

### PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



### SAR EVALUATION REPORT

Applicant Name: LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 04/21/19 - 05/15/19 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1904220061-01-R1.ZNF

FCC ID: ZNFQ720PS

APPLICANT: LG ELECTRONICS U.S.A., INC.

**DUT Type:** Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093 Model: LM-Q720PS

Additional Model(s): LMQ720PS, Q720PS

Permissive Change(s): See FCC Change Document

**Date of Original Certification:** 05/10/2019

| Equipment  | Rand & Mode              | Tx Frequency          | SAR               |                         |                      |                       |
|------------|--------------------------|-----------------------|-------------------|-------------------------|----------------------|-----------------------|
| Class      | ballu di Mode            | ixriequelicy          | 1g Head<br>(W/kg) | 1g Body-<br>Worn (W/kg) | 1g Hotspot<br>(W/kg) | 10g Phablet<br>(W/kg) |
| PCE        | GSM/GPRS/EDGE 850        | 824.20 - 848.80 MHz   | 0.21              | 0.43                    | 0.43                 | N/A                   |
| PCE        | GSM/GPRS/EDGE 1900       | 1850.20 - 1909.80 MHz | 0.10              | 0.36                    | 0.73                 | N/A                   |
| PCE        | UMTS 850                 | 826.40 - 846.60 MHz   | 0.21              | 0.58                    | 0.58                 | N/A                   |
| PCE        | UMTS 1750                | 1712.4 - 1752.6 MHz   | 0.14              | 0.56                    | 0.96                 | N/A                   |
| PCE        | UMTS 1900                | 1852.4 - 1907.6 MHz   | 0.16              | 0.56                    | 1.16                 | 2.85                  |
| PCE        | CDMA/EVDO BC10 (§90S)    | 817.90 - 823.10 MHz   | 0.18              | 0.48                    | 0.40                 | N/A                   |
| PCE        | CDMA/EVDO BC0 (§22H)     | 824.70 - 848.31 MHz   | 0.17              | 0.49                    | 0.42                 | N/A                   |
| PCE        | PCS CDMA/EVDO            | 1851.25 - 1908.75 MHz | 0.17              | 0.58                    | 1.19                 | 2.50                  |
| PCE        | LTE Band 71              | 665.5 - 695.5 MHz     | 0.11              | 0.25                    | 0.25                 | N/A                   |
| PCE        | LTE Band 12              | 699.7 - 715.3 MHz     | 0.17              | 0.31                    | 0.31                 | N/A                   |
| PCE        | LTE Band 17              | 706.5 - 713.5 MHz     | N/A               | N/A                     | N/A                  | N/A                   |
| PCE        | LTE Band 13              | 779.5 - 784.5 MHz     | 0.18              | 0.40                    | 0.40                 | N/A                   |
| PCE        | LTE Band 26 (Cell)       | 814.7 - 848.3 MHz     | 0.18              | 0.63                    | 0.63                 | N/A                   |
| PCE        | LTE Band 5 (Cell)        | 824.7 - 848.3 MHz     | N/A               | N/A                     | N/A                  | N/A                   |
| PCE        | LTE Band 66 (AWS)        | 1710.7 - 1779.3 MHz   | 0.11              | 0.57                    | 0.98                 | N/A                   |
| PCE        | LTE Band 4 (AWS)         | 1710.7 - 1754.3 MHz   | N/A               | N/A                     | N/A                  | N/A                   |
| PCE        | LTE Band 25 (PCS)        | 1850.7 - 1914.3 MHz   | 0.16              | 0.53                    | 1.16                 | 2.83                  |
| PCE        | LTE Band 2 (PCS)         | 1850.7 - 1909.3 MHz   | N/A               | N/A                     | N/A                  | N/A                   |
| PCE        | LTE Band 41              | 2498.5 - 2687.5 MHz   | 0.14              | 0.60                    | 1.09                 | 3.23                  |
| DTS        | 2.4 GHz WLAN             | 2412 - 2462 MHz       | 1.20              | 0.71                    | 0.71                 | N/A                   |
| NII        | U-NII-1                  | 5180 - 5240 MHz       | N/A               | N/A                     | 0.69                 | N/A                   |
| NII        | U-NII-2A                 | 5260 - 5320 MHz       | 0.92              | 0.65                    | N/A                  | 1.85                  |
| NII        | U-NII-2C                 | 5500 - 5700 MHz       | 0.98              | 0.55                    | N/A                  | 1.46                  |
| NII        | U-NII-3                  | 5745 - 5825 MHz       | 0.85              | 0.59                    | 0.59                 | N/A                   |
| DSS/DTS    | Bluetooth                | 2402 - 2480 MHz       | 0.11              | < 0.1                   | < 0.1                | N/A                   |
| imultaneou | s SAR per KDB 690783 D01 | v01r03:               | 1.42              | 1.33                    | 1.46                 | 3.80                  |

Note: This revised Test Report (S/N: 1M1904220061-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.









The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 1 of 110                 |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 1 01 110                 |

# TABLE OF CONTENTS

| 1     | DEVICE                                   | UNDER TEST                                                                                                       | 3   |
|-------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|
| 2     | LTE INF                                  | ORMATION                                                                                                         | 12  |
| 3     | INTROD                                   | DUCTION                                                                                                          | 13  |
| 4     | DOSIME                                   | ETRIC ASSESSMENT                                                                                                 | 14  |
| 5     | DEFINIT                                  | TION OF REFERENCE POINTS                                                                                         | 15  |
| 6     | TEST C                                   | ONFIGURATION POSITIONS                                                                                           | 16  |
| 7     | RF EXP                                   | OSURE LIMITS                                                                                                     | 20  |
| 8     | FCC ME                                   | ASUREMENT PROCEDURES                                                                                             | 21  |
| 9     | RF CON                                   | IDUCTED POWERS                                                                                                   | 28  |
| 10    | SYSTEM                                   | /I VERIFICATION                                                                                                  | 64  |
| 11    | SAR DA                                   | TA SUMMARY                                                                                                       | 68  |
| 12    | FCC ML                                   | JLTI-TX AND ANTENNA SAR CONSIDERATIONS                                                                           | 90  |
| 13    | SAR ME                                   | ASUREMENT VARIABILITY                                                                                            | 100 |
| 14    | ADDITIO                                  | DNAL TESTING PER FCC GUIDANCE                                                                                    | 102 |
| 15    | EQUIPM                                   | MENT LIST                                                                                                        | 106 |
| 16    | MEASU                                    | REMENT UNCERTAINTIES                                                                                             | 107 |
| 17    | CONCL                                    | USION                                                                                                            | 108 |
| 18    | REFERE                                   | ENCES                                                                                                            | 109 |
| APPEI | NDIX A:<br>NDIX B:<br>NDIX C:<br>NDIX D: | SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS |     |
| APPEI | NDIX E:                                  | SAR SYSTEM VALIDATION                                                                                            |     |
| APPEI | NDIX F:                                  | DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS                                                                 |     |
| APPEI | NDIX G:                                  | POWER REDUCTION VERIFICATION                                                                                     |     |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dog 2 of 110                  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 2 of 110                 |

DOWNLINK LTE CA RF CONDUCTED POWERS

APPENDIX H:

# 1 DEVICE UNDER TEST

#### 1.1 Device Overview

|                       |                 | 1                     |
|-----------------------|-----------------|-----------------------|
| Band & Mode           | Operating Modes | Tx Frequency          |
| GSM/GPRS/EDGE 850     | Voice/Data      | 824.20 - 848.80 MHz   |
| GSM/GPRS/EDGE 1900    | Voice/Data      | 1850.20 - 1909.80 MHz |
| UMTS 850              | Voice/Data      | 826.40 - 846.60 MHz   |
| UMTS 1750             | Voice/Data      | 1712.4 - 1752.6 MHz   |
| UMTS 1900             | Voice/Data      | 1852.4 - 1907.6 MHz   |
| CDMA/EVDO BC10 (§90S) | Voice/Data      | 817.90 - 823.10 MHz   |
| CDMA/EVDO BC0 (§22H)  | Voice/Data      | 824.70 - 848.31 MHz   |
| PCS CDMA/EVDO         | Voice/Data      | 1851.25 - 1908.75 MHz |
| LTE Band 71           | Voice/Data      | 665.5 - 695.5 MHz     |
| LTE Band 12           | Voice/Data      | 699.7 - 715.3 MHz     |
| LTE Band 17           | Voice/Data      | 706.5 - 713.5 MHz     |
| LTE Band 13           | Voice/Data      | 779.5 - 784.5 MHz     |
| LTE Band 26 (Cell)    | Voice/Data      | 814.7 - 848.3 MHz     |
| LTE Band 5 (Cell)     | Voice/Data      | 824.7 - 848.3 MHz     |
| LTE Band 66 (AWS)     | Voice/Data      | 1710.7 - 1779.3 MHz   |
| LTE Band 4 (AWS)      | Voice/Data      | 1710.7 - 1754.3 MHz   |
| LTE Band 25 (PCS)     | Voice/Data      | 1850.7 - 1914.3 MHz   |
| LTE Band 2 (PCS)      | Voice/Data      | 1850.7 - 1909.3 MHz   |
| LTE Band 41           | Voice/Data      | 2498.5 - 2687.5 MHz   |
| 2.4 GHz WLAN          | Voice/Data      | 2412 - 2462 MHz       |
| U-NII-1               | Voice/Data      | 5180 - 5240 MHz       |
| U-NII-2A              | Voice/Data      | 5260 - 5320 MHz       |
| U-NII-2C              | Voice/Data      | 5500 - 5700 MHz       |
| U-NII-3               | Voice/Data      | 5745 - 5825 MHz       |
| Bluetooth             | Data            | 2402 - 2480 MHz       |

#### 1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description."

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 3 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 3 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

#### **Nominal and Maximum Output Power Specifications** 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

#### **Maximum Output Power** 1.3.1

| Mode / Band          |         | Voice (dBm) | n) Burst Average GMSK (dBm) |            | Burst Average 8-PSK (dBm) |            |
|----------------------|---------|-------------|-----------------------------|------------|---------------------------|------------|
| ivioue / Ballo       | l       | 1 TX Slot   | 1 TX Slots                  | 2 TX Slots | 1 TX Slots                | 2 TX Slots |
| GSM/GPRS/EDGE 850    | Maximum | 33.7        | 33.7                        | 32.2       | 27.7                      | 27.7       |
| GSIVI/GPRS/EDGE 850  | Nominal | 33.2        | 33.2                        | 31.7       | 27.2                      | 27.2       |
| GSM/GPRS/EDGE 1900   | Maximum | 30.7        | 30.7                        | 29.2       | 26.2                      | 26.2       |
| G3IVI/GFR3/EDGE 1900 | Nominal | 30.2        | 30.2                        | 28.7       | 25.7                      | 25.7       |

|                             | Modulated Average (dBm) |      |      |       |
|-----------------------------|-------------------------|------|------|-------|
| Mode / Band                 | Mode / Band             |      |      | 3GPP  |
|                             |                         |      |      | HSUPA |
| UMTS Band 5 (850 MHz)       | Maximum                 | 25.5 | 25.5 | 25.5  |
| OIVITS BAITU 5 (650 IVITIZ) | Nominal                 | 25.0 | 25.0 | 25.0  |
| UMTS Band 4 (1750 MHz)      | Maximum                 | 24.3 | 24.3 | 24.3  |
| 01V113 Ballu 4 (1/30 IVITZ) | Nominal                 | 23.8 | 23.8 | 23.8  |
| UMTS Band 2 (1900 MHz)      | Maximum                 | 24.3 | 24.3 | 24.3  |
| UIVITS BAITU 2 (1900 IVITZ) | Nominal                 | 23.8 | 23.8 | 23.8  |

| Mode / Band            |         | Modulated Average (dBm) |
|------------------------|---------|-------------------------|
| CDMA/EVDO BC10 (§90S)  | Maximum | 25.0                    |
| CDIMA/EADO PCTO (8302) | Nominal | 24.5                    |
| CDMA/EVDO BC0 (§22H)   | Maximum | 25.0                    |
| CDIVIA/EVDO BCO (922H) | Nominal | 24.5                    |
| PCS CDMA/EVDO          | Maximum | 24.7                    |
| PC3 CDIVIA/EVDO        | Nominal | 24.2                    |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 4 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 4 of 110                |

| Mode / Band         | 1       | Modulated Average (dBm) |
|---------------------|---------|-------------------------|
| LTE Band 71         | Maximum | 25.5                    |
| LIE Balla / I       | Nominal | 25.0                    |
| LTE Band 12         | Maximum | 25.5                    |
| LIE Ballu 12        | Nominal | 25.0                    |
| LTE Band 17         | Maximum | 25.5                    |
| LIE Dallu 17        | Nominal | 25.0                    |
| LTE Band 13         | Maximum | 25.5                    |
| LIE Dallu 13        | Nominal | 25.0                    |
| LTE Band 26 (Cell)  | Maximum | 25.5                    |
| LTE Ballu 20 (Cell) | Nominal | 25.0                    |
| LTE Band 5 (Cell)   | Maximum | 25.5                    |
| LTE Balla 3 (Cell)  | Nominal | 25.0                    |
| LTE Band 66 (AWS)   | Maximum | 24.3                    |
| LTE Ballu 00 (AVV3) | Nominal | 23.8                    |
| LTE Band 4 (AWS)    | Maximum | 24.3                    |
| LTE Ballu 4 (AVV3)  | Nominal | 23.8                    |
| LTE Band 25 (PCS)   | Maximum | 24.3                    |
| LTE Ballu 25 (PCS)  | Nominal | 23.8                    |
| LTE Band 2 (DCC)    | Maximum | 24.3                    |
| LTE Band 2 (PCS)    | Nominal | 23.8                    |
| LTE Band 41 (PC3)   | Maximum | 25.0                    |
| LIL Dallu 41 (PCS)  | Nominal | 24.5                    |
| LTE Band 41 (PC2)   | Maximum | 27.7                    |
| LIL Dallu 41 (PC2)  | Nominal | 27.2                    |

| Mode / Band                  |         | Modulated Average (dBm) |
|------------------------------|---------|-------------------------|
| <br>  IEEE 802.11b (2.4 GHz) | Maximum | 21.0                    |
|                              | Nominal | 20.0                    |
| JEEE 002 44 - /2 4 CU-V      | Maximum | 17.5                    |
| IEEE 802.11g (2.4 GHz)       | Nominal | 16.5                    |
| IEEE 802.11n (2.4 GHz)       | Maximum | 17.5                    |
| IEEE 802.11f1 (2.4 GHZ)      | Nominal | 16.5                    |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 5 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | rage 5 01 110                |

| Mode / Band  |         | Modulated Average (dBm) |
|--------------|---------|-------------------------|
| Dhuataath    | Maximum | 11.0                    |
| Bluetooth    | Nominal | 10.0                    |
| Dlustooth LF | Maximum | 2.0                     |
| Bluetooth LE | Nominal | 1.0                     |

|                       |                       |        | Modulated Average (dBm) |              |               |               |               |         |                  |             |              |             |                  |       |         |              |
|-----------------------|-----------------------|--------|-------------------------|--------------|---------------|---------------|---------------|---------|------------------|-------------|--------------|-------------|------------------|-------|---------|--------------|
| Mode / Band           | Mode / Band 20 MHz Ba |        |                         |              | MHz Bandwi    | dth           |               |         | 40 MHz Bandwidth |             |              |             | 80 MHz Bandwidth |       |         |              |
|                       |                       | Ch. 36 | Ch. 40 - 60             | Ch. 64 - 100 | Ch. 104 - 136 | Ch. 140 - 149 | Ch. 153 - 161 | Ch. 165 | Ch. 38           | Ch. 46 - 54 | Ch. 62 - 102 | Ch. 110-159 | Ch.42            | Ch.58 | Ch. 106 | CH.122 - 155 |
| IEEE 802.11a (5 GHz)  | Maximum               | 17.0   | 19.5                    | 17.0         | 19.5          | 17.5          | 19.5          | 17.5    |                  |             |              |             |                  |       |         |              |
| IEEE 802.11a (5 GHZ)  | Nominal               | 16.0   | 18.5                    | 16.0         | 18.5          | 16.5          | 18.5          | 16.5    |                  |             |              |             |                  |       |         |              |
| IEEE 802.11n (5 GHz)  | Maximum               | 17.0   | 19.5                    | 17.0         | 19.5          | 17.5          | 19.5          | 17.5    | 14.0             | 16.0        | 14.0         | 16.0        |                  |       |         |              |
| IEEE 802.11II (5 GHZ) | Nominal               | 16.0   | 18.5                    | 16.0         | 18.5          | 16.5          | 18.5          | 16.5    | 13.0             | 15.0        | 13.0         | 15.0        |                  |       |         |              |
| IEEE 802.11ac (5 GHz) | Maximum               | 14.0   | 16.5                    | 14.0         | 16.5          | 14.5          | 16.5          | 14.5    | 12.0             | 14.0        | 12.0         | 14.0        | 11.0             | 12.0  | 11.0    | 13.0         |
| IEEE 802.11ac (5 GH2) | Nominal               | 13.0   | 15.5                    | 13.0         | 15.5          | 13.5          | 15.5          | 13.5    | 11.0             | 13.0        | 11.0         | 13.0        | 10.0             | 11.0  | 10.0    | 12.0         |

#### 1.3.2 **Reduced Output Power**

|                             |         | Modula | Modulated Average (dBm) |       |  |  |  |
|-----------------------------|---------|--------|-------------------------|-------|--|--|--|
| Mode / Band                 |         | 3GPP   | 3GPP                    | 3GPP  |  |  |  |
|                             |         | WCDMA  | HSDPA                   | HSUPA |  |  |  |
| UMTS Band 2 (1900 MHz)      | Maximum | 23.8   | 23.8                    | 23.8  |  |  |  |
| 01V113 Ballu 2 (1900 IVITZ) | Nominal | 23.3   | 23.3                    | 23.3  |  |  |  |

| Mode / Band     | ĺ       | Modulated Average (dBm) |
|-----------------|---------|-------------------------|
| PCS CDMA/EVDO   | Maximum | 24.2                    |
| PC3 CDIVIA/EVDO | Nominal | 23.7                    |

| Mode / Band        | I       | Modulated Average (dBm) |
|--------------------|---------|-------------------------|
| LTE Band 25 (PCS)  | Maximum | 23.8                    |
| LTE Ballu 25 (PCS) | Nominal | 23.3                    |
| LTE Band 2 (PCS)   | Maximum | 23.8                    |
| LTE Balla 2 (PCS)  | Nominal | 23.3                    |
| LTE Band 41 (PC3)  | Maximum | 23.0                    |
| LIE Ballu 41 (PCS) | Nominal | 22.5                    |
| LTE Band 41 (PC2)  | Maximum | 25.7                    |
| LIE Dallu 41 (PC2) | Nominal | 25.2                    |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | ① LG | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |      | Dags 6 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |      | Page 6 of 110                |

| Mode / Band            |         | Modulated Average (dBm) |
|------------------------|---------|-------------------------|
| IEEE 802 11h /2 4 CH-\ | Maximum | 19.0                    |
| IEEE 802.11b (2.4 GHz) | Nominal | 18.0                    |
| IEEE 903 11a /3 / CU-\ | Maximum | 17.5                    |
| IEEE 802.11g (2.4 GHz) | Nominal | 16.5                    |
| IEEE 802.11n (2.4 GHz) | Maximum | 17.5                    |
|                        | Nominal | 16.5                    |

|                       |         |                  |             |              |               |               |               | Modul            | dulated Average (dBm) |             |              |                  |       |       |         |              |
|-----------------------|---------|------------------|-------------|--------------|---------------|---------------|---------------|------------------|-----------------------|-------------|--------------|------------------|-------|-------|---------|--------------|
| Mode / Band           | i       | 20 MHz Bandwidth |             |              |               |               |               | 40 MHz Bandwidth |                       |             |              | 80 MHz Bandwidth |       |       |         |              |
|                       |         | Ch. 36           | Ch. 40 - 60 | Ch. 64 - 100 | Ch. 104 - 136 | Ch. 140 - 149 | Ch. 153 - 161 | Ch. 165          | Ch. 38                | Ch. 46 - 54 | Ch. 62 - 102 | Ch. 110-159      | Ch.42 | Ch.58 | Ch. 106 | CH.122 - 155 |
| IEEE 002 44- /E CII-) | Maximum | 16.0             | 18.5        | 16.0         | 18.5          | 16.5          | 18.5          | 17.0             |                       |             |              |                  |       |       |         |              |
| IEEE 802.11a (5 GHz)  | Nominal | 15.0             | 17.5        | 15.0         | 17.5          | 15.5          | 17.5          | 16.0             |                       |             |              |                  |       |       |         |              |
| IEEE 802.11n (5 GHz)  | Maximum | 16.0             | 18.5        | 16.0         | 18.5          | 16.5          | 18.5          | 17.0             | 14.0                  | 16.0        | 14.0         | 16.0             |       |       |         |              |
| IEEE 802.11II (5 GHZ) | Nominal | 15.0             | 17.5        | 15.0         | 17.5          | 15.5          | 17.5          | 16.0             | 13.0                  | 15.0        | 13.0         | 15.0             |       |       |         |              |
| IEEE 802.11ac (5 GHz) | Maximum | 14.0             | 16.5        | 14.0         | 16.5          | 14.5          | 16.5          | 14.5             | 12.0                  | 14.0        | 12.0         | 14.0             | 11.0  | 12.0  | 11.0    | 13.0         |
| ILLE 002.11dt (3 GHZ) | Nominal | 13.0             | 15.5        | 13.0         | 15.5          | 13.5          | 15.5          | 13.5             | 11.0                  | 13.0        | 11.0         | 13.0             | 10.0  | 11.0  | 10.0    | 12.0         |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dog 7 of 110                  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 7 of 110                 |

#### 1.4 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1 **Device Edges/Sides for SAR Testing** 

| Mode               | Back | Front | Тор | Bottom | Right | Left |
|--------------------|------|-------|-----|--------|-------|------|
| GPRS 850           | Yes  | Yes   | No  | Yes    | No    | Yes  |
| GPRS 1900          | Yes  | Yes   | No  | Yes    | Yes   | No   |
| UMTS 850           | Yes  | Yes   | No  | Yes    | No    | Yes  |
| UMTS 1750          | Yes  | Yes   | No  | Yes    | Yes   | No   |
| UMTS 1900          | Yes  | Yes   | No  | Yes    | Yes   | No   |
| EVDO BC0 (§22H)    | Yes  | Yes   | No  | Yes    | No    | Yes  |
| EVDO BC10 (§90S)   | Yes  | Yes   | No  | Yes    | No    | Yes  |
| PCS EVDO           | Yes  | Yes   | No  | Yes    | Yes   | No   |
| LTE Band 71        | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 12        | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 13        | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 26 (Cell) | Yes  | Yes   | No  | Yes    | No    | Yes  |
| LTE Band 66 (AWS)  | Yes  | Yes   | No  | Yes    | Yes   | No   |
| LTE Band 25 (PCS)  | Yes  | Yes   | No  | Yes    | Yes   | No   |
| LTE Band 41        | Yes  | Yes   | No  | Yes    | Yes   | No   |
| 2.4 GHz WLAN       | Yes  | Yes   | Yes | No     | No    | Yes  |
| 5 GHz WLAN         | Yes  | Yes   | Yes | No     | No    | Yes  |
| Bluetooth          | Yes  | Yes   | Yes | No     | No    | Yes  |

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 8 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | raye o 01 110                |

### 1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

| No. | Capable Transmit Configuration                   | Head  | Body-Worn<br>Accessory | Wireless<br>Router | Phablet | Notes                                                                                 |
|-----|--------------------------------------------------|-------|------------------------|--------------------|---------|---------------------------------------------------------------------------------------|
| 1   | 1x CDMA voice + 2.4 GHz WI-FI                    | Yes   | Yes                    | N/A                | Yes     |                                                                                       |
| 2   | 1x CDMA voice + 5 GHz WI-FI                      | Yes   | Yes                    | N/A                | Yes     |                                                                                       |
| 3   | 1x CDMA voice + 2.4 GHz Bluetooth                | Yes^  | Yes                    | N/A                | Yes     | Bluetooth Tethering is considered                                                     |
| 4   | 1x CDMA voice + 2.4 GHz Bluetooth + 5 GHz WI-FI  | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                   |
| 5   | GSM voice + 2.4 GHz WI-FI                        | Yes   | Yes                    | N/A                | Yes     |                                                                                       |
| 6   | GSM voice + 5 GHz WI-FI                          | Yes   | Yes                    | N/A                | Yes     |                                                                                       |
| 7   | GSM voice + 2.4 GHz Bluetooth                    | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                   |
| 8   | GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI      | Yes^  | Yes                    | N/A                | Yes     | ^ Bluetooth Tethering is considered                                                   |
| 9   | UMTS + 2.4 GHz WI-FI                             | Yes   | Yes                    | Yes                | Yes     |                                                                                       |
| 10  | UMTS + 5 GHz WI-FI                               | Yes   | Yes                    | Yes                | Yes     |                                                                                       |
| 11  | UMTS + 2.4 GHz Bluetooth                         | Yes^  | Yes                    | Yes^               | Yes     | Bluetooth Tethering is considered                                                     |
| 12  | UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI           | Yes^  | Yes                    | Yes^               | Yes     | ^ Bluetooth Tethering is considered                                                   |
| 13  | LTE + 2.4 GHz WI-FI                              | Yes   | Yes                    | Yes                | Yes     |                                                                                       |
| 14  | LTE + 5 GHz WI-FI                                | Yes   | Yes                    | Yes                | Yes     |                                                                                       |
| 15  | LTE + 2.4 GHz Bluetooth                          | Yes^  | Yes                    | Yes^               | Yes     | Bluetooth Tethering is considered                                                     |
| 16  | LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI            | Yes^  | Yes                    | Yes^               | Yes     | Bluetooth Tethering is considered                                                     |
| 17  | CDMA/EVDO data + 2.4 GHz WI-FI                   | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                      |
| 18  | CDMA/EVDO data + 5 GHz WI-FI                     | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                      |
| 19  | CDMA/EVDO data + 2.4 GHz Bluetooth               | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered  ^ Bluetooth Tethering is considered |
| 20  | CDMA/EVDO data + 2.4 GHz Bluetooth + 5 GHz WI-FI | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered  ^ Bluetooth Tethering is considered |
| 21  | GPRS/EDGE + 2.4 GHz WI-FI                        | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                      |
| 22  | GPRS/EDGE + 5 GHz WI-FI                          | Yes*  | Yes*                   | Yes                | Yes     | * Pre-installed VOIP applications are considered                                      |
| 23  | GPRS/EDGE + 2.4 GHz Bluetooth                    | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered  ^ Bluetooth Tethering is considered |
| 24  | GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI      | Yes*^ | Yes*                   | Yes^               | Yes     | * Pre-installed VOIP applications are considered  ^ Bluetooth Tethering is considered |

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII-2A and U-NII-2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE and VOWIFI.
- 7. This device supports Bluetooth Tethering.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 9 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 9 01 110                |

#### 1.6 Miscellaneous SAR Test Considerations

### (A) WIFI/BT

Per FCC KDB Publication 248227 D01v02r02, SAR is not required for U-NII-1 band when U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz WIFI, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz WLAN, U-NII-1 WLAN, U-NII-3 WLAN, and Bluetooth operations since wireless router 1g SAR was < 1.2 W/kg.

### (B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports 64QAM on the uplink for LTE Operations. Conducted powers for 64QAM configurations were measured per Section 5.1 of FCC KDB Publication 941225 D05v02r05. SAR was not required for 64QAM since the highest maximum output power for 64 QAM is  $\leq \frac{1}{2}$  dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is  $\leq$  1.45 W/kg, per Section 5.2.4 of FCC KDB Publication 941225 D05v02r05.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix H.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when

| FCC ID: Z | NFQ720PS       | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|-----------|----------------|---------------------|-----------------------|-----|-------------------------------|
| Document  | t S/N:         | Test Dates:         | DUT Type:             |     | Dags 10 of 110                |
| 1M190422  | 0061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 10 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes, SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 14.1).

### 1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE Band 41 Power Class 2/3)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

### 1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

| FCC ID: ZNFQ720PS      | PCTEST"             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogg 11 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |            | Page 11 of 110                |

