

Report No. : FZ412213

DFS TEST REPORT

FCC ID : ZQ6-AP6275P

Equipment : Wi-Fi/Bluetooth Module
Brand Name : AMPAK Technology Inc.

Model Name : AP6275P

Applicant : AMPAK Technology Inc.

3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinchu City

30352, Taiwan (R.O.C.)

Manufacturer : BILLIONTON SYSTEMS INC.

No. 21, Sui-Lih Rd., Hsin-Chu City 300, Taiwan (R.O.C.)

Standard : 47 CFR FCC Part 15.407

The product was received on Jun. 17, 2024, and testing was started from Jun. 20, 2024 and completed on Jun. 20, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065

FAX: 886-3-656-9085

Report Template No.: CB-A12_3 Ver1.1

Page Number :

: 1 of 26

Issued Date

: Aug. 27, 2024

Report Version : 01

Table of Contents

Histo	ory of this test report	3
Sumi	nmary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Accessories	
1.3	Support Equipment	
1.4	Applicable Standards	
1.5	Testing Location Information	8
2	Test Configuration of EUT	9
2.1	Test Channel Frequencies Configuration	9
2.2	The Worst Case Measurement Configuration	9
3	Dynamic Frequency Selection (DFS) Test Result	10
3.1	General DFS Information	10
3.2	Radar Test Waveform Calibration	13
3.3	In-service Monitoring	20
4	Test Equipment and Calibration Data	25
5	Measurement Uncertainty	26

Appendix A. Test Photos

Photographs of EUT v01

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A12_3 Ver1.1

Page Number : 2 of 26

Issued Date : Aug. 27, 2024

Report No. : FZ412213

Report Version : 01

History of this test report

Report No. : FZ412213

Report No.	Version	Description	Issued Date
FZ412213	01	Initial issue of report	Aug. 27, 2024

TEL: 886-3-656-9065 Page Number : 3 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

Summary of Test Result

Report No.: FZ412213

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	-
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	-
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	-

Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Cathy Chiu

TEL: 886-3-656-9065 Page Number : 4 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

1 General Description

1.1 Information

1.1.1 RF General Information

Specification Items	Descript	ion	
Frequency Range	5250 MHz – 5350 MHz 5470 MHz – 5725 MHz		
Power Type	From host system		
Channel Bandwidth	20/40/80 MHz operating channel band	width	
	☐ Master		
Operating Mode	☐ Client with radar detection		
Communication Mode		☐ Frame Based	
TPC Function	☐ With TPC		
Weather Band (5600~5650MHz)	☑ With 5600~5650MHz	☐ Without 5600~5650MHz	
Power-on cycle	NA (No Channel Availability Check Function)		
Firmware Number	1.333.1 (wlan=r829962-20191107 BCMINT) wl0: Apr 30 2024 11:12:44 version 18.35.387.23.237 (gbcd01fd4) FWID 01-37a6ac2c		
 VHT20, VHT40, VHT80 use modulation. 	e a combination of OFDM-BPSK, QPSK, 16Q	SK, 16QAM, 64QAM, 256QAM	

Report No. : FZ412213

Note: The above information was declared by manufacturer.

TPC is not required since the maximum EIRP is less than 500mW (27dBm).

1024QAM modulation.

TEL: 886-3-656-9065 Page Number : 5 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

1.1.2 Antenna Information

Ant.	Port		t	Brand	Model	Antenna	Connector	Gain
		5GHz	Bluetooth		Name	Type	Connector	(dBi)
1	1	1	1	PULSE ELECTRONICS PTE LTD	TZ2412W	Dipole	Reversed-SMA	
2	2	2	-	PULSE ELECTRONICS PTE LTD	TZ2412W	Dipole	Reversed-SMA	Note1

Report No.: FZ412213

Note1:

Ant		Antenna Gain (dBi)	
Ant.	WLAN 2.4GHz	WLAN 5GHz UNII 1~3	Bluetooth
1	3.68	4.65	3.68
2	3.68	4.65	-

Note2: The above information was declared by manufacturer.

