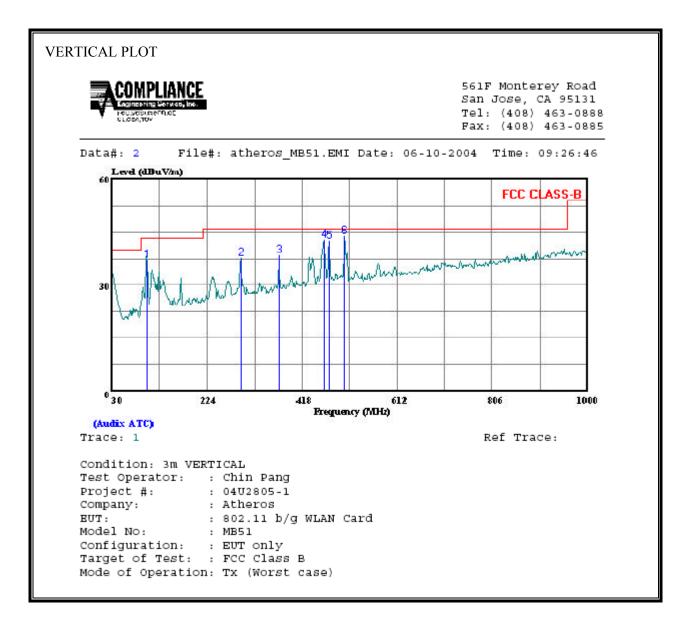

HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

Fest Eng	••Chin I	Pana														
Project #:																
Company																
		802.11 b/g M	ini PCI													
EUT M/N		MB51														
Fest Targ		FCC Class B														
Mode Op	er:	TX, g mode														
Fest Equi	pment:															
-	-															
ЕМСО	Horn 1-	18GHz	Speci	trum Ana	lyzer		Pre-amp	lifer 1-2	6GHz	Pre-am	difer 26-40G	Hz		Horn >1	8GHz	
772.00	N: 6717 (3	Agilent E	4446A A	nalyzor		T63 Mite									
			Agnener	ATTOM A	maryzer	T	103 MIR	eq 0404	50 _			T				-
L Hi Frequ											Peak Meas	surements:	1	Average Mo	easurements:	
	Jency Cab	les	□ (4 ~ 6 ft)	▼ (12 ft)								lution Bandw	vidth		e asurements: ution Bandwidth Bandwidth	
Hi Frequ	Jency Cab	les	☐ (4 ~ 6 ft)	▼ (12 ft)							1 MHz Reso	lution Bandw	/ /idth	1 MHz Resolu	ution Bandwidth	
F Hi Frequ	Jency Cab	les	(4 ~ 6 ft)	✓ (12 ft) AF	CL	Amp	D Corr	HPF	Peak		1 MHz Reso	lution Bandw		1 MHz Resolu	ution Bandwidth	
Hi Frequencies (2)	uency Cab ft)	les (2 ~ 3 ft)		_ ,		Amp dB	D Corr dB	HPF			1 MHz Reso 1MHz Video Pk Lim	Bandwidth		1 MHz Resolu 10Hz Video F	ution Bandwidth 3andwidth	
Hi Frequer (2) g mode f GHz	uency Cab ft) Dist feet	les (2 ~ 3 ft) Read Pk	Read Avg.	AF	CL			HPF		Avg	1 MHz Reso 1MHz Video Pk Lim	Bandwidth	Pk Mar	1 MHz Resolu 10Hz Video F Avg Mar	ution Bandwidth 3andwidth	
Hi Frequencies mode f GHz Surbo, mio	Dist feet d ch 9.8	les (2 ~ 3 ft) (2 ~ 3 ft) BuV 50.0	Read Avg. dBuV 35.8	AF dB/m 33.4	CL dB 2.4	dB -35.3	dB	1.0	dBuV/m	Avg dBuV/m 37.3	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0	Avg Lim dBuV/m	Pk Mar dB -22.5	1 MHz Resolu 10Hz Video H Avg Mar dB -16.7	ution Bandwidth Bandwidth Note	
Hi Frequ (2) mode f GHz Surbo, mid .874 (3)	Dist feet d ch 9.8 9.8	les (2 ~ 3 ft) (2 ~ 3 ft) Read Pk dBuV 50.0 44.0	Read Avg. dBuV 35.8 33.0	AF dB/m 33.4 35.8	CL dB 2.4 3.0	-35.3 -34.6	dB 0.0 0.0	1.0 1.0	dBuV/m 51.5 49.2	Avg dBuV/m 37.3 38.2	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0 74.0	Avg Lim dBuV/m 54.0 54.0	Pk Mar dB -22.5 -24.8	1 MHz Resolu 10Hz Video F Avg Mar dB 	ution Bandwidth Bandwidth Note	