| 688 (670.5) 673.5) 679.5) 679.6) 689.7 700.5. 701.5. 704.4 709.6) 709.6 709.6) 814.7 819.5. 816.5. 824.7 829.7 1711.5 1715.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LT  LTE Band LTE Band LTE Band LTE Band LTE Band LTE Band ELTE BAN      | Portable Handset IE Band 71 (665.5 - 695.5 IE Band 71 (665.5 - 695.5 IE Band 12 (699.7 - 715.5 IE Band 12 (699.7 - 716.5 IE Band 13 (779.5 - 784.5 Band 36 (Cell) (814.7 - 84 Band 5 (Cell) (824.7 - 844 Ind 66 (AWS) (1710.7 - 1 and 25 (PCS) (1850.7 - 19 and 2 (PCS) (1850.7 - 19 E Band 41 (AWS) (1710.7 - 1 and 2 (PCS) (1850.7 - 19 E Band 41 (2498.5 - 2687. d 71: 5 MHz, 10 MHz, 15 ILTE Band 17: 5 MHz, 10 MHz, 15 ILTE Band 17: 5 MHz, 3 MHz, 5 IN ILTE Band 18: 5 MHz, 10 INTERPRETATION IN INTERPRETATION                                                                                                                                                                                                                                                                                                                                                                                     | 5 MHz) 5 MHz) 5 MHz) 5 MHz) 8.3 MHz) 8.3 MHz) 8.3 MHz) 779.3 MHz) 779.3 MHz) 754.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 915 MHz) 915 MHz 915 MHz 915 MHz 916 MHz 917 MHz 917 MHz 918 MH | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LT  LTE Band LTE Band LTE Band LTE Band LTE Band LTE Band ELTE BAN      | IE Band 71 (665.5 - 695.5 IE Band 12 (699.7 - 715.3 IE Band 12 (699.7 - 715.3 IE Band 12 (699.7 - 715.3 IE Band 13 (779.5 - 784.5 IE Band 13 (624.7 - 844 Ind 66 (AWS) (1710.7 - 11 Ind 25 (PCS) (1850.7 - 19 Ind 2 (PCS)                                                                                                                                                                                                                                                                                                                                                                                     | 5 MHz) 5 MHz) 5 MHz) 5 MHz) 8.3 MHz) 8.3 MHz) 8.3 MHz) 779.3 MHz) 779.3 MHz) 754.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 915 MHz) 915 MHz 915 MHz 915 MHz 916 MHz 917 MHz 917 MHz 918 MH | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LT LT LTE LTE LTE LTE LTE LTE LTE LTE LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IE Band 17 (706.5 - 713.5 IE Band 17 (706.5 - 713.5 IE Band 13 (779.5 - 784.5 Band 26 (Cell) (814.7 - 84 Band 5 (Cell) (824.7 - 84 IB Band 5 (Cell) (1710.7 - 17 IB Band 14 (AWS) (1710.7 - 17 IB Band 14 (AWS) (1710.7 - 17 IB Band 17 IS IB Band 17 IS IB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 MHz) 5 MHz) 6 MHz) 8.3 MHz) 8.3 MHz) 8.3 MHz) 9.3 MHz) 9.4 S MHz) 9.5 MHz) 9.5 MHz) MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LT LTE BAD LOW-MID LTE LOW-MID LTE LOW-MID LTE LOW-MID LTE LOW-MID LTE LTE LOW-MID LTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IE Band 13 (779.5 - 784.5 Band 26 (Cell) (814.7 - 84 Band 26 (Cell) (824.7 - 84) Band 26 (Cell) (824.7 - 84) and 66 (AWS) (1710.7 - 17 and 25 (PCS) (1850.7 - 19 Eand 4 (AWS) (1710.7 - 17 and 25 (PCS) (1850.7 - 19 Eand 41 (2498.5 - 2687 d.71:5 MHz, 10 MHz, 15 d.12: 1.4 MHz, 3 MHz, 5 MHz, 10 LTE Band 17:5 MHz, 10 LTE Band 13:5 MHz, 10 MHz, 3 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 16 MHz, 17 MHz, 17 MHz, 17 MHz, 18                                                                                                                                                                                                                                                                                                                                                                                     | 5 MHz)  8.3 MHz)  8.3 MHz)  8.3 MHz)  779.3 MHz)  779.3 MHz)  94.3 MHz)  94.4 MHz)  94.4 MHz)  94.5 MHz)  MHz  MHz  10 | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE E LTE Ba LTE Band 66 (AWS): LTE Band 66 (AWS): LTE Band 66 (AWS): LTE Band 26 (CAWS): LTE Band 26 (CAWS): LTE Band 26 (CAWS): LTE Band 26 (CAWS): LTE Band 26 (AWS): LTE Band 66 (AWS)      | Band 26 (Cell) (814.7 - 94 Band 26 (Cell) (824.7 - 844 ind 66 (AWS) (1710.7 - 17 and 4 (AWS) (1710.7 - 17 and 4 (AWS) (1850.7 - 19 and 25 (PCS) (1850.7 - 19 E Band 41 (2498.5 - 2687. d 17: 5 MHz, 10 MHz, 15 id 12: 14 MHz, 3 MHz, 5 M LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 5 M LTE Band 13: 5                                                                                                                                                                                                                                                                                                                                                                                      | 8.3 MHz) 3.3 MHz) 779.3 MHz) 779.3 MHz) 764.3 MHz) 904.3 MHz) 909.3 MHz 909.3 MH | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE  LTE Ban  LTE Ban  LTE Ban  LTE Ban  LTE Ban  LTE Band 26 (Cd  LTE Ban      | Band 5 (Cell) (824.7 - 84) and 66 (AWS) (1710.7 - 11 and 4 (AWS) (1710.7 - 11 and 4 (AWS) (1710.7 - 11 and 2 (PCS) (1850.7 - 15 and 2 (PCS) (1850.7 - 16 and 2 (PCS) (                                                                                                                                                                                                                                                                                                                                                                                     | 8.3 MHz) 779.3 MHz) 754.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 914.3 MHz) 95.4 MHz, 96.3 MHz) MHz, 10 MHz MHz MHz MHz 10 MHz 10 MHz 15 MHz 10 MHz 15 MHz 10 MHz 15 MHz 10 MHz 15 MHz 10 MHz 10 MHz 15 MHz 17 MHz 16 MHz 16 MHz 17 MHz 18 | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Bas  LTE Bar  LTE Bar  LTE Band  LOW-Mid  LTE Band        | and 86 (AWS) (1710.7 - 17 and 26 (AWS) (1710.7 - 17 and 25 (PCS) (1850.7 - 18 and 2 (PCS) (1850.7 - 19 Eand 4 (AWS) (1710.7 - 17 and 25 (PCS) (1850.7 - 19 Eand 4 (1248.5 - 2687.5 d) (12: 14 MHz, 3 MHz, 5 ML TE Band 17: 5 MHz, 10 LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 5 ME (14 MHz, 3 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 16 MHz, 16 MHz, 16 MHz, 17 MHz, 18 MHz,                                                                                                                                                                                                                                                                                                                                                                                     | 779.3 MHz) 779.3 MHz) 779.4 MHz) 914.3 MHz) 909.3 MHz) 55 MHz) MHz, 20 MHz MHz, 20 MHz MHz, 10 MHz MHz 10 MHz, 15 MHz, 20 MHz 10 MHz, 15 MHz 10 MHz, 15 MHz 10 MHz, 15 MHz, 20 MHz 10 M | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Bas LTE Band 26 (CA LTE Ba      | and 26 (PCS) (1850.7 - 18 and 2 (PCS) (1850.7 - 19 and 2 (PCS) (1850.7 - 19 E Band 41 (2498.5 - 2687. d 71: 5 MHz, 10 MHz, 15 Id 12: 14 MHz, 3 MHz, 5 I LTE Band 17: 5 MHz, 10 LTE Band 17: 5 MHz, 10 LTE Band 17: 5 MHz, 10 LTE Band 18: 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 5 MHz, 10 ITE Band 18: 5 MHz, 1                                                                                                                                                                                                                                                                                                                                                                                     | 914.3 MHz) 903.3 MHz) .5 MHz) .5 MHz) .5 MHz) .5 MHz) MHz, 20 MHz MHz, 10 MHz MHz, 10 MHz MHz, 10 MHz 10 MHz, 15 MHz, 20 MHz 10 MHz, 15 MHz, 20 MHz 10 MHz, 15 MHz, 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE B.  LTE Band LTE Band LTE Band LTE Band LTE Band 26 (CA LTE Band 26 (CA LTE Band 6 (AWS):  LTE Band 6 (AWS):  LTE Band 27 (PCS):  LTE Band 28 (PCS):  LTE Band 27 (PCS):  LTE Band 28 (PCS):  LOW-Mid  LOW-Mid  133147)  133147)  133147)  133147)  133122)  123050  (2305)  (2305)  (24015)  (26697)  (26697)  (26697)  (26705)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)  (26740)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and 2 (PCS) (1850.7 - 19 E Band 41 (2498.5 - 2687. d 71: 5 MHz, 10 MHz, 15 d 12: 1.4 MHz, 3 MHz, 5 M LTE Band 17: 5 MHz, 10 LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 10 LTE Band 13: 5 MHz, 5 M E (5 (Cell): 1.4 MHz, 3 MHz, 5 M E (14 MHz, 3 MHz, 5 MHz, 10 E (15 MHz, 10 MHz, 10 E (15 MHz, 10 MHz, 10 E                                                                                                                                                                                                                                                                                                                                                                                     | 09.3 MHz) 5 MHz) 5 MHz) MHz, 20 MHz MHz, 20 MHz MHz, 10 MHz MHz MHz MHz 10 MHz, 15 MHz, 20 MHz 11 MHz, 20 MHz 10 MHz, 15 MHz, 20 MHz 11 MHz, 20 MHz 12 MHz, 20 MHz 11 MHz, 20 MHz 11 MHz, 20 MHz 12 MHz, 20 MHz 13 MHz, 20 MHz 14 MHz, 20 MHz 15 MHz, 20 MHz 16 MHz, 20 MHz 16 MHz, 20 MHz 17 MHz, 20 MHz 18 MHz, 20 MHz 19 MHz, 20 MHz 19 MHz, 20 MHz 10 MHz, 20  | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE  LTE Band 26 (CA  LTE Band 26 (CA  LTE Band 46 (AWS):  LTE Band 66 (AWS):  LTE Band 66 (AWS):  LTE Band 26 (CA  LTE Band 66 (AWS):  LTE Band 26 (CA):  LTE Band 26 (CA):  LTE Band 26 (PCS):  LTE Band 2 (PCS):  LTE Band 66 (AWS):  LTE Band 2 (PCS):  L      | E Band 41 (2498.5 - 2687.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.5 MHz) MHz 20 MHz MHz 20 MHz MHz, 10 MHz MHz MHz, 10 MHz, 15 MHz Hz, 10 MHz, 15 MHz 50 MHz, 15 MHz 10 MHz, 15 MHz 10 MHz, 15 MHz 10 MHz, 15 MHz, 20 MHz 10 MHz, 15 MHz, 20 MHz M | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band LTE Band LTE Band LTE Band 26 (CL LTE Band 26 (CL LTE Band 26 (CL LTE Band 26 (AWS): LTE Band 26 (PCS): LTE Band 27 (P      | d 71: 5 MHz, 10 MHz, 15 MHz, 10 MHz, 15 MHz, 3 MHz, 5 MHz, 10 MHz, 5 MHz, 10 LTE Band 17: 5 MHz, 10 LTE Band 17: 5 MHz, 10 LTE Band 18: 5 MHz, 10 LTE Band 18: 5 MHz, 10 MHz, 3 MHz, 5 MHz, 5 MHz, 10 MHz, 3 MHz, 5 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 10 MHz, 5 MHz, 10 MHz, 15 MHz, 10 MHz, 10 MHz, 15 MHz, 10 M                                                                                                                                                                                                                                                                                                                                                                                     | MHz, 20 MHz MHz, 10 MHz MHz, 10 MHz MHz MHz, 10 MHz, 15 MHz S MHz, 10 MHz, 15 MHz S MHz, 10 MHz, 15 MHz S MHz, 20 MHz MHz, 15 MHz, 20 MHz MHz, 16 MHz, 20 MHz MHz, | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band  LTE Band 26 (C.  LTE Band 26 (AWS):  LTE Band 66 (AWS):  LTE Band 26 (AWS):  LTE Band 26 (AWS):  LTE Band 26 (AWS):  LTE Band 26 (PCS):  LTE Band 2 (PCS):  LTE Band 2 (PCS):  LOW-Mid  1331477  133197)  1332127  (23025)  (23035)  23060)  (23755)  23780)  (24755)  (25076)  (26697)  (26705)  (26715)  (26715)  (26715)  (26715)  (20417)  (20415)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Id 12: 1.4 MHz, 3 MHz, 5 IL LTE Band 17: 5 MHz, 10 IL LTE Band 17: 5 MHz, 10 IL LTE Band 13: 5 MHz, 10 IL LTE Band 13: 5 MHz, 10 IL LTE Band 13: 5 MHz, 2 MHz, 5 MF C ICell): 1.4 MHz, 3 MHz, 5 MF C ICELL, 14 MHz, 3 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 10                                                                                                                                                                                                                                                                                                                                                                                      | MHz, 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 26 (CV LTE Band 26 (AVMS): LTE Band 6 (AVMS): LTE Band 25 (PCS): LTE Band 27 (PCS): LTE Band 27 (PCS): LTE Band 27 (PCS): LTE Band 27 (PCS): LTE Band 28 (PCS): LOW-Mid LOW-M      | LTE Band 13: 5 MHz, 10: ell): 1.4 MHz, 3 MHz, 5 M fC (Cell): 1.4 MHz, 3 MHz, 5 M fC (Cell): 1.4 MHz, 3 MHz, 5 M fC (Cell): 1.4 MHz, 3 MHz, 5 MHz, 1.5 MHz, 1.5 MHz, 1.6 MHz, 10 MHz, 1.7 MHz, 1.7 MHz, 1.7 MHz, 1.8 MHz,                                                                                                                                                                                                                                                                                                                                                                                     | MHz 15 MHz 15 MHz 15 MHz 5 MHz 10 MHz 15 MHz 20 MHz 10 MHz 20 MHz 10 MHz 20 MHz 10 MHz 20 MHz 10 MHz 15 MHz 20 MHz 10 MHz 15 MHz 20 MHz 10 MHz 15 MHz 20 MHz | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 26 (CA) LTE Band 6 (AWS): LTE Band 6 (AWS): LTE Band 4 (AWS): LTE Band 26 (PCS): LTE Band 26 (PCS): LTE Band 2       | lell): 1.4 MHz, 3 MHz, 5 M<br>(Cell): 1.4 MHz, 3 MHz, 3 MHz,<br>1.4 MHz, 3 MHz, 5 MHz,<br>1.5 MHz, 10 MHz,<br>1.5 MHz, 10 MHz,<br>1.6 MHz, 10 MHz,<br>1.6 MHz, 10 MHz,<br>1.6 MHz,<br>1.7 MHz,<br>1. | Hz. 10 MHz. 15 MHz. 5 MHz. 10 MHz. 15 MHz. 10 MHz. 15 MHz. 20 MHz. MHz. 20 MHz | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 6 (AWS): LTE Band 6 (AWS): LTE Band 4 (AWS): LTE Band 2 (PCS): LTE Band 2 (      | 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 1.4 MHz, 3 MHz, 5 MHz, 5 MHz, 5 MHz, 1.4 MHz, 3 MHz, 5 MHz, 5 MHz, 1.4 MHz, 3 MHz, 5 MHz, 5 MHz, 1.4 MHz, 3 MHz, 5 MHz, 1.4 MHz, 3 MHz, 5 MHz, 1.6 MHz                                                                                                                                                                                                                                                                                                                                                                                     | 5 MHz, 10 MHz 10 MHz, 15 MHz, 20 MHz MHz MId-Hill 6895. 6933. 6930. 6888 715. 7144, 713. 711 784. 848. 844. 841. 844. 844.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 6 (AWS): LTE Band 4 (AWS): LTE Band 25 (PCS): LTE Band 2 (PCS): LTE Band 2 (PCS): LTE Band 2 (PCS): LTE Band 2 (PCS): LOW-Mid 133147) 133172) 133177) 133177) 133172) 123025) 123060) 123755) 23060) 123755) 23760) 1266977 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 126705) 1      | 1.4 MHz, 3 MHz, 5 MHz, 1.6                                                                                                                                                                                                                                                                                                                                                                                      | 10 MHz, 15 MHz, 20 MHz MHz, 20 MHz MHz, 20 MHz 693 693 693 693 715 714 711 713 711 714 718 446 848 847 846 844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 4 (AWS): LTE Band 2 (PCS): 133147) 133172) 133177) 133222) (23017) (23025) (23017) (23025) (23050) (23755) 23780) (23755) (23760) (26697) (26705) (26716) (26705) (26716) (26765) (20417) (20415) (20415)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4 MHz, 3 MHz, 5 MHz, 1.4 MHz, 3 MHz, 10 MHz, 15 MHz, 10                                                                                                                                                                                                                                                                                                                                                                                      | 10 MHz, 15 MHz, 20 MHz MHz, 20 MHz, 20 MHz MHz, 20 MHz MHz, 20 MHz, 20 MHz MHz, 20 MHz MHz, 20 MHz, 20 MHz MHz, 20 MHz, 20 MHz MHz, 20 MHz MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz, 20 MHz, 20 MH | High 5 (133447) 5 (133447) 5 (133422) 5 (133397) 6 (133397) 8 (133372) .3 (23173) .5 (23165) .5 (23165) .5 (23155) 1 (123800) .5 (23825) 1 (23800) .5 (230255) N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (260636) .3 (20643) .5 (20635) .5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Band 26 (PCS): LTE Band 2 (PCS): LTE Band 2 (PCS): LTE Band 2 (PCS): LOW-Mid [133147] [133172] [133197] [133197] [133222] [(23017) [(23025) [(23035) [23050] [(23755) [233780) [(23025) [(26897) [(26715) [26716] [26716] [26765] [(20407) [(20407) [(20407) [(20415) [(20425) [(20450) [(151979)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4 MHz, 3 MHz, 5 MHz, 14 MHz, 3 MHz, 5 MHz, 1 MHz, 10 MHz, 15 MHz, 10 MHz, 15 MHz, 10 MHz, 16 MHz, 10 MHz, 16                                                                                                                                                                                                                                                                                                                                                                                     | 10 MHz, 15 MHz, 20 MHz MHz, 15 MHz, 20 MHz MHz, 15 MHz, 20 MHz Mid-High 695.6 693 690.6 698 715. 714. 711. 714. 714. 848. 847. 848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z High 5 (133447) 1 (133422) 5 (133437) 5 (133422) 5 (133397) 1 (133372) 3 (23173) 5 (23165) 5 (23165) 5 (23155) 1 (23300) 5 (23255) 1 (23300) 5 (23255) 1 (23600) 5 (23255) 1 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (23600) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (2360000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (236000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (2360000) 5 (23600000) 5 (23600000) 5 (23600000) 5 (23600000) 5 (23600000) 5 (236000000) 5 (236000000) 5 (2360000000) 5 (236000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | LTE Bank Low-Mid 133147) 133172) 133177 133197) 133222) (23025) (23025) (23025) (23055) 23780) (23755) 23780) (23755) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (23765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765) (24765)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d 41: 5 MHz, 10 MHz, 15 Mid 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 708 (23230) 710 (23790) 710 (23790) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MHz, 20 MHz Mid-High 696.1 693.2 693.2 693.2 694.2 695.3 696.0 688 715.3 714, 713, 711, 714, 714, 848.6 844, 841, 844, 841, 848, 847, 848, 847, 848, 844, 844, 844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High 5 (133447) 5 (133442) 5 (133422) 5 (133397) (1(33372) .3 (23173) .5 (23165) .5 (23165) .1 (23130) .5 (23255) N/A .3 (27033) .5 (27025) .5 (27015) 4 (26990) .5 (26965) .3 (26043) .5 (260635) .5 (260635) .5 (260635) .5 (260635) .5 (260635) .5 (260635) .5 (260635) .5 (260635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | Low-Mid 133147) 133147) 133172) 133197) 133222) (23017) (23025) (23035) 23060) (23755) 23760) (23205) WA (26697) (26705) (26715) (26740) (26765) (20407) (20415) (20425)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mid 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 710 (23790) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mid-High 695.1 698.3 690.1 688 715.714. 713. 7117 718 714 848. 847. 848. 847. 848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 (133447) 1 (133442) 5 (133447) 1 (133422) 5 (133397) 1 (133372) .3 (23173) .5 (23165) .5 (23155) 1 (23325) 1 (23800) .5 (23255) NA .3 (27033) .5 (27025) .5 (27015) 4 (26990) .5 (26966) .3 (20643) .5 (20635) .5 (20625)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 665.5   668.6   668.6   668.6   668.6   668.6   668.6   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5   679.5    | 133147) 133172) 133197) 133197) 133222) (23017) (23025) (23035) 23060) (23755) 23780) (23205) VA (26697) (26705) (26715) (26705) (26716) (26765) (20407) (20415) (20415) (20415)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.6 (23790) 710 (23790) 782 (23230) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 695.1<br>693.9<br>699.0<br>688.715.714.713.711.7714.7713.7711.7714.7714.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 (133447) 1 (133442) 5 (133447) 1 (133422) 5 (133397) 1 (133372) .3 (23173) .5 (23165) .5 (23155) 1 (23325) 1 (23800) .5 (23255) NA .3 (27033) .5 (27025) .5 (27015) 4 (26990) .5 (26966) .3 (20643) .5 (20635) .5 (20625)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 688 (670.5) 673.5) 679.5) 679.6) 689.7 700.5. 701.5. 704.4 709.6) 709.6 709.6) 814.7 819.5. 816.5. 824.7 829.7 1711.5 1715.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 133172) 133197) 133222) (23017) (23025) (23035) 23060) (23755) 23360) (23755) (2305) VA (26697) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 680.5 (133297) 680.5 (133297) 680.5 (133297) 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6939.<br>690.<br>698.<br>715.<br>714.<br>713.<br>711<br>784.<br>848.<br>847.<br>841.<br>841.<br>844.<br>841.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (133422) 5 (133397) 1 (133372) 3 (23173) 5 (23165) 5 (23165) 5 (23155) 1 (23330) 1 (23130) 5 (23255) 1 (23300) 5 (23255) 1 (23300) 5 (23255) 1 (23800) 5 (23255) 1 (23800) 5 (27025) 5 (27015) 4 (26990) 5 (260635) 5 (200635) 5 (200635) 5 (200635) 6 (200605)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 670.5 673.6 699.7 700.5 699.7 700.5 700.5 701.5 704.6 706.5 709.6 699.7 709.5 816.5 819.9 821.5 824.7 825.5 826.5 829.0 1711.5 1711.5 1711.5 1711.5 1711.5 1711.5 1711.5 673.6 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0   | 133197) 133222) (23017) (23025) (23035) (23035) (23050) (23755) (23756) (26697) (26697) (26705) (26715) (26740) (26765) (20407) (20415) (20425) (20450) (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 680.5 (133297) 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 710 (23790) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 690.1 688 715. 714. 713. 711 713. 711 784. 848. 847. 848. 841. 848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 (133397) 6) (133372) 3.3 (23173) 5.5 (23165) 5.6 (23165) 1.6 (23155) 1.1 (23130) 5.5 (23255) N/A 3.2 (27033) 5.5 (27025) 5.6 (23056) 4.6 (23056) 5.7 (23056) 5.8 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 5.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 (23056) 6.9 |
| 673 ( 699.7 700.5 701.5 701.5 704.4 706.5 704.4 706.5 709.9 709.6 709.9 709.5 814.7 815.5 816.5 824.7 825.5 826.5 826.5 826.5 826.5 827.1 711.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5 717.5    | 133222) (23017) (23017) (23025) (23035) 23060) (23755) 23760) (23755) (23760) (26697) (26697) (26705) (26715) (26716) (26765) (20417) (20415) (20415) (20415)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 680.5 (133297) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 710 (23790) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 688<br>715.<br>714.<br>713.<br>711<br>713.<br>711<br>784.<br>848.<br>847.<br>846.<br>844.<br>841.<br>848.<br>847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 (133372) 3. (23173) 5. (23165) 5. (23155) 5. (23155) 1. (23825) 1. (23825) 1. (23800) 5. 5 (23255) NA 3. (27033) 5. 5 (27025) 5. 5 (27025) 5. 5 (27045) 4. (26990) 5. 5 (26865) 3. (20643) 5. 5 (20635) 5. 5 (20625) 4. (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 699.7 700.5 701.5 701.5 701.5 701.5 701.5 701.5 701.5 709.9 709.5 709.9 709.5 816.5 816.5 819.9 821.5 826.5 826.5 829.0 1710.7 1711.5 1715.5 1715.5 1715.5 1715.5 1715.5 1715.5 1715.5 1715.5 1715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7715.5 7   | (23017) (23025) (23025) (23035) 23060) (23755) 23780) (23205) VA (26697) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450) (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 707.5 (23095) 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 710 (23790) 782 (23230) 831.5 (28865) 831.5 (28865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 715.5 714. 713. 7111 713. 7111 784. 848. 847. 846. 8444. 841. 848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .3 (23173)<br>.5 (23165)<br>.5 (23165)<br>.5 (23155)<br>.1 (23130)<br>.5 (23825)<br>.1 (23800)<br>.5 (23255)<br>.N/A<br>.3 (27033)<br>.5 (27025)<br>.5 (27015)<br>.4 (28990)<br>.5 (26866)<br>.3 (20643)<br>.5 (20635)<br>.5 (20635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 701.5<br>704.6<br>705.5<br>709.6<br>779.5<br>814.7<br>815.5<br>816.5<br>821.5<br>825.5<br>826.5<br>829.7<br>1711.5<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (23035) 23060) (23755) 23780) (23205) WA (26697) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 707.5 (23095) 707.5 (23095) 707.5 (23095) 710 (23790) 710 (23790) 782 (23230) 782 (23230) 831.5 (28865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 713.3 711 711 714 715 715 716 848. 847. 846. 8444 841. 648. 847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5 (23155) (1,23130) .5 (23825) .1 (23800) .5 (23825) .1 (23800) .5 (23255) .NA .3 (27033) .5 (27015) .5 (27015) .4 (26990) .5 (26966) .3 (20643) .5 (20635) .5 (20625) .4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 704 (<br>706.5 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 709.6 | 23060) (23755) 23780) (23205) VA (26697) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450) (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 707.5 (23095) 710 (23790) 710 (23790) 710 (23790) 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7111 713. 711 784. 848. 847. 846. 844. 841. 848. 844. 841. 848.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (23130) 1 (23805) 1 (23800) 1 (23800) 1 (23800) 1 (23800) 1 (23803) 1 (27033) 1 (27033) 1 (27033) 1 (27035) 1 (27015) 4 (28900) 1 (28065) 1 (20606) 1 (20606) 1 (20606) 1 (20606) 1 (20606) 1 (20606)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 706.5 709.6 N 814.7 815.5 816.5 819.6 821.5 826.5 826.5 826.5 826.5 826.5 1710.7 1711.5 1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (23755) 23780) (23205) VA (26697) (266705) (26715) (26716) (26765) (20407) (20415) (20415) (20425) 20450)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 710 (23790) 710 (23790) 710 (23790) 782 (23230) 831.5 (28865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 713. 711. 784. 848. 847. 846. 844. 841. 848. 847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5 (23825)<br>1 (23800)<br>.5 (23255)<br>NA<br>.3 (27033)<br>.5 (27025)<br>.5 (27015)<br>4 (26990)<br>.5 (26665)<br>.3 (20643)<br>.5 (260635)<br>.5 (260635)<br>.6 (260635)<br>.6 (260635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 709 ( 779.5  814.7  815.5  816.5  819 ( 821.5  824.7  825.5  826.5  829 ( 1710.7  1711.5  1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23780) (23205) WA (26697) (26705) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 710 (23790) 782 (23230) 782 (23230) 782 (23230) 831.5 (28865) 831.5 (28865) 831.5 (28865) 831.5 (28866) 831.5 (28865) 836.5 (20525) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 711 784. 848. 847. 846. 844. 841. 948. 847. 846. 844. 847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 (2380) . 1 (2380) . NA . 3 (27033) . 5 (27025) . 5 (27015) . 4 (26990) . 5 (26966) . 3 (20643) . 5 (20635) . 5 (20625) . 4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 779.5<br>814.7<br>815.5<br>816.5<br>819 (<br>821.5<br>824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (23205) WA (26807) (26807) (26705) (26715) 26740) (26765) (20407) (20415) (20425) 20450) (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 782 (23230) 782 (23230) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 831.5 (26865) 836.5 (20525) 836.5 (20525) 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 784.  848. 847. 846. 844. 841. 848. 847. 846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5 (23255)<br>N/A<br>3. (27033)<br>.5 (27025)<br>.5 (27015)<br>4 (26990)<br>.5 (26965)<br>.3 (20643)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 814.7<br>815.5<br>816.5<br>819.6<br>821.5<br>824.7<br>825.5<br>826.5<br>829.0<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VA (26697) (26705) (26715) (26715) (26765) (26765) (20407) (20415) (20425) (2045) (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 782 (23230)<br>831.5 (28865)<br>831.5 (28865)<br>831.5 (28865)<br>831.5 (28865)<br>831.5 (28865)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 848.<br>847.<br>846.<br>844.<br>841.<br>848.<br>847.<br>846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A .3 (27033) .5 (27025) .5 (27015) .4 (26990) .5 (26065) .3 (20643) .5 (20635) .5 (20625) .4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 814.7<br>815.5<br>816.5<br>821.5<br>824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (26697)<br>(26705)<br>(26715)<br>26740)<br>(26765)<br>(20407)<br>(20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 831.5 (26865)<br>831.5 (26865)<br>831.5 (26865)<br>831.5 (26865)<br>831.5 (26865)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 847.<br>846.<br>844.<br>841.<br>848.<br>847.<br>846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3 (27033)<br>.5 (27025)<br>.5 (27015)<br>4 (26990)<br>.5 (26965)<br>.3 (20643)<br>.5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 816.5<br>819 (<br>821.5<br>824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (26715)<br>26740)<br>(26765)<br>(20407)<br>(20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 831.5 (26865)<br>831.5 (26865)<br>831.5 (26865)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 846.<br>844<br>841.<br>848.<br>847.<br>846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .5 (27015)<br>4 (26990)<br>.5 (26965)<br>.3 (20643)<br>.5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 819 (<br>821.5<br>824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26740)<br>(26765)<br>(20407)<br>(20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 831.5 (26865)<br>831.5 (26865)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 844<br>841.<br>848.<br>847.<br>846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 (26990)<br>.5 (26965)<br>.3 (20643)<br>.5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 821.5<br>824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (26765)<br>(20407)<br>(20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 831.5 (26865)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 841.<br>848.<br>847.<br>846.<br>844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 (26965)<br>.3 (20643)<br>.5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 824.7<br>825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (20407)<br>(20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 848.<br>847.<br>846.<br>844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .3 (20643)<br>.5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 825.5<br>826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5<br>1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (20415)<br>(20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 836.5 (20525)<br>836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 847.<br>846.<br>844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 (20635)<br>.5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 826.5<br>829 (<br>1710.7<br>1711.5<br>1712.5<br>1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (20425)<br>20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 836.5 (20525)<br>836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 846.<br>844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .5 (20625)<br>4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 829 (<br>1710.7<br>1711.5<br>1712.5<br>1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20450)<br>(131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 836.5 (20525)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 (20600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1710.7<br>1711.5<br>1712.5<br>1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (131979)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1712.5<br>1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (101000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1779.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3 (132665)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1715 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1745 (132322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5 (132657)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (131997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1745 (132322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5 (132647)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 132022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1745 (132322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 (132622)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (132047)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1745 (132322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5 (132597)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 132072)<br>' (19957)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1745 (132322)<br>1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (132572)<br>4.3 (20393)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i (19965)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5 (20385)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (19975)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 (20375)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (20000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 (20350)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1717.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (20025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5 (20325)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (20050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1732.5 (20175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 (20300)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (26047)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1882.5 (26365)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3 (26683)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (26055)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1882.5 (26365)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5 (26675)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (26065)<br>(26090)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1882.5 (26365)<br>1882.5 (26365)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 (26665)<br>10 (26640)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (26115)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1882.5 (26365)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5 (26615)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1882.5 (26365)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 (26590)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1850.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (18607)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1880 (18900)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.3 (19193)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1880 (18900)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5 (19185)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1880 (18900)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5 (19175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 (19150)<br>2.5 (19125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 (19125)<br>00 (19100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2593 (40620)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2680 (41490)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (39750)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2549.5 (40185)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2593 (40620)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2636.5 (41055)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2680 (41490)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (39750)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2549.5 (40185)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2593 (40620)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2636.5 (41055)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2680 (41490)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (39750)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2549.5 (40185)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2636.5 (41055)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2680 (41490)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QPSK, 16QAM, 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| т.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne technical description in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arrier aggregation combin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| levice does no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ot support full CA features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s on 3GPP Release 10. Its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | supports carrier aggregat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion feature as shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1850.7<br>1851.E. 1852.E. 1855.E. 1857.E. 1855.G. 1857.E. 1860.<br>(39750) (39750) (39750) (39750) (39750) The levice does not be seen to | (199750) 2549.5 (40185) (199750) 2549.5 (40185) (199750) 2549.5 (40185)  The technical description is levice does not support full CA features H. All other uplink communications are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1860 (26140) 1882 5 (26365) 1850.7 (18607) 1880 (18900) 1851.5 (18615) 1880 (18900) 1852.5 (18625) 1880 (18900) 1855.6 (18626) 1880 (18900) 1856.6 (18650) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18900) 1857.5 (18675) 1880 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857.5 (18900) 1857 | 1860 (26140) 1882 5 (26365) 190 1850.7 (18607) 1880 (18900) 1900 1851.5 (18615) 1880 (18900) 1900 1851.5 (18625) 1880 (18900) 1900 1855 (18625) 1880 (18900) 190 1855 (18650) 1880 (18900) 190 1857.5 (18675) 1880 (18900) 190 1857.5 (18675) 1880 (18900) 190 1860 (18700) 2549.5 (40185) 2593 (40620) 2636.5 (41055) 1(39750) 2549.5 (40185) 2593 (40620) 2636.5 (41055) 1(39750) 2549.5 (40185) 2593 (40620) 2636.5 (41055) 1(39750) 2549.5 (40185) 2593 (40620) 2636.5 (41055) 10 2549.5 (40185) 2593 (40620) 2636.5 (41055) 10 2549.5 (40185) 2593 (40620) 2636.5 (41055) 10 2549.5 (40185) 2593 (40620) 2636.5 (41055) 10 2549.5 (40185) 2593 (40620) 2636.5 (41055) 10 2549.5 (40185) 2593 (40620) 2636.5 (41055) 2595 (41064) 4404M  YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 12 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 12 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 3

### INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

#### 3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m)  $\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: ZNFQ720PS      | PCTEST STREET, NO.  | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 12 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 13 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value.

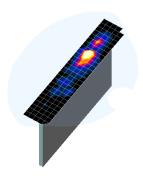



Figure 4-1 Sample SAR Area Scan

point

n ...

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04\*

| _         | Maximum Area Scan<br>Resolution (mm)       | Maximum Zoom Scan<br>Resolution (mm)       | Max                    | imum Zoom So<br>Resolution ( |                                 | Minimum Zoom Scan      |
|-----------|--------------------------------------------|--------------------------------------------|------------------------|------------------------------|---------------------------------|------------------------|
| Frequency | (Δx <sub>area</sub> , Δy <sub>area</sub> ) | (Δx <sub>zoom</sub> , Δy <sub>zoom</sub> ) | Uniform Grid           | G                            | raded Grid                      | Volume (mm)<br>(x,y,z) |
|           |                                            |                                            | Δz <sub>zoom</sub> (n) | Δz <sub>zoom</sub> (1)*      | Δz <sub>zoom</sub> (n>1)*       |                        |
| ≤ 2 GHz   | ≤ 15                                       | ≤8                                         | ≤5                     | ≤4                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 2-3 GHz   | ≤12                                        | ≤5                                         | ≤5                     | ≤4                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 3-4 GHz   | ≤12                                        | ≤5                                         | ≤4                     | ≤3                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28                   |
| 4-5 GHz   | ≤ 10                                       | ≤4                                         | ≤3                     | ≤ 2.5                        | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25                   |
| 5-6 GHz   | ≤ 10                                       | ≤ 4                                        | ≤ 2                    | ≤2                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22                   |

<sup>\*</sup>Also compliant to IEEE 1528-2013 Table 6

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 14 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 14 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

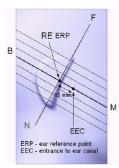



Figure 5-1 Close-Up Side view of ERP

### 5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 5-2 Front, back and side view of SAM Twin Phantom

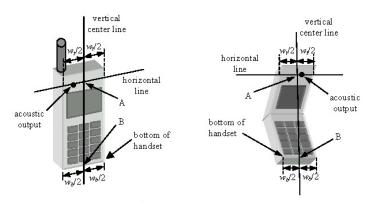



Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 15 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 15 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon = 3$  and loss tangent  $\delta = 0.02$ .

### 6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

### 6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 16 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 16 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.



Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

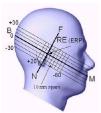



Figure 6-3
Side view w/ relevant markings

### 6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

### 6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

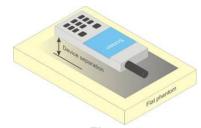



Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

| PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|---------------------|--------------------------|-------------------------------|
| Test Dates:         | DUT Type:                | Dogo 17 of 110                |
| 04/21/19 - 05/15/19 | Portable Handset         | Page 17 of 110                |
|                     | Test Dates:              | Test Dates: DUT Type:         |

© 2019 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

### 6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

# 6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W  $\geq$  9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

### 6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |
|------------------------|---------------------|--------------------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 18 of 110                |  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         |                               |  |

© 2019 PCTEST Engineering Laboratory, Inc.

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

### 6.9 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dags 10 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 19 of 110                |

### 7 RF EXPOSURE LIMITS

### 7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### 7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUN                                                          | MAN EXPOSURE LIMITS                    |                                  |
|--------------------------------------------------------------|----------------------------------------|----------------------------------|
|                                                              | UNCONTROLLED<br>ENVIRONMENT            | CONTROLLED<br>ENVIRONMENT        |
|                                                              | General Population<br>(W/kg) or (mW/g) | Occupational<br>(W/kg) or (mW/g) |
| <b>Peak Spatial Average SAR</b><br>Head                      | 1.6                                    | 8.0                              |
| Whole Body SAR                                               | 0.08                                   | 0.4                              |
| Peak Spatial Average SAR<br>Hands, Feet, Ankle, Wrists, etc. | 4.0                                    | 20                               |

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 20 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 20 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

# 8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

### 8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

#### 8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is  $\leq 0.25$  dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is  $\leq 1.2$  W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

### 8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

#### 8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

### 8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | <b>i</b> LG | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |             | Dogo 21 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |             | Page 21 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH<sub>0</sub> and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| Î <sub>or</sub>        | dBm/1.23 MHz | -104  |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

Table 8-2 Parameters for Max. Power for RC3

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| İor                    | dBm/1.23 MHz | -86   |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

#### 8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

### 8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

### 8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogo 22 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |            | Page 22 of 110                |

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

### 8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

#### 8.5 SAR Measurement Conditions for UMTS

### 8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

#### 8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

### 8.5.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH<sub>n</sub> configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH<sub>n</sub>, for the highest reported SAR configuration in 12.2 kbps RMC.

#### 8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |
|------------------------|---------------------|--------------------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 22 of 110                |  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 23 of 110                |  |

© 2019 PCTEST Engineering Laboratory, Inc.

12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

#### 8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

#### 8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

### 8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

#### 8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

#### 8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

### 8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
  - i. The required channel and offset combination with the highest maximum output power is required for SAR.
  - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
  - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dog 24 of 110                 |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 24 of 110                |

- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

#### 8.6.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

### 8.6.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

### 8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

#### 8.7.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 25 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 25 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### 8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

#### 8.7.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is  $\leq 0.4$  W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is  $\leq 0.8$  W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

### 8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogo 26 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |            | Page 26 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 8.7.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

### 8.7.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

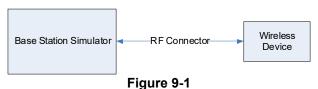
When the reported SAR is  $\leq 0.8$  W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is  $\leq 1.2$  W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

### 8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is  $\leq 1.2$  W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

| FCC ID: ZNFQ720PS SAR EVALUAT                               | TION REPORT LG | Quality Manager |
|-------------------------------------------------------------|----------------|-----------------|
| Document S/N: Test Dates: DUT Type:                         |                | Dago 27 of 440  |
| 1M1904220061-01-R1.ZNF 04/21/19 - 05/15/19 Portable Handset |                | Page 27 of 110  |

### 9.1 CDMA Conducted Powers


Table 9-1
Maximum Conducted Power

| Band     | Channel | Rule Part | Frequency | SO55<br>[dBm] | SO55<br>[dBm] | TDSO SO32<br>[dBm] | TDSO SO32<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|----------|---------|-----------|-----------|---------------|---------------|--------------------|--------------------|----------------------------|----------------------------|
|          | F-RC    |           | MHz       | RC1           | RC3           | FCH+SCH            | FCH                | (RTAP)                     | (RETAP)                    |
| Cellular | 564     | 90S       | 820.1     | 24.92         | 24.93         | 24.90              | 24.90              | 24.90                      | 24.89                      |
|          | 1013    | 22H       | 824.7     | 24.85         | 24.93         | 24.91              | 24.92              | 24.87                      | 24.88                      |
| Cellular | 384     | 22H       | 836.52    | 25.00         | 24.99         | 24.98              | 24.97              | 24.90                      | 24.92                      |
|          | 777     | 22H       | 848.31    | 24.86         | 24.86         | 24.94              | 24.87              | 24.79                      | 24.82                      |
|          | 25      | 24E       | 1851.25   | 24.28         | 24.24         | 24.36              | 24.35              | 24.38                      | 24.37                      |
| PCS      | 600     | 24E       | 1880      | 24.21         | 24.20         | 24.19              | 24.21              | 24.23                      | 24.38                      |
|          | 1175    | 24E       | 1908.75   | 24.32         | 24.31         | 24.34              | 24.31              | 24.35                      | 24.41                      |

Table 9-2
Reduced Conducted Power

| Band | Channel | Rule Part | Frequency | SO55<br>[dBm] | SO55<br>[dBm] | TDSO SO32<br>[dBm] | TDSO SO32<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|------|---------|-----------|-----------|---------------|---------------|--------------------|--------------------|----------------------------|----------------------------|
|      | F-RC    |           | MHz       | RC1           | RC3           | FCH+SCH            | FCH                | (RTAP)                     | (RETAP)                    |
|      | 25      | 24E       | 1851.25   | 24.07         | 24.09         | 24.05              | 24.05              | 24.09                      | 24.08                      |
| PCS  | 600     | 24E       | 1880      | 24.14         | 24.07         | 24.11              | 24.03              | 24.07                      | 24.17                      |
|      | 1175    | 24E       | 1908.75   | 24.08         | 24.10         | 24.06              | 24.15              | 24.10                      | 24.11                      |

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.