Note3: Directional gain information

Type	Maximum Output Power	Power Spectral Density	
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	Directional Gain = 10 · log $\frac{\sum_{j=1}^{N_{opt}} \left\{ \sum_{k=1}^{N_{opt}} \mathbf{Z}_{j,k} \right\}^{2}}{N_{ANT}}$	
BF	$Directional Gain = 10 \cdot log \begin{bmatrix} \sum_{k=1}^{N_{MN}} \left\{ \sum_{k=1}^{N_{MN}} \mathcal{S}_{j,k} \right\}^{2} \\ N_{MNT} \end{bmatrix}$	$Directional Gain = 10 \cdot log \frac{\sum_{j=1}^{N_{est}} \left(\sum_{k=1}^{N_{est}} \mathcal{E}_{j,k}\right)^{2}}{N_{AST}}$	

Ex.

Directional Gain (NSS1) formula:

Directional Gain =
$$10 \cdot \log \frac{\sum_{j=1}^{N_w} \left\{\sum_{k=1}^{N_{out}} \mathbf{g}_{j,k}\right\}^2}{N_{AN7}}$$

$$\begin{split} & \text{NSS1}(\text{g1,1}) = 10^{\text{G1/20}} \text{ ; NSS1}(\text{g1,2}) = 10^{\text{G2/20}} \text{ ; NSS1}(\text{g1,2}) = 10^{\text{G3/20}} \text{; NSS1}(\text{g1,2}) = 10^{\text{G4/20}} \\ & \text{gj,k} = & (\text{Nss1}(\text{g1,1}) + \text{Nss1}(\text{g1,2}) + \text{Nss1}(\text{g1,3}) + \text{Nss1}(\text{g1,4}))^2 \\ & \text{DG} = & 10 \log[(\text{Nss1}(\text{g1,1}) + \text{Nss1}(\text{g1,2}) + \text{Nss1}(\text{g1,3}) + \text{Nss1}(\text{g1,4}))^2 \ / \ N_{\text{ANT}}] \Rightarrow 10 \\ & \log[(10^{\text{G1/20}} + 10^{\text{G2/20}} + 10^{\text{G3/20}} + 10^{\text{G4/20}})^2 \ / \ N_{\text{ANT}}] \end{split}$$
 Where ;

2.4G G1= 3.68 dBi ;G2= 3.68 dBi ; 5G UNII-1 G1 = 4.65 dBi; G2 = 4.65 dBi; 5G UNII-2A G1 = 4.65 dBi; G2 = 4.65 dBi; 5G UNII-2C G1 = 4.65 dBi; G2 = 4.65 dBi; 5G UNII-3 G1 = 4.65 dBi; G2 = 4.65 dBi;

2.4G DG = 6.69 dBi 5G UNII-1 DG = 7.66 dBi 5G UNII-2A DG = 7.66 dBi 5G UNII-2C DG = 7.66 dBi 5G UNII-3 DG = 7.66 dBi

TEL: 886-3-656-9065 Page Number : 6 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

For 2.4GHz function:

For IEEE 802.11b/g/n/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a/n/ac/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For Bluetooth function (1TX/1RX):

Only Port 1 can be used as transmitting/receiving antenna.

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144.

Report No.: FZ412213

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134, 142.

For 80MHz bandwidth systems, use Channel 58, 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5470~5725 MHz	108	5540 MHz	134	5670 MHz
5470~5725 WHZ Band 3	110	5550 MHz	136	5680 MHz
Danu 3	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz	-	-

TEL: 886-3-656-9065 Page Number : 7 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

1.2 Accessories

N/A

1.3 Support Equipment

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
Α	Notebook	DELL	E4300	N/A	
В	WLAN AP	ASUS	RT-AX88U	MSQ-RTAXHP00	
С	DC Power Supply	MOTECH	LPS-305	N/A	
D	PC	AMPAK Technology Inc.	H81-PLUS	N/A	
Е	Fixture	AMPAK Technology Inc.	AP6271P_EVB_V05	N/A	

Report No. : FZ412213

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.407
- FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

1.5 Testing Location Information

Testing Location Information						
Test Lab. : Sportor	Test Lab. : Sporton International Inc. Hsinchu Laboratory					
Hsinchu	Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)					
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085					
	Test site Designation No. TW3787 with FCC.					
	Conformity Assessment Body Identifier (CABID) TW3787 with ISED.					