Hi Frequ (2) mode f GHz 	Dist feet d ch 9.8 9.8 9.8	Read Pk dBuV 50.0 44.0 45.0	Read Avg. dBuV 35.8 33.0 33.0	AF dB/m 33.4 35.8 33.4	CL dB 2.4 3.0 2.4	-35.3 -34.6 -35.3	dB 0.0 0.0 0.0	1.0 1.0 1.0	dBuV/m 51.5 49.2 46.5	Avg dBuV/m 37.3 38.2 34.5	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0 74.0 74.0	Avg Lim dBuV/m 54.0 54.0 54.0	Pk Mar dB -22.5 -24.8 -27.5	1 MHz Resolu 10Hz Video B Avg Mar dB 	ution Bandwidth Bandwidth Note	
Hi Frequ (2) mode f GHz 	Dist feet d ch 9.8 9.8	les (2 ~ 3 ft) (2 ~ 3 ft) Read Pk dBuV 50.0 44.0	Read Avg. dBuV 35.8 33.0	AF dB/m 33.4 35.8	CL dB 2.4 3.0	-35.3 -34.6	dB 0.0 0.0	1.0 1.0	dBuV/m 51.5 49.2	Avg dBuV/m 37.3 38.2	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0 74.0	Avg Lim dBuV/m 54.0 54.0	Pk Mar dB -22.5 -24.8	1 MHz Resolu 10Hz Video F Avg Mar dB 	ution Bandwidth Bandwidth Note	°S
Hi Frequ (2) mode f GHz furbo, mid. 874 (311) .874	Dist feet 1 ch 9.8 9.8 9.8	Read Pk dBuV 50.0 44.0 43.0	Read Avg. dBuV 35.8 33.0 33.0	AF dB/m 33.4 35.8 33.4 35.8	CL dB 2.4 3.0 2.4 3.0	dB -35.3 -34.6 -35.3 -34.6	dB 0.0 0.0 0.0	1.0 1.0 1.0	dBuV/m 51.5 49.2 46.5	Avg dBuV/m 37.3 38.2 34.5	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0 74.0 74.0	Avg Lim dBuV/m 54.0 54.0 54.0	Pk Mar dB -22.5 -24.8 -27.5	1 MHz Resolu 10Hz Video B Avg Mar dB 	ution Bandwidth Bandwidth Note	
Hi Frequ (2) mode f GHz furbo, mid. 874 (311) .874	Dist feet 1 ch 9.8 9.8 9.8	Read Pk dBuV 50.0 44.0 43.0	Read Avg. dBuV 35.8 33.0 33.0 32.0	AF dB/m 33.4 35.8 33.4 35.8	CL dB 2.4 3.0 2.4 3.0	dB -35.3 -34.6 -35.3 -34.6	dB 0.0 0.0 0.0	1.0 1.0 1.0	dBuV/m 51.5 49.2 46.5	Avg dBuV/m 37.3 38.2 34.5	1 MHz Reso 1MHz Video Pk Lim dBuV/m 74.0 74.0 74.0	Avg Lim dBuV/m 54.0 54.0 54.0	Pk Mar dB -22.5 -24.8 -27.5	1 MHz Resolu 10Hz Video B Avg Mar dB 	ution Bandwidth Bandwidth Note	ŝ
Hi Frequ mode f GHz 'urbo, mic .874 .311 .311 .00te: No o	Dist feet d ch 9.8 9.8 9.8 9.8 9.8 1 ther emi	Read Pk (2~3 ft) (2~3	Read Avg. dBuV 35.8 33.0 32.0 sected above	AF dB/m 33.4 35.8 33.4 35.8 the syste	CL dB 2.4 3.0 2.4 3.0	dB -35.3 -34.6 -35.3 -34.6 level.	dB 0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	dBuV/m 51.5 49.2 46.5	Avg dBuV/m 37.3 38.2 34.5	1 MHz Reso 1MHz Videc Pk Lim dBuV/m 74.0 74.0 74.0 74.0	Avg Lim dBuV/m 54.0 54.0 54.0 54.0	Pk Mar dB -22.5 -24.8 -27.5 -25.8	1 MHz Resolu 10Hz Video E Avg Mar dB -16.7 -15.8 -19.5 -16.8 -10.5	ution Bandwidth Sandwidth Note V V H H H	