Power Measurement Setup

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 28 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 20 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### 9.2 **GSM Conducted Powers**

Table 9-3 **Maximum Conducted Power** 

| Maximum Conducted Fower |                                     |                                |                                       |       |                            |                            |  |  |  |  |
|-------------------------|-------------------------------------|--------------------------------|---------------------------------------|-------|----------------------------|----------------------------|--|--|--|--|
|                         | Maximum Burst-Averaged Output Power |                                |                                       |       |                            |                            |  |  |  |  |
|                         |                                     | Voice                          | GPRS/EDGE Data<br>(GMSK)              |       | EDGE<br>(8-P               |                            |  |  |  |  |
| Band                    | Channel                             | GSM<br>[dBm]<br>CS<br>(1 Slot) | [dBm] [dBm] [dBm] [dBm] 1 Tx Slot 1 T |       | EDGE<br>[dBm]<br>1 Tx Slot | EDGE<br>[dBm]<br>2 Tx Slot |  |  |  |  |
|                         | 128                                 | 33.61                          | 33.45                                 | 31.97 | 27.60                      | 27.65                      |  |  |  |  |
| GSM 850                 | 190                                 | 33.60                          | 33.66                                 | 32.06 | 27.69                      | 27.45                      |  |  |  |  |
|                         | 251                                 | 33.62                          | 33.70                                 | 31.72 | 27.70                      | 27.67                      |  |  |  |  |
| GSM 1900                | 512                                 | 30.15                          | 30.21                                 | 28.65 | 26.10                      | 26.04                      |  |  |  |  |
|                         | 661                                 | 30.22                          | 30.19                                 | 28.73 | 26.04                      | 26.15                      |  |  |  |  |
|                         | 810                                 | 30.15                          | 30.20                                 | 28.60 | 25.88                      | 25.84                      |  |  |  |  |

| C        | Calculated Maximum Frame-Averaged Output Power |                                        |                            |                            |                            |                            |  |  |  |  |
|----------|------------------------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|
|          |                                                | Voice GPRS/EDGE Data EDGE Data (6-PSK) |                            |                            |                            |                            |  |  |  |  |
| Band     | Channel                                        | GSM<br>[dBm]<br>CS<br>(1 Slot)         | GPRS<br>[dBm]<br>1 Tx Slot | GPRS<br>[dBm]<br>2 Tx Slot | EDGE<br>[dBm]<br>1 Tx Slot | EDGE<br>[dBm]<br>2 Tx Slot |  |  |  |  |
|          | 128                                            | 24.58                                  | 24.42                      | 25.95                      | 18.57                      | 21.63                      |  |  |  |  |
| GSM 850  | 190                                            | 24.57                                  | 24.63                      | 26.04                      | 18.66                      | 21.43                      |  |  |  |  |
|          | 251                                            | 24.59                                  | 24.67                      | 25.70                      | 18.67                      | 21.65                      |  |  |  |  |
|          | 512                                            | 21.12                                  | 21.18                      | 22.63                      | 17.07                      | 20.02                      |  |  |  |  |
| GSM 1900 | 661                                            | 21.19                                  | 21.16                      | 22.71                      | 17.01                      | 20.13                      |  |  |  |  |
|          | 810                                            | 21.12                                  | 21.17                      | 22.58                      | 16.85                      | 19.82                      |  |  |  |  |
| _        |                                                |                                        |                            |                            |                            |                            |  |  |  |  |

| GSM 850 F     | rame     | 24.17 | 24.17 | 25.68 | 18.17 | 21.18 |
|---------------|----------|-------|-------|-------|-------|-------|
| GSM 1900 Avg. | Targets: | 21.17 | 21.17 | 22.68 | 16.67 | 19.68 |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 29 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Fage 29 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

#### Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots)

**DTM Multislot Class: N/A** 



Figure 9-2 **Power Measurement Setup** 

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Daga 20 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 30 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | DEV/21.2 M                   |

### 9.3 UMTS Conducted Powers

Table 9-4
Maximum Conducted Power

| Maximum Ochacica i Owei |                          |               |                     |       |                |       |       |                |       |       |          |      |
|-------------------------|--------------------------|---------------|---------------------|-------|----------------|-------|-------|----------------|-------|-------|----------|------|
| 3GPP<br>Release         | Release Mode 3GPP 34.121 | 3GPP 34.121   | Cellular Band [dBm] |       | AWS Band [dBm] |       |       | PCS Band [dBm] |       |       | 3GPP MPR |      |
| Version                 |                          | Subtest       | 4132                | 4183  | 4233           | 1312  | 1412  | 1513           | 9262  | 9400  | 9538     | [ub] |
| 99                      | WCDMA                    | 12.2 kbps RMC | 25.47               | 25.43 | 25.50          | 24.28 | 24.26 | 24.28          | 24.13 | 24.20 | 24.06    | -    |
| 99                      | VVCDIVIA                 | 12.2 kbps AMR | 25.49               | 25.41 | 25.50          | 24.24 | 24.21 | 24.25          | 24.12 | 24.16 | 24.14    | -    |
| 6                       |                          | Subtest 1     | 24.57               | 24.35 | 24.36          | 24.25 | 24.11 | 24.13          | 23.82 | 23.60 | 23.27    | 0    |
| 6                       | HSDPA                    | Subtest 2     | 24.43               | 24.25 | 24.35          | 24.13 | 24.12 | 24.14          | 23.80 | 23.60 | 23.59    | 0    |
| 6                       | порга                    | Subtest 3     | 23.94               | 23.85 | 23.87          | 23.69 | 23.52 | 23.63          | 23.26 | 23.11 | 23.03    | 0.5  |
| 6                       |                          | Subtest 4     | 23.90               | 23.76 | 23.75          | 23.61 | 23.56 | 23.64          | 23.32 | 22.94 | 23.09    | 0.5  |
| 6                       |                          | Subtest 1     | 24.56               | 24.36 | 24.38          | 23.89 | 23.92 | 23.83          | 23.71 | 23.72 | 23.69    | 0    |
| 6                       |                          | Subtest 2     | 22.55               | 22.39 | 22.40          | 22.27 | 22.22 | 22.28          | 21.80 | 21.72 | 21.68    | 2    |
| 6                       | HSUPA                    | Subtest 3     | 23.56               | 23.38 | 23.41          | 23.28 | 23.22 | 23.24          | 22.92 | 22.73 | 22.70    | 1    |
| 6                       |                          | Subtest 4     | 22.55               | 22.40 | 22.40          | 22.29 | 22.24 | 22.26          | 21.80 | 21.73 | 21.69    | 2    |
| 6                       |                          | Subtest 5     | 24.58               | 24.40 | 24.39          | 24.28 | 24.24 | 24.26          | 23.81 | 23.73 | 23.70    | 0    |

Table 9-5
Reduced Conducted Power

| 3GPP<br>Release | Mode    | 3GPP 34.121   | PCS   | S Band [dl | Bm]   | 3GPP MPR |
|-----------------|---------|---------------|-------|------------|-------|----------|
| Version         | Mode    | Subtest       | 9262  | 9400       | 9538  | [dB]     |
| 99              | WCDMA   | 12.2 kbps RMC | 23.63 | 23.40      | 23.42 | -        |
| 99              | WCDIVIA | 12.2 kbps AMR | 23.67 | 23.43      | 23.46 | -        |
| 6               |         | Subtest 1     | 23.64 | 23.44      | 23.40 | 0        |
| 6               | HSDPA   | Subtest 2     | 23.51 | 23.43      | 23.38 | 0        |
| 6               | IBDFA   | Subtest 3     | 23.01 | 22.91      | 22.89 | 0.5      |
| 6               |         | Subtest 4     | 23.00 | 22.90      | 22.88 | 0.5      |
| 6               |         | Subtest 1     | 23.58 | 23.39      | 23.45 | 0        |
| 6               |         | Subtest 2     | 21.59 | 21.41      | 21.40 | 2        |
| 6               | HSUPA   | Subtest 3     | 22.58 | 22.40      | 22.38 | 1        |
| 6               |         | Subtest 4     | 21.58 | 21.40      | 21.37 | 2        |
| 6               |         | Subtest 5     | 23.60 | 23.42      | 23.40 | 0        |

This device does not support DC-HSDPA.



Figure 9-3
Power Measurement Setup

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 31 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | raye 31 01 110               |

### 9.4 LTE Conducted Powers

### 9.4.1 LTE Band 71

Table 9-6
LTE Band 71 Conducted Powers - 20 MHz Bandwidth

| LTE Band 71<br>20 MHz Bandwidth |         |           |                       |                 |          |  |  |
|---------------------------------|---------|-----------|-----------------------|-----------------|----------|--|--|
|                                 |         |           | Mid Channel<br>133297 | MPR Allowed per |          |  |  |
| Modulation                      | RB Size | RB Offset | (680.5 MHz)           | 3GPP [dB]       | MPR [dB] |  |  |
|                                 |         |           | Conducted Power       | 00.1 [0.5]      |          |  |  |
|                                 |         |           | [dBm]                 |                 |          |  |  |
|                                 | 1       | 0         | 25.16                 |                 | 0        |  |  |
|                                 | 1       | 50        | 25.19                 | 0               | 0        |  |  |
|                                 | 1       | 99        | 25.18                 |                 | 0        |  |  |
| QPSK                            | 50      | 0         | 24.20                 |                 | 1        |  |  |
|                                 | 50      | 25        | 24.18                 | 0-1             | 1        |  |  |
|                                 | 50      | 50        | 24.16                 | 0-1             | 1        |  |  |
|                                 | 100     | 0         | 24.19                 |                 | 1        |  |  |
|                                 | 1       | 0         | 24.23                 |                 | 1        |  |  |
|                                 | 1       | 50        | 24.25                 | 0-1             | 1        |  |  |
|                                 | 1       | 99        | 24.15                 |                 | 1        |  |  |
| 16QAM                           | 50      | 0         | 23.28                 |                 | 2        |  |  |
|                                 | 50      | 25        | 23.15                 | 0-2             | 2        |  |  |
|                                 | 50      | 50        | 23.17                 | 0-2             | 2        |  |  |
|                                 | 100     | 0         | 23.26                 |                 | 2        |  |  |
|                                 | 1       | 0         | 23.29                 |                 | 2        |  |  |
|                                 | 1       | 50        | 23.25                 | 0-2             | 2        |  |  |
|                                 | 1       | 99        | 23.21                 |                 | 2        |  |  |
| 64QAM                           | 50      | 0         | 22.27                 |                 | 3        |  |  |
|                                 | 50      | 25        | 22.17                 |                 | 3        |  |  |
|                                 | 50      | 50        | 22.22                 | 0-3             | 3        |  |  |
|                                 | 100     | 0         | 22.23                 |                 | 3        |  |  |

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 22 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 32 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

Table 9-7
LTE Band 71 Conducted Powers - 15 MHz Bandwidth

| LTE Band 71<br>15 MHz Bandwidth |         |           |                       |                              |          |  |  |  |
|---------------------------------|---------|-----------|-----------------------|------------------------------|----------|--|--|--|
|                                 |         |           | Mid Channel           |                              |          |  |  |  |
| Modulation                      | RB Size | RB Offset | 133297<br>(680.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |
|                                 |         |           | Conducted Power [dBm] |                              |          |  |  |  |
|                                 | 1       | 0         | 25.03                 |                              | 0        |  |  |  |
|                                 | 1       | 36        | 25.02                 | 0                            | 0        |  |  |  |
| QPSK 36                         | 1       | 74        | 24.96                 |                              | 0        |  |  |  |
|                                 | 36      | 0         | 24.09                 |                              | 1        |  |  |  |
|                                 | 36      | 18        | 24.18                 | 0-1                          | 1        |  |  |  |
|                                 | 36      | 37        | 24.12                 |                              | 1        |  |  |  |
|                                 | 75      | 0         | 24.08                 |                              | 1        |  |  |  |
|                                 | 1       | 0         | 24.26                 |                              | 1        |  |  |  |
|                                 | 1       | 36        | 24.16                 | 0-1                          | 1        |  |  |  |
|                                 | 1       | 74        | 24.02                 |                              | 1        |  |  |  |
| 16QAM                           | 36      | 0         | 23.15                 |                              | 2        |  |  |  |
|                                 | 36      | 18        | 23.22                 | 0-2                          | 2        |  |  |  |
|                                 | 36      | 37        | 23.11                 | 0-2                          | 2        |  |  |  |
|                                 | 75      | 0         | 23.14                 |                              | 2        |  |  |  |
|                                 | 1       | 0         | 22.99                 |                              | 2        |  |  |  |
|                                 | 1       | 36        | 23.01                 | 0-2                          | 2        |  |  |  |
|                                 | 1       | 74        | 23.00                 |                              | 2        |  |  |  |
| 64QAM                           | 36      | 0         | 22.23                 |                              | 3        |  |  |  |
|                                 | 36      | 18        | 22.22                 | 0-3                          | 3        |  |  |  |
|                                 | 36      | 37        | 22.13                 | ] 0-3                        | 3        |  |  |  |
|                                 |         |           |                       |                              |          |  |  |  |

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

22.20

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 22 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 33 of 110               |

75

0

Table 9-8 LTE Band 71 Conducted Powers - 10 MHz Bandwidth

|            |         | <u> </u>  | L Bana / I Con        | LTE Band 71           | TO MITTE BUTTON       | VIGUI                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 10 MHz Bandwidth      |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 133172<br>(668.0 MHz) | 133297<br>(680.5 MHz) | 133422<br>(693.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 25.30                 | 25.30                 | 25.14                 |                              | 0        |
|            | 1       | 25        | 25.11                 | 25.25                 | 25.04                 | 0                            | 0        |
|            | 1       | 49        | 25.15                 | 25.22                 | 25.00                 |                              | 0        |
| QPSK       | 25      | 0         | 24.44                 | 24.23                 | 24.15                 |                              | 1        |
|            | 25      | 12        | 24.31                 | 24.31                 | 24.07                 | 0-1                          | 1        |
|            | 25      | 25        | 24.26                 | 24.32                 | 23.99                 | -                            | 1        |
|            | 50      | 0         | 24.37                 | 24.27                 | 24.11                 |                              | 1        |
|            | 1       | 0         | 24.48                 | 24.50                 | 24.28                 |                              | 1        |
|            | 1       | 25        | 24.50                 | 24.49                 | 24.21                 | 0-1                          | 1        |
|            | 1       | 49        | 24.45                 | 24.46                 | 24.08                 |                              | 1        |
| 16QAM      | 25      | 0         | 23.48                 | 23.21                 | 23.17                 |                              | 2        |
|            | 25      | 12        | 23.41                 | 23.34                 | 23.16                 | 0-2                          | 2        |
|            | 25      | 25        | 23.34                 | 23.40                 | 23.07                 | 0-2                          | 2        |
|            | 50      | 0         | 23.40                 | 23.22                 | 23.15                 |                              | 2        |
|            | 1       | 0         | 23.48                 | 23.18                 | 23.05                 |                              | 2        |
|            | 1       | 25        | 23.46                 | 23.25                 | 22.97                 | 0-2                          | 2        |
|            | 1       | 49        | 23.47                 | 23.24                 | 22.94                 |                              | 2        |
| 64QAM      | 25      | 0         | 22.47                 | 22.25                 | 22.24                 |                              | 3        |
|            | 25      | 12        | 22.34                 | 22.34                 | 22.20                 |                              | 3        |
|            | 25      | 25        | 22.38                 | 22.32                 | 22.12                 | 0-3                          | 3        |
|            | 50      | 0         | 22.43                 | 22.27                 | 22.21                 | 1 -                          | 3        |

Table 9-9 LTE Band 71 Conducted Powers - 5 MHz Bandwidth

|            |         |           |                                      | LTE Band 71<br>5 MHz Bandwidth       |                                       |                              |          |
|------------|---------|-----------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>133147<br>(665.5 MHz) | Mid Channel<br>133297<br>(680.5 MHz) | High Channel<br>133447<br>(695.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | · ·                                  | Conducted Power [dBm                 | ]                                     |                              |          |
|            | 1       | 0         | 24.82                                | 24.56                                | 24.60                                 |                              | 0        |
|            | 1       | 12        | 24.83                                | 24.61                                | 24.52                                 | 0                            | 0        |
|            | 1       | 24        | 24.61                                | 24.74                                | 24.54                                 |                              | 0        |
| QPSK       | 12      | 0         | 24.31                                | 24.25                                | 24.12                                 |                              | 1        |
|            | 12      | 6         | 24.34                                | 24.23                                | 24.02                                 | 0-1                          | 1        |
|            | 12      | 13        | 24.37                                | 24.24                                | 24.00                                 | 0-1                          | 1        |
|            | 25      | 0         | 24.22                                | 24.25                                | 24.04                                 |                              | 1        |
|            | 1       | 0         | 24.40                                | 24.45                                | 24.50                                 |                              | 1        |
|            | 1       | 12        | 24.18                                | 24.45                                | 24.11                                 | 0-1                          | 1        |
|            | 1       | 24        | 24.29                                | 24.49                                | 24.29                                 |                              | 1        |
| 16QAM      | 12      | 0         | 23.28                                | 23.25                                | 23.36                                 |                              | 2        |
|            | 12      | 6         | 23.32                                | 23.30                                | 23.27                                 | 0-2                          | 2        |
|            | 12      | 13        | 23.26                                | 23.29                                | 23.24                                 | 0-2                          | 2        |
|            | 25      | 0         | 23.20                                | 23.26                                | 23.08                                 |                              | 2        |
|            | 1       | 0         | 23.48                                | 23.24                                | 23.14                                 |                              | 2        |
|            | 1       | 12        | 23.42                                | 23.31                                | 23.23                                 | 0-2                          | 2        |
|            | 1       | 24        | 23.34                                | 23.37                                | 23.07                                 |                              | 2        |
| 64QAM      | 12      | 0         | 22.34                                | 22.31                                | 22.18                                 |                              | 3        |
|            | 12      | 6         | 22.46                                | 22.36                                | 22.04                                 | 0.0                          | 3        |
| ĺ          | 12      | 13        | 22.41                                | 22.38                                | 22.01                                 | 0-3                          | 3        |
| -          | 25      | 0         | 22.21                                | 22.21                                | 22.08                                 | 1                            | 3        |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 34 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 34 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

### 9.4.2 LTE Band 12

Table 9-10
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

|            |         |           | LTE Band 12 10 MHz Bandwidth | o wiiz Banawiatii            |          |
|------------|---------|-----------|------------------------------|------------------------------|----------|
|            |         |           | Mid Channel                  |                              |          |
| Modulation | RB Size | RB Offset | 23095<br>(707.5 MHz)         | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | Conducted Power              | 00:1 [45]                    |          |
|            |         |           | [dBm]                        |                              |          |
|            | 1       | 0         | 24.90                        |                              | 0        |
|            | 1       | 25        | 24.82                        | 0                            | 0        |
|            | 1       | 49        | 24.89                        |                              | 0        |
| QPSK       | 25      | 0         | 24.09                        |                              | 1        |
|            | 25      | 12        | 24.06                        | 0-1                          | 1        |
|            | 25      | 25        | 24.05                        | 0-1                          | 1        |
|            | 50      | 0         | 24.03                        |                              | 1        |
|            | 1       | 0         | 24.16                        |                              | 1        |
|            | 1       | 25        | 24.25                        | 0-1                          | 1        |
|            | 1       | 49        | 24.10                        |                              | 1        |
| 16QAM      | 25      | 0         | 23.07                        |                              | 2        |
|            | 25      | 12        | 23.14                        | 0-2                          | 2        |
|            | 25      | 25        | 23.06                        | 0-2                          | 2        |
|            | 50      | 0         | 23.12                        |                              | 2        |
|            | 1       | 0         | 23.23                        |                              | 2        |
|            | 1       | 25        | 23.18                        | 0-2                          | 2        |
|            | 1       | 49        | 23.16                        |                              | 2        |
| 64QAM      | 25      | 0         | 22.16                        |                              | 3        |
|            | 25      | 12        | 22.13                        | 0.3                          | 3        |
|            | 25      | 25        | 22.17                        | 0-3                          | 3        |
|            | 50      | 0         | 22.13                        |                              | 3        |

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 35 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 33 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

**Table 9-11** LTE Band 12 Conducted Powers - 5 MHz Bandwidth

|            |         | <u> </u>  | L Dalid 12 COI       | LTE Band 12                      | - 5 WILL Dalluw       | iuui            |          |
|------------|---------|-----------|----------------------|----------------------------------|-----------------------|-----------------|----------|
|            |         |           |                      | 5 MHz Band 12                    |                       |                 |          |
| Modulation | RB Size | RB Offset | Low Channel<br>23035 | Mid Channel<br>23095             | High Channel<br>23155 | MPR Allowed per | MPR [dB] |
|            |         |           | (701.5 MHz)          | (707.5 MHz) Conducted Power [dBm | (713.5 MHz)           | 3GPP [dB]       |          |
|            | 1       | 0         | 24.50                | 24.55                            | 24.64                 |                 | 0        |
|            | 1       | 12        | 24.48                | 24.45                            | 24.50                 | 0               | 0        |
|            | 1       | 24        | 24.46                | 24.45                            | 24.30                 |                 | 0        |
| QPSK       | 12      | 0         | 24.38                | 24.50                            | 24.45                 |                 | 1        |
| QPSK       | 12      | 6         | 23.98                | 24.15                            | 23.95                 | +               | <u> </u> |
|            | 12      | 13        | 23.94                | 24.13                            | 24.00                 | 0-1             | 1        |
|            | 25      |           | 23.94                |                                  | 24.00                 |                 | 1        |
|            | 25      | 0         |                      | 24.15                            |                       |                 | <u> </u> |
|            | 1       | 0         | 24.12                | 24.45                            | 24.21                 | ļ <u>,</u>      | 1        |
|            | 1       | 12        | 24.03                | 24.35                            | 24.16                 | 0-1             | 1        |
| 400414     | 1       | 24        | 24.02                | 24.30                            | 24.28                 |                 | 1        |
| 16QAM      | 12      | 0         | 22.93                | 23.15                            | 23.00                 | -               | 2        |
|            | 12      | 6         | 22.96                | 23.16                            | 23.08                 | 0-2             | 2        |
|            | 12      | 13        | 22.91                | 23.19                            | 23.01                 |                 | 2        |
|            | 25      | 0         | 22.98                | 23.18                            | 23.08                 |                 | 2        |
|            | 1       | 0         | 23.31                | 23.35                            | 23.35                 |                 | 2        |
|            | 1       | 12        | 23.15                | 23.30                            | 23.12                 | 0-2             | 2        |
|            | 1       | 24        | 23.09                | 23.28                            | 23.20                 |                 | 2        |
| 64QAM      | 12      | 0         | 22.12                | 22.20                            | 22.15                 |                 | 3        |
|            | 12      | 6         | 22.12                | 22.20                            | 22.20                 | 0-3             | 3        |
|            | 12      | 13        | 22.00                | 22.17                            | 22.18                 | ]               | 3        |
|            | 25      | 0         | 22.10                | 22.16                            | 22.22                 |                 | 3        |

**Table 9-12** LTE Band 12 Conducted Powers - 3 MHz Bandwidth

|            |         |           | L Build 12 Con       | LTE Band 12          | O MILL BUILDING      | · ideii                      |          |
|------------|---------|-----------|----------------------|----------------------|----------------------|------------------------------|----------|
|            |         |           |                      | 3 MHz Bandwidth      |                      |                              |          |
|            |         |           | Low Channel          | Mid Channel          | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 23025<br>(700.5 MHz) | 23095<br>(707.5 MHz) | 23165<br>(714.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm | ]                    |                              |          |
|            | 1       | 0         | 24.45                | 24.52                | 24.44                |                              | 0        |
|            | 1       | 7         | 24.59                | 24.59                | 24.35                | 0                            | 0        |
|            | 1       | 14        | 24.45                | 24.60                | 24.37                |                              | 0        |
| QPSK       | 8       | 0         | 24.03                | 24.13                | 24.10                |                              | 1        |
|            | 8       | 4         | 24.02                | 24.12                | 24.08                | 0-1                          | 1        |
|            | 8       | 7         | 23.95                | 24.12                | 24.02                |                              | 1        |
|            | 15      | 0         | 24.01                | 24.14                | 24.12                |                              | 1        |
|            | 1       | 0         | 24.40                | 24.13                | 24.20                |                              | 1        |
|            | 1       | 7         | 24.33                | 24.05                | 24.10                | 0-1                          | 1        |
|            | 1       | 14        | 24.39                | 24.10                | 24.13                | 1                            | 1        |
| 16QAM      | 8       | 0         | 23.04                | 23.05                | 23.00                |                              | 2        |
|            | 8       | 4         | 23.07                | 23.03                | 23.04                | 0-2                          | 2        |
|            | 8       | 7         | 23.01                | 22.99                | 23.09                | 0-2                          | 2        |
|            | 15      | 0         | 23.00                | 22.96                | 23.05                |                              | 2        |
|            | 1       | 0         | 23.24                | 23.39                | 23.17                |                              | 2        |
|            | 1       | 7         | 23.21                | 23.32                | 23.19                | 0-2                          | 2        |
|            | 1       | 14        | 23.35                | 23.32                | 23.26                |                              | 2        |
| 64QAM      | 8       | 0         | 22.07                | 22.30                | 22.12                |                              | 3        |
|            | 8       | 4         | 22.16                | 22.27                | 22.07                | 0-3                          | 3        |
|            | 8       | 7         | 22.12                | 22.24                | 22.10                | ] 0-3                        | 3        |
|            | 15      | 0         | 22.05                | 22.15                | 22.15                | 1                            | 3        |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 26 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 36 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

**Table 9-13** LTF Band 12 Conducted Powers -1 4 MHz Bandwidth

|            |         |           |                      | LTE Band 12<br>1.4 MHz Bandwidth |                      |                              |          |
|------------|---------|-----------|----------------------|----------------------------------|----------------------|------------------------------|----------|
|            |         |           | Low Channel          | Mid Channel                      | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 23017<br>(699.7 MHz) | 23095<br>(707.5 MHz)             | 23173<br>(715.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBn             | 1]                   |                              |          |
|            | 1       | 0         | 24.38                | 24.52                            | 24.35                |                              | 0        |
|            | 1       | 2         | 24.35                | 24.60                            | 24.40                |                              | 0        |
|            | 1       | 5         | 24.33                | 24.52                            | 24.40                | 0                            | 0        |
| QPSK       | 3       | 0         | 24.44                | 24.55                            | 24.33                |                              | 0        |
|            | 3       | 2         | 24.40                | 24.51                            | 24.60                |                              | 0        |
|            | 3       | 3         | 24.31                | 24.50                            | 24.40                |                              | 0        |
|            | 6       | 0         | 23.89                | 24.05                            | 24.05                | 0-1                          | 1        |
|            | 1       | 0         | 24.28                | 24.38                            | 24.10                | 0-1                          | 1        |
|            | 1       | 2         | 24.25                | 24.44                            | 24.11                |                              | 1        |
|            | 1       | 5         | 24.15                | 24.42                            | 24.13                |                              | 1        |
| 16QAM      | 3       | 0         | 24.02                | 24.17                            | 24.08                |                              | 1        |
|            | 3       | 2         | 23.93                | 24.12                            | 24.15                |                              | 1        |
|            | 3       | 3         | 23.95                | 24.11                            | 24.11                |                              | 1        |
|            | 6       | 0         | 22.93                | 23.08                            | 23.06                | 0-2                          | 2        |
|            | 1       | 0         | 23.18                | 23.38                            | 23.14                |                              | 2        |
|            | 1       | 2         | 23.25                | 23.48                            | 23.22                |                              | 2        |
|            | 1       | 5         | 23.09                | 23.30                            | 23.22                | 0-2                          | 2        |
| 64QAM      | 3       | 0         | 23.09                | 23.27                            | 23.12                | J-2                          | 2        |
|            | 3       | 2         | 23.05                | 23.24                            | 23.30                |                              | 2        |
|            | 3       | 3         | 23.02                | 23.20                            | 23.12                |                              | 2        |
|            | 6       | 0         | 21.86                | 22.04                            | 22.00                | 0-3                          | 3        |

| FCC ID: ZNFQ720PS      | PETEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 27 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 37 of 110               |

#### 9.4.3 LTE Band 13

**Table 9-14** LTE Band 13 Conducted Powers - 10 MHz Bandwidth

|            | LTE Band 13<br>10 MHz Bandwidth |                   |                       |                              |          |  |  |  |
|------------|---------------------------------|-------------------|-----------------------|------------------------------|----------|--|--|--|
|            |                                 |                   | Mid Channel           |                              |          |  |  |  |
| Modulation | RB Size                         | RB Size RB Offset | 23230<br>(782.0 MHz)  | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |
|            |                                 |                   | Conducted Power [dBm] | JOFF [UB]                    |          |  |  |  |
|            | 1                               | 0                 | 24.85                 |                              | 0        |  |  |  |
|            | 1                               | 25                | 24.89                 | 0                            | 0        |  |  |  |
|            | 1                               | 49                | 24.94                 |                              | 0        |  |  |  |
| QPSK       | 25                              | 0                 | 24.14                 |                              | 1        |  |  |  |
|            | 25                              | 12                | 24.03                 | 0-1                          | 1        |  |  |  |
|            | 25                              | 25                | 24.09                 | 0-1                          | 1        |  |  |  |
|            | 50                              | 0                 | 24.10                 |                              | 1        |  |  |  |
|            | 1                               | 0                 | 24.28                 |                              | 1        |  |  |  |
|            | 1                               | 25                | 24.23                 | 0-1                          | 1        |  |  |  |
|            | 1                               | 49                | 24.22                 |                              | 1        |  |  |  |
| 16QAM      | 25                              | 0                 | 23.12                 |                              | 2        |  |  |  |
|            | 25                              | 12                | 23.06                 | 0-2                          | 2        |  |  |  |
|            | 25                              | 25                | 23.11                 | 0-2                          | 2        |  |  |  |
|            | 50                              | 0                 | 23.12                 |                              | 2        |  |  |  |
|            | 1                               | 0                 | 23.10                 |                              | 2        |  |  |  |
|            | 1                               | 25                | 23.18                 | 0-2                          | 2        |  |  |  |
|            | 1                               | 49                | 23.13                 |                              | 2        |  |  |  |
| 64QAM      | 25                              | 0                 | 22.17                 |                              | 3        |  |  |  |
|            | 25                              | 12                | 22.10                 | 0-3                          | 3        |  |  |  |
|            | 25                              | 25                | 22.01                 | ] 0-3                        | 3        |  |  |  |
|            | 50                              | 0                 | 22.10                 |                              | 3        |  |  |  |

| <b>LG</b> | Quality Manager |
|-----------|-----------------|
|           | Dama 20 of 110  |
|           | Page 38 of 110  |
|           | (L) LG          |

Table 9-15
LTE Band 13 Conducted Powers - 5 MHz Bandwidth

|            | LTE Band 13<br>5 MHz Bandwidth |                              |       |                              |          |  |  |  |  |
|------------|--------------------------------|------------------------------|-------|------------------------------|----------|--|--|--|--|
| Modulation | RB Size                        | (782.0 MHz)  Conducted Power |       | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |  |
|            | 1                              | 0                            | [dBm] |                              | 0        |  |  |  |  |
|            |                                |                              | 24.61 |                              | 0        |  |  |  |  |
|            | 1                              | 12                           | 24.42 | 0                            | 0        |  |  |  |  |
| o Dou      | 1                              | 24                           | 24.54 |                              | 0        |  |  |  |  |
| QPSK       | 12                             | 0                            | 23.90 |                              | 1        |  |  |  |  |
|            | 12                             | 6                            | 23.87 | 0-1                          | 1        |  |  |  |  |
|            | 12                             | 13                           | 23.83 |                              | 1        |  |  |  |  |
|            | 25                             | 0                            | 23.87 |                              | 1        |  |  |  |  |
|            | 1                              | 0                            | 24.40 |                              | 1        |  |  |  |  |
|            | 1                              | 12                           | 24.13 | 0-1                          | 1        |  |  |  |  |
|            | 1                              | 24                           | 24.32 |                              | 1        |  |  |  |  |
| 16QAM      | 12                             | 0                            | 22.92 |                              | 2        |  |  |  |  |
|            | 12                             | 6                            | 22.94 | 0-2                          | 2        |  |  |  |  |
|            | 12                             | 13                           | 22.92 | 0-2                          | 2        |  |  |  |  |
|            | 25                             | 0                            | 22.97 |                              | 2        |  |  |  |  |
|            | 1                              | 0                            | 23.19 |                              | 2        |  |  |  |  |
|            | 1                              | 12                           | 22.93 | 0-2                          | 2        |  |  |  |  |
|            | 1                              | 24                           | 23.10 |                              | 2        |  |  |  |  |
| 64QAM      | 12                             | 0                            | 21.94 |                              | 3        |  |  |  |  |
|            | 12                             | 6                            | 21.93 | 0.0                          | 3        |  |  |  |  |
|            | 12                             | 13                           | 21.97 | 0-3                          | 3        |  |  |  |  |
|            | 25                             | 0                            | 22.00 |                              | 3        |  |  |  |  |

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 39 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 39 01 110               |

# 9.4.4 LTE Band 26 (Cell)

Table 9-16
LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

|            |               |           | LTE Band 26 (Cell)    |                 |          |
|------------|---------------|-----------|-----------------------|-----------------|----------|
|            |               |           | 15 MHz Bandwidth      |                 |          |
|            |               |           | Mid Channel           |                 |          |
| Modulation | RB Size       | RB Offset | 26865                 | MPR Allowed per | MDD (4D) |
| Modulation | KD SIZE       | RB Oliset | (831.5 MHz)           | 3GPP [dB]       | MPR [dB] |
|            |               |           | Conducted Power [dBm] |                 |          |
|            | 1             | 0         | 25.32                 |                 | 0        |
|            | <u>.</u><br>1 | 36        | 25.31                 | 0               | 0        |
|            | <u>·</u><br>1 | 74        | 25.42                 |                 | 0        |
| QPSK       | 36            | 0         | 24.31                 |                 | 1        |
|            | 36            | 18        | 24.43                 |                 | <br>1    |
|            | 36            | 37        | 24.37                 | 0-1             | 1        |
|            | 75            | 0         | 24.29                 |                 | 1        |
|            | 1             | 0         | 24.38                 |                 | 1        |
|            | 1             | 36        | 24.39                 | 0-1             | 1        |
|            | 1             | 74        | 24.37                 |                 | 1        |
| 16QAM      | 36            | 0         | 23.20                 |                 | 2        |
|            | 36            | 18        | 23.27                 | 0-2             | 2        |
|            | 36            | 37        | 23.33                 | 0-2             | 2        |
|            | 75            | 0         | 23.26                 |                 | 2        |
|            | 1             | 0         | 23.43                 |                 | 2        |
|            | 1             | 36        | 23.41                 | 0-2             | 2        |
|            | 1             | 74        | 23.35                 |                 | 2        |
| 64QAM      | 36            | 0         | 22.33                 |                 | 3        |
|            | 36            | 18        | 22.37                 | 0-3             | 3        |
|            | 36            | 37        | 22.32                 | ] 0-3           | 3        |
|            | 75            | 0         | 22.32                 |                 | 3        |