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
DFS	DF02-CB	Sean Ku	23.3~23.8 / 60~66	Jun. 20, 2024

TEL: 886-3-656-9065 Page Number : 8 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration				
IEEE Std.	Test Channel Freq. (MHz)			
802.11ax (HEW80)	5290 MHz			

Report No. : FZ412213

2.2 The Worst Case Measurement Configuration

Th	The Worst Case Mode for Following Conformance Tests					
Tests Item Dynamic Frequency Selection (DFS)						
Test Condition	Conducted measurement at transmit chains The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used.					
Modulation Mode	802.11ax (HEW80)					

TEL: 886-3-656-9065 Page Number : 9 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values					
Parameter Value					
Non-occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds (Note 1).				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).				
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).				

Report No.: FZ412213

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values					
Maximum Transmit Power Value (see note)					
EIRP≥ 200 mW	-64 dBm				
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm				
EIRP < 200 mW and PSD >= 10dBm/MHz	-64 dBm				

- Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.
- Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

TEL: 886-3-656-9065 Page Number : 10 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Report No. : FZ412213

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

TEL: 886-3-656-9065 Page Number : 11 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 12 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	((1) (19×10 ⁶))	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$Roundup \left\{ \left(\frac{1}{360} \right) \times \left(\frac{19 \times 10^6}{PRI} \right) \right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type	80%	120		

Report No.: FZ412213

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen.
 This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each
 pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse
 widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For

TEL: 886-3-656-9065 Page Number : 13 of 26 FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

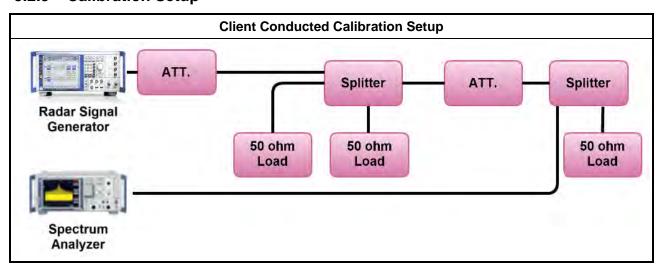
example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

Report No.: FZ412213

- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

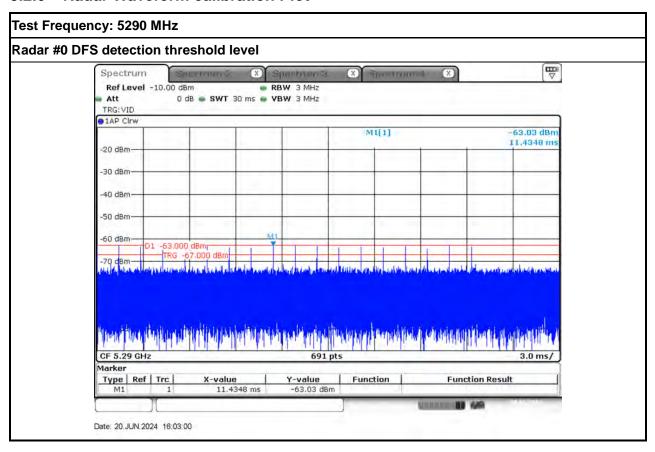
3.2.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30


For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group.

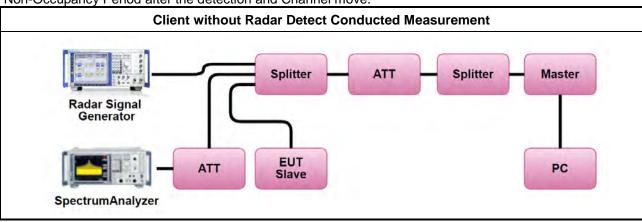
3.2.4 DFS Threshold Level


DFS Threshold Level						
DFS Threshold level:	-63	dBm		at the antenna connector		
				in front of the antenna		
The Interference Rada taken into account the				bld Level is $-64 dBm + 0 [dBi] + 1 dB = -63 dBm$. That had been and antenna gain.		

3.2.5 Calibration Setup

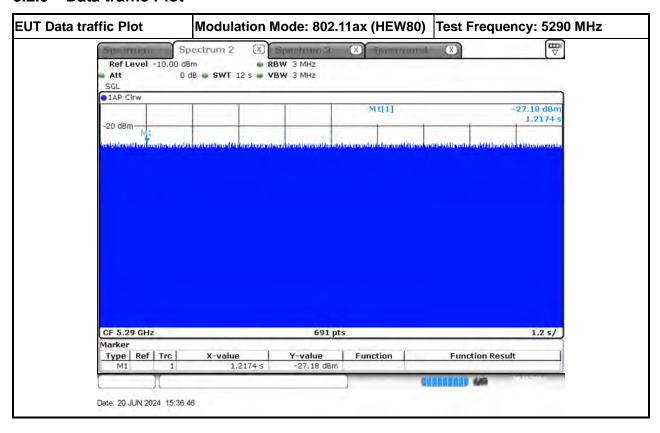
TEL: 886-3-656-9065 Page Number : 14 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.2.6 Radar Waveform calibration Plot