HI Frequ mode f GHz Surbo, mie .874 .311 .874 .311 Note: No o	Dist feet d ch 9.8 9.8 9.8 9.8 fther emi	Read Pk (2~3 ft) (2~3	Read Avg. dBuV 35.8 33.0 32.0 letected above	AF dB/m 33.4 35.8 33.4 35.8 the syste	CL dB 2.4 3.0 2.4 3.0 m noise	dB -35.3 -34.6 -35.3 -34.6 level.	dB 0.0 0.0 0.0 0.0 Preamp C	1.0 1.0 1.0 1.0	dBuV/m 51.5 49.2 46.5	Avg dBuV/m 37.3 38.2 34.5 37.2	1 MHz Reso 1MHz Videc Pk Lim dBuV/m 74.0 74.0 74.0 74.0	Avg Lim dBuV/m 54.0 54.0 54.0 54.0 Avg Lim	Pk Mar dB -22.5 -24.8 -27.5 -25.8 Average F	1 MHz Resolu 10Hz Video F Avg Mar dB -16.7 -15.8 -19.5 -16.8 -19.5 -16.8 -7 -16.8	ution Bandwidth Sandwidth Note V V H H H	
HI Frequence (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Dist ft) feet 1 ch 9.8 9.8 9.8 9.8 9.8 1 ch 9.8 9.8 9.8 1 ch 9.8 9.8 9.8 9.8 9.8 9.8	es (2 ~ 3 ft) Read Pk dBuV 50.0 44.0 45.0 45.0 45.0 45.0 45.0 45.0	Read Avg. dBuV 35.8 33.0 32.0 setected above ent Frequency Antenna	AF dB/m 33.4 35.8 33.4 35.8 the syste	CL dB 2.4 3.0 2.4 3.0 m noise	dB -35.3 -34.6 -35.3 -34.6 level. D Corr	dB 0.0 0.0 0.0 0.0 Preamp C Distance	1.0 1.0 1.0 1.0 Gain	dBuV/m 51.5 49.2 46.5 48.2	Avg dBuV/m 37.3 38.2 34.5 37.2	1 MHz Reso 1MHz Videc Pk Lim dBuV/m 74.0 74.0 74.0 74.0	Jution Bandwidth Avg Lim dBuV/m 54.0 54.0 54.0 54.0 Avg Lim Pk Lim	Pk Mar dB -22.5 -24.8 -27.5 -25.8 -25.8 -25.8 -25.8	I MHz Resolu 10Hz Video I Avg Mar dB 	ution Bandwidth Sandwidth Note V V H H H h Limit imit	
HI Frequ (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Dist ft) feet 1 ch 9.8 9.8 9.8 9.8 9.8 1 ch 9.8 9.8 9.8 1 ch 9.8 9.8 9.8 9.8 9.8 9.8	es (2~3 ft) Read Pk dBuV 50.0 44.0 45.0 43.0 issions were c	Read Avg. dBuV 35.8 33.0 33.0 32.0 Jetected above ent Frequency o Antenna Reading	AF dB/m 33.4 35.8 33.4 35.8 the syste	CL dB 2.4 3.0 2.4 3.0 m noise	dB -35.3 -34.6 -35.3 -34.6 level. level. Amp D Corr Avg	dB 0.0 0.0 0.0 0.0 Preamp C Distance Average	1.0 1.0 1.0 1.0 Gain Correc	dBuV/m 51.5 49.2 46.5 48.2	Avg dBuV/m 37.3 38.2 34.5 37.2 275 3 m	1 MHz Reso 1MHz Videc Pk Lim dBuV/m 74.0 74.0 74.0 74.0	Jution Bandw Bandwidth Avg Lim dBuV/m 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Pk Mar dB -22.5 -24.8 -27.5 -25.8 -25.8 -25.8 -25.8 -25.8	1 MHz Resolu 10Hz Video F Avg Mar dB -16.7 -15.8 -19.5 -16.8 -19.5 -16.8 -7 -16.8	ution Bandwidth Sandwidth Note V V H H H Limit imit imit	