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 40 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 40 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

**Table 9-17** LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

|            |         | LIE       | Saliu 20 (Cell) C                   | onducted Powe                          | 15 - IU WINZ Dai                     | iuwiutii                     |          |
|------------|---------|-----------|-------------------------------------|----------------------------------------|--------------------------------------|------------------------------|----------|
|            |         |           |                                     | LTE Band 26 (Cell)<br>10 MHz Bandwidth |                                      |                              |          |
| Modulation | RB Size | RB Offset | Low Channel<br>26740<br>(819.0 MHz) | Mid Channel<br>26865<br>(831.5 MHz)    | High Channel<br>26990<br>(844.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                                     | Conducted Power [dBm                   | ]                                    |                              |          |
|            | 1       | 0         | 25.06                               | 24.80                                  | 24.85                                |                              | 0        |
|            | 1       | 25        | 24.81                               | 24.55                                  | 24.76                                | 0                            | 0        |
|            | 1       | 49        | 25.10                               | 24.73                                  | 24.66                                | 1                            | 0        |
| QPSK       | 25      | 0         | 24.47                               | 24.11                                  | 24.15                                | 0-1                          | 1        |
|            | 25      | 12        | 24.43                               | 24.08                                  | 24.06                                |                              | 1        |
|            | 25      | 25        | 24.49                               | 24.08                                  | 24.05                                |                              | 1        |
|            | 50      | 0         | 24.50                               | 24.18                                  | 24.15                                |                              | 1        |
|            | 1       | 0         | 24.45                               | 24.40                                  | 24.40                                |                              | 1        |
|            | 1       | 25        | 24.35                               | 24.23                                  | 24.47                                | 0-1                          | 1        |
|            | 1       | 49        | 24.48                               | 24.40                                  | 24.10                                |                              | 1        |
| 16QAM      | 25      | 0         | 23.50                               | 23.15                                  | 23.22                                |                              | 2        |
|            | 25      | 12        | 23.48                               | 23.07                                  | 23.12                                | 0-2                          | 2        |
|            | 25      | 25        | 23.49                               | 23.05                                  | 23.10                                | 0-2                          | 2        |
|            | 50      | 0         | 23.47                               | 23.09                                  | 23.11                                |                              | 2        |
|            | 1       | 0         | 23.41                               | 23.43                                  | 23.22                                |                              | 2        |
|            | 1       | 25        | 23.10                               | 23.23                                  | 23.31                                | 0-2                          | 2        |
|            | 1       | 49        | 23.35                               | 23.30                                  | 23.22                                | 1                            | 2        |
| 64QAM      | 25      | 0         | 22.00                               | 22.20                                  | 22.27                                |                              | 3        |
|            | 25      | 12        | 22.02                               | 22.15                                  | 22.05                                | 1 , 1                        | 3        |
|            | 25      | 25        | 22.05                               | 22.16                                  | 22.13                                | 0-3                          | 3        |
|            | 50      | 0         | 22.01                               | 22.14                                  | 22.20                                | 1                            | 3        |

**Table 9-18** LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

|            |         |           |                                     | LTE Band 26 (Cell)<br>5 MHz Bandwidth |                                      |                              |          |
|------------|---------|-----------|-------------------------------------|---------------------------------------|--------------------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>26715<br>(816.5 MHz) | Mid Channel<br>26865<br>(831.5 MHz)   | High Channel<br>27015<br>(846.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | . ,                                 | Conducted Power [dBm                  |                                      |                              |          |
|            | 1       | 0         | 24.72                               | 24.65                                 | 24.57                                |                              | 0        |
|            | 1       | 12        | 24.50                               | 24.60                                 | 24.50                                | 0                            | 0        |
|            | 1       | 24        | 24.53                               | 24.50                                 | 24.44                                |                              | 0        |
| QPSK       | 12      | 0         | 24.01                               | 24.10                                 | 24.07                                |                              | 1        |
|            | 12      | 6         | 24.04                               | 24.08                                 | 23.98                                | 0-1                          | 1        |
|            | 12      | 13        | 23.96                               | 24.11                                 | 23.89                                |                              | 1        |
|            | 25      | 0         | 24.00                               | 24.09                                 | 23.99                                |                              | 1        |
|            | 1       | 0         | 24.38                               | 24.47                                 | 24.42                                |                              | 1        |
|            | 1       | 12        | 24.21                               | 24.30                                 | 24.23                                | 0-1                          | 1        |
|            | 1       | 24        | 24.35                               | 24.20                                 | 24.08                                | 7                            | 1        |
| 16QAM      | 12      | 0         | 23.00                               | 23.10                                 | 23.11                                |                              | 2        |
|            | 12      | 6         | 23.10                               | 23.13                                 | 23.06                                | 0-2                          | 2        |
|            | 12      | 13        | 22.95                               | 23.10                                 | 23.01                                | 0-2                          | 2        |
|            | 25      | 0         | 22.98                               | 23.03                                 | 23.04                                |                              | 2        |
|            | 1       | 0         | 23.25                               | 23.36                                 | 23.37                                |                              | 2        |
|            | 1       | 12        | 23.11                               | 23.25                                 | 23.22                                | 0-2                          | 2        |
|            | 1       | 24        | 23.15                               | 23.22                                 | 22.95                                |                              | 2        |
| 64QAM      | 12      | 0         | 22.05                               | 22.14                                 | 22.10                                |                              | 3        |
|            | 12      | 6         | 22.09                               | 22.16                                 | 22.08                                | 0-3                          | 3        |
|            | 12      | 13        | 22.04                               | 22.10                                 | 21.98                                | U-3                          | 3        |
|            | 25      | 0         | 22.06                               | 22.15                                 | 22.00                                |                              | 3        |

| PCTEST*             | SAR EVALUATION REPORT | <b>(</b> LG           | Approved by: Quality Manager |
|---------------------|-----------------------|-----------------------|------------------------------|
| Test Dates:         | DUT Type:             |                       | Dogo 41 of 110               |
| 04/21/19 - 05/15/19 | Portable Handset      |                       | Page 41 of 110               |
|                     | Test Dates:           | Test Dates: DUT Type: | Test Dates: DUT Type:        |

**Table 9-19** LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

|            |         |           |                      | LTE Band 26 (Cell) 3 MHz Bandwidth |                      |                              |          |
|------------|---------|-----------|----------------------|------------------------------------|----------------------|------------------------------|----------|
|            |         |           | Low Channel          | Mid Channel                        | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 26705<br>(815.5 MHz) | 26865<br>(831.5 MHz)               | 27025<br>(847.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm               | ]                    |                              |          |
|            | 1       | 0         | 24.70                | 24.62                              | 24.55                |                              | 0        |
|            | 1       | 7         | 24.68                | 24.53                              | 24.58                | 0                            | 0        |
|            | 1       | 14        | 24.60                | 24.58                              | 24.50                |                              | 0        |
| QPSK       | 8       | 0         | 24.02                | 24.01                              | 24.00                | 0-1                          | 1        |
|            | 8       | 4         | 24.00                | 24.07                              | 23.93                |                              | 1        |
|            | 8       | 7         | 23.99                | 24.05                              | 23.95                |                              | 1        |
|            | 15      | 0         | 23.92                | 24.06                              | 24.01                |                              | 1        |
|            | 1       | 0         | 24.50                | 24.48                              | 24.49                |                              | 1        |
|            | 1       | 7         | 24.47                | 24.38                              | 24.32                | 0-1                          | 1        |
|            | 1       | 14        | 24.42                | 24.25                              | 24.44                |                              | 1        |
| 16QAM      | 8       | 0         | 23.08                | 23.09                              | 23.10                |                              | 2        |
|            | 8       | 4         | 23.09                | 23.16                              | 23.02                | 0-2                          | 2        |
|            | 8       | 7         | 23.12                | 23.13                              | 22.96                | 0-2                          | 2        |
|            | 15      | 0         | 23.03                | 23.09                              | 22.97                |                              | 2        |
|            | 1       | 0         | 23.35                | 23.29                              | 23.25                |                              | 2        |
|            | 1       | 7         | 23.28                | 23.30                              | 23.18                | 0-2                          | 2        |
|            | 1       | 14        | 23.24                | 23.25                              | 23.00                |                              | 2        |
| 64QAM      | 8       | 0         | 22.16                | 22.16                              | 22.02                |                              | 3        |
|            | 8       | 4         | 22.11                | 22.14                              | 22.01                |                              | 3        |
|            | 8       | 7         | 22.12                | 22.17                              | 21.97                | 0-3                          | 3        |
| •          | 15      | 0         | 21.97                | 22.10                              | 21.96                |                              | 3        |

**Table 9-20** LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                                     | LTE Band 26 (Cell)<br>1.4 MHz Bandwidth |                                      |                              |          |
|------------|---------|-----------|-------------------------------------|-----------------------------------------|--------------------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>26697<br>(814.7 MHz) | Mid Channel<br>26865<br>(831.5 MHz)     | High Channel<br>27033<br>(848.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            | 4       |           |                                     | Conducted Power [dBn                    |                                      |                              |          |
|            | 1       | 0         | 24.52                               | 24.50                                   | 24.64                                |                              | 0        |
|            | 1       | 2         | 24.55                               | 24.55                                   | 24.58                                | _                            | 0        |
|            | 1       | 5         | 24.52                               | 24.50                                   | 24.50                                | 0                            | 0        |
| QPSK       | 3       | 0         | 24.45                               | 24.43                                   | 24.42                                |                              | 0        |
|            | 3       | 2         | 24.40                               | 24.49                                   | 24.35                                |                              | 0        |
|            | 3       | 3         | 24.39                               | 24.38                                   | 24.30                                |                              | 0        |
|            | 6       | 0         | 23.95                               | 24.08                                   | 23.82                                | 0-1                          | 1        |
|            | 1       | 0         | 24.35                               | 24.20                                   | 24.30                                | 0-1                          | 1        |
|            | 1       | 2         | 24.32                               | 24.22                                   | 24.28                                |                              | 1        |
|            | 1       | 5         | 24.30                               | 24.16                                   | 24.25                                |                              | 1        |
| 16QAM      | 3       | 0         | 23.92                               | 24.10                                   | 24.00                                | ] 0-1                        | 1        |
|            | 3       | 2         | 23.90                               | 24.05                                   | 23.84                                | 1                            | 1        |
|            | 3       | 3         | 23.85                               | 24.10                                   | 23.77                                | 1                            | 1        |
|            | 6       | 0         | 22.90                               | 23.01                                   | 22.87                                | 0-2                          | 2        |
|            | 1       | 0         | 23.15                               | 23.25                                   | 23.15                                |                              | 2        |
|            | 1       | 2         | 23.08                               | 23.30                                   | 23.12                                | 1                            | 2        |
|            | 1       | 5         | 23.15                               | 23.24                                   | 23.10                                | 1 ,, [                       | 2        |
| 64QAM      | 3       | 0         | 23.05                               | 23.19                                   | 22.95                                | 0-2                          | 2        |
|            | 3       | 2         | 23.07                               | 23.20                                   | 22.99                                | 1                            | 2        |
|            | 3       | 3         | 23.00                               | 23.10                                   | 22.96                                | 1                            | 2        |
|            | 6       | 0         | 21.90                               | 22.00                                   | 21.82                                | 0-3                          | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 42 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 42 01 110               |

# 9.4.5 LTE Band 66 (AWS)

Table 9-21
LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

|            |               |           |                       | LTE Band 66 (AWS) 20 MHz Bandwidth                            |                        |                 |          |
|------------|---------------|-----------|-----------------------|---------------------------------------------------------------|------------------------|-----------------|----------|
| Modulation | RB Size       | RB Offset | Low Channel<br>132072 | Mid Channel<br>132322                                         | High Channel<br>132572 | MPR Allowed per | MPR [dB] |
| Wodulation | ND SIZE       | ND Oliset | (1720.0 MHz)          | (1720.0 MHz) (1745.0 MHz) (1770.0 MHz)  Conducted Power [dBm] | (1770.0 MHz)           | 3GPP [dB]       |          |
|            | 1             | 0         | 23.86                 | 23.75                                                         | 23.96                  |                 | 0        |
| ŀ          | 1             | 50        | 24.00                 | 24.19                                                         | 24.12                  | 0               | 0        |
| ŀ          | 1             | 99        | 24.21                 | 24.30                                                         | 24.26                  | - d             | 0        |
| QPSK       | 50            | 0         | 22.91                 | 22.93                                                         | 23.06                  |                 | 1        |
| Q. O.      | 50            | 25        | 22.98                 | 22.95                                                         | 23.10                  | ┪ ┝             | 1        |
| ŀ          | 50            | 50        | 22.93                 | 23.14                                                         | 23.13                  | 0-1             | 1        |
| ŀ          | 100           | 0         | 22.99                 | 22.99                                                         | 23.13                  | 1               | 1        |
|            | 1             | 0         | 23.15                 | 23.18                                                         | 23.17                  |                 | 1        |
|            | <u>.</u><br>1 | 50        | 23.28                 | 23.21                                                         | 23.20                  | 0-1             | 1        |
| ľ          | 1             | 99        | 23.30                 | 23.30                                                         | 23.30                  | <b>−</b>        | 1        |
| 16QAM      | 50            | 0         | 21.89                 | 21.95                                                         | 22.20                  |                 | 2        |
| l          | 50            | 25        | 21.97                 | 21.95                                                         | 22.07                  | 1               | 2        |
|            | 50            | 50        | 21.89                 | 22.00                                                         | 22.09                  | 0-2             | 2        |
|            | 100           | 0         | 21.96                 | 21.97                                                         | 21.99                  | 1               | 2        |
|            | 1             | 0         | 22.18                 | 22.02                                                         | 22.06                  |                 | 2        |
|            | 1             | 50        | 22.14                 | 22.20                                                         | 22.19                  | 0-2             | 2        |
|            | 1             | 99        | 22.18                 | 22.19                                                         | 22.20                  | 1               | 2        |
| 64QAM      | 50            | 0         | 20.98                 | 20.99                                                         | 20.98                  |                 | 3        |
|            | 50            | 25        | 20.99                 | 21.00                                                         | 21.06                  | 0-3             | 3        |
|            | 50            | 50        | 20.93                 | 20.94                                                         | 21.14                  | U-3             | 3        |
| [          | 100           | 0         | 21.02                 | 21.01                                                         | 20.94                  | ] Γ             | 3        |

Table 9-22 LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

|            |                       |           |                        | LTE Band 66 (AWS)      | 15 TO WITTE BUI        |                              |          |
|------------|-----------------------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |                       |           |                        | 15 MHz Bandwidth       |                        |                              |          |
|            |                       |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size               | RB Offset | 132047<br>(1717.5 MHz) | 132322<br>(1745.0 MHz) | 132597<br>(1772.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            | Conducted Power [dBm] |           |                        |                        |                        |                              |          |
|            | 1                     | 0         | 23.95                  | 24.08                  | 24.06                  |                              | 0        |
|            | 1                     | 36        | 23.60                  | 23.73                  | 23.75                  | 0                            | 0        |
|            | 1                     | 74        | 23.70                  | 23.89                  | 23.81                  |                              | 0        |
| QPSK       | 36                    | 0         | 22.85                  | 22.79                  | 22.85                  |                              | 1        |
|            | 36                    | 18        | 22.69                  | 22.75                  | 22.75                  | 0-1                          | 1        |
|            | 36                    | 37        | 22.70                  | 22.70                  | 22.67                  | -                            | 1        |
|            | 75                    | 0         | 22.74                  | 22.72                  | 22.72                  |                              | 1        |
|            | 1                     | 0         | 23.30                  | 23.25                  | 23.29                  | 0-1                          | 1        |
|            | 1                     | 36        | 22.93                  | 23.05                  | 23.06                  |                              | 1        |
|            | 1                     | 74        | 23.00                  | 23.12                  | 23.02                  |                              | 1        |
| 16QAM      | 36                    | 0         | 21.75                  | 21.74                  | 21.76                  |                              | 2        |
|            | 36                    | 18        | 21.68                  | 21.75                  | 21.79                  | 0-2                          | 2        |
|            | 36                    | 37        | 21.67                  | 21.72                  | 21.69                  | 0-2                          | 2        |
|            | 75                    | 0         | 21.66                  | 21.72                  | 21.73                  |                              | 2        |
|            | 1                     | 0         | 22.27                  | 22.30                  | 22.16                  |                              | 2        |
|            | 1                     | 36        | 22.00                  | 22.01                  | 21.91                  | 0-2                          | 2        |
|            | 1                     | 74        | 22.15                  | 22.00                  | 22.00                  |                              | 2        |
| 64QAM      | 36                    | 0         | 20.79                  | 20.77                  | 20.80                  |                              | 3        |
|            | 36                    | 18        | 20.65                  | 20.73                  | 20.70                  | 0.2                          | 3        |
|            | 36                    | 37        | 20.69                  | 20.75                  | 20.65                  | 0-3                          | 3        |
|            | 75                    | 0         | 20.68                  | 20.74                  | 20.75                  |                              | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |     | Dogg 42 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 43 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

**Table 9-23** LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

|            |         |           |                        | LTE Band 66 (AWS)      |                        | - I GWIGHT                   |          |
|------------|---------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|
|            |         |           |                        | 10 MHz Bandwidth       |                        |                              |          |
|            |         |           | Low Channel            | Mid Channel            | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132022<br>(1715.0 MHz) | 132322<br>(1745.0 MHz) | 132622<br>(1775.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                        | Conducted Power [dBm   | ]                      |                              |          |
|            | 1       | 0         | 23.37                  | 23.47                  | 23.45                  |                              | 0        |
|            | 1       | 25        | 23.70                  | 23.78                  | 23.77                  | 0                            | 0        |
|            | 1       | 49        | 23.90                  | 24.07                  | 24.18                  |                              | 0        |
| QPSK       | 25      | 0         | 22.67                  | 22.71                  | 22.78                  |                              | 1        |
| [          | 25      | 12        | 22.84                  | 22.77                  | 22.78                  | 0-1                          | 1        |
|            | 25      | 25        | 22.74                  | 22.90                  | 22.84                  |                              | 1        |
|            | 50      | 0         | 22.71                  | 22.75                  | 22.76                  |                              | 1        |
|            | 1       | 0         | 22.65                  | 22.60                  | 22.43                  | 0-1                          | 1        |
|            | 1       | 25        | 22.90                  | 23.01                  | 23.05                  |                              | 1        |
|            | 1       | 49        | 23.19                  | 23.30                  | 23.17                  |                              | 1        |
| 16QAM      | 25      | 0         | 21.65                  | 21.80                  | 21.75                  |                              | 2        |
|            | 25      | 12        | 21.80                  | 21.83                  | 21.75                  | 0-2                          | 2        |
|            | 25      | 25        | 21.68                  | 21.84                  | 21.90                  | 0-2                          | 2        |
|            | 50      | 0         | 21.68                  | 21.80                  | 21.73                  |                              | 2        |
|            | 1       | 0         | 21.55                  | 21.65                  | 21.30                  |                              | 2        |
|            | 1       | 25        | 21.76                  | 21.86                  | 21.95                  | 0-2                          | 2        |
|            | 1       | 49        | 22.20                  | 22.20                  | 22.16                  |                              | 2        |
| 64QAM      | 25      | 0         | 20.58                  | 20.80                  | 20.77                  |                              | 3        |
|            | 25      | 12        | 20.77                  | 20.79                  | 20.76                  | 0-3                          | 3        |
|            | 25      | 25        | 20.80                  | 20.96                  | 20.98                  | ] "-3                        | 3        |
|            | 50      | 0         | 20.67                  | 20.80                  | 20.74                  |                              | 3        |

**Table 9-24** LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

|            |         |           | , ,                    | LTE Band 66 (AWS)<br>5 MHz Bandwidth |                        |                              |          |
|------------|---------|-----------|------------------------|--------------------------------------|------------------------|------------------------------|----------|
|            |         |           | Low Channel            | Mid Channel                          | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 131997<br>(1712.5 MHz) | 132322<br>(1745.0 MHz)               | 132647<br>(1777.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm                 | ]                      |                              |          |
|            | 1       | 0         | 23.82                  | 23.95                                | 23.88                  |                              | 0        |
|            | 1       | 12        | 23.67                  | 23.75                                | 24.00                  | 0                            | 0        |
|            | 1       | 24        | 23.62                  | 23.77                                | 23.64                  |                              | 0        |
| QPSK       | 12      | 0         | 22.80                  | 22.87                                | 22.87                  |                              | 1        |
|            | 12      | 6         | 22.66                  | 22.76                                | 22.78                  | 0-1                          | 1        |
|            | 12      | 13        | 22.68                  | 22.69                                | 22.72                  | 0-1                          | 1        |
|            | 25      | 0         | 22.65                  | 22.73                                | 22.78                  |                              | 1        |
|            | 1       | 0         | 23.10                  | 23.20                                | 23.25                  | 0-1                          | 1        |
|            | 1       | 12        | 22.92                  | 23.03                                | 23.01                  |                              | 1        |
|            | 1       | 24        | 22.90                  | 22.98                                | 23.00                  |                              | 1        |
| 16QAM      | 12      | 0         | 21.85                  | 21.89                                | 21.96                  |                              | 2        |
|            | 12      | 6         | 21.75                  | 21.77                                | 21.90                  | 0-2                          | 2        |
|            | 12      | 13        | 21.75                  | 21.78                                | 21.82                  | 0-2                          | 2        |
|            | 25      | 0         | 21.62                  | 21.76                                | 21.80                  |                              | 2        |
|            | 1       | 0         | 22.01                  | 22.08                                | 22.05                  |                              | 2        |
|            | 1       | 12        | 21.82                  | 21.84                                | 21.85                  | 0-2                          | 2        |
|            | 1       | 24        | 21.80                  | 21.97                                | 21.75                  |                              | 2        |
| 64QAM      | 12      | 0         | 20.72                  | 20.80                                | 20.79                  |                              | 3        |
|            | 12      | 6         | 20.66                  | 20.73                                | 20.80                  | 0-3                          | 3        |
|            | 12      | 13        | 20.65                  | 20.63                                | 20.71                  | J-5                          | 3        |
|            | 25      | 0         | 20.66                  | 20.78                                | 20.85                  |                              | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 44 of 440               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 44 of 110               |

**Table 9-25** LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

|            | LTE Band 66 (AWS) |           |                        |                        |                        |                              |          |  |  |
|------------|-------------------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|--|--|
|            |                   |           |                        | 3 MHz Bandwidth        |                        |                              |          |  |  |
|            |                   |           | Low Channel            | Mid Channel            | High Channel           |                              |          |  |  |
| Modulation | RB Size           | RB Offset | 131987<br>(1711.5 MHz) | 132322<br>(1745.0 MHz) | 132657<br>(1778.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                   |           | (                      | Conducted Power [dBm   | ]                      |                              |          |  |  |
|            | 1                 | 0         | 23.77                  | 23.86                  | 23.80                  |                              | 0        |  |  |
|            | 1                 | 7         | 23.80                  | 23.77                  | 23.78                  | 0                            | 0        |  |  |
|            | 1                 | 14        | 23.65                  | 23.76                  | 23.70                  |                              | 0        |  |  |
| QPSK       | 8                 | 0         | 22.74                  | 22.76                  | 22.76                  |                              | 1        |  |  |
|            | 8                 | 4         | 22.75                  | 22.76                  | 22.77                  | 0-1                          | 1        |  |  |
|            | 8                 | 7         | 22.62                  | 22.70                  | 22.73                  | - 0-1                        | 1        |  |  |
|            | 15                | 0         | 22.70                  | 22.72                  | 22.80                  |                              | 1        |  |  |
|            | 1                 | 0         | 23.02                  | 23.05                  | 23.10                  | 0-1                          | 1        |  |  |
|            | 1                 | 7         | 23.00                  | 23.00                  | 23.12                  |                              | 1        |  |  |
|            | 1                 | 14        | 22.95                  | 23.01                  | 22.95                  |                              | 1        |  |  |
| 16QAM      | 8                 | 0         | 21.80                  | 21.85                  | 21.90                  |                              | 2        |  |  |
|            | 8                 | 4         | 21.82                  | 21.84                  | 21.88                  | 0-2                          | 2        |  |  |
|            | 8                 | 7         | 21.73                  | 21.75                  | 21.79                  | 0-2                          | 2        |  |  |
|            | 15                | 0         | 21.71                  | 21.70                  | 21.79                  |                              | 2        |  |  |
|            | 1                 | 0         | 21.90                  | 21.90                  | 21.97                  |                              | 2        |  |  |
|            | 1                 | 7         | 21.89                  | 21.85                  | 21.75                  | 0-2                          | 2        |  |  |
|            | 1                 | 14        | 21.76                  | 21.88                  | 21.80                  |                              | 2        |  |  |
| 64QAM      | 8                 | 0         | 20.73                  | 20.80                  | 20.78                  |                              | 3        |  |  |
|            | 8                 | 4         | 20.77                  | 20.75                  | 20.85                  | 0-3                          | 3        |  |  |
|            | 8                 | 7         | 20.66                  | 20.73                  | 20.82                  | 0-0                          | 3        |  |  |
|            | 15                | 0         | 20.70                  | 20.68                  | 20.75                  |                              | 3        |  |  |

**Table 9-26** LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

| LTE Band 66 (AWS) |         |           |                        |                               |                        |                              |          |
|-------------------|---------|-----------|------------------------|-------------------------------|------------------------|------------------------------|----------|
|                   |         | 1         | Low Channel            | 1.4 MHz Bandwidth Mid Channel | High Channel           |                              |          |
| Modulation        | RB Size | RB Offset | 131979<br>(1710.7 MHz) | 132322<br>(1745.0 MHz)        | 132665<br>(1779.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|                   |         |           | (                      | Conducted Power [dBm          | ]                      |                              |          |
|                   | 1       | 0         | 23.68                  | 23.73                         | 23.71                  | 0                            | 0        |
|                   | 1       | 2         | 23.77                  | 23.69                         | 23.75                  |                              | 0        |
|                   | 1       | 5         | 23.66                  | 23.70                         | 23.65                  |                              | 0        |
| QPSK              | 3       | 0         | 23.65                  | 23.76                         | 23.69                  |                              | 0        |
|                   | 3       | 2         | 23.71                  | 23.80                         | 23.77                  |                              | 0        |
|                   | 3       | 3         | 23.63                  | 23.75                         | 23.68                  |                              | 0        |
|                   | 6       | 0         | 22.68                  | 22.70                         | 22.72                  | 0-1                          | 1        |
|                   | 1       | 0         | 22.92                  | 23.12                         | 23.00                  |                              | 1        |
|                   | 1       | 2         | 23.00                  | 23.14                         | 23.01                  | 0-1                          | 1        |
|                   | 1       | 5         | 22.95                  | 23.01                         | 22.98                  |                              | 1        |
| 16QAM             | 3       | 0         | 22.78                  | 22.91                         | 22.82                  |                              | 1        |
|                   | 3       | 2         | 22.81                  | 22.83                         | 22.75                  |                              | 1        |
|                   | 3       | 3         | 22.72                  | 22.87                         | 22.71                  |                              | 1        |
|                   | 6       | 0         | 21.76                  | 21.83                         | 21.84                  | 0-2                          | 2        |
|                   | 1       | 0         | 21.80                  | 21.94                         | 21.88                  |                              | 2        |
|                   | 1       | 2         | 21.88                  | 21.93                         | 21.84                  |                              | 2        |
|                   | 1       | 5         | 21.75                  | 21.90                         | 21.82                  | 0-2                          | 2        |
| 64QAM             | 3       | 0         | 21.79                  | 21.80                         | 21.83                  | 0-2                          | 2        |
|                   | 3       | 2         | 21.87                  | 21.85                         | 21.94                  |                              | 2        |
|                   | 3       | 3         | 21.81                  | 21.80                         | 21.88                  |                              | 2        |
|                   | 6       | 0         | 20.78                  | 20.75                         | 20.83                  | 0-3                          | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 45 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 45 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | PEV 21 2 M                    |

# 9.4.6 LTE Band 25 (PCS)

Table 9-27
LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

|            | <del>-</del> | ile Balla i | e (i ee) maxim                       | LTE Band 25 (PCS)                    | 1 011010 20 1111                      | iz Bullawiatii               |          |
|------------|--------------|-------------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------|----------|
|            |              |             |                                      | 20 MHz Bandwidth                     |                                       |                              |          |
| Modulation | RB Size      | RB Offset   | Low Channel<br>26140<br>(1860.0 MHz) | Mid Channel<br>26365<br>(1882.5 MHz) | High Channel<br>26590<br>(1905.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |              |             | ·                                    | Conducted Power [dBm                 | ]                                     |                              |          |
|            | 1            | 0           | 23.98                                | 23.96                                | 23.81                                 |                              | 0        |
|            | 1            | 50          | 24.10                                | 23.98                                | 23.88                                 | 0                            | 0        |
|            | 1            | 99          | 24.02                                | 23.93                                | 23.95                                 |                              | 0        |
| QPSK       | 50           | 0           | 22.92                                | 22.88                                | 22.92                                 |                              | 1        |
|            | 50           | 25          | 22.94                                | 22.89                                | 22.83                                 | 0-1                          | 1        |
|            | 50           | 50          | 22.91                                | 22.84                                | 22.80                                 | 0-1                          | 1        |
|            | 100          | 0           | 22.90                                | 22.88                                | 22.89                                 |                              | 1        |
|            | 1            | 0           | 23.12                                | 23.10                                | 23.05                                 | 0-1                          | 1        |
|            | 1            | 50          | 23.16                                | 23.09                                | 23.01                                 |                              | 1        |
|            | 1            | 99          | 23.09                                | 22.99                                | 22.96                                 |                              | 1        |
| 16QAM      | 50           | 0           | 21.91                                | 21.94                                | 21.96                                 |                              | 2        |
|            | 50           | 25          | 21.89                                | 21.97                                | 21.86                                 | 0-2                          | 2        |
|            | 50           | 50          | 21.97                                | 21.89                                | 21.97                                 | 0-2                          | 2        |
|            | 100          | 0           | 21.98                                | 21.90                                | 21.92                                 |                              | 2        |
|            | 1            | 0           | 22.01                                | 22.18                                | 22.10                                 |                              | 2        |
|            | 1            | 50          | 21.95                                | 22.13                                | 22.18                                 | 0-2                          | 2        |
|            | 1            | 99          | 21.90                                | 22.17                                | 22.13                                 |                              | 2        |
| 64QAM      | 50           | 0           | 20.96                                | 20.93                                | 20.85                                 |                              | 3        |
|            | 50           | 25          | 20.94                                | 20.98                                | 20.89                                 | 0-3                          | 3        |
|            | 50           | 50          | 20.90                                | 20.86                                | 20.92                                 |                              | 3        |
|            | 100          | 0           | 20.98                                | 20.92                                | 20.94                                 |                              | 3        |

Table 9-28
LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

|            |         | . I E Bana | 23 (i CO) Maxiili |                      | 1 011010 10 1111      | z Banawiath |          |
|------------|---------|------------|-------------------|----------------------|-----------------------|-------------|----------|
|            |         |            |                   | LTE Band 25 (PCS)    |                       |             |          |
|            |         |            |                   | 15 MHz Bandwidth     |                       | 1           |          |
|            |         |            | Low Channel       | Mid Channel          | High Channel          |             |          |
| Modulation | RB Size | RB Offset  | 26115             | 26365                | 26615 MPR Allowed per |             | MPR [dB] |
|            |         |            | (1857.5 MHz)      | (1882.5 MHz)         | (1907.5 MHz)          | 3GPP [dB]   |          |
|            |         |            |                   | Conducted Power [dBm | <del>-</del>          |             |          |
|            | 1       | 0          | 23.91             | 23.88                | 24.11                 |             | 0        |
|            | 1       | 36         | 23.85             | 23.75                | 24.03                 | 0           | 0        |
|            | 1       | 74         | 23.80             | 23.93                | 24.15                 |             | 0        |
| QPSK       | 36      | 0          | 23.00             | 22.92                | 23.01                 |             | 1        |
|            | 36      | 18         | 22.98             | 22.80                | 23.10                 | 0-1         | 1        |
|            | 36      | 37         | 23.01             | 22.95                | 23.15                 | 0-1         | 1        |
|            | 75      | 0          | 22.99             | 22.97                | 23.15                 |             | 1        |
|            | 1       | 0          | 23.18             | 23.25                | 23.25                 | 0-1         | 1        |
|            | 1       | 36         | 23.17             | 23.11                | 23.20                 |             | 1        |
|            | 1       | 74         | 23.13             | 23.18                | 23.28                 |             | 1        |
| 16QAM      | 36      | 0          | 22.00             | 21.99                | 22.04                 |             | 2        |
|            | 36      | 18         | 21.96             | 21.90                | 22.10                 | 0-2         | 2        |
|            | 36      | 37         | 22.03             | 21.95                | 22.18                 | 0-2         | 2        |
|            | 75      | 0          | 21.98             | 21.96                | 22.20                 |             | 2        |
|            | 1       | 0          | 22.30             | 22.27                | 22.26                 |             | 2        |
|            | 1       | 36         | 22.25             | 22.25                | 22.25                 | 0-2         | 2        |
|            | 1       | 74         | 22.24             | 22.28                | 22.30                 |             | 2        |
| 64QAM      | 36      | 0          | 21.20             | 21.14                | 21.13                 |             | 3        |
|            | 36      | 18         | 21.14             | 21.02                | 21.15                 | 0.3         | 3        |
|            | 36      | 37         | 21.23             | 21.09                | 21.18                 | 0-3         | 3        |
|            | 75      | 0          | 21.18             | 21.16                | 21.22                 |             | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogg 46 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |            | Page 46 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