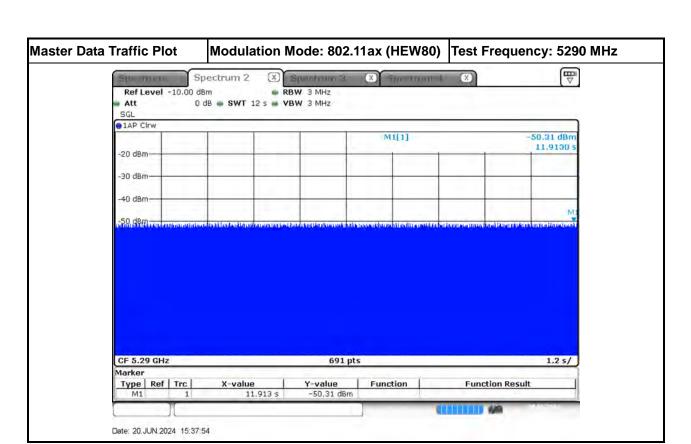

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 15 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

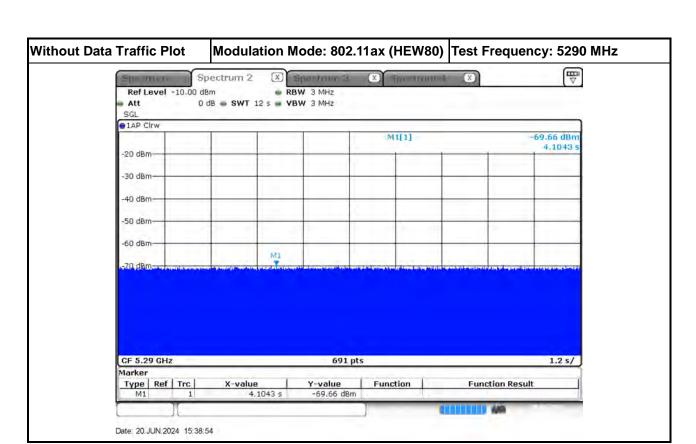
3.2.7 Test Setup


A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.

Report No. : FZ412213


TEL: 886-3-656-9065 Page Number : 16 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.2.8 Data traffic Plot


Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 17 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 18 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 19 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.3 In-service Monitoring

3.3.1 In-service Monitoring Limit

In-service Monitoring Limit					
Channel Move Time 10 sec					
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.				
Non-occupancy period	Minimum 30 minutes				

Report No.: FZ412213

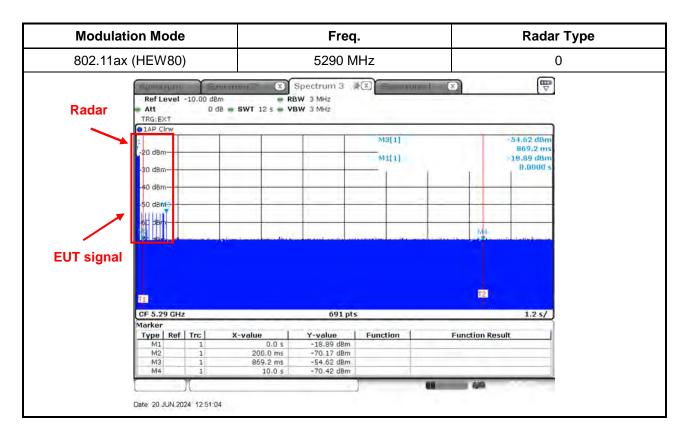
3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method

- ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
- ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
- ✓ Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.