Page 83 of 96

7.8.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 84 of 96

REPORT NO: 04U2805-1 EUT: MINI PCI 802.11 B/G TRANSCEIVER

HORIZON	TAL DATA							
								Page: 1
			Read			Limit	over	
	Freq	Remark	Level H	actor	Level	Line	Limit	
	MHz		dBuV	dB	dBuV/m	dBuV/m	dB	
1	96.930	Peak	30.71	9.77	40.48	43.50	-3.02	
2	111.480	Peak	26.18	13.73	39.91	43.50	-3.59	
3	237.580	Peak	30.44	13.57	44.01	46.00	-1.99	
4	271.530	Peak	25.79	15.15	40.94	46.00	-5.06	
5	293.840	Peak	28.09	15.80	43.89	46.00	-2.11	
6	438.370	Peak	22.92	19.17	42.08	46.00	-3.92	
7	875.840	Peak	15.41	25.73	41.14	46.00	-4.86	

Page 85 of 96

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 86 of 96

REPORT NO: 04U2805-1 EUT: MINI PCI 802.11 B/G TRANSCEIVER

VERTICA	AL DATA							
	Freq	Remark	Read Level H	actor	Level	Limit Line		Page: 1
	MHz		dBuV	dB	dBuV/m	dBuV/m	dB	
1	100.810	Peak	26.32	10.74	37.05	43.50	-6.45	
2	293.840		21.75			46.00		
3	371.440		21.02			46.00		
4	463.590		23.05			46.00		
5	473.290		22.54			46.00		
6	504.330		23.30			46.00		

Page 87 of 96

7.9. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

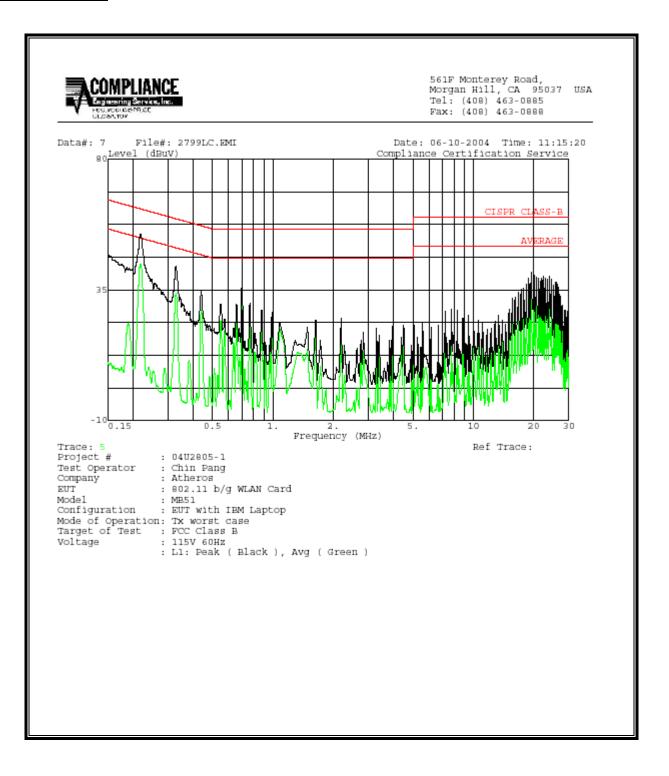
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