REV 21.3 M 02/15/2019

**Table 9-29** LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

|            |         | ii E Baila | zo (i oo) maxim       | dill Colladeted              | TOWERS TO IIII               | iz Banawati     |   |
|------------|---------|------------|-----------------------|------------------------------|------------------------------|-----------------|---|
|            |         |            |                       | LTE Band 25 (PCS)            |                              |                 |   |
|            |         | I          | Law Channal           | 10 MHz Bandwidth Mid Channel | High Channel                 |                 |   |
|            |         |            | Low Channel           |                              | High Channel                 | MDD Allowed nor |   |
| Modulation | RB Size | RB Offset  | 26090<br>(1855.0 MHz) |                              | MPR Allowed per<br>3GPP [dB] | MPR [dB]        |   |
|            |         |            |                       | Conducted Power [dBm         |                              | JOFF [UB]       |   |
|            | 1       | 0          | 24.20                 | 24.11                        | 24.02                        |                 | 0 |
|            | 1       | 25         | 24.02                 | 24.00                        | 23.94                        | 0               | 0 |
|            | '       |            |                       |                              |                              | U               |   |
|            | 1       | 49         | 24.30                 | 24.15                        | 23.87                        |                 | 0 |
| QPSK       | 25      | 0          | 23.10                 | 23.14                        | 23.00                        | 1               | 1 |
|            | 25      | 12         | 23.11                 | 23.09                        | 22.98                        | 0-1             | 1 |
|            | 25      | 25         | 23.14                 | 23.08                        | 23.04                        |                 | 1 |
|            | 50      | 0          | 23.13                 | 23.11                        | 23.02                        |                 | 1 |
|            | 1       | 0          | 23.29                 | 23.30                        | 23.30                        | 0-1             | 1 |
|            | 1       | 25         | 23.28                 | 23.23                        | 23.22                        |                 | 1 |
|            | 1       | 49         | 23.25                 | 23.25                        | 23.28                        |                 | 1 |
| 16QAM      | 25      | 0          | 22.10                 | 22.15                        | 22.05                        |                 | 2 |
|            | 25      | 12         | 22.17                 | 22.04                        | 22.07                        | 0-2             | 2 |
|            | 25      | 25         | 22.20                 | 22.09                        | 22.02                        | 0-2             | 2 |
|            | 50      | 0          | 22.13                 | 22.05                        | 22.00                        |                 | 2 |
|            | 1       | 0          | 22.30                 | 22.28                        | 22.20                        |                 | 2 |
|            | 1       | 25         | 22.29                 | 22.18                        | 22.13                        | 0-2             | 2 |
|            | 1       | 49         | 22.26                 | 22.19                        | 22.20                        | ]               | 2 |
| 64QAM      | 25      | 0          | 21.02                 | 21.12                        | 21.00                        | 0-3             | 3 |
|            | 25      | 12         | 21.04                 | 21.04                        | 21.08                        |                 | 3 |
|            | 25      | 25         | 21.16                 | 21.05                        | 21.13                        |                 | 3 |
|            | 50      | 0          | 21.17                 | 21.05                        | 21.08                        | <u>]</u>        | 3 |

**Table 9-30** LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           |                       | LTE Band 25 (PCS)     |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5 MHz Bandwidth       |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 26065<br>(1852.5 MHz) | 26365<br>(1882.5 MHz) | 26665<br>(1912.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 24.22                 | 24.25                 | 24.10                 |                              | 0        |
|            | 1       | 12        | 24.08                 | 24.01                 | 24.02                 | 0                            | 0        |
|            | 1       | 24        | 24.10                 | 23.97                 | 24.03                 |                              | 0        |
| QPSK       | 12      | 0         | 23.18                 | 23.06                 | 23.09                 |                              | 1        |
|            | 12      | 6         | 23.19                 | 23.10                 | 23.05                 | 0-1                          | 1        |
|            | 12      | 13        | 23.10                 | 23.03                 | 23.00                 |                              | 1        |
|            | 25      | 0         | 23.14                 | 23.06                 | 23.04                 |                              | 1        |
|            | 1       | 0         | 23.20                 | 23.25                 | 23.18                 | ]                            | 11       |
|            | 1       | 12        | 23.10                 | 23.13                 | 23.00                 | 0-1                          | 1        |
|            | 1       | 24        | 23.05                 | 23.19                 | 23.06                 |                              | 1        |
| 16QAM      | 12      | 0         | 22.24                 | 22.20                 | 22.05                 |                              | 2        |
|            | 12      | 6         | 22.24                 | 22.16                 | 22.03                 | 0-2                          | 2        |
|            | 12      | 13        | 22.15                 | 22.08                 | 22.04                 | 0-2                          | 2        |
|            | 25      | 0         | 22.14                 | 22.07                 | 22.11                 |                              | 2        |
|            | 1       | 0         | 22.30                 | 22.30                 | 22.28                 |                              | 2        |
|            | 1       | 12        | 22.20                 | 22.24                 | 22.20                 | 0-2                          | 2        |
|            | 1       | 24        | 22.25                 | 22.21                 | 22.22                 |                              | 2        |
| 64QAM      | 12      | 0         | 21.18                 | 21.10                 | 21.16                 | 0-3                          | 3        |
|            | 12      | 6         | 21.20                 | 21.09                 | 21.12                 |                              | 3        |
|            | 12      | 13        | 21.12                 | 21.02                 | 21.10                 |                              | 3        |
|            | 25      | 0         | 21.08                 | 21.04                 | 21.05                 |                              | 3        |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 47 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 47 OF 110               |

**Table 9-31** LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

|            |         |                   | 20 (1 00) Maxim       | LTE Bond 25 (DCC)                    | TOWERS CHILL          | 2 Banawaan      |          |
|------------|---------|-------------------|-----------------------|--------------------------------------|-----------------------|-----------------|----------|
|            |         |                   |                       | LTE Band 25 (PCS)<br>3 MHz Bandwidth |                       |                 |          |
|            |         |                   | Low Channel           | Mid Channel                          | High Channal          |                 |          |
|            |         |                   | 26055                 | 26365                                | High Channel<br>26675 | MPR Allowed per |          |
| Modulation | RB Size | RB Size RB Offset | 26055<br>(1851.5 MHz) | (1882.5 MHz)                         | (1913.5 MHz)          | 3GPP [dB]       | MPR [dB] |
|            |         |                   |                       | Conducted Power [dBm                 |                       | JOFF [ub]       |          |
|            | 1       | 0                 | 24.05                 | 24.19                                | 24.04                 |                 | 0        |
|            | 1       | 7                 | 24.07                 | 24.19                                | 24.07                 | 0               | 0        |
|            | 1       | ·                 |                       |                                      |                       | · ·             |          |
| 0.001      |         | 14                | 24.02                 | 24.04                                | 23.97                 |                 | 0        |
| QPSK       | 8       | 0                 | 23.07                 | 23.00                                | 23.06                 |                 | 1        |
|            | 8       | 4                 | 23.14                 | 23.05                                | 23.00                 | 0-1             | 1        |
|            | 8       | 7                 | 23.02                 | 22.98                                | 23.07                 |                 | 1        |
|            | 15      | 0                 | 23.09                 | 22.96                                | 23.05                 |                 | 1        |
|            | 1       | 0                 | 23.29                 | 23.25                                | 23.26                 | 0-1             | 1        |
|            | 1       | 7                 | 23.27                 | 23.24                                | 23.23                 |                 | 1        |
|            | 1       | 14                | 23.25                 | 23.22                                | 23.18                 |                 | 1        |
| 16QAM      | 8       | 0                 | 22.19                 | 22.16                                | 22.18                 |                 | 2        |
|            | 8       | 4                 | 22.25                 | 22.12                                | 22.09                 | 0-2             | 2        |
|            | 8       | 7                 | 22.15                 | 22.14                                | 22.11                 | 0-2             | 2        |
|            | 15      | 0                 | 22.14                 | 22.05                                | 22.05                 |                 | 2        |
|            | 1       | 0                 | 22.30                 | 22.30                                | 22.28                 |                 | 2        |
|            | 1       | 7                 | 22.23                 | 22.26                                | 22.30                 | 0-2             | 2        |
|            | 1       | 14                | 22.29                 | 22.22                                | 22.29                 |                 | 2        |
| 64QAM      | 8       | 0                 | 21.16                 | 21.02                                | 21.05                 | 0-3             | 3        |
|            | 8       | 4                 | 21.21                 | 21.10                                | 20.99                 |                 | 3        |
|            | 8       | 7                 | 21.08                 | 20.97                                | 21.00                 |                 | 3        |
|            | 15      | 0                 | 21.12                 | 21.00                                | 21.04                 |                 | 3        |

**Table 9-32** LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                      | LTE Band 25 (PCS)                   |                       |                 |          |
|------------|---------|-----------|----------------------|-------------------------------------|-----------------------|-----------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>26047 | 1.4 MHz Bandwidth Mid Channel 26365 | High Channel<br>26683 | MPR Allowed per | MPR [dB] |
|            |         |           | (1850.7 MHz)         | (1882.5 MHz) Conducted Power [dBm   | (1914.3 MHz)<br>1     | 3GPP [dB]       |          |
|            | 1       | 0         | 24.04                | 24.02                               | 24.00                 |                 | 0        |
|            | 1       | 2         | 24.06                | 24.08                               | 24.02                 | 1               | 0        |
|            | 1       | 5         | 24.02                | 23.94                               | 23.94                 | 1               | 0        |
| QPSK       | 3       | 0         | 24.00                | 24.02                               | 23.91                 | 0               | 0        |
|            | 3       | 2         | 24.08                | 24.07                               | 23.95                 |                 | 0        |
|            | 3       | 3         | 24.07                | 23.96                               | 23.90                 |                 | 0        |
|            | 6       | 0         | 23.03                | 23.01                               | 22.93                 | 0-1             | 1        |
|            | 1       | 0         | 23.30                | 23.14                               | 23.30                 | 0-1             | 1        |
|            | 1       | 2         | 23.27                | 23.05                               | 23.21                 |                 | 1        |
| [          | 1       | 5         | 23.22                | 23.02                               | 23.15                 |                 | 1        |
| 16QAM      | 3       | 0         | 23.12                | 23.10                               | 23.01                 |                 | 1        |
|            | 3       | 2         | 23.19                | 23.15                               | 23.00                 |                 | 1        |
|            | 3       | 3         | 23.13                | 23.08                               | 23.04                 |                 | 1        |
|            | 6       | 0         | 22.20                | 22.07                               | 22.09                 | 0-2             | 2        |
|            | 1       | 0         | 22.22                | 22.20                               | 22.10                 |                 | 2        |
|            | 1       | 2         | 22.28                | 22.26                               | 22.11                 |                 | 2        |
|            | 11      | 5         | 22.21                | 22.09                               | 21.98                 | 0-2             | 2        |
| 64QAM      | 3       | 0         | 22.10                | 22.10                               | 22.15                 | 0-2             | 2        |
|            | 3       | 2         | 22.25                | 22.20                               | 22.16                 |                 | 2        |
|            | 3       | 3         | 22.22                | 22.12                               | 22.19                 |                 | 2        |
|            | 6       | 0         | 21.18                | 21.02                               | 21.08                 | 0-3             | 3        |

| PCTEST:             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|---------------------|-----------------------|-------------------------------|
| Test Dates:         | DUT Type:             | Dags 49 of 110                |
| 04/21/19 - 05/15/19 | Portable Handset      | Page 48 of 110                |
|                     | Test Dates:           | Test Dates: DUT Type:         |

**Table 9-33** LTE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

|            |         | - I L Dulla | 23 (1 00) Reduc |                      |              | <u> </u>        |          |
|------------|---------|-------------|-----------------|----------------------|--------------|-----------------|----------|
|            |         |             |                 | LTE Band 25 (PCS)    |              |                 |          |
|            |         | 1           |                 | 20 MHz Bandwidth     |              |                 |          |
|            |         |             | Low Channel     | Mid Channel          | High Channel |                 |          |
| Modulation | RB Size | RB Offset   | 26140           | 26365                | 26590        | MPR Allowed per | MPR [dB] |
|            |         | 1           | (1860.0 MHz)    | (1882.5 MHz)         | (1905.0 MHz) | 3GPP [dB]       |          |
|            |         |             |                 | Conducted Power [dBm | -            |                 |          |
|            | 1       | 0           | 23.65           | 23.55                | 23.23        |                 | 0        |
|            | 1       | 50          | 23.70           | 23.68                | 23.76        | 0               | 0        |
|            | 1       | 99          | 23.46           | 23.57                | 23.56        |                 | 0        |
| QPSK       | 50      | 0           | 22.90           | 22.95                | 22.92        |                 | 0.5      |
|            | 50      | 25          | 22.88           | 22.76                | 22.67        | 0-1             | 0.5      |
|            | 50      | 50          | 22.87           | 22.77                | 22.65        |                 | 0.5      |
|            | 100     | 0           | 22.85           | 22.72                | 22.85        |                 | 0.5      |
|            | 1       | 0           | 23.07           | 23.03                | 23.05        |                 | 0.5      |
|            | 1       | 50          | 23.22           | 23.15                | 23.09        | 0-1             | 0.5      |
|            | 1       | 99          | 22.86           | 22.86                | 23.12        |                 | 0.5      |
| 16QAM      | 50      | 0           | 21.87           | 21.68                | 22.30        |                 | 1.5      |
|            | 50      | 25          | 21.94           | 21.77                | 21.76        | 0-2             | 1.5      |
|            | 50      | 50          | 21.83           | 21.81                | 21.62        | 0-2             | 1.5      |
|            | 100     | 0           | 21.89           | 21.86                | 21.83        |                 | 1.5      |
|            | 1       | 0           | 22.08           | 22.07                | 22.11        |                 | 1.5      |
|            | 1       | 50          | 22.14           | 22.29                | 22.19        | 0-2             | 1.5      |
|            | 1       | 99          | 21.48           | 21.72                | 21.42        |                 | 1.5      |
| 64QAM      | 50      | 0           | 20.84           | 20.85                | 20.77        |                 | 2.5      |
|            | 50      | 25          | 20.95           | 20.79                | 21.05        | 0-3             | 2.5      |
|            | 50      | 50          | 20.83           | 20.82                | 20.81        |                 | 2.5      |
|            | 100     | 0           | 20.81           | 20.89                | 20.83        |                 | 2.5      |

**Table 9-34** LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

|            |         |           | 20 (1 00) 110000     | LTE Band 25 (PCS)    |                       |                 |          |
|------------|---------|-----------|----------------------|----------------------|-----------------------|-----------------|----------|
|            |         |           |                      | 15 MHz Bandwidth     |                       |                 |          |
|            |         |           | Low Channel<br>26115 | Mid Channel<br>26365 | High Channel<br>26615 | MPR Allowed per |          |
| Modulation | RB Size | RB Offset | (1857.5 MHz)         | (1882.5 MHz)         | (1907.5 MHz)          | 3GPP [dB]       | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm | ]                     |                 |          |
|            | 1       | 0         | 23.65                | 23.47                | 23.64                 |                 | 0        |
|            | 1       | 36        | 23.52                | 23.35                | 23.58                 | 0               | 0        |
|            | 1       | 74        | 23.53                | 23.42                | 23.71                 |                 | 0        |
| QPSK       | 36      | 0         | 22.85                | 22.99                | 22.98                 |                 | 0.5      |
|            | 36      | 18        | 23.11                | 23.01                | 22.96                 | 0-1             | 0.5      |
|            | 36      | 37        | 23.05                | 22.91                | 22.96                 |                 | 0.5      |
|            | 75      | 0         | 22.94                | 22.95                | 22.96                 |                 | 0.5      |
|            | 1       | 0         | 23.26                | 23.29                | 23.29                 | 0-1             | 0.5      |
|            | 1       | 36        | 23.24                | 23.24                | 22.89                 |                 | 0.5      |
|            | 1       | 74        | 23.22                | 23.22                | 23.05                 |                 | 0.5      |
| 16QAM      | 36      | 0         | 21.93                | 22.03                | 22.00                 |                 | 1.5      |
|            | 36      | 18        | 22.15                | 22.14                | 22.08                 | 0-2             | 1.5      |
|            | 36      | 37        | 22.07                | 22.01                | 22.04                 | 0-2             | 1.5      |
|            | 75      | 0         | 22.03                | 22.05                | 22.11                 |                 | 1.5      |
|            | 1       | 0         | 22.11                | 22.24                | 22.25                 |                 | 1.5      |
|            | 1       | 36        | 22.07                | 22.12                | 22.20                 | 0-2             | 1.5      |
|            | 1       | 74        | 22.13                | 22.20                | 22.25                 |                 | 1.5      |
| 64QAM      | 36      | 0         | 20.93                | 21.05                | 21.17                 | 0-3             | 2.5      |
|            | 36      | 18        | 20.93                | 21.09                | 21.11                 |                 | 2.5      |
|            | 36      | 37        | 21.02                | 20.99                | 21.12                 |                 | 2.5      |
| ĺ          | 75      | 0         | 21.00                | 21.08                | 21.13                 |                 | 2.5      |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 40 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 49 of 110               |

**Table 9-35** LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

|            |         |           | 20 (1.00) 110441 | ced Conducted        |              |                 |          |
|------------|---------|-----------|------------------|----------------------|--------------|-----------------|----------|
|            |         |           |                  | LTE Band 25 (PCS)    |              |                 |          |
|            |         |           |                  | 10 MHz Bandwidth     |              |                 |          |
|            |         |           | Low Channel      | Mid Channel          | High Channel | l               |          |
| Modulation | RB Size | RB Offset | 26090            | 26365                | 26640        | MPR Allowed per | MPR [dB] |
|            |         |           | (1855.0 MHz)     | (1882.5 MHz)         | (1910.0 MHz) | 3GPP [dB]       | • •      |
|            |         |           |                  | Conducted Power [dBm |              |                 |          |
|            | 1       | 0         | 23.57            | 23.63                | 23.72        |                 | 0        |
|            | 1       | 25        | 23.49            | 23.53                | 23.67        | 0               | 0        |
|            | 1       | 49        | 23.45            | 23.61                | 23.60        |                 | 0        |
| QPSK       | 25      | 0         | 23.11            | 23.02                | 23.10        |                 | 0.5      |
|            | 25      | 12        | 22.99            | 23.01                | 23.10        | 0-1             | 0.5      |
|            | 25      | 25        | 23.02            | 23.00                | 23.12        |                 | 0.5      |
|            | 50      | 0         | 23.02            | 23.02                | 23.09        |                 | 0.5      |
|            | 1       | 0         | 22.87            | 23.29                | 23.08        |                 | 0.5      |
|            | 1       | 25        | 22.79            | 22.99                | 23.16        | 0-1             | 0.5      |
|            | 1       | 49        | 22.89            | 23.13                | 23.28        |                 | 0.5      |
| 16QAM      | 25      | 0         | 22.10            | 22.01                | 22.11        |                 | 1.5      |
|            | 25      | 12        | 22.00            | 22.03                | 22.12        | 0-2             | 1.5      |
|            | 25      | 25        | 22.04            | 22.09                | 22.15        | 0-2             | 1.5      |
|            | 50      | 0         | 21.97            | 21.94                | 22.10        |                 | 1.5      |
|            | 1       | 0         | 22.29            | 22.30                | 22.29        |                 | 1.5      |
|            | 1       | 25        | 22.30            | 22.29                | 22.26        | 0-2             | 1.5      |
|            | 1       | 49        | 22.28            | 22.20                | 22.17        |                 | 1.5      |
| 64QAM      | 25      | 0         | 21.03            | 20.98                | 21.10        | 0-3             | 2.5      |
|            | 25      | 12        | 20.93            | 21.00                | 21.12        |                 | 2.5      |
|            | 25      | 25        | 21.02            | 21.08                | 21.19        |                 | 2.5      |
|            | 50      | 0         | 21.05            | 21.04                | 21.11        |                 | 2.5      |

**Table 9-36** LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

|            |         |           |                       | LTE Band 25 (PCS)     |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 5 MHz Bandwidth       |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 26065<br>(1852.5 MHz) | 26365<br>(1882.5 MHz) | 26665<br>(1912.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Conducted Power [dBm  |                       |                              |          |
|            | 1       | 0         | 23.80                 | 23.71                 | 23.80                 |                              | 0        |
|            | 1       | 12        | 23.58                 | 23.53                 | 23.70                 | 0                            | 0        |
|            | 1       | 24        | 23.42                 | 23.67                 | 23.71                 |                              | 0        |
| QPSK       | 12      | 0         | 23.01                 | 23.06                 | 23.22                 |                              | 0.5      |
|            | 12      | 6         | 23.03                 | 23.05                 | 23.16                 | 0-1                          | 0.5      |
|            | 12      | 13        | 22.95                 | 22.99                 | 23.13                 | ]                            | 0.5      |
|            | 25      | 0         | 22.96                 | 23.06                 | 23.16                 |                              | 0.5      |
|            | 1       | 0         | 23.21                 | 23.30                 | 23.21                 |                              | 0.5      |
|            | 1       | 12        | 23.29                 | 23.28                 | 23.30                 | 0-1                          | 0.5      |
|            | 1       | 24        | 23.14                 | 23.30                 | 23.30                 |                              | 0.5      |
| 16QAM      | 12      | 0         | 22.08                 | 22.12                 | 22.23                 |                              | 1.5      |
|            | 12      | 6         | 22.16                 | 22.07                 | 22.19                 | 0-2                          | 1.5      |
|            | 12      | 13        | 22.16                 | 22.02                 | 22.15                 | ] 0-2                        | 1.5      |
|            | 25      | 0         | 22.07                 | 22.07                 | 22.10                 |                              | 1.5      |
|            | 1       | 0         | 22.16                 | 22.21                 | 22.24                 |                              | 1.5      |
|            | 1       | 12        | 22.00                 | 22.07                 | 22.13                 | 0-2                          | 1.5      |
|            | 1       | 24        | 21.93                 | 22.15                 | 22.12                 |                              | 1.5      |
| 64QAM      | 12      | 0         | 21.01                 | 21.08                 | 21.24                 |                              | 2.5      |
|            | 12      | 6         | 20.96                 | 21.01                 | 21.07                 | 0-3                          | 2.5      |
|            | 12      | 13        | 20.93                 | 20.98                 | 21.06                 |                              | 2.5      |
|            | 25      | 0         | 21.07                 | 20.99                 | 21.10                 |                              | 2.5      |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 50 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 50 of 110               |

**Table 9-37** LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

|            |         | LIL Balla | 20 (1 00) 11000      | LTE Band 25 (PCS)    | 1 011010 0 111112     | - Ballawiatii   |           |
|------------|---------|-----------|----------------------|----------------------|-----------------------|-----------------|-----------|
|            |         |           |                      | 3 MHz Bandwidth      |                       |                 |           |
| Modulation | RB Size | RB Offset | Low Channel<br>26055 | Mid Channel<br>26365 | High Channel<br>26675 | MPR Allowed per | MPR [dB]  |
| Wodulation | KD SIZE | KD Oliset | (1851.5 MHz)         | (1882.5 MHz)         | (1913.5 MHz)          | 3GPP [dB]       | WIFK [UD] |
|            |         |           |                      | Conducted Power [dBm | ]                     |                 |           |
|            | 1       | 0         | 23.67                | 23.46                | 23.62                 |                 | 0         |
|            | 1       | 7         | 23.72                | 23.52                | 23.56                 | 0               | 0         |
|            | 1       | 14        | 23.58                | 23.58                | 23.59                 |                 | 0         |
| QPSK       | 8       | 0         | 22.94                | 22.86                | 23.01                 |                 | 0.5       |
|            | 8       | 4         | 22.99                | 22.89                | 22.96                 | 0-1             | 0.5       |
|            | 8       | 7         | 22.90                | 22.82                | 22.97                 | 0-1             | 0.5       |
|            | 15      | 0         | 22.97                | 22.80                | 23.02                 |                 | 0.5       |
|            | 1       | 0         | 23.24                | 23.12                | 23.20                 |                 | 0.5       |
|            | 1       | 7         | 23.23                | 23.09                | 23.19                 | 0-1             | 0.5       |
|            | 1       | 14        | 23.20                | 23.11                | 23.17                 |                 | 0.5       |
| 16QAM      | 8       | 0         | 22.12                | 22.12                | 22.17                 |                 | 1.5       |
|            | 8       | 4         | 22.13                | 22.02                | 22.12                 | 0-2             | 1.5       |
|            | 8       | 7         | 22.12                | 22.03                | 22.08                 | 0-2             | 1.5       |
|            | 15      | 0         | 22.12                | 22.07                | 21.97                 |                 | 1.5       |
|            | 1       | 0         | 22.20                | 22.13                | 22.19                 |                 | 1.5       |
|            | 1       | 7         | 22.23                | 22.17                | 22.21                 | 0-2             | 1.5       |
|            | 1       | 14        | 22.21                | 22.19                | 22.18                 |                 | 1.5       |
| 64QAM      | 8       | 0         | 21.10                | 20.91                | 20.90                 |                 | 2.5       |
|            | 8       | 4         | 21.05                | 21.00                | 21.02                 | 0-3             | 2.5       |
|            | 8       | 7         | 21.08                | 21.01                | 21.00                 | 0-5             | 2.5       |
|            | 15      | 0         | 21.11                | 21.00                | 20.99                 |                 | 2.5       |

**Table 9-38** LTE Band 25 (PCS) Reduced Conducted Powers - 1.4 MHz Bandwidth

|            |         |           | (:) : toudo           | LTE Band 25 (PCS)     |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 1.4 MHz Bandwidth     |                       |                              |          |
|            |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 26047<br>(1850.7 MHz) | 26365<br>(1882.5 MHz) | 26683<br>(1914.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | · ·                   | Conducted Power [dBm  | ]                     |                              |          |
|            | 1       | 0         | 23.60                 | 23.45                 | 23.41                 |                              | 0        |
|            | 1       | 2         | 23.66                 | 23.46                 | 23.54                 |                              | 0        |
|            | 1       | 5         | 23.60                 | 23.50                 | 23.55                 | 0                            | 0        |
| QPSK       | 3       | 0         | 23.61                 | 23.44                 | 23.59                 |                              | 0        |
|            | 3       | 2         | 23.66                 | 23.51                 | 23.60                 |                              | 0        |
|            | 3       | 3         | 23.64                 | 23.47                 | 23.52                 |                              | 0        |
|            | 6       | 0         | 22.95                 | 22.89                 | 22.90                 | 0-1                          | 0.5      |
|            | 1       | 0         | 23.23                 | 23.00                 | 23.20                 |                              | 0.5      |
|            | 1       | 2         | 23.21                 | 23.08                 | 23.17                 |                              | 0.5      |
|            | 1       | 5         | 23.17                 | 23.07                 | 23.16                 | 0-1                          | 0.5      |
| 16QAM      | 3       | 0         | 23.11                 | 23.12                 | 23.18                 | 0-1                          | 0.5      |
|            | 3       | 2         | 23.14                 | 23.08                 | 23.21                 |                              | 0.5      |
|            | 3       | 3         | 23.08                 | 23.05                 | 23.19                 |                              | 0.5      |
|            | 6       | 0         | 22.11                 | 22.05                 | 22.07                 | 0-2                          | 1.5      |
|            | 1       | 0         | 22.25                 | 22.12                 | 22.22                 |                              | 1.5      |
|            | 1       | 2         | 22.17                 | 22.17                 | 22.17                 |                              | 1.5      |
|            | 1       | 5         | 22.20                 | 22.15                 | 22.26                 | 0-2                          | 1.5      |
| 64QAM      | 3       | 0         | 22.08                 | 22.09                 | 22.18                 | 0-2                          | 1.5      |
|            | 3       | 2         | 22.14                 | 22.10                 | 22.08                 |                              | 1.5      |
|            | 3       | 3         | 22.13                 | 22.12                 | 22.15                 |                              | 1.5      |
|            | 6       | 0         | 21.05                 | 20.98                 | 20.90                 | 0-3                          | 2.5      |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 51 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 51 01 110               |

#### 9.4.7 LTE Band 41

**Table 9-39** LTE Band 41 PC3 Maximum Conducted Powers - 20 MHz Bandwidth

|            |         |           | 411 00                |                       | LTE Band 41           | Powers - 20           | WITE Dallaw           | ratii                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 2                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.60                 | 25.00                 | 24.82                 | 24.56                 | 24.66                 |                              | 0        |
|            | 1       | 50        | 24.59                 | 24.62                 | 24.65                 | 24.40                 | 24.59                 | 0                            | 0        |
|            | 1       | 99        | 24.77                 | 24.76                 | 24.75                 | 24.54                 | 24.66                 |                              | 0        |
| QPSK       | 50      | 0         | 23.83                 | 24.00                 | 23.99                 | 23.85                 | 23.86                 |                              | 1        |
|            | 50      | 25        | 23.93                 | 23.92                 | 23.98                 | 23.77                 | 23.85                 | 0-1                          | 1        |
|            | 50      | 50        | 23.94                 | 23.88                 | 23.99                 | 23.57                 | 23.84                 | 0-1                          | 1        |
|            | 100     | 0         | 23.81                 | 23.85                 | 23.97                 | 23.87                 | 23.89                 |                              | 1        |
|            | 1       | 0         | 23.80                 | 23.94                 | 23.84                 | 23.71                 | 23.91                 |                              | 1        |
|            | 1       | 50        | 23.82                 | 23.92                 | 23.91                 | 23.85                 | 23.92                 | 0-1                          | 1        |
|            | 1       | 99        | 23.87                 | 23.95                 | 23.97                 | 23.92                 | 23.87                 |                              | 1        |
| 16QAM      | 50      | 0         | 22.93                 | 22.89                 | 22.94                 | 22.81                 | 22.93                 |                              | 2        |
|            | 50      | 25        | 22.89                 | 22.81                 | 22.97                 | 22.84                 | 22.89                 | 0-2                          | 2        |
|            | 50      | 50        | 22.81                 | 22.87                 | 22.96                 | 22.87                 | 22.89                 | 0-2                          | 2        |
|            | 100     | 0         | 22.91                 | 22.89                 | 22.94                 | 22.84                 | 22.87                 |                              | 2        |
|            | 1       | 0         | 22.74                 | 22.90                 | 22.70                 | 22.55                 | 22.81                 |                              | 2        |
|            | 1       | 50        | 22.76                 | 22.87                 | 22.97                 | 22.63                 | 22.76                 | 0-2                          | 2        |
|            | 1       | 99        | 22.69                 | 22.79                 | 22.84                 | 22.72                 | 22.68                 |                              | 2        |
| 64QAM      | 50      | 0         | 21.89                 | 21.85                 | 21.92                 | 21.96                 | 21.96                 |                              | 3        |
|            | 50      | 25        | 21.94                 | 21.92                 | 22.00                 | 21.94                 | 21.85                 | 0-3                          | 3        |
|            | 50      | 50        | 21.92                 | 21.91                 | 21.91                 | 21.73                 | 21.96                 | 1 °                          | 3        |
|            | 100     | 0         | 21.97                 | 21.90                 | 21.98                 | 21.87                 | 21.92                 |                              | 3        |

**Table 9-40** LTF Band 41 PC3 Maximum Conducted Powers - 15 MHz Bandwidth

|            | LIE Band 41 PC3 Maximum Conducted Powers - 15 MHz Bandwidth  LTE Band 41  15 MHz Bandwidth |           |                       |                       |                       |                       |                       |                              |          |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|--|--|--|
|            |                                                                                            |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |  |  |  |  |
| Modulation | RB Size                                                                                    | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |  |
|            |                                                                                            |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |  |  |  |  |
|            | 1                                                                                          | 0         | 24.68                 | 24.61                 | 24.65                 | 24.62                 | 24.67                 |                              | 0        |  |  |  |  |
|            | 1                                                                                          | 36        | 24.61                 | 24.53                 | 24.56                 | 24.82                 | 24.62                 | 0                            | 0        |  |  |  |  |
|            | 1                                                                                          | 74        | 24.77                 | 24.72                 | 24.58                 | 24.92                 | 24.64                 |                              | 0        |  |  |  |  |
| QPSK       | 36                                                                                         | 0         | 23.61                 | 23.56                 | 23.51                 | 23.26                 | 23.53                 |                              | 1        |  |  |  |  |
|            | 36                                                                                         | 18        | 23.64                 | 23.63                 | 23.55                 | 23.34                 | 23.63                 | 0-1                          | 1        |  |  |  |  |
|            | 36                                                                                         | 37        | 23.68                 | 23.60                 | 23.64                 | 23.40                 | 23.64                 | 0-1                          | 1        |  |  |  |  |
|            | 75                                                                                         | 0         | 23.61                 | 23.62                 | 23.45                 | 23.27                 | 23.55                 |                              | 1        |  |  |  |  |
|            | 1                                                                                          | 0         | 23.96                 | 23.86                 | 23.79                 | 23.96                 | 23.68                 |                              | 1        |  |  |  |  |
|            | 1                                                                                          | 36        | 23.87                 | 23.76                 | 23.69                 | 23.86                 | 23.74                 | 0-1                          | 1        |  |  |  |  |
|            | 1                                                                                          | 74        | 23.85                 | 23.75                 | 23.89                 | 23.73                 | 23.76                 |                              | 1        |  |  |  |  |
| 16QAM      | 36                                                                                         | 0         | 22.69                 | 22.55                 | 22.42                 | 22.20                 | 22.55                 |                              | 2        |  |  |  |  |
|            | 36                                                                                         | 18        | 22.80                 | 22.66                 | 22.48                 | 22.32                 | 22.58                 | 0-2                          | 2        |  |  |  |  |
|            | 36                                                                                         | 37        | 22.81                 | 22.62                 | 22.64                 | 22.38                 | 22.55                 | 0-2                          | 2        |  |  |  |  |
|            | 75                                                                                         | 0         | 22.64                 | 22.65                 | 22.53                 | 22.28                 | 22.51                 |                              | 2        |  |  |  |  |
|            | 1                                                                                          | 0         | 22.98                 | 22.90                 | 22.28                 | 22.28                 | 22.72                 |                              | 2        |  |  |  |  |
|            | 1                                                                                          | 36        | 22.97                 | 22.82                 | 22.51                 | 22.53                 | 22.60                 | 0-2                          | 2        |  |  |  |  |
|            | 1                                                                                          | 74        | 22.95                 | 22.78                 | 22.71                 | 22.59                 | 22.48                 |                              | 2        |  |  |  |  |
| 64QAM      | 36                                                                                         | 0         | 21.60                 | 21.60                 | 21.50                 | 21.26                 | 21.51                 | 0-3                          | 3        |  |  |  |  |
|            | 36                                                                                         | 18        | 21.72                 | 21.71                 | 21.52                 | 21.39                 | 21.53                 |                              | 3        |  |  |  |  |
|            | 36                                                                                         | 37        | 21.66                 | 21.69                 | 21.67                 | 21.45                 | 21.55                 | 0-3                          | 3        |  |  |  |  |
|            | 75                                                                                         | 0         | 21.59                 | 21.70                 | 21.48                 | 21.45                 | 21.57                 |                              | 3        |  |  |  |  |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 52 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 52 of 110               |