TEL: 886-3-656-9065 Page Number : 20 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.3.4 Test Result of Channel Move Time

Modulation Mode: 802.11ax (HEW80)

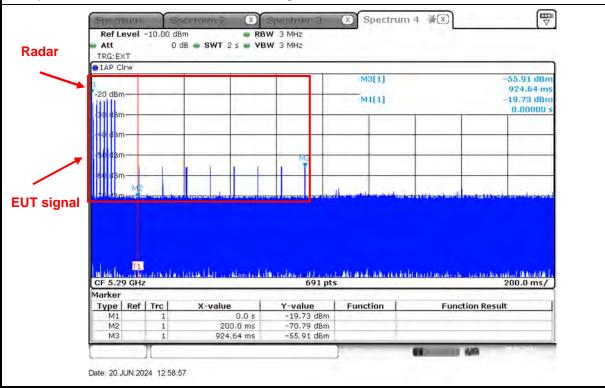
Doromotor	Test Result	Limit	
Parameter	Туре 0		
Test Channel (MHz)	5290 MHz	-	
Channel Move Time (sec.)	0.869	< 10s	

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 21 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.3.5 Test Result of Channel Closing Transmission Time

Modulation Mode: 802.11ax (HEW80)


Dorometer	Test Result	Limit	
Parameter	Туре 0		
Test Channel (MHz)	5290 MHz	-	
Channel Closing Transmission Time (ms) (Note)	34.782	< 60ms	

Report No.: FZ412213

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Modulation Mode	Freq.	Radar Type	
802.11ax (HEW80)	5290 MHz	0	

Channel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Move Time plus 60ms additional intermittent control signals

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins

C is the intermittent control signals of Channel Closing Transmission Time

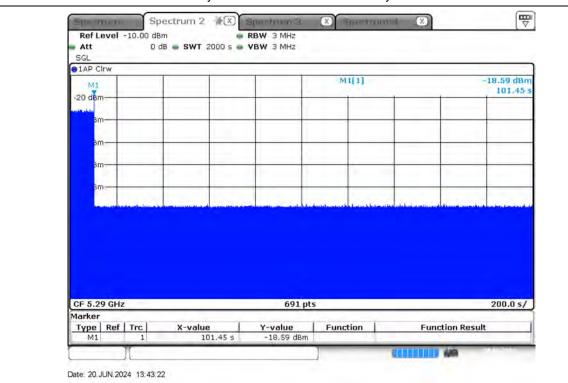
N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (2.899 ms)= S (2000 ms) / B (690) C (34.782 ms) = N (12) X Dwell (2.899 ms)

TEL: 886-3-656-9065 Page Number : 22 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

3.3.6 Test Result of Non-Occupancy Period

Modulation Mode: 802.11ax (HEW80)

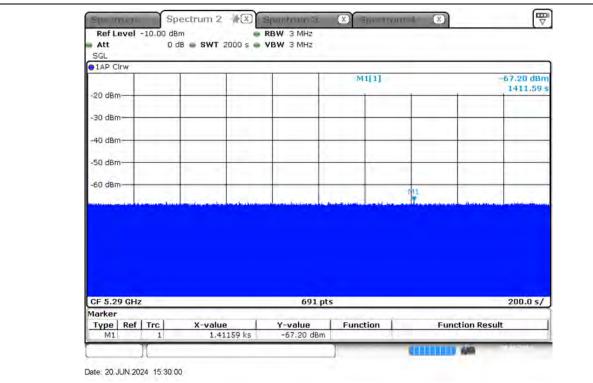

Donomotor	Test Result	Limit	
Parameter	Type 0		
Test Channel (MHz)	5290 MHz	-	
Non-Occupancy Period (min.)	≧30	≧ 30 min	

Report No. : FZ412213

Modulation Mode	Freq.
802.11ax (HEW80)	5290 MHz

Non-Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.


TEL: 886-3-656-9065 Page Number : 23 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

Report No. : FZ412213

Non-associated test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

TEL: 886-3-656-9065 Page Number : 24 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101025	9kHz ~ 40GHz	Nov. 07, 2023	Nov. 06, 2024	Conducted (DF02-CB)
Vector Signal generator	R&S	SMU200A	105352	25MHz-6GHz	Jul. 17, 2023	Jul. 16, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -05	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -06	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -07	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -08	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV02	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV04	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV05	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-60	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-61	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-63	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)

Report No. : FZ412213

Note: Calibration Interval of instruments listed above is one year.

TEL: 886-3-656-9065 Page Number : 25 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission	3.0 dB	Confidence levels of 95%

Report No. : FZ412213

TEL: 886-3-656-9065 Page Number : 26 of 26
FAX: 886-3-656-9085 Issued Date : Aug. 27, 2024