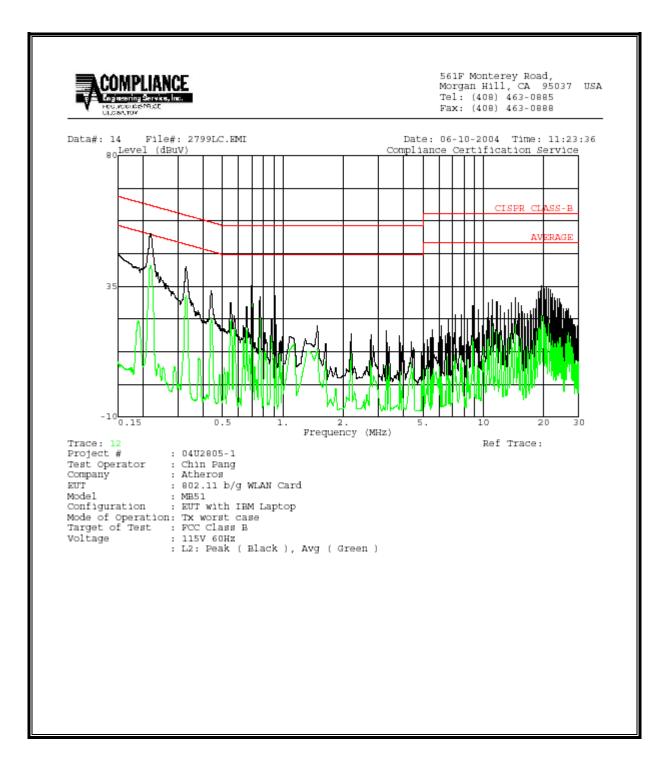
RESULTS

No non-compliance noted:


Page 88 of 96

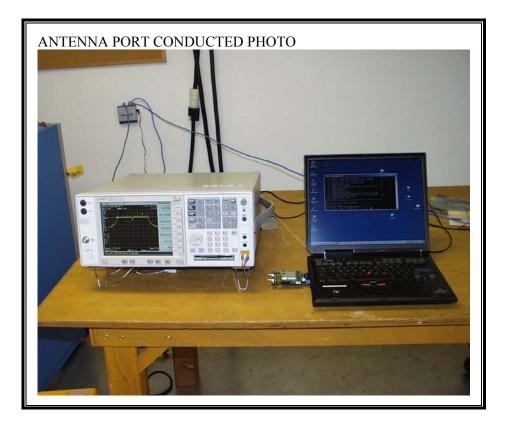
<u>6 WORST EMISSIONS</u>

Freq.		Reading		Closs	Limit	EN_B	Marg	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
).22	54.15		43.91	0.00	64.11	54.11	-9.96	-10.20	L1
).33	43.16		33.74	0.00	60.89	50.89	-17.73	-17.15	L1
19.43	41.22		34.41	0.00	60.00	50.00	-18.78	-15.59	L1
0.22	53.12		43.18	0.00	64.11	54.11	-10.99	-10.93	L2
).33	41.60		32.80	0.00	60.89	50.89	-19.29	-18.09	L2
20.06	36.16		30.05	0.00	60.00	50.00	-23.84	-19.95	L2


Page 89 of 96

LINE 1 RESULTS

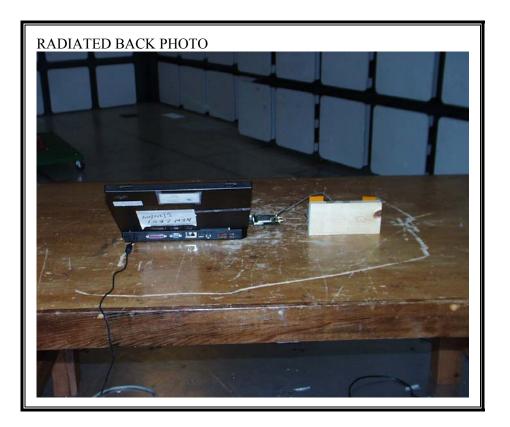
Page 90 of 96


LINE 2 RESULTS

Page 91 of 96

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



Page 92 of 96

RADIATED RF MEASUREMENT SETUP

Page 93 of 96

Page 94 of 96

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 95 of 96

END OF REPORT

Page 96 of 96