**Table 9-41** LTE Band 41 PC3 Maximum Conducted Powers - 10 MHz Bandwidth

|            |         | LILD      | and 41 FC3            | Waxiiiiuiii C         | LTE Band 41           | owers - 10            | WII IZ Dalluw         | idui                         |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 1                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.83                 | 24.63                 | 24.51                 | 24.62                 | 24.87                 |                              | 0        |
|            | 1       | 25        | 24.72                 | 24.63                 | 24.64                 | 24.46                 | 24.80                 | 0                            | 0        |
|            | 1       | 49        | 24.80                 | 24.91                 | 24.52                 | 24.65                 | 24.87                 |                              | 0        |
| QPSK       | 25      | 0         | 23.65                 | 23.81                 | 23.70                 | 23.40                 | 23.57                 |                              | 1        |
|            | 25      | 12        | 23.69                 | 23.75                 | 23.61                 | 23.46                 | 23.62                 | 0-1                          | 1        |
|            | 25      | 25        | 23.78                 | 23.80                 | 23.67                 | 23.49                 | 23.68                 | 0-1                          | 1        |
|            | 50      | 0         | 23.72                 | 23.71                 | 23.65                 | 23.41                 | 23.55                 |                              | 1        |
|            | 1       | 0         | 23.72                 | 23.70                 | 23.90                 | 23.81                 | 23.64                 |                              | 1        |
|            | 1       | 25        | 23.62                 | 23.71                 | 23.74                 | 23.65                 | 23.54                 | 0-1                          | 1        |
|            | 1       | 49        | 23.71                 | 23.93                 | 23.94                 | 23.84                 | 23.64                 |                              | 1        |
| 16QAM      | 25      | 0         | 22.69                 | 22.74                 | 22.68                 | 22.43                 | 22.58                 |                              | 2        |
|            | 25      | 12        | 22.75                 | 22.69                 | 22.66                 | 22.48                 | 22.70                 | 0-2                          | 2        |
|            | 25      | 25        | 22.78                 | 22.70                 | 22.62                 | 22.55                 | 22.62                 | 0-2                          | 2        |
|            | 50      | 0         | 22.79                 | 22.72                 | 22.65                 | 22.41                 | 22.61                 |                              | 2        |
|            | 1       | 0         | 22.85                 | 22.60                 | 22.66                 | 22.65                 | 22.63                 |                              | 2        |
|            | 1       | 25        | 22.75                 | 22.53                 | 22.53                 | 22.53                 | 22.62                 | 0-2                          | 2        |
|            | 1       | 49        | 22.86                 | 22.84                 | 22.72                 | 22.69                 | 22.68                 |                              | 2        |
| 64QAM      | 25      | 0         | 21.61                 | 21.73                 | 21.62                 | 21.41                 | 21.52                 | ]                            | 3        |
|            | 25      | 12        | 21.70                 | 21.73                 | 21.64                 | 21.44                 | 21.57                 | 0-3                          | 3        |
|            | 25      | 25        | 21.63                 | 21.76                 | 21.68                 | 21.52                 | 21.49                 |                              | 3        |
|            | 50      | 0         | 21.81                 | 21.70                 | 21.63                 | 21.52                 | 21.49                 |                              | 3        |

**Table 9-42** LTE Pand 41 DC3 Maximum Conducted Dowers - 5 MHz Bandwidth

|            |         | LIEB      | allu 41 PC            | Waxiiiiuiii           | LTE Band 41           | Powers - 5 N          | Inz Balluw            | iutii                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       |                       | MHz Bandwidth         |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 24.61                 | 24.71                 | 24.75                 | 24.49                 | 24.71                 |                              | 0        |
|            | 1       | 12        | 24.54                 | 24.46                 | 24.50                 | 24.41                 | 24.27                 | 0                            | 0        |
|            | 1       | 24        | 24.53                 | 24.41                 | 24.53                 | 24.32                 | 24.59                 |                              | 0        |
| QPSK       | 12      | 0         | 23.74                 | 23.66                 | 23.66                 | 23.40                 | 23.61                 |                              | 1        |
|            | 12      | 6         | 23.74                 | 23.71                 | 23.64                 | 23.36                 | 23.66                 | 0-1                          | 1        |
|            | 12      | 13        | 23.68                 | 23.66                 | 23.70                 | 23.41                 | 23.64                 | 0-1                          | 1        |
|            | 25      | 0         | 23.67                 | 23.73                 | 23.71                 | 23.45                 | 23.66                 | 1                            | 1        |
|            | 1       | 0         | 23.92                 | 23.58                 | 23.83                 | 23.52                 | 23.89                 |                              | 1        |
|            | 1       | 12        | 23.71                 | 23.50                 | 23.66                 | 23.50                 | 23.82                 | 0-1                          | 1        |
|            | 1       | 24        | 23.80                 | 23.54                 | 23.72                 | 23.66                 | 23.76                 | 1 [                          | 1        |
| 16QAM      | 12      | 0         | 22.71                 | 22.72                 | 22.75                 | 22.48                 | 22.81                 |                              | 2        |
|            | 12      | 6         | 22.66                 | 22.65                 | 22.63                 | 22.40                 | 22.87                 | 0-2                          | 2        |
|            | 12      | 13        | 22.73                 | 22.59                 | 22.69                 | 22.46                 | 22.75                 | 0-2                          | 2        |
|            | 25      | 0         | 22.68                 | 22.78                 | 22.68                 | 22.56                 | 22.62                 |                              | 2        |
|            | 1       | 0         | 22.72                 | 22.96                 | 22.62                 | 22.76                 | 22.85                 |                              | 2        |
|            | 1       | 12        | 22.60                 | 22.86                 | 22.51                 | 22.60                 | 22.94                 | 0-2                          | 2        |
|            | 1       | 24        | 22.64                 | 22.85                 | 22.47                 | 22.68                 | 22.94                 |                              | 2        |
| 64QAM      | 12      | 0         | 21.70                 | 21.90                 | 21.63                 | 21.63                 | 21.58                 |                              | 3        |
|            | 12      | 6         | 21.66                 | 21.84                 | 21.61                 | 21.56                 | 21.69                 | 0-3                          | 3        |
|            | 12      | 13        | 21.65                 | 21.81                 | 21.64                 | 21.66                 | 21.64                 | U-3                          | 3        |
|            | 25      | 0         | 21.81                 | 21.76                 | 21.71                 | 21.54                 | 21.66                 | 1                            | 3        |

| FCC ID: ZNFQ720PS                     | PCTEST*               | SAR EVALUATION REPORT | ① LG | Approved by: Quality Manager |
|---------------------------------------|-----------------------|-----------------------|------|------------------------------|
| Document S/N:                         | Test Dates: DUT Type: |                       |      |                              |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19   | Portable Handset      |      | Page 53 of 110               |
| 10 DCTEST Engineering Laboratory Inc. |                       |                       |      | DEV/ 24 2 M                  |

**Table 9-43** LTF Band 41 PC2 Maximum Conducted Powers - 20 MHz Bandwidth

|            |         |           |                       | 2                     | LTE Band 41<br>0 MHz Bandwidth |                       |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 27.25                 | 27.35                 | 27.45                          | 27.08                 | 27.19                 |                              | 0        |
|            | 1       | 50        | 27.37                 | 27.30                 | 27.33                          | 27.15                 | 27.08                 | 0                            | 0        |
|            | 1       | 99        | 27.35                 | 27.28                 | 27.39                          | 27.17                 | 27.05                 |                              | 0        |
| QPSK       | 50      | 0         | 26.65                 | 26.64                 | 26.69                          | 26.56                 | 26.44                 |                              | 1        |
|            | 50      | 25        | 26.68                 | 26.62                 | 26.61                          | 26.55                 | 26.50                 | 0-1                          | 1        |
|            | 50      | 50        | 26.67                 | 26.68                 | 26.58                          | 26.54                 | 26.43                 | 0-1                          | 1        |
|            | 100     | 0         | 26.66                 | 26.65                 | 26.68                          | 26.51                 | 26.46                 |                              | 1        |
|            | 1       | 0         | 26.63                 | 26.62                 | 26.64                          | 26.54                 | 26.62                 |                              | 1        |
|            | 1       | 50        | 26.65                 | 26.67                 | 26.68                          | 26.35                 | 26.56                 | 0-1                          | 1        |
|            | 1       | 99        | 26.60                 | 26.60                 | 26.64                          | 26.59                 | 26.52                 |                              | 1        |
| 16QAM      | 50      | 0         | 25.38                 | 25.48                 | 25.56                          | 25.61                 | 25.50                 |                              | 2        |
|            | 50      | 25        | 25.32                 | 25.59                 | 25.68                          | 25.58                 | 25.53                 | 0-2                          | 2        |
|            | 50      | 50        | 25.49                 | 25.60                 | 25.67                          | 25.56                 | 25.51                 | 0-2                          | 2        |
|            | 100     | 0         | 25.56                 | 25.62                 | 25.65                          | 25.59                 | 25.47                 |                              | 2        |
|            | 1       | 0         | 25.70                 | 25.45                 | 25.30                          | 25.37                 | 25.60                 |                              | 2        |
|            | 1       | 50        | 25.68                 | 25.48                 | 25.36                          | 25.53                 | 25.57                 | 0-2                          | 2        |
|            | 1       | 99        | 25.58                 | 25.57                 | 25.46                          | 25.67                 | 25.45                 |                              | 2        |
| 64QAM      | 50      | 0         | 24.68                 | 24.58                 | 24.68                          | 24.58                 | 24.50                 |                              | 3        |
|            | 50      | 25        | 24.62                 | 24.60                 | 24.69                          | 24.52                 | 24.53                 | 0-3                          | 3        |
|            | 50      | 50        | 24.32                 | 24.62                 | 24.62                          | 24.66                 | 24.50                 | 0-3                          | 3        |
|            | 100     | 0         | 24.48                 | 24.65                 | 24.69                          | 24.48                 | 24.45                 |                              | 3        |

**Table 9-44** LTE Band 41 PC2 Maximum Conducted Powers - 15 MHz Bandwidth

|            |         |           |                       |                       | LTE Band 41                    | OWEIS - IS            |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Low-Mid Channel       | 5 MHz Bandwidth<br>Mid Channel | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 27.38                 | 27.66                 | 27.37                          | 27.27                 | 27.18                 |                              | 0        |
|            | 1       | 36        | 27.23                 | 27.57                 | 27.57                          | 27.42                 | 27.10                 | 0                            | 0        |
|            | 1       | 74        | 27.28                 | 27.56                 | 27.62                          | 27.68                 | 27.00                 |                              | 0        |
| QPSK       | 36      | 0         | 25.96                 | 26.07                 | 25.96                          | 25.74                 | 25.75                 |                              | 1        |
|            | 36      | 18        | 26.00                 | 26.16                 | 26.02                          | 25.79                 | 25.79                 | 0-1                          | 1        |
|            | 36      | 37        | 26.04                 | 26.11                 | 26.10                          | 25.89                 | 25.84                 | 0-1                          | 1        |
|            | 75      | 0         | 25.86                 | 26.03                 | 25.89                          | 25.85                 | 25.83                 |                              | 1        |
|            | 1       | 0         | 26.47                 | 26.45                 | 26.17                          | 26.12                 | 26.41                 | 0-1                          | 1        |
|            | 1       | 36        | 26.14                 | 26.70                 | 26.42                          | 25.74                 | 26.13                 |                              | 1        |
|            | 1       | 74        | 26.23                 | 26.63                 | 26.62                          | 25.89                 | 26.18                 |                              | 1        |
| 16QAM      | 36      | 0         | 24.94                 | 25.15                 | 24.84                          | 24.81                 | 24.74                 |                              | 2        |
|            | 36      | 18        | 24.95                 | 25.24                 | 24.87                          | 24.87                 | 24.81                 | 0-2                          | 2        |
|            | 36      | 37        | 24.95                 | 25.21                 | 25.06                          | 24.92                 | 24.82                 | 0-2                          | 2        |
|            | 75      | 0         | 24.94                 | 25.10                 | 24.90                          | 24.73                 | 24.86                 |                              | 2        |
|            | 1       | 0         | 25.47                 | 25.45                 | 25.21                          | 24.90                 | 25.47                 |                              | 2        |
|            | 1       | 36        | 25.39                 | 25.35                 | 25.47                          | 25.11                 | 25.39                 | 0-2                          | 2        |
|            | 1       | 74        | 25.47                 | 25.31                 | 25.66                          | 25.21                 | 25.30                 |                              | 2        |
| 64QAM      | 36      | 0         | 23.96                 | 24.08                 | 24.01                          | 23.83                 | 23.86                 |                              | 3        |
|            | 36      | 18        | 24.06                 | 24.14                 | 24.11                          | 23.97                 | 23.87                 | 0-3                          | 3        |
|            | 36      | 37        | 24.04                 | 24.13                 | 24.24                          | 24.02                 | 23.98                 | ] "" ]                       | 3        |
|            | 75      | 0         | 24.00                 | 24.06                 | 24.05                          | 23.91                 | 23.97                 |                              | 3        |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 54 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 54 of 110               |

**Table 9-45** LTF Band 41 PC2 Maximum Conducted Powers - 10 MHz Bandwidth

|            |         |           |                       | 10                    | LTE Band 41<br>0 MHz Bandwidth |                       |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            | RB Size |           | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation |         | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 27.28                 | 27.43                 | 27.50                          | 27.22                 | 27.45                 |                              | 0        |
|            | 1       | 25        | 27.22                 | 27.42                 | 27.31                          | 27.07                 | 27.36                 | 0                            | 0        |
|            | 1       | 49        | 27.20                 | 27.48                 | 27.41                          | 27.33                 | 27.41                 |                              | 0        |
| QPSK       | 25      | 0         | 26.18                 | 26.06                 | 25.90                          | 25.74                 | 26.15                 |                              | 1        |
|            | 25      | 12        | 26.22                 | 26.14                 | 25.91                          | 25.83                 | 26.23                 | 0-1                          | 1        |
|            | 25      | 25        | 26.27                 | 26.13                 | 25.89                          | 25.85                 | 26.19                 | J 0-1                        | 1        |
|            | 50      | 0         | 26.23                 | 26.00                 | 25.96                          | 25.64                 | 26.09                 |                              | 1        |
|            | 1       | 0         | 26.36                 | 26.11                 | 26.12                          | 25.74                 | 26.01                 |                              | 1        |
|            | 1       | 25        | 26.25                 | 26.13                 | 25.95                          | 25.61                 | 25.93                 | 0-1                          | 1        |
|            | 1       | 49        | 26.63                 | 26.36                 | 26.05                          | 25.81                 | 26.02                 |                              | 1        |
| 16QAM      | 25      | 0         | 25.19                 | 25.08                 | 25.06                          | 24.78                 | 25.23                 |                              | 2        |
|            | 25      | 12        | 25.28                 | 25.10                 | 25.03                          | 24.75                 | 25.22                 | 0-2                          | 2        |
|            | 25      | 25        | 25.31                 | 25.06                 | 25.04                          | 24.88                 | 25.17                 | 0-2                          | 2        |
|            | 50      | 0         | 25.25                 | 24.97                 | 24.78                          | 24.74                 | 25.09                 |                              | 2        |
|            | 1       | 0         | 25.53                 | 25.39                 | 25.50                          | 25.04                 | 25.36                 |                              | 2        |
|            | 1       | 25        | 25.45                 | 25.40                 | 25.35                          | 24.95                 | 25.25                 | 0-2                          | 2        |
|            | 1       | 49        | 25.49                 | 25.51                 | 25.59                          | 25.11                 | 25.23                 |                              | 2        |
| 64QAM      | 25      | 0         | 24.13                 | 24.16                 | 24.04                          | 23.71                 | 24.12                 |                              | 3        |
|            | 25      | 12        | 24.02                 | 24.18                 | 23.98                          | 23.75                 | 24.14                 | 0-3                          | 3        |
|            | 25      | 25        | 24.22                 | 24.16                 | 24.04                          | 23.78                 | 24.17                 | U-3                          | 3        |
|            | 50      | 0         | 24.19                 | 24.03                 | 24.01                          | 23.78                 | 24.15                 |                              | 3        |

**Table 9-46** LTF Band 41 PC2 Maximum Conducted Powers - 5 MHz Bandwidth

|            |         |           | <u> </u>              |                       | LTE Band 41           | Powers - 5 N          | III Ballaw            | TGCT1                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            | RB Size |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation |         | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di     | 3m]                   |                       |                              |          |
|            | 1       | 0         | 27.38                 | 27.48                 | 27.47                 | 27.20                 | 27.24                 |                              | 0        |
|            | 1       | 12        | 27.30                 | 27.29                 | 27.19                 | 27.06                 | 27.25                 | 0                            | 0        |
|            | 1       | 24        | 27.35                 | 27.30                 | 27.24                 | 27.16                 | 27.08                 |                              | 0        |
| QPSK       | 12      | 0         | 26.25                 | 26.31                 | 26.19                 | 25.97                 | 25.94                 |                              | 1        |
|            | 12      | 6         | 26.22                 | 26.30                 | 26.13                 | 25.88                 | 25.97                 | 0-1                          | 1        |
|            | 12      | 13        | 26.21                 | 26.26                 | 26.17                 | 26.00                 | 25.93                 | 0-1                          | 1        |
|            | 25      | 0         | 26.21                 | 26.22                 | 26.21                 | 26.00                 | 25.95                 |                              | 1        |
|            | 1       | 0         | 26.61                 | 26.60                 | 26.61                 | 26.33                 | 26.46                 |                              | 1        |
|            | 1       | 12        | 26.50                 | 26.66                 | 26.41                 | 26.15                 | 26.47                 | 0-1                          | 1        |
|            | 1       | 24        | 26.58                 | 26.66                 | 26.45                 | 26.15                 | 26.46                 |                              | 1        |
| 16QAM      | 12      | 0         | 25.35                 | 25.43                 | 25.42                 | 24.97                 | 24.99                 |                              | 2        |
|            | 12      | 6         | 25.28                 | 25.38                 | 25.22                 | 24.91                 | 25.03                 | 0-2                          | 2        |
|            | 12      | 13        | 25.33                 | 25.30                 | 25.32                 | 24.94                 | 24.97                 | 0-2                          | 2        |
|            | 25      | 0         | 25.19                 | 25.29                 | 25.10                 | 25.00                 | 24.96                 |                              | 2        |
|            | 1       | 0         | 25.64                 | 25.66                 | 25.63                 | 25.52                 | 25.22                 |                              | 2        |
|            | 1       | 12        | 25.55                 | 25.70                 | 25.53                 | 25.55                 | 25.18                 | 0-2                          | 2        |
|            | 1       | 24        | 25.61                 | 25.67                 | 25.56                 | 25.63                 | 25.17                 |                              | 2        |
| 64QAM      | 12      | 0         | 24.23                 | 24.24                 | 24.30                 | 24.13                 | 23.92                 |                              | 3        |
|            | 12      | 6         | 24.19                 | 24.21                 | 24.32                 | 24.14                 | 23.97                 | 0-3                          | 3        |
|            | 12      | 13        | 24.15                 | 24.16                 | 24.25                 | 24.15                 | 23.95                 | ] 0-3                        | 3        |
|            | 25      | 0         | 24.16                 | 24.17                 | 24.20                 | 24.05                 | 24.03                 |                              | 3        |

|        | FCC ID: ZNFQ720PS                     | PCTEST*                           | SAR EVALUATION REPORT                                                                                                                        | <b>(</b> LG | Approved by:  Quality Manager |
|--------|---------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|
|        | Document S/N:                         | Test Dates:                       | DUT Type:                                                                                                                                    |             | D 55 (440                     |
|        | 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19               | Portable Handset                                                                                                                             |             | Page 55 of 110                |
| 201    | 9 PCTEST Engineering Laboratory, Inc. |                                   |                                                                                                                                              |             | REV 21.3 M<br>02/15/2019      |
| ncludi |                                       | ssion in writing from PCTEST Engi | cified, no part of this report may be reproduced or utilized in<br>neering Laboratory, Inc. If you have any questions about th<br>CTEST.COM. |             |                               |

**Table 9-47** LTE Band 41 PC3 Reduced Conducted Powers - 20 MHz Bandwidth

|            |         |           |                       | 11044004              | LTE Band 41           | OWE13 - 20 1          |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 2                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.41                 | 22.75                 | 22.61                 | 22.47                 | 22.71                 |                              | 0        |
|            | 1       | 50        | 22.44                 | 22.85                 | 22.75                 | 22.46                 | 22.72                 | 0                            | 0        |
|            | 1       | 99        | 22.55                 | 22.74                 | 22.89                 | 22.63                 | 22.67                 |                              | 0        |
| QPSK       | 50      | 0         | 22.47                 | 22.69                 | 22.74                 | 22.55                 | 22.60                 |                              | 0        |
|            | 50      | 25        | 22.43                 | 22.78                 | 22.70                 | 22.54                 | 22.63                 | 0-1                          | 0        |
|            | 50      | 50        | 22.42                 | 22.74                 | 22.82                 | 22.57                 | 22.57                 | 0-1                          | 0        |
|            | 100     | 0         | 22.44                 | 22.76                 | 22.72                 | 22.48                 | 22.54                 |                              | 0        |
|            | 1       | 0         | 22.55                 | 22.72                 | 22.63                 | 22.37                 | 22.57                 |                              | 0        |
|            | 1       | 50        | 22.50                 | 22.89                 | 22.74                 | 22.51                 | 22.67                 | 0-1                          | 0        |
|            | 1       | 99        | 22.48                 | 22.74                 | 22.89                 | 22.60                 | 22.59                 |                              | 0        |
| 16QAM      | 50      | 0         | 22.12                 | 22.42                 | 22.24                 | 22.15                 | 22.27                 | ]                            | 0        |
|            | 50      | 25        | 22.14                 | 22.43                 | 22.34                 | 22.16                 | 22.25                 | 0-2                          | 0        |
|            | 50      | 50        | 22.13                 | 22.40                 | 22.41                 | 22.23                 | 22.24                 | 0-2                          | 0        |
|            | 100     | 0         | 21.99                 | 22.41                 | 22.39                 | 22.17                 | 22.24                 |                              | 0        |
|            | 1       | 0         | 21.71                 | 22.14                 | 21.90                 | 21.74                 | 22.03                 | ]                            | 0        |
|            | 1       | 50        | 21.67                 | 22.22                 | 22.04                 | 21.89                 | 22.11                 | 0-2                          | 0        |
|            | 1       | 99        | 21.64                 | 22.17                 | 22.14                 | 22.02                 | 22.05                 |                              | 0        |
| 64QAM      | 50      | 0         | 21.10                 | 21.37                 | 21.24                 | 21.18                 | 21.21                 | ]                            | 1        |
|            | 50      | 25        | 21.14                 | 21.40                 | 21.33                 | 21.13                 | 21.23                 | 0-3                          | 1        |
|            | 50      | 50        | 21.10                 | 21.37                 | 21.46                 | 21.20                 | 21.22                 | ] 0-3                        | 1        |
|            | 100     | 0         | 21.00                 | 21.34                 | 21.37                 | 21.12                 | 21.35                 |                              | 1        |

**Table 9-48** LTE Band 41 PC3 Reduced Conducted Powers - 15 MHz Bandwidth

|            |         | LILD      | and 41 FCS            | Neduced C             | LTE Band 41           | owers - 15 i          | niiz Danuw            | iutii                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            | 1       | 1         | l                     | 1                     | 5 MHz Bandwidth       |                       |                       | 1                            |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.24                 | 22.29                 | 22.55                 | 22.36                 | 22.61                 |                              | 0        |
|            | 1       | 36        | 22.36                 | 22.52                 | 22.53                 | 22.25                 | 22.31                 | 0                            | 0        |
|            | 1       | 74        | 22.29                 | 22.49                 | 22.52                 | 22.39                 | 22.57                 |                              | 0        |
| QPSK       | 36      | 0         | 22.55                 | 22.29                 | 22.41                 | 22.57                 | 22.67                 |                              | 0        |
|            | 36      | 18        | 22.24                 | 22.35                 | 22.52                 | 22.70                 | 22.25                 | 0-1                          | 0        |
|            | 36      | 37        | 22.31                 | 22.63                 | 22.41                 | 22.54                 | 22.49                 | J 0-1                        | 0        |
|            | 75      | 0         | 22.40                 | 22.35                 | 22.42                 | 22.37                 | 22.56                 |                              | 0        |
|            | 1       | 0         | 22.43                 | 22.55                 | 22.57                 | 22.70                 | 22.29                 |                              | 0        |
|            | 1       | 36        | 22.31                 | 22.61                 | 22.62                 | 22.37                 | 22.54                 | 0-1                          | 0        |
|            | 1       | 74        | 22.50                 | 22.69                 | 22.29                 | 22.60                 | 22.43                 |                              | 0        |
| 16QAM      | 36      | 0         | 21.76                 | 21.76                 | 22.22                 | 21.85                 | 21.80                 |                              | 0        |
|            | 36      | 18        | 21.87                 | 21.93                 | 22.19                 | 21.75                 | 22.01                 | 0-2                          | 0        |
|            | 36      | 37        | 21.88                 | 21.88                 | 21.78                 | 21.91                 | 21.82                 | 0-2                          | 0        |
|            | 75      | 0         | 21.77                 | 21.98                 | 22.00                 | 21.89                 | 21.98                 |                              | 0        |
|            | 1       | 0         | 21.74                 | 21.79                 | 22.16                 | 22.00                 | 22.11                 |                              | 0        |
|            | 1       | 36        | 21.89                 | 21.88                 | 21.99                 | 22.09                 | 21.86                 | 0-2                          | 0        |
|            | 1       | 74        | 21.89                 | 22.20                 | 22.06                 | 21.84                 | 22.08                 |                              | 0        |
| 64QAM      | 36      | 0         | 20.79                 | 21.20                 | 20.92                 | 20.78                 | 20.75                 |                              | 1        |
|            | 36      | 18        | 20.99                 | 20.88                 | 21.07                 | 20.78                 | 21.19                 | 0-3                          | 1        |
|            | 36      | 37        | 21.03                 | 21.18                 | 20.99                 | 21.01                 | 21.02                 | 0-3                          | 1        |
|            | 75      | 0         | 20.76                 | 20.73                 | 20.83                 | 20.79                 | 20.94                 |                              | 1        |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 56 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | raye 50 01 110               |

**Table 9-49** LTF Band 41 PC3 Reduced Conducted Powers - 10 MHz Bandwidth

|            |         |           |                       | 10                    | LTE Band 41<br>0 MHz Bandwidth |                       |                       |                              |          |
|------------|---------|-----------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            | RB Size |           | Low Channel           | Low-Mid Channel       | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation |         | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)          | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.67                 | 22.28                 | 22.49                          | 22.54                 | 22.41                 |                              | 0        |
|            | 1       | 25        | 22.43                 | 22.60                 | 22.45                          | 22.61                 | 22.59                 | 0                            | 0        |
|            | 1       | 49        | 22.36                 | 22.36                 | 22.45                          | 22.42                 | 22.28                 |                              | 0        |
| QPSK       | 25      | 0         | 22.57                 | 22.63                 | 22.40                          | 22.37                 | 22.70                 |                              | 0        |
|            | 25      | 12        | 22.30                 | 22.53                 | 22.32                          | 22.29                 | 22.23                 | 0-1                          | 0        |
|            | 25      | 25        | 22.48                 | 22.39                 | 22.45                          | 22.60                 | 22.35                 |                              | 0        |
|            | 50      | 0         | 22.72                 | 22.52                 | 22.30                          | 22.38                 | 22.45                 |                              | 0        |
|            | 1       | 0         | 22.72                 | 22.68                 | 22.42                          | 22.43                 | 22.36                 |                              | 0        |
|            | 1       | 25        | 22.56                 | 22.46                 | 22.67                          | 22.25                 | 22.34                 | 0-1                          | 0        |
|            | 1       | 49        | 22.59                 | 22.34                 | 22.47                          | 22.40                 | 22.28                 |                              | 0        |
| 16QAM      | 25      | 0         | 21.97                 | 21.98                 | 21.85                          | 22.18                 | 22.11                 |                              | 0        |
|            | 25      | 12        | 22.09                 | 21.99                 | 22.07                          | 22.33                 | 22.06                 | 0-2                          | 0        |
|            | 25      | 25        | 22.27                 | 22.28                 | 22.15                          | 22.19                 | 22.07                 | 0-2                          | 0        |
|            | 50      | 0         | 22.02                 | 21.92                 | 22.29                          | 22.08                 | 22.08                 |                              | 0        |
|            | 1       | 0         | 22.20                 | 21.96                 | 22.28                          | 22.21                 | 22.29                 |                              | 0        |
|            | 1       | 25        | 21.85                 | 21.87                 | 22.01                          | 22.23                 | 22.17                 | 0-2                          | 0        |
|            | 1       | 49        | 22.00                 | 22.17                 | 22.00                          | 22.31                 | 22.28                 |                              | 0        |
| 64QAM      | 25      | 0         | 21.21                 | 21.28                 | 21.03                          | 20.86                 | 21.14                 |                              | 1        |
|            | 25      | 12        | 21.20                 | 21.02                 | 21.28                          | 21.02                 | 20.93                 | 0-3                          | 1        |
|            | 25      | 25        | 21.17                 | 21.30                 | 21.33                          | 21.18                 | 21.23                 | 0-3                          | 1        |
|            | 50      | 0         | 21.20                 | 20.87                 | 21.23                          | 21.33                 | 21.19                 | ] Γ                          | 1        |

**Table 9-50** LTE Rand 41 PC3 Reduced Conducted Powers - 5 MHz Randwidth

|            |         | LIE       | 3and 41 PC            | 3 Reaucea C                                  |                                | Powers - 5 N          | HZ Bandwi             | atn                          |          |
|------------|---------|-----------|-----------------------|----------------------------------------------|--------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | ,                                            | LTE Band 41<br>5 MHz Bandwidth |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel                              | Mid Channel                    | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185 40620<br>(2549.5 MHz) (2593.0 MHz) (26 |                                | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                                           | nducted Power [de              | Bm]                   |                       |                              |          |
|            | 1       | 0         | 22.45                 | 22.34                                        | 22.35                          | 22.42                 | 22.56                 |                              | 0        |
|            | 1       | 12        | 22.49                 | 22.66                                        | 22.36                          | 22.24                 | 22.48                 | 0                            | 0        |
|            | 1       | 24        | 22.59                 | 22.29                                        | 22.45                          | 22.43                 | 22.65                 |                              | 0        |
| QPSK       | 12      | 0         | 22.66                 | 22.55                                        | 22.48                          | 22.43                 | 22.37                 |                              | 0        |
|            | 12      | 6         | 22.32                 | 22.54                                        | 22.29                          | 22.22                 | 22.32                 | 0-1                          | 0        |
|            | 12      | 13        | 22.29                 | 22.60                                        | 22.55                          | 22.26                 | 22.56                 | 0-1                          | 0        |
|            | 25      | 0         | 22.34                 | 22.36                                        | 22.48                          | 22.19                 | 22.59                 |                              | 0        |
|            | 1       | 0         | 22.46                 | 22.33                                        | 22.66                          | 22.38                 | 22.18                 |                              | 0        |
|            | 1       | 12        | 22.37                 | 22.61                                        | 22.65                          | 22.25                 | 22.48                 | 0-1                          | 0        |
|            | 1       | 24        | 22.18                 | 22.60                                        | 22.56                          | 22.40                 | 22.22                 |                              | 0        |
| 16QAM      | 12      | 0         | 22.33                 | 22.39                                        | 22.35                          | 22.34                 | 21.98                 |                              | 0        |
|            | 12      | 6         | 22.27                 | 22.38                                        | 22.28                          | 22.01                 | 22.08                 | 0-2                          | 0        |
|            | 12      | 13        | 22.30                 | 22.01                                        | 22.11                          | 22.24                 | 22.20                 | 0-2                          | 0        |
|            | 25      | 0         | 21.96                 | 22.21                                        | 21.92                          | 22.00                 | 22.03                 |                              | 0        |
|            | 1       | 0         | 22.36                 | 22.38                                        | 22.25                          | 22.21                 | 22.23                 |                              | 0        |
|            | 1       | 12        | 22.10                 | 22.05                                        | 21.93                          | 22.12                 | 22.39                 | 0-2                          | 0        |
|            | 1       | 24        | 22.23                 | 22.11                                        | 22.34                          | 22.21                 | 22.02                 |                              | 0        |
| 64QAM      | 12      | 0         | 21.14                 | 21.03                                        | 21.16                          | 21.05                 | 21.34                 | _                            | 1        |
|            | 12      | 6         | 21.30                 | 21.33                                        | 20.98                          | 21.32                 | 20.99                 | 0-3                          | 1        |
|            | 12      | 13        | 20.95                 | 21.36                                        | 20.95                          | 21.10                 | 20.93                 | ] "                          | 1        |
|            | 25      | 0         | 21.05                 | 21.01                                        | 21.27                          | 21.10                 | 21.33                 |                              | 1        |

| FCC ID: ZNFQ720PS                     | PCTEST*             | SAR EVALUATION REPORT | G | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|---|-------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |   | Daga 57 of 110                |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset      |   | Page 57 of 110                |
| 10 DCTEST Engineering Laboratory Inc. |                     |                       |   | DEV/ 21 3 M                   |

**Table 9-51** LTE Band 41 PC2 Reduced Conducted Powers - 20 MHz Bandwidth

|            |         |           | una Tiroz             | Titodacea O           | LTE Band 41           | Owers - 20 I          | miz Banaw             | ideii                        |          |
|------------|---------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | 2                     | 0 MHz Bandwidth       |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |
|            | 1       | 0         | 25.26                 | 25.20                 | 24.95                 | 25.07                 | 25.29                 |                              | 0        |
|            | 1       | 50        | 25.35                 | 25.34                 | 25.13                 | 25.20                 | 25.26                 | 0                            | 0        |
|            | 1       | 99        | 25.43                 | 25.27                 | 25.26                 | 25.27                 | 25.19                 |                              | 0        |
| QPSK       | 50      | 0         | 25.36                 | 25.17                 | 25.14                 | 25.23                 | 25.35                 |                              | 0        |
|            | 50      | 25        | 25.43                 | 25.26                 | 25.13                 | 25.29                 | 25.29                 | 0-1                          | 0        |
|            | 50      | 50        | 25.30                 | 25.23                 | 25.22                 | 25.26                 | 25.30                 | 0-1                          | 0        |
|            | 100     | 0         | 25.34                 | 25.27                 | 25.20                 | 25.19                 | 25.27                 |                              | 0        |
|            | 1       | 0         | 25.59                 | 25.40                 | 25.11                 | 25.36                 | 25.54                 |                              | 0        |
|            | 1       | 50        | 25.58                 | 25.50                 | 25.27                 | 25.51                 | 25.55                 | 0-1                          | 0        |
|            | 1       | 99        | 25.70                 | 25.42                 | 25.41                 | 25.59                 | 25.46                 |                              | 0        |
| 16QAM      | 50      | 0         | 24.94                 | 24.71                 | 24.64                 | 24.74                 | 24.83                 |                              | 0        |
|            | 50      | 25        | 24.97                 | 24.85                 | 24.74                 | 24.77                 | 24.81                 | 0-2                          | 0        |
|            | 50      | 50        | 25.01                 | 24.83                 | 24.82                 | 24.82                 | 24.85                 | 0-2                          | 0        |
|            | 100     | 0         | 24.98                 | 24.80                 | 24.79                 | 24.85                 | 24.80                 |                              | 0        |
|            | 1       | 0         | 24.76                 | 24.60                 | 24.54                 | 24.84                 | 24.77                 |                              | 0        |
|            | 1       | 50        | 24.87                 | 24.67                 | 24.70                 | 24.74                 | 24.83                 | 0-2                          | 0        |
|            | 1       | 99        | 25.01                 | 24.59                 | 24.80                 | 24.62                 | 24.84                 |                              | 0        |
| 64QAM      | 50      | 0         | 23.97                 | 23.68                 | 23.71                 | 23.85                 | 23.90                 |                              | 1        |
|            | 50      | 25        | 24.00                 | 23.78                 | 23.72                 | 23.79                 | 23.83                 | 0-3                          | 1        |
|            | 50      | 50        | 23.98                 | 23.74                 | 23.84                 | 23.85                 | 23.84                 | 0-3                          | 1        |
|            | 100     | 0         | 23.97                 | 23.76                 | 23.79                 | 23.81                 | 23.82                 |                              | 1        |

**Table 9-52** LTE Band 41 PC2 Reduced Conducted Powers - 15 MHz Bandwidth

|            | LTE Band 41<br>15 MHz Bandwidth |           |                       |                       |                       |                       |                       |                              |          |  |
|------------|---------------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|
|            |                                 |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |  |
| Modulation | RB Size                         | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |
|            |                                 |           |                       | Co                    | nducted Power [di     | 3m]                   |                       |                              |          |  |
|            | 1                               | 0         | 25.19                 | 25.28                 | 25.26                 | 25.00                 | 25.22                 |                              | 0        |  |
|            | 1                               | 36        | 24.93                 | 25.28                 | 25.01                 | 25.18                 | 25.05                 | 0                            | 0        |  |
|            | 1                               | 74        | 25.11                 | 25.36                 | 24.95                 | 25.26                 | 25.11                 |                              | 0        |  |
| QPSK       | 36                              | 0         | 25.17                 | 25.29                 | 24.93                 | 25.07                 | 25.28                 |                              | 0        |  |
|            | 36                              | 18        | 25.12                 | 25.33                 | 25.04                 | 25.16                 | 25.21                 | 0-1                          | 0        |  |
|            | 36                              | 37        | 25.19                 | 25.37                 | 25.09                 | 25.35                 | 25.23                 | 0-1                          | 0        |  |
|            | 75                              | 0         | 25.23                 | 25.37                 | 25.20                 | 25.12                 | 25.07                 |                              | 0        |  |
|            | 1                               | 0         | 25.29                 | 25.46                 | 24.83                 | 24.97                 | 25.31                 | 0-1                          | 0        |  |
|            | 1                               | 36        | 25.08                 | 25.29                 | 25.03                 | 25.19                 | 25.18                 |                              | 0        |  |
|            | 1                               | 74        | 25.22                 | 25.44                 | 25.13                 | 25.37                 | 25.29                 |                              | 0        |  |
| 16QAM      | 36                              | 0         | 24.58                 | 24.75                 | 24.59                 | 24.51                 | 24.70                 |                              | 0        |  |
|            | 36                              | 18        | 24.49                 | 24.76                 | 24.62                 | 24.57                 | 24.61                 | 0-2                          | 0        |  |
|            | 36                              | 37        | 24.60                 | 24.85                 | 24.69                 | 24.76                 | 24.71                 | 0-2                          | 0        |  |
|            | 75                              | 0         | 24.77                 | 24.87                 | 24.67                 | 24.65                 | 24.73                 |                              | 0        |  |
|            | 1                               | 0         | 24.60                 | 24.73                 | 24.51                 | 24.39                 | 24.64                 |                              | 0        |  |
|            | 1                               | 36        | 24.36                 | 24.70                 | 24.56                 | 24.56                 | 24.55                 | 0-2                          | 0        |  |
| 64QAM      | 1                               | 74        | 24.51                 | 24.77                 | 24.59                 | 24.70                 | 24.58                 |                              | 0        |  |
|            | 36                              | 0         | 23.68                 | 23.87                 | 23.65                 | 23.63                 | 23.78                 |                              | 1        |  |
|            | 36                              | 18        | 23.75                 | 23.89                 | 23.75                 | 23.77                 | 23.72                 | 0-3                          | 1        |  |
|            | 36                              | 37        | 23.73                 | 23.92                 | 23.78                 | 23.82                 | 23.84                 |                              | 1        |  |
|            | 75                              | 0         | 23.56                 | 23.59                 | 23.51                 | 23.42                 | 23.57                 |                              | 1        |  |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 58 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 56 01 110               |

**Table 9-53** LTE Band 41 PC2 Reduced Conducted Powers - 10 MHz Bandwidth

|            | LTE Band 41 PC2 Reduced Conducted Powers - 10 Minz Bandwidth |           |                       |                       |                       |                       |                       |                              |          |  |
|------------|--------------------------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|
|            | 10 MHz Bandwidth                                             |           |                       |                       |                       |                       |                       |                              |          |  |
|            |                                                              |           | Low Channel           | Low-Mid Channel       | Mid Channel           | Mid-High Channel      | High Channel          |                              |          |  |
| Modulation | RB Size                                                      | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz) | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |
|            |                                                              |           |                       | Co                    | nducted Power [dE     | Bm]                   |                       |                              |          |  |
|            | 1                                                            | 0         | 25.17                 | 25.19                 | 25.09                 | 24.99                 | 25.16                 |                              | 0        |  |
|            | 1                                                            | 25        | 24.99                 | 25.29                 | 25.23                 | 25.14                 | 25.25                 | 0                            | 0        |  |
|            | 1                                                            | 49        | 25.19                 | 25.05                 | 25.24                 | 25.11                 | 25.20                 |                              | 0        |  |
| QPSK       | 25                                                           | 0         | 25.26                 | 25.27                 | 25.13                 | 25.23                 | 24.98                 |                              | 0        |  |
|            | 25                                                           | 12        | 25.06                 | 25.11                 | 25.03                 | 25.22                 | 25.19                 | 0-1                          | 0        |  |
|            | 25                                                           | 25        | 25.20                 | 25.19                 | 25.29                 | 25.21                 | 25.09                 | 0-1                          | 0        |  |
|            | 50                                                           | 0         | 25.28                 | 25.02                 | 25.03                 | 24.99                 | 25.11                 |                              | 0        |  |
|            | 1                                                            | 0         | 24.99                 | 25.16                 | 25.02                 | 25.17                 | 25.05                 |                              | 0        |  |
|            | 1                                                            | 25        | 25.09                 | 25.13                 | 25.12                 | 25.05                 | 25.24                 | 0-1                          | 0        |  |
|            | 1                                                            | 49        | 25.26                 | 25.11                 | 25.28                 | 25.29                 | 25.02                 |                              | 0        |  |
| 16QAM      | 25                                                           | 0         | 24.51                 | 24.61                 | 24.61                 | 24.55                 | 24.61                 |                              | 0        |  |
|            | 25                                                           | 12        | 24.61                 | 24.81                 | 24.71                 | 24.62                 | 24.77                 | 0-2                          | 0        |  |
|            | 25                                                           | 25        | 24.65                 | 24.65                 | 24.61                 | 24.74                 | 24.69                 | 0-2                          | 0        |  |
|            | 50                                                           | 0         | 24.63                 | 24.72                 | 24.60                 | 24.54                 | 24.56                 |                              | 0        |  |
|            | 1                                                            | 0         | 24.57                 | 24.68                 | 24.73                 | 24.62                 | 24.62                 |                              | 0        |  |
|            | 1                                                            | 25        | 24.54                 | 24.71                 | 24.65                 | 24.63                 | 24.79                 | 0-2                          | 0        |  |
|            | 1                                                            | 49        | 24.62                 | 24.77                 | 24.53                 | 24.72                 | 24.77                 |                              | 0        |  |
| 64QAM      | 25                                                           | 0         | 23.52                 | 23.55                 | 23.60                 | 23.76                 | 23.54                 | ] [                          | 1        |  |
|            | 25                                                           | 12        | 23.65                 | 23.76                 | 23.77                 | 23.67                 | 23.77                 | 0-3                          | 1        |  |
|            | 25                                                           | 25        | 23.74                 | 23.81                 | 23.75                 | 23.58                 | 23.53                 | 0-3                          | 1        |  |
|            | 50                                                           | 0         | 23.50                 | 23.76                 | 23.52                 | 23.80                 | 23.55                 |                              | 1        |  |

**Table 9-54** I TE Band 41 DC2 Reduced Conducted Powers - 5 MHz Randwidth

|            |         | LIE       | 3and 41 PC            | z Reaucea C           |                              | Powers - 5 N          | IHZ Bandwi            | atn                          |          |
|------------|---------|-----------|-----------------------|-----------------------|------------------------------|-----------------------|-----------------------|------------------------------|----------|
|            |         |           |                       | ,                     | LTE Band 41<br>MHz Bandwidth |                       |                       |                              |          |
|            |         |           | Low Channel           | Low-Mid Channel       | Mid Channel                  | Mid-High Channel      | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 39750<br>(2506.0 MHz) | 40185<br>(2549.5 MHz) | 40620<br>(2593.0 MHz)        | 41055<br>(2636.5 MHz) | 41490<br>(2680.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       | Co                    | nducted Power [di            | 3m]                   |                       | 1                            |          |
|            | 1       | 0         | 24.97                 | 25.28                 | 25.07                        | 25.20                 | 24.99                 |                              | 0        |
|            | 1       | 12        | 25.20                 | 25.10                 | 25.17                        | 24.99                 | 25.28                 | 0                            | 0        |
|            | 1       | 24        | 25.09                 | 25.22                 | 25.01                        | 25.21                 | 25.06                 | 1                            | 0        |
| QPSK       | 12      | 0         | 24.99                 | 25.07                 | 25.00                        | 25.28                 | 25.19                 |                              | 0        |
|            | 12      | 6         | 25.17                 | 25.14                 | 25.00                        | 25.27                 | 25.17                 | 0-1                          | 0        |
|            | 12      | 13        | 25.16                 | 24.98                 | 25.24                        | 25.22                 | 24.99                 |                              | 0        |
|            | 25      | 0         | 25.28                 | 25.07                 | 25.14                        | 25.17                 | 25.02                 |                              | 0        |
|            | 1       | 0         | 25.06                 | 25.01                 | 25.08                        | 25.00                 | 25.04                 |                              | 0        |
|            | 1       | 12        | 25.13                 | 25.26                 | 25.13                        | 25.07                 | 25.23                 | 0-1                          | 0        |
|            | 1       | 24        | 25.08                 | 25.23                 | 25.25                        | 25.14                 | 25.27                 |                              | 0        |
| 16QAM      | 12      | 0         | 24.61                 | 24.62                 | 24.57                        | 24.59                 | 24.64                 |                              | 0        |
|            | 12      | 6         | 24.66                 | 24.55                 | 24.68                        | 24.81                 | 24.66                 | 0-2                          | 0        |
|            | 12      | 13        | 24.78                 | 24.63                 | 24.58                        | 24.72                 | 24.85                 | 0-2                          | 0        |
|            | 25      | 0         | 24.72                 | 24.83                 | 24.70                        | 24.66                 | 24.70                 |                              | 0        |
|            | 1       | 0         | 24.67                 | 24.72                 | 24.59                        | 24.80                 | 24.67                 |                              | 0        |
|            | 1       | 12        | 24.61                 | 24.85                 | 24.75                        | 24.62                 | 24.63                 | 0-2                          | 0        |
|            | 1       | 24        | 24.73                 | 24.80                 | 24.67                        | 24.85                 | 24.73                 |                              | 0        |
| 64QAM      | 12      | 0         | 23.71                 | 23.74                 | 23.67                        | 23.73                 | 23.67                 |                              | 1        |
|            | 12      | 6         | 23.80                 | 23.84                 | 23.57                        | 23.80                 | 23.54                 | 0-3                          | 1        |
|            | 12      | 13        | 23.70                 | 23.68                 | 23.57                        | 23.60                 | 23.75                 |                              | 1        |
|            | 25      | 0         | 23.68                 | 23.78                 | 23.76                        | 23.70                 | 23.68                 |                              | 1        |

| FCC ID: ZNFQ720PS                     | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|---------------------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:                | Dogo FO of 110               |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset         | Page 59 of 110               |
| 10 DCTEST Engineering Laboratory Inc. |                     |                          | DEV/ 21.3 M                  |

#### 9.5 **WLAN Conducted Powers**

**Table 9-55** 2.4 GHz WLAN Maximum Average RF Power

| 2.4GHz Conducted Power [dBm] |                        |         |         |         |  |  |  |  |
|------------------------------|------------------------|---------|---------|---------|--|--|--|--|
|                              | IEEE Transmission Mode |         |         |         |  |  |  |  |
| Freq [MHz]                   | Channel                | 802.11b | 802.11g | 802.11n |  |  |  |  |
|                              |                        | Average | Average | Average |  |  |  |  |
| 2412                         | 1                      | 20.78   | 17.44   | 17.31   |  |  |  |  |
| 2437                         | 6                      | 20.28   | 17.28   | 17.17   |  |  |  |  |
| 2462                         | 11                     | 20.34   | 16.57   | 16.63   |  |  |  |  |

**Table 9-56** 5 GHz WLAN Maximum Average RF Power

|            | 5GHz (20MHz) Conducted Power [dBm] |                        |         |          |  |  |  |  |
|------------|------------------------------------|------------------------|---------|----------|--|--|--|--|
|            |                                    | IEEE Transmission Mode |         |          |  |  |  |  |
| Freq [MHz] | Channel                            | 802.11a                | 802.11n | 802.11ac |  |  |  |  |
|            |                                    | Average                | Average | Average  |  |  |  |  |
| 5180       | 36                                 | 16.53                  | 16.76   | 13.60    |  |  |  |  |
| 5200       | 40                                 | 19.39                  | 19.36   | 16.49    |  |  |  |  |
| 5220       | 44                                 | 19.22                  | 19.29   | 16.41    |  |  |  |  |
| 5240       | 48                                 | 19.21                  | 19.16   | 16.33    |  |  |  |  |
| 5260       | 52                                 | 19.06                  | 19.05   | 16.24    |  |  |  |  |
| 5280       | 56                                 | 19.12                  | 19.08   | 16.32    |  |  |  |  |
| 5300       | 60                                 | 19.15                  | 19.04   | 16.29    |  |  |  |  |
| 5320       | 64                                 | 16.11                  | 16.15   | 13.15    |  |  |  |  |
| 5500       | 100                                | 16.07                  | 16.17   | 13.10    |  |  |  |  |
| 5520       | 104                                | 18.98                  | 18.99   | 15.98    |  |  |  |  |
| 5600       | 120                                | 18.82                  | 18.95   | 15.87    |  |  |  |  |
| 5680       | 136                                | 18.99                  | 18.91   | 15.99    |  |  |  |  |
| 5700       | 140                                | 16.93                  | 16.91   | 13.99    |  |  |  |  |
| 5745       | 149                                | 16.85                  | 17.12   | 14.10    |  |  |  |  |
| 5765       | 153                                | 18.91                  | 18.93   | 15.98    |  |  |  |  |
| 5785       | 157                                | 18.89                  | 18.99   | 15.91    |  |  |  |  |
| 5805       | 161                                | 18.95                  | 18.90   | 15.98    |  |  |  |  |
| 5825       | 165                                | 17.25                  | 17.48   | 14.38    |  |  |  |  |

|   | FCC ID: ZNFQ720PS                    | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|---|--------------------------------------|---------------------|-----------------------|------------------------------|
|   | Document S/N:                        | Test Dates:         | DUT Type:             | Dags 60 of 110               |
|   | 1M1904220061-01-R1.ZNF               | 04/21/19 - 05/15/19 | Portable Handset      | Page 60 of 110               |
| 4 | O DOTEST Engineering Laboratory Inc. |                     |                       | DEV/ 24 2 M                  |

Table 9-57
2.4 GHz WLAN Reduced Average RF Power

| 2.4GHz Conducted Power [dBm] |         |         |         |         |  |  |  |  |
|------------------------------|---------|---------|---------|---------|--|--|--|--|
| IEEE Transmission Mode       |         |         |         |         |  |  |  |  |
| Freq [MHz]                   | Channel | 802.11b | 802.11g | 802.11n |  |  |  |  |
|                              |         | Average | Average | Average |  |  |  |  |
| 2412                         | 1       | 18.11   | 17.44   | 17.31   |  |  |  |  |
| 2437                         | 6       | 18.07   | 17.28   | 17.17   |  |  |  |  |
| 2462                         | 11      | 18.01   | 16.57   | 16.63   |  |  |  |  |

Table 9-58
5 GHz WLAN Reduced Average RF Power

|            | 5GHz (20MHz) Conducted Power [dBm] |                        |         |          |  |  |  |  |
|------------|------------------------------------|------------------------|---------|----------|--|--|--|--|
|            |                                    | IEEE Transmission Mode |         |          |  |  |  |  |
| Freq [MHz] | Channel                            | 802.11a                | 802.11n | 802.11ac |  |  |  |  |
|            |                                    | Average                | Average | Average  |  |  |  |  |
| 5180       | 36                                 | 15.82                  | 15.85   | 13.60    |  |  |  |  |
| 5200       | 40                                 | 18.48                  | 18.49   | 16.49    |  |  |  |  |
| 5220       | 44                                 | 18.31                  | 18.44   | 16.41    |  |  |  |  |
| 5240       | 48                                 | 18.24                  | 18.22   | 16.33    |  |  |  |  |
| 5260       | 52                                 | 18.03                  | 18.12   | 16.24    |  |  |  |  |
| 5280       | 56                                 | 18.09                  | 18.11   | 16.32    |  |  |  |  |
| 5300       | 60                                 | 18.10                  | 18.13   | 16.29    |  |  |  |  |
| 5320       | 64                                 | 15.37                  | 15.33   | 13.15    |  |  |  |  |
| 5500       | 100                                | 15.40                  | 15.43   | 13.10    |  |  |  |  |
| 5520       | 104                                | 18.22                  | 18.18   | 15.98    |  |  |  |  |
| 5600       | 120                                | 17.92                  | 17.96   | 15.87    |  |  |  |  |
| 5680       | 136                                | 18.18                  | 18.26   | 15.99    |  |  |  |  |
| 5700       | 140                                | 16.14                  | 16.34   | 13.99    |  |  |  |  |
| 5745       | 149                                | 16.20                  | 16.23   | 14.10    |  |  |  |  |
| 5765       | 153                                | 18.20                  | 18.12   | 15.98    |  |  |  |  |
| 5785       | 157                                | 18.11                  | 18.11   | 15.91    |  |  |  |  |
| 5805       | 161                                | 17.99                  | 18.11   | 15.98    |  |  |  |  |
| 5825       | 165                                | 16.68                  | 16.61   | 14.38    |  |  |  |  |

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

| FCC ID: ZNFQ720PS      | PCTEST"             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 61 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 61 of 110                |

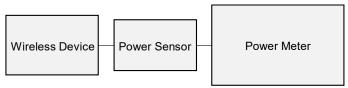



Figure 9-4 **Power Measurement Setup** 

#### **Bluetooth Conducted Powers** 9.6

**Table 9-59 Bluetooth Average RF Power** 

|                    | Data           | tvorago        | Avg Co | nducted<br>wer |
|--------------------|----------------|----------------|--------|----------------|
| Frequency<br>[MHz] | Rate<br>[Mbps] | Channel<br>No. | [dBm]  | [mW]           |
| 2402               | 1.0            | 0              | 9.17   | 8.265          |
| 2441               | 1.0            | 39             | 10.70  | 11.753         |
| 2480               | 1.0            | 78             | 9.40   | 8.713          |
| 2402               | 2.0            | 0              | 8.49   | 7.066          |
| 2441               | 2.0            | 39             | 10.09  | 10.209         |
| 2480               | 2.0            | 78             | 8.71   | 7.426          |
| 2402               | 3.0            | 0              | 8.47   | 7.025          |
| 2441               | 3.0            | 39             | 10.09  | 10.205         |
| 2480               | 3.0            | 78             | 8.76   | 7.519          |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dama 62 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 62 of 110               |

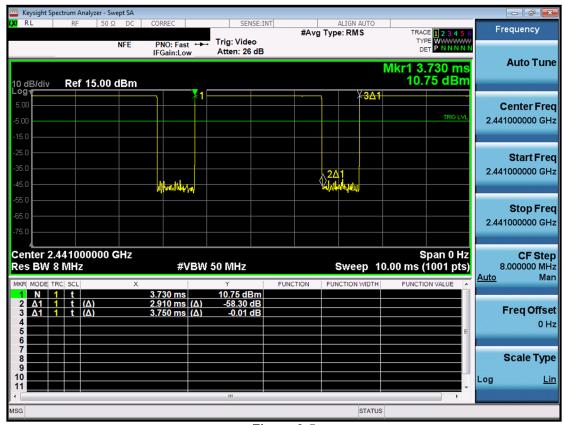



Figure 9-5
Bluetooth Transmission Plot

# Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.910 \textit{ms}}{3.750 \textit{ms}} * 100\% = 77.6\%$$

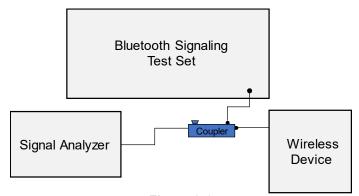



Figure 9-6
Power Measurement Setup

| FCC ID: ZNFQ720PS                    | PCTEST NEW THEOLOGY INC. | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager |
|--------------------------------------|--------------------------|-----------------------|-----|------------------------------|
| Document S/N:                        | Test Dates:              | DUT Type:             |     | D 00 -f 440                  |
| 1M1904220061-01-R1.ZNF               | 04/21/19 - 05/15/19      | Portable Handset      |     | Page 63 of 110               |
| 19 PCTEST Engineering Laboratory Inc |                          |                       |     | REV 21.3 M                   |

## 10.1 Tissue Verification

**Table 10-1 Measured Tissue Properties - Head** 

|                                          |                | IVIEas                                    | ureu i                         | issue r                              | ropertie                              | 5 - nec                            | iu                                  |                  |       |
|------------------------------------------|----------------|-------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|------------------|-------|
| Calibrated for<br>Tests<br>Performed on: | Tissue<br>Type | Tissue Temp<br>During Calibration<br>(°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ          | % dev |
|                                          |                |                                           | 695                            | 0.867                                | 43.742                                | 0.889                              | 42.227                              | -2.47%           | 3.59% |
|                                          |                |                                           | 700                            | 0.869                                | 43.727                                | 0.889                              | 42.201                              | -2.25%           | 3.62% |
|                                          |                |                                           | 710                            | 0.872                                | 43.699                                | 0.890                              | 42.149                              | -2.02%           | 3.68% |
| 5/4/2019                                 | 750H           | 20.5                                      | 720                            | 0.876                                | 43.669                                | 0.891                              | 42.097                              | -1.68%           | 3.73% |
| 3/4/2013                                 | 70011          | 20.0                                      | 740                            | 0.883                                | 43.612                                | 0.893                              | 41.994                              | -1.12%           | 3.85% |
|                                          |                |                                           | 755                            | 0.889                                | 43.564                                | 0.894                              | 41.916                              | -0.56%           | 3.93% |
|                                          |                |                                           | 770                            | 0.894                                | 43.511                                | 0.895                              | 41.838                              | -0.11%           | 4.00% |
|                                          |                |                                           | 785                            | 0.900                                | 43.463                                | 0.896                              | 41.760                              | 0.45%            | 4.08% |
|                                          |                |                                           | 680                            | 0.894                                | 43.102                                | 0.888                              | 42.305                              | 0.68%            | 1.88% |
|                                          |                |                                           | 695                            | 0.899                                | 43.046                                | 0.889                              | 42.227                              | 1.12%            | 1.94% |
| 5/9/2019                                 | 750H           | 22.3                                      | 710                            | 0.904                                | 42.997                                | 0.890                              | 42.149                              | 1.57%            | 2.019 |
|                                          |                |                                           | 740                            | 0.915                                | 42.922                                | 0.893                              | 41.994                              | 2.46%            | 2.219 |
|                                          |                |                                           | 755                            | 0.920                                | 42.881                                | 0.894                              | 41.916                              | 2.91%            | 2.309 |
|                                          |                |                                           | 820                            | 0.938                                | 42.822                                | 0.899                              | 41.578                              | 4.34%            | 2.999 |
| 4/21/2019                                | 835H           | 23.5                                      | 835                            | 0.942                                | 42.780                                | 0.900                              | 41.500                              | 4.67%            | 3.089 |
|                                          |                |                                           | 850                            | 0.945                                | 42.738                                | 0.916                              | 41.500                              | 3.17%            | 2.989 |
|                                          |                |                                           | 820                            | 0.931                                | 41.940                                | 0.899                              | 41.578                              | 3.56%            | 0.879 |
| 4/24/2019                                | 835H           | 22.7                                      | 835                            | 0.936                                | 41.890                                | 0.900                              | 41.500                              | 4.00%            | 0.949 |
|                                          |                |                                           | 850                            | 0.942                                | 41.857                                | 0.916                              | 41.500                              | 2.84%            | 0.869 |
|                                          |                |                                           | 1710                           | 1.367                                | 41.745                                | 1.348                              | 40.142                              | 1.41%            | 3.999 |
| 5/6/2019                                 | 1750H          | 22.4                                      | 1750                           | 1.392                                | 41.682                                | 1.371                              | 40.079                              | 1.53%            | 4.009 |
|                                          |                |                                           | 1790                           | 1.417                                | 41.611                                | 1.394                              | 40.016                              | 1.65%            | 3.999 |
|                                          |                |                                           | 1850                           | 1.381                                | 39.570                                | 1.400                              | 40.000                              | -1.36%           | -1.08 |
| 5/8/2019                                 | 1900H          | 22.8                                      | 1880                           | 1.411                                | 39.433                                | 1.400                              | 40.000                              | 0.79%            | -1.42 |
|                                          |                |                                           | 1910                           | 1.443                                | 39.301                                | 1.400                              | 40.000                              | 3.07%            | -1.75 |
|                                          |                |                                           | 1850                           | 1.422                                | 39.948                                | 1.400                              | 40.000                              | 1.57%            | -0.13 |
| 5/14/2019                                | 1900H          | 19.5                                      | 1880                           | 1.443                                | 39.889                                | 1.400                              | 40.000                              | 3.07%            | -0.28 |
|                                          |                |                                           | 1910                           | 1.463                                | 39.835                                | 1.400                              | 40.000                              | 4.50%            | -0.41 |
|                                          |                |                                           | 2400                           | 1.782                                | 37.853                                | 1.756                              | 39.289                              | 1.48%            | -3.65 |
| 4/29/2019                                | 2450H          | 19.9                                      | 2450                           | 1.820                                | 37.749                                | 1.800                              | 39.200                              | 1.11%            | -3.70 |
|                                          |                |                                           | 2500                           | 1.861                                | 37.672                                | 1.855                              | 39.136                              | 0.32%            | -3.74 |
|                                          |                |                                           | 2400                           | 1.780                                | 37.935                                | 1.756                              | 39.289                              | 1.37%            | -3.45 |
|                                          |                |                                           | 2450                           | 1.819                                | 37.837                                | 1.800                              | 39.200                              | 1.06%            | -3.48 |
|                                          |                |                                           | 2500                           | 1.858                                | 37.767                                | 1.855                              | 39.136                              | 0.16%            | -3.50 |
| 5/6/2019                                 | 2450H          | 21.2                                      | 2550                           | 1.896                                | 37.660                                | 1.909                              | 39.073                              | -0.68%           | -3.62 |
|                                          |                |                                           | 2600                           | 1.937                                | 37.584                                | 1.964                              | 39.009                              | -1.37%           | -3.65 |
|                                          |                |                                           | 2650                           | 1.974                                | 37.499                                | 2.018                              | 38.945                              | -2.18%           | -3.71 |
|                                          |                |                                           | 2700                           | 2.016                                | 37.413                                | 2.073                              | 38.882                              | -2.75%           | -3.78 |
|                                          |                |                                           | 5180                           | 4.569                                | 36.167                                | 4.635                              | 36.009                              | -1.42%           | 0.44  |
|                                          |                |                                           | 5200                           | 4.593                                | 36.133                                | 4.655                              | 35.986                              | -1.33%           | 0.41  |
|                                          |                |                                           | 5220                           | 4.616                                | 36.087                                | 4.676                              | 35.963                              | -1.28%           | 0.34  |
|                                          |                |                                           | 5240                           | 4.635                                | 36.055                                | 4.696                              | 35.940                              | -1.30%           | 0.32  |
|                                          |                |                                           | 5260                           | 4.655                                | 36.023                                | 4.717                              | 35.917                              | -1.31%           | 0.30  |
|                                          |                |                                           | 5280                           | 4.681                                | 35.974                                | 4.737                              | 35.894                              | -1.18%           | 0.22  |
|                                          |                |                                           | 5300                           | 4.707                                | 35.941                                | 4.758                              | 35.871                              | -1.07%           | 0.20  |
|                                          |                |                                           | 5320                           | 4.727                                | 35.910                                | 4.778                              | 35.849                              | -1.07%           | 0.17  |
|                                          |                |                                           | 5500                           | 4.928                                | 35.586                                | 4.963                              | 35.643                              | -0.71%           | -0.16 |
|                                          |                |                                           | 5520                           | 4.952                                | 35.552                                | 4.983                              | 35.620                              | -0.62%           | -0.19 |
|                                          |                |                                           | 5540                           | 4.982                                | 35.512                                | 5.004                              | 35.597                              | -0.44%           | -0.24 |
| 05/07/0040                               | 5200H-         | 22.2                                      | 5560                           | 5.007                                | 35.485                                | 5.024                              | 35.574                              | -0.34%           | -0.25 |
| 05/07/2019                               | 5800H          | 23.3                                      | 5580                           | 5.028                                | 35.454                                | 5.045                              | 35.551                              | -0.34%<br>-0.34% | -0.27 |
|                                          |                |                                           | 5600                           | 5.048                                | 35.409                                | 5.065                              | 35.529                              |                  | -0.34 |
|                                          |                |                                           | 5620                           | 5.074                                | 35.367                                | 5.086                              | 35.506                              | -0.24%           | -0.39 |
|                                          |                |                                           | 5640                           | 5.100                                | 35.324                                | 5.106                              | 35.483                              | -0.12%           | -0.45 |
|                                          |                |                                           | 5660                           | 5.124                                | 35.284                                | 5.127                              | 35.460                              | -0.06%           | -0.50 |
|                                          |                |                                           | 5680                           | 5.147                                | 35.269                                | 5.147                              | 35.437                              | 0.00%            | -0.47 |
|                                          |                |                                           | 5700                           | 5.171                                | 35.241                                | 5.168                              | 35.414                              | 0.06%            | -0.49 |
|                                          |                |                                           | 5745                           | 5.225                                | 35.143                                | 5.214                              | 35.363                              | 0.21%            | -0.62 |
|                                          |                |                                           | 5765                           | 5.249                                | 35.104                                | 5.234                              | 35.340                              | 0.29%            | -0.67 |
|                                          |                |                                           | 5785                           | 5.273                                | 35.079                                | 5.255                              | 35.317                              | 0.34%            | -0.67 |
|                                          | l              |                                           | 5800                           | 5.289<br>5.294                       | 35.059                                | 5.270<br>5.275                     | 35.300<br>35.294                    | 0.36%            | -0.68 |
|                                          |                |                                           |                                | 5 294                                | 35.052                                | 5.275                              | 35.294                              | 1 11.36%         | -0.69 |
|                                          |                |                                           | 5805<br>5825                   | 5.315                                | 35.018                                | 5.296                              | 35.271                              | 0.36%            | -0.72 |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 64 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 04 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

**Table 10-2** Measured Tissue Properties - Body

|                | ľ      | vieasur            | ea iis               | ssue P                  | roperi                     | iles –         | Боау             |                  |                  |
|----------------|--------|--------------------|----------------------|-------------------------|----------------------------|----------------|------------------|------------------|------------------|
| Calibrated for | Tissue | Tissue Temp        | Measured             | Measured                | Measured                   | TARGET         | TARGET           |                  |                  |
| Tests          | Type   | During Calibration | Frequency            | Conductivity,           | Dielectric                 | Conductivity,  | Dielectric       | % dev σ          | % dev ε          |
| Performed on:  | .,,,,, | (°C)               | (MHz)                | σ (S/m)                 | Constant, ε                | σ (S/m)        | Constant, ε      |                  |                  |
|                |        |                    | 680                  | 0.936                   | 54.763                     | 0.958          | 55.804           | -2.30%           | -1.87%           |
|                |        |                    | 695                  | 0.941                   | 54.730                     | 0.959          | 55.745           | -1.88%           | -1.82%           |
|                |        |                    | 700<br>710           | 0.943<br>0.947          | 54.721<br>54.697           | 0.959<br>0.960 | 55.726<br>55.687 | -1.67%<br>-1.35% | -1.80%<br>-1.78% |
| 4/24/2019      | 750B   | 21.0               | 710                  | 0.947                   | 54.672                     | 0.960          | 55.648           | -1.04%           | -1.75%           |
| 4/24/2019      | /50B   | 21.0               | 740                  | 0.951                   | 54.672                     | 0.963          | 55.570           | -0.52%           | -1.75%           |
|                |        |                    | 755                  | 0.964                   | 54.585                     | 0.964          | 55.512           | 0.00%            | -1.67%           |
|                |        |                    | 770                  | 0.969                   | 54.555                     | 0.965          | 55.453           | 0.41%            | -1.62%           |
|                |        |                    | 785                  | 0.975                   | 54.522                     | 0.966          | 55.395           | 0.93%            | -1.58%           |
|                |        |                    | 820                  | 0.995                   | 52.856                     | 0.969          | 55.258           | 2.68%            | -4.35%           |
| 5/1/2019       | 835B   | 22.4               | 835                  | 1.001                   | 52.822                     | 0.970          | 55.200           | 3.20%            | -4.31%           |
|                |        |                    | 850                  | 1.006                   | 52.791                     | 0.988          | 55.154           | 1.82%            | -4.28%           |
|                |        |                    | 820                  | 0.995                   | 53.293                     | 0.969          | 55.258           | 2.68%            | -3.56%           |
| 5/6/2019       | 835B   | 19.9               | 835                  | 1.001                   | 53.243                     | 0.970          | 55.200           | 3.20%            | -3.55%           |
|                |        |                    | 850                  | 1.005                   | 53.225                     | 0.988          | 55.154           | 1.72%            | -3.50%           |
|                |        |                    | 820                  | 0.977                   | 54.307                     | 0.969          | 55.258           | 0.83%            | -1.72%           |
| 5/8/2019       | 835B   | 20.0               | 835                  | 0.983                   | 54.284                     | 0.970          | 55.200           | 1.34%            | -1.66%           |
|                |        |                    | 850<br>820           | 0.989                   | 54.269                     | 0.988          | 55.154           | 0.10%            | -1.60%<br>-2.79% |
| 5/13/2019      | 835B   | 19.2               | 835                  | 0.972                   | 53.717                     | 0.969          | 55.258           | 0.82%            | -2.75%           |
| 3/13/2019      | 0000   | 19.2               | 850                  | 0.984                   | 53.681<br>53.656           | 0.988          | 55.200<br>55.154 | -0.40%           | -2.72%           |
|                |        |                    | 1710                 | 1.453                   | 52.642                     | 1.463          | 53.537           | -0.68%           | -1.67%           |
| 5/1/2019       | 1750B  | 21.9               | 1750                 | 1.497                   | 52.486                     | 1.488          | 53.432           | 0.60%            | -1.77%           |
|                | 505    |                    | 1790                 | 1.540                   | 52.312                     | 1.514          | 53.326           | 1.72%            | -1.90%           |
|                |        |                    | 1710                 | 1.450                   | 52.334                     | 1.463          | 53.537           | -0.89%           | -2.25%           |
| 5/6/2019       | 1750B  | 21.7               | 1750                 | 1.495                   | 52.197                     | 1.488          | 53.432           | 0.47%            | -2.31%           |
|                | L      | L                  | 1790                 | 1.539                   | 52.024                     | 1.514          | 53.326           | 1.65%            | -2.44%           |
|                |        |                    | 1850                 | 1.529                   | 51.953                     | 1.520          | 53.300           | 0.59%            | -2.53%           |
| 4/29/2019      | 1900B  | 23.1               | 1880                 | 1.562                   | 51.834                     | 1.520          | 53.300           | 2.76%            | -2.75%           |
|                |        |                    | 1910                 | 1.595                   | 51.740                     | 1.520          | 53.300           | 4.93%            | -2.93%           |
|                |        |                    | 1850                 | 1.450                   | 51.558                     | 1.520          | 53.300           | -4.61%           | -3.27%           |
| 5/2/2019       | 1900B  | 23.8               | 1880                 | 1.480                   | 51.473                     | 1.520          | 53.300           | -2.63%           | -3.43%           |
|                |        |                    | 1910                 | 1.512                   | 51.390                     | 1.520          | 53.300           | -0.53%           | -3.58%           |
| 5/6/2019       | 40000  | 00.4               | 1850                 | 1.526                   | 52.712                     | 1.520          | 53.300           | 0.39%            | -1.10%           |
| 5/6/2019       | 1900B  | 23.1               | 1880                 | 1.558<br>1.592          | 52.618<br>52.529           | 1.520<br>1.520 | 53.300<br>53.300 | 2.50%<br>4.74%   | -1.28%<br>-1.45% |
|                |        |                    | 1910<br>1850         | 1.592                   | 52.529                     | 1.520          | 53.300           | -2.30%           | -2.35%           |
| 5/8/2019       | 1900B  | 23.4               | 1880                 | 1.518                   | 51.958                     | 1.520          | 53.300           | -0.13%           | -2.52%           |
| 002010         | 13000  | 20.4               | 1910                 | 1.552                   | 51.869                     | 1.520          | 53.300           | 2.11%            | -2.68%           |
|                |        |                    | 1850                 | 1.521                   | 52.154                     | 1.520          | 53.300           | 0.07%            | -2.15%           |
| 5/15/2019      | 1900B  | 22.7               | 1880                 | 1.552                   | 52.031                     | 1.520          | 53.300           | 2.11%            | -2.38%           |
|                |        |                    | 1910                 | 1.586                   | 51.946                     | 1.520          | 53.300           | 4.34%            | -2.54%           |
|                |        |                    | 2400                 | 1.981                   | 50.680                     | 1.902          | 52.767           | 4.15%            | -3.96%           |
| 5/2/2019       | 2450B  | 23.3               | 2450                 | 2.038                   | 50.525                     | 1.950          | 52.700           | 4.51%            | -4.13%           |
|                |        |                    | 2500                 | 2.094                   | 50.369                     | 2.021          | 52.636           | 3.61%            | -4.31%           |
|                |        |                    | 2400                 | 1.975                   | 51.545                     | 1.902          | 52.767           | 3.84%            | -2.32%           |
| 5/6/2019       | 2450B  | 22.4               | 2450                 | 2.034                   | 51.400                     | 1.950          | 52.700           | 4.31%            | -2.47%           |
|                |        |                    | 2500                 | 2.090                   | 51.249                     | 2.021          | 52.636           | 3.41%            | -2.64%           |
|                |        |                    | 2450                 | 2.046                   | 51.565                     | 1.950          | 52.700           | 4.92%            | -2.15%           |
|                |        |                    | 2500                 | 2.107                   | 51.421                     | 2.021          | 52.636           | 4.26%            | -2.31%           |
| 5/8/2019       | 2450B  | 22.6               | 2550<br>2600         | 2.170                   | 51.264<br>51.100           | 2.092          | 52.573<br>52.509 | 3.73%            | -2.49%<br>-2.68% |
|                |        |                    | 2650                 | 2 294                   | 50.933                     | 2.103          | 52.445           | 2.69%            | -2.88%           |
|                |        |                    | 2700                 | 2.356                   | 50.769                     | 2.305          | 52.382           | 2.21%            | -3.08%           |
|                |        |                    | 2450                 | 2.036                   | 51.935                     | 1.950          | 52.700           | 4.41%            | -1.45%           |
|                |        |                    | 2500                 | 2.093                   | 51.785                     | 2.021          | 52.636           | 3.56%            | -1.62%           |
|                |        | 05 -               | 2550                 | 2.154                   | 51.641                     | 2.092          | 52.573           | 2.96%            | -1.77%           |
| 5/13/2019      | 2450B  | 22.2               | 2600                 | 2.212                   | 51.502                     | 2.163          | 52.509           | 2.27%            | -1.92%           |
|                |        | 1                  | 2650                 | 2.274                   | 51.348                     | 2.234          | 52.445           | 1.79%            | -2.09%           |
|                |        |                    | 2700                 | 2.336                   | 51.202                     | 2.305          | 52.382           | 1.34%            | -2.25%           |
|                |        | I                  | 5180                 | 5.366                   | 47.683                     | 5.276          | 49.041           | 1.71%            | -2.77%           |
|                |        | 1                  | 5200                 | 5.401                   | 47.642                     | 5.299          | 49.014           | 1.92%            | -2.80%           |
|                |        | 1                  | 5220                 | 5.428                   | 47.586                     | 5.323          | 48.987           | 1.97%            | -2.86%           |
|                |        | 1                  | 5240                 | 5.462                   | 47.558                     | 5.346          | 48.960           | 2.17%            | -2.86%           |
|                |        | 1                  | 5260                 | 5.488                   | 47.514                     | 5.369          | 48.933           | 2.22%            | -2.90%           |
|                |        | 1                  | 5280                 | 5.512                   | 47.489                     | 5.393<br>5.416 | 48.906           | 2.21%            | -2.90%<br>-2.92% |
|                |        | 1                  | 5300                 | 5.537<br>5.571          | 47.454                     |                | 48.879           | 2.23%            |                  |
|                |        | 1                  | 5320<br>5500         | 5.571<br>5.826          | 47.391<br>47.067           | 5.439          | 48.851<br>48.607 | 2.43%<br>3.12%   | -2.99%<br>-3.17% |
|                |        | 1                  | 5520                 | 5.826                   | 47.067                     | 5.650<br>5.673 | 48.580           | 3.12%            | -3.17%           |
|                |        |                    | 5540                 | 5.892                   | 46.980                     | 5.696          | 48.553           | 3.44%            | -3.19%           |
|                |        |                    | 5560                 | 5.931                   | 46.938                     | 5.720          | 48.526           | 3.69%            | -3.27%           |
| 04/30/2019     | 5200B- | 21.1               | 5580                 | 5.959                   | 46.911                     | 5.743          | 48.499           | 3.76%            | -3.27%           |
|                | 5800B  |                    | 5600                 | 5.984                   | 46.873                     | 5.766          | 48.471           | 3.78%            | -3.30%           |
|                |        | 1                  | 5620                 | 6.009                   | 46.827                     | 5.790          | 48.444           | 3.78%            | -3.34%           |
|                |        | 1                  | 5640                 | 6.044                   | 46.779                     | 5.813          | 48.417           | 3.97%            | -3.38%           |
|                |        | 1                  | 5660                 | 6.078                   | 46.735                     | 5.837          | 48.390           | 4.13%            | -3.42%           |
|                |        | 1                  | 5680                 | 6.112                   | 46.706                     | 5.860          | 48.363           | 4.30%            | -3.43%           |
|                |        | 1                  | 5700                 | 6.141                   | 46.673                     | 5.883          | 48.336           | 4.39%            | -3.44%           |
|                | l      |                    | 5745                 | 6.203                   | 46.579                     | 5.936          | 48.275           | 4.50%            | -3.51%           |
|                |        |                    | 5765                 | 6.238                   | 46.542                     | 5.959          | 48.248           | 4.68%            | -3.54%           |
|                | 1      |                    | 5785                 | 6.271                   | 46.503                     | 5.982          | 48.220           | 4.83%<br>4.88%   | -3.56%<br>-3.57% |
|                |        |                    |                      |                         |                            |                |                  |                  |                  |
|                |        |                    | 5800                 | 6.293                   | 46.477                     | 6.000          | 48.200           |                  |                  |
|                |        |                    | 5800<br>5805<br>5825 | 6.293<br>6.300<br>6.328 | 46.477<br>46.470<br>46.444 | 6.006<br>6.029 | 48.193<br>48.166 | 4.90%<br>4.96%   | -3.58%<br>-3.58% |

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 65 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | raye 00 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

# 10.2 Test System Verification

Prior to SAR assessment, the system is verified to  $\pm 10\%$  of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3 System Verification Results – 1g

|                    |                              |                |            |                      |                        | System V              | erification  | on          | .s – 1 <u>y</u>             |                                        |                                   |                             |
|--------------------|------------------------------|----------------|------------|----------------------|------------------------|-----------------------|--------------|-------------|-----------------------------|----------------------------------------|-----------------------------------|-----------------------------|
| SAR<br>System<br># | Tissue<br>Frequency<br>(MHz) | Tissue<br>Type | Date       | Amb.<br>Temp<br>(°C) | Liquid<br>Temp<br>(°C) | Input<br>Power<br>(W) | Source<br>SN | Probe<br>SN | Measured<br>SAR¹9<br>(W/kg) | 1 W Target<br>SAR <sub>1g</sub> (W/kg) | 1 W<br>Normalized<br>SAR¹9 (W/kg) | Deviation <sub>1g</sub> (%) |
| Н                  | 750                          | HEAD           | 05/04/2019 | 22.1                 | 21.2                   | 0.200                 | 1161         | 7409        | 1.730                       | 8.030                                  | 8.650                             | 7.72%                       |
| D                  | 750                          | HEAD           | 05/09/2019 | 23.1                 | 22.3                   | 0.200                 | 1161         | 3914        | 1.730                       | 8.030                                  | 8.650                             | 7.72%                       |
| D                  | 835                          | HEAD           | 04/21/2019 | 22.3                 | 22.1                   | 0.200                 | 4d132        | 3914        | 2.070                       | 9.590                                  | 10.350                            | 7.92%                       |
| D                  | 835                          | HEAD           | 04/24/2019 | 23.1                 | 22.7                   | 0.200                 | 4d132        | 3914        | 1.970                       | 9.590                                  | 9.850                             | 2.71%                       |
| Н                  | 1750                         | HEAD           | 05/06/2019 | 21.9                 | 22.4                   | 0.100                 | 1008         | 7409        | 3.640                       | 36.200                                 | 36.400                            | 0.55%                       |
| G                  | 1900                         | HEAD           | 05/08/2019 | 23.8                 | 22.8                   | 0.100                 | 5d149        | 7410        | 4.060                       | 39.300                                 | 40.600                            | 3.31%                       |
| E                  | 1900                         | HEAD           | 05/14/2019 | 23.6                 | 21.5                   | 0.100                 | 5d148        | 3589        | 3.970                       | 39.100                                 | 39.700                            | 1.53%                       |
| L                  | 2450                         | HEAD           | 04/29/2019 | 20.1                 | 19.9                   | 0.100                 | 719          | 7308        | 5.180                       | 51.900                                 | 51.800                            | -0.19%                      |
| E                  | 2450                         | HEAD           | 05/06/2019 | 22.9                 | 21.2                   | 0.100                 | 981          | 3589        | 5.380                       | 52.300                                 | 53.800                            | 2.87%                       |
| E                  | 2600                         | HEAD           | 05/06/2019 | 22.9                 | 21.2                   | 0.100                 | 1064         | 3589        | 5.970                       | 57.000                                 | 59.700                            | 4.74%                       |
| Н                  | 5250                         | HEAD           | 05/07/2019 | 21.9                 | 21.7                   | 0.050                 | 1237         | 7409        | 3.890                       | 81.300                                 | 77.800                            | -4.31%                      |
| Н                  | 5600                         | HEAD           | 05/07/2019 | 21.9                 | 21.7                   | 0.050                 | 1237         | 7409        | 4.110                       | 85.700                                 | 82.200                            | -4.08%                      |
| Н                  | 5750                         | HEAD           | 05/07/2019 | 21.9                 | 21.7                   | 0.050                 | 1237         | 7409        | 3.840                       | 80.600                                 | 76.800                            | -4.71%                      |
| L                  | 750                          | BODY           | 04/24/2019 | 21.7                 | 20.5                   | 0.200                 | 1161         | 7308        | 1.730                       | 8.430                                  | 8.650                             | 2.61%                       |
| J                  | 835                          | BODY           | 05/01/2019 | 23.3                 | 22.4                   | 0.200                 | 4d132        | 7488        | 1.870                       | 9.670                                  | 9.350                             | -3.31%                      |
| J                  | 835                          | BODY           | 05/06/2019 | 20.0                 | 19.5                   | 0.200                 | 4d132        | 7488        | 2.040                       | 9.670                                  | 10.200                            | 5.48%                       |
| J                  | 835                          | BODY           | 05/08/2019 | 21.9                 | 20.0                   | 0.200                 | 4d132        | 7488        | 1.950                       | 9.670                                  | 9.750                             | 0.83%                       |
| J                  | 835                          | BODY           | 05/13/2019 | 19.7                 | 19.2                   | 0.200                 | 4d133        | 7488        | 1.860                       | 9.750                                  | 9.300                             | -4.62%                      |
| D                  | 1750                         | BODY           | 05/01/2019 | 22.3                 | 21.9                   | 0.100                 | 1148         | 3914        | 3.820                       | 37.000                                 | 38.200                            | 3.24%                       |
| D                  | 1750                         | BODY           | 05/06/2019 | 22.2                 | 21.7                   | 0.100                 | 1008         | 3914        | 3.850                       | 37.400                                 | 38.500                            | 2.94%                       |
| ı                  | 1900                         | BODY           | 04/29/2019 | 20.0                 | 21.1                   | 0.100                 | 5d080        | 7357        | 4.070                       | 39.200                                 | 40.700                            | 3.83%                       |
| 1                  | 1900                         | BODY           | 05/02/2019 | 22.3                 | 23.8                   | 0.100                 | 5d149        | 7357        | 4.150                       | 39.400                                 | 41.500                            | 5.33%                       |
| G                  | 1900                         | BODY           | 05/06/2019 | 21.5                 | 22.1                   | 0.100                 | 5d149        | 7410        | 4.140                       | 39.400                                 | 41.400                            | 5.08%                       |
| 1                  | 1900                         | BODY           | 05/08/2019 | 23.5                 | 21.6                   | 0.100                 | 5d149        | 7357        | 4.200                       | 39.400                                 | 42.000                            | 6.60%                       |
| G                  | 1900                         | BODY           | 05/15/2019 | 22.8                 | 21.7                   | 0.100                 | 5d080        | 7410        | 4.180                       | 39.200                                 | 41.800                            | 6.63%                       |
| К                  | 2450                         | BODY           | 05/02/2019 | 23.2                 | 21.5                   | 0.100                 | 797          | 7417        | 5.140                       | 51.100                                 | 51.400                            | 0.59%                       |
| К                  | 2450                         | BODY           | 05/06/2019 | 22.2                 | 21.6                   | 0.100                 | 797          | 7417        | 5.040                       | 51.100                                 | 50.400                            | -1.37%                      |
| К                  | 2600                         | BODY           | 05/08/2019 | 23.7                 | 21.9                   | 0.100                 | 1071         | 7417        | 5.240                       | 54.200                                 | 52.400                            | -3.32%                      |
| L                  | 5250                         | BODY           | 04/30/2019 | 22.0                 | 21.1                   | 0.050                 | 1057         | 7308        | 3.670                       | 75.900                                 | 73.400                            | -3.29%                      |
| L                  | 5600                         | BODY           | 04/30/2019 | 22.0                 | 21.1                   | 0.050                 | 1057         | 7308        | 3.890                       | 79.900                                 | 77.800                            | -2.63%                      |
| L                  | 5750                         | BODY           | 04/30/2019 | 22.0                 | 21.1                   | 0.050                 | 1057         | 7308        | 3.570                       | 76.700                                 | 71.400                            | -6.91%                      |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dags 66 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 66 of 110               |
|                        |                     | <b>,</b>              | Page 66                      |

#### **Table 10-4** System Verification Results - 10a

| _                  | System verification Results – Tog                                                                     |      |            |      |      |       |       |      |       |            |                              |        |  |
|--------------------|-------------------------------------------------------------------------------------------------------|------|------------|------|------|-------|-------|------|-------|------------|------------------------------|--------|--|
|                    | System Verification TARGET & MEASURED                                                                 |      |            |      |      |       |       |      |       |            |                              |        |  |
| SAR<br>System<br># | Tissue   Date   Temp   Power   Source   Probe   SAR <sup>10</sup> 9   SAR <sup>10</sup> 9   Normalize |      |            |      |      |       |       |      |       | Normalized | Deviation <sub>10g</sub> (%) |        |  |
| G                  | 1900                                                                                                  | BODY | 05/06/2019 | 21.5 | 22.1 | 0.100 | 5d149 | 7410 | 2.150 | 20.700     | 21.500                       | 3.86%  |  |
| 1                  | 1900                                                                                                  | BODY | 05/08/2019 | 23.5 | 21.6 | 0.100 | 5d149 | 7357 | 2.150 | 20.700     | 21.500                       | 3.86%  |  |
| K                  | 2450                                                                                                  | BODY | 05/13/2019 | 21.9 | 20.9 | 0.040 | 797   | 7417 | 2.270 | 24.200     | 22.700                       | -6.20% |  |
| K                  | 2600                                                                                                  | BODY | 05/13/2019 | 21.9 | 20.9 | 0.040 | 1071  | 7417 | 2.300 | 24.500     | 23.000                       | -6.12% |  |
| L                  | 5250                                                                                                  | BODY | 04/30/2019 | 22.0 | 21.1 | 0.050 | 1057  | 7308 | 1.010 | 21.100     | 20.200                       | -4.27% |  |
| L                  | 5750                                                                                                  | BODY | 04/30/2019 | 22.0 | 21.1 | 0.050 | 1057  | 7308 | 0.990 | 21.200     | 19.800                       | -6.60% |  |

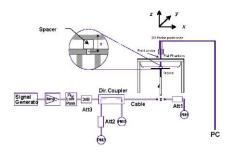



Figure 10-1 System Verification Setup Diagram



Figure 10-2 System Verification Setup Photo

| FCC ID: ZNFQ720PS                      | PCTEST INCIDENCE LAPPACEUT, INC. | SAR EVALUATION REPORT | <b>(</b> LG | Approved by:  Quality Manager |
|----------------------------------------|----------------------------------|-----------------------|-------------|-------------------------------|
| Document S/N:                          | Test Dates:                      | DUT Type:             |             | Dogo 67 of 110                |
| 1M1904220061-01-R1.ZNF                 | 04/21/19 - 05/15/19              | Portable Handset      |             | Page 67 of 110                |
| 110 DCTEST Engineering Laboratory Inc. |                                  |                       |             | DEV/ 21 3 M                   |

# 11 SAR DATA SUMMARY

## 11.1 Standalone Head SAR Data

#### Table 11-1 GSM 850 Head SAR

|        | GOIN GOUTHEAU SAIX                                                                                |           |         |                    |             |            |        |          |                  |           |                          |          |         |                      |       |
|--------|---------------------------------------------------------------------------------------------------|-----------|---------|--------------------|-------------|------------|--------|----------|------------------|-----------|--------------------------|----------|---------|----------------------|-------|
|        |                                                                                                   |           |         |                    |             | MEASU      | JREMEN | T RESU   | LTS              |           |                          |          |         |                      |       |
| FREQU  | ENCY                                                                                              | Mode/Band | Service | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | # of Time | Duty                     | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | Ch.                                                                                               |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |        | Position | Number           | Slots     | Cycle                    | (W/kg)   | Factor  | (W/kg)               |       |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7               | 33.60       | 0.08       | Right  | Cheek    | 01543            | 1         | 1:8.3                    | 0.159    | 1.023   | 0.163                |       |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7               | 33.60       | 0.00       | Right  | Tilt     | 01543            | 1         | 1:8.3                    | 0.109    | 1.023   | 0.112                |       |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7               | 33.60       | 0.13       | Left   | Cheek    | 01543            | 1         | 1:8.3                    | 0.159    | 1.023   | 0.163                |       |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7               | 33.60       | 0.07       | Left   | Tilt     | 01543            | 1         | 1:8.3                    | 0.132    | 1.023   | 0.135                |       |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 32.2               | 32.06       | 0.04       | Right  | Cheek    | 01543            | 2         | 1:4.15                   | 0.190    | 1.033   | 0.196                |       |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 32.2               | 32.06       | 0.04       | Right  | Tilt     | 01543            | 2         | 1:4.15                   | 0.129    | 1.033   | 0.133                |       |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 32.2               | 32.06       | 0.00       | Left   | Cheek    | 01543            | 2         | 1:4.15                   | 0.200    | 1.033   | 0.207                | A1    |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 32.2               | 32.06       | 0.05       | Left   | Tilt     | 01543            | 2         | 1:4.15                   | 0.165    | 1.033   | 0.170                |       |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |           |         |                    |             |            |        |          |                  |           | Heat 1.6 W/kg reraged or |          |         |                      |       |

#### Table 11-2 GSM 1900 Head SAR

|         |                                          |           |         |                    |             |            | 10001  | icua o   |                  |           |          |            |         |                      |       |
|---------|------------------------------------------|-----------|---------|--------------------|-------------|------------|--------|----------|------------------|-----------|----------|------------|---------|----------------------|-------|
|         |                                          |           |         |                    |             | MEASU      | JREMEN | T RESU   | LTS              |           |          |            |         |                      |       |
| FREQU   | ENCY                                     | Mode/Band | Service | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | # of Time | Duty     | SAR (1g)   | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch.                                      |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |        | Position | Number           | Slots     | Cycle    | (W/kg)     | Factor  | (W/kg)               |       |
| 1880.00 | 661                                      | GSM 1900  | GSM     | 30.7               | 30.22       | 0.20       | Right  | Cheek    | 01544            | 1         | 1:8.3    | 0.079      | 1.117   | 0.088                |       |
| 1880.00 | 661                                      | GSM 1900  | GSM     | 30.7               | 30.22       | 0.16       | Right  | Tilt     | 01544            | 1         | 1:8.3    | 0.046      | 1.117   | 0.051                |       |
| 1880.00 | 661                                      | GSM 1900  | GSM     | 30.7               | 30.22       | 0.00       | Left   | Cheek    | 01544            | 1         | 1:8.3    | 0.073      | 1.117   | 0.082                |       |
| 1880.00 | 661                                      | GSM 1900  | GSM     | 30.7               | 30.22       | -0.12      | Left   | Tilt     | 01544            | 1         | 1:8.3    | 0.026      | 1.117   | 0.029                |       |
| 1880.00 | 661                                      | GSM 1900  | GPRS    | 29.2               | 28.73       | 0.10       | Right  | Cheek    | 01544            | 2         | 1:4.15   | 0.091      | 1.114   | 0.101                | A2    |
| 1880.00 | 661                                      | GSM 1900  | GPRS    | 29.2               | 28.73       | 0.11       | Right  | Tilt     | 01544            | 2         | 1:4.15   | 0.056      | 1.114   | 0.062                |       |
| 1880.00 | 661                                      | GSM 1900  | GPRS    | 29.2               | 28.73       | 0.16       | Left   | Cheek    | 01544            | 2         | 1:4.15   | 0.089      | 1.114   | 0.099                |       |
| 1880.00 | 661                                      | GSM 1900  | GPRS    | 29.2               | 28.73       | -0.08      | Left   | Tilt     | 01544            | 2         | 1:4.15   | 0.033      | 1.114   | 0.037                |       |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |           |         |                    |             |            |        |          |                  | •         | Hea      | ad         | •       |                      |       |
|         | Spatial Peak                             |           |         |                    |             |            |        |          |                  |           | 1.6 W/kg | (mW/g)     |         |                      |       |
|         | Uncontrolled Exposure/General Population |           |         |                    |             |            |        |          |                  | a         | eraged o | ver 1 gram |         |                      |       |

| PETEST SHORMEN LABORATORY, INC. | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|---------------------------------|-----------------------|-------------------------------|
| Test Dates:                     | DUT Type:             | Dogg 60 of 110                |
| 04/21/19 - 05/15/19             | Portable Handset      | Page 68 of 110                |
|                                 | Test Dates:           | Test Dates: DUT Type:         |

#### **Table 11-3 UMTS 850 Head SAR**

|        |                                       |              |         |                      | ME          | ASURE      | MENT R | ESULTS          |                  |       |          |         |                      |       |  |  |  |  |
|--------|---------------------------------------|--------------|---------|----------------------|-------------|------------|--------|-----------------|------------------|-------|----------|---------|----------------------|-------|--|--|--|--|
| FREQUI | ENCY                                  | Mode/Band    | Service | Maximum<br>Allowed   | Conducted   | Power      | Side   | Test            | Device<br>Serial | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |  |  |  |  |
| MHz    | Ch.                                   |              |         | Power [dBm]          | Power [dBm] | Drift [dB] |        | Position        | Number           | Cycle | (W/kg)   | Factor  | (W/kg)               |       |  |  |  |  |
| 836.60 | 4183                                  | UMTS 850     | RMC     | 25.5                 | 25.43       | 0.12       | Right  | Cheek           | 01543            | 1:1   | 0.211    | 1.016   | 0.214                | A3    |  |  |  |  |
| 836.60 | 4183                                  | UMTS 850     | RMC     | 25.5                 | 25.43       | -0.09      | Right  | 0.148           |                  |       |          |         |                      |       |  |  |  |  |
| 836.60 |                                       |              |         |                      |             |            | Left   | Cheek           | 01543            | 1:1   | 0.194    | 1.016   | 0.197                |       |  |  |  |  |
| 836.60 | 4183                                  | UMTS 850     | RMC     | 25.5                 | 25.43       | 0.01       | Left   | Tilt            | 01543            | 1:1   | 0.190    | 1.016   | 0.193                |       |  |  |  |  |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |              |         |                      |             |            |        | Head            |                  |       |          |         |                      |       |  |  |  |  |
|        | Spatial Peak                          |              |         |                      |             |            |        | 1.6 W/kg (mW/g) |                  |       |          |         |                      |       |  |  |  |  |
|        |                                       | Uncontrolled |         | averaged over 1 gram |             |            |        |                 |                  |       |          |         |                      |       |  |  |  |  |

#### **Table 11-4 UMTS 1750 Head SAR**

|         | UWI 3 1730 Redu SAR                   |              |              |                    |             |            |                                       |                 |                  |        |               |         |                      |       |  |  |  |
|---------|---------------------------------------|--------------|--------------|--------------------|-------------|------------|---------------------------------------|-----------------|------------------|--------|---------------|---------|----------------------|-------|--|--|--|
|         |                                       |              |              |                    | ME          | ASURE      | MENT R                                | ESULTS          |                  |        |               |         |                      |       |  |  |  |
| FREQUI  | ENCY                                  | Mode/Band    | Service      | Maximum<br>Allowed | Conducted   | Power      | Side                                  | Test            | Device<br>Serial | Duty   | SAR (1g)      | Scaling | Reported SAR<br>(1g) | Plot# |  |  |  |
| MHz     | Ch.                                   |              |              | Power [dBm]        | Power [dBm] | Drift [dB] |                                       | Position        | Number           | Cycle  | (W/kg)        | Factor  | (W/kg)               |       |  |  |  |
| 1732.40 | 1412                                  | UMTS 1750    | RMC          | 24.3               | 24.26       | 0.03       | Right                                 | Cheek           | 01544            | 1:1    | 0.140         | 1.009   | 0.141                | A4    |  |  |  |
| 1732.40 | 1412                                  | UMTS 1750    | RMC          | 24.3               | 24.26       | -0.15      | Right                                 | Tilt            | 01544            | 1:1    | 0.081         | 1.009   | 0.082                |       |  |  |  |
| 1732.40 | 1412                                  | UMTS 1750    | RMC          | 24.3               | 24.26       | 0.00       | Left                                  | Cheek           | 01544            | 1:1    | 0.117         | 1.009   | 0.118                |       |  |  |  |
| 1732.40 | 1412                                  | UMTS 1750    | RMC          | 24.3               | 24.26       | 0.14       | Left Tilt 01544 1:1 0.053 1.009 0.053 |                 |                  |        |               |         |                      |       |  |  |  |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |              |              |                    |             |            |                                       | Head            |                  |        |               |         |                      |       |  |  |  |
|         | Spatial Peak                          |              |              |                    |             |            |                                       | 1.6 W/kg (mW/g) |                  |        |               |         |                      |       |  |  |  |
|         |                                       | Uncontrolled | d Exposure/G | eneral Popul       | ation       |            |                                       |                 |                  | averag | ed over 1 gra | am      |                      |       |  |  |  |

#### **Table 11-5 UMTS 1900 Head SAR**

|         |                                       |              |              |                    |             |            | *******              | ia oni   |                  |       |          |         |                      |       |  |  |
|---------|---------------------------------------|--------------|--------------|--------------------|-------------|------------|----------------------|----------|------------------|-------|----------|---------|----------------------|-------|--|--|
|         |                                       |              |              |                    | ME          | ASURE      | MENT R               | ESULTS   |                  |       |          |         |                      |       |  |  |
| FREQUI  | ENCY                                  | Mode/Band    | Service      | Maximum<br>Allowed | Conducted   | Power      | Side                 | Test     | Device<br>Serial | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |  |  |
| MHz     | Ch.                                   |              |              | Power [dBm]        | Power [dBm] | Drift [dB] |                      | Position | Number           | Cycle | (W/kg)   | Factor  | (W/kg)               |       |  |  |
| 1880.00 | 9400                                  | UMTS 1900    | RMC          | 24.3               | 24.20       | 0.06       | Right                | Cheek    | 01544            | 1:1   | 0.158    | 1.023   | 0.162                | A5    |  |  |
| 1880.00 | 9400                                  | UMTS 1900    | RMC          | 24.3               | 24.20       | 0.11       | Right                | 0.099    |                  |       |          |         |                      |       |  |  |
| 1880.00 | 9400                                  | UMTS 1900    | RMC          | 24.3               | 24.20       | 0.16       | Left                 | Cheek    | 01544            | 1:1   | 0.132    | 1.023   | 0.135                |       |  |  |
| 1880.00 | 30.00 9400 UMTS 1900 RMC 24.3 24.20 0 |              |              |                    |             |            |                      | Tilt     | 01544            | 1:1   | 0.040    | 1.023   | 0.041                |       |  |  |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |              |              |                    |             |            | Head                 |          |                  |       |          |         |                      |       |  |  |
|         | Spatial Peak                          |              |              |                    |             |            | 1.6 W/kg (mW/g)      |          |                  |       |          |         |                      |       |  |  |
|         |                                       | Uncontrolled | d Exposure/G | eneral Popul       | ation       |            | averaged over 1 gram |          |                  |       |          |         |                      |       |  |  |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dago 60 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 69 of 110               |

## **Table 11-6** CDMA BC10 (890S) Head SAR

|        |              |                     |              |                    | CDMA        | BC10       | (8909)               | пеаа     | SAK              |       |             |         |                      |       |  |  |
|--------|--------------|---------------------|--------------|--------------------|-------------|------------|----------------------|----------|------------------|-------|-------------|---------|----------------------|-------|--|--|
|        |              |                     |              |                    | ME          | ASURE      | MENT R               | ESULTS   |                  |       |             |         |                      |       |  |  |
| FREQUI | ENCY         | Mode/Band           | Service      | Maximum<br>Allowed | Conducted   | Power      | Side                 | Test     | Device<br>Serial | Duty  | SAR (1g)    | Scaling | Reported SAR<br>(1g) | Plot# |  |  |
| MHz    | Ch.          |                     |              | Power [dBm]        | Power [dBm] | Drift [dB] |                      | Position | Number           | Cycle | (W/kg)      | Factor  | (W/kg)               |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | RC3 / SO55   | 25.0               | 24.93       | 0.03       | Right                | Cheek    | 01543            | 1:1   | 0.172       | 1.016   | 0.175                | A6    |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | RC3 / SO55   | 25.0               | 24.93       | 0.01       | Right                | Tilt     | 01543            | 1:1   | 0.128       | 1.016   | 0.130                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | RC3 / SO55   | 25.0               | 24.93       | 0.02       | Left                 | Cheek    | 01543            | 1:1   | 0.166       | 1.016   | 0.169                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | RC3 / SO55   | 25.0               | 24.93       | 0.03       | Left                 | Tilt     | 01543            | 1:1   | 0.163       | 1.016   | 0.166                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | EVDO Rev. A  | 25.0               | 24.89       | 0.02       | Right                | Cheek    | 01543            | 1:1   | 0.170       | 1.026   | 0.174                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | EVDO Rev. A  | 25.0               | 24.89       | 0.07       | Right                | Tilt     | 01543            | 1:1   | 0.124       | 1.026   | 0.127                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | EVDO Rev. A  | 25.0               | 24.89       | 0.10       | Left                 | Cheek    | 01543            | 1:1   | 0.159       | 1.026   | 0.163                |       |  |  |
| 820.10 | 564          | CDMA BC10<br>(§90S) | EVDO Rev. A  | 25.0               | 24.89       | -0.12      | Left                 | Tilt     | 01543            | 1:1   | 0.164       | 1.026   | 0.168                |       |  |  |
|        |              | ANSI / IEE          | E C95.1 1992 | - SAFETY LII       | MIT         |            | Head                 |          |                  |       |             |         |                      |       |  |  |
|        | Spatial Peak |                     |              |                    |             |            |                      |          |                  | 1.6 \ | N/kg (mW/g) | )       |                      |       |  |  |
|        |              | Uncontrolled        | d Exposure/G | eneral Popul       | ation       |            | averaged over 1 gram |          |                  |       |             |         |                      |       |  |  |

## **Table 11-7** CDMA BC0 (§22H) Head SAR

|        |              |                    |              |                    |             |            |                         | ESULTS   |                  |       |             |         |                      |       |  |  |
|--------|--------------|--------------------|--------------|--------------------|-------------|------------|-------------------------|----------|------------------|-------|-------------|---------|----------------------|-------|--|--|
| FREQU  | ENCY         | Mode/Band          | Service      | Maximum<br>Allowed | Conducted   | Power      | Side                    | Test     | Device<br>Serial | Duty  | SAR (1g)    | Scaling | Reported SAR<br>(1g) | Plot# |  |  |
| MHz    | Ch.          | modo/Dana          | 3011.00      | Power [dBm]        | Power [dBm] | Drift [dB] | 0.00                    | Position | Number           | Cycle | (W/kg)      | Factor  | (W/kg)               |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | RC3 / SO55   | 25.0               | 24.99       | 0.05       | Right                   | Cheek    | 01543            | 1:1   | 0.153       | 1.002   | 0.153                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | RC3 / SO55   | 25.0               | 24.99       | 0.09       | Right                   | Tilt     | 01543            | 1:1   | 0.124       | 1.002   | 0.124                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | RC3 / SO55   | 25.0               | 24.99       | -0.11      | Left                    | Cheek    | 01543            | 1.002 | 0.165       | A7      |                      |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | RC3 / SO55   | 25.0               | 24.99       | 0.02       | Left Tilt 01543 1:1 0.1 |          |                  |       | 0.159       | 1.002   | 0.159                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | EVDO Rev. A  | 25.0               | 24.92       | 0.06       | Right                   | Cheek    | 01543            | 1:1   | 0.162       | 1.019   | 0.165                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | EVDO Rev. A  | 25.0               | 24.92       | 0.09       | Right                   | Tilt     | 01543            | 1:1   | 0.128       | 1.019   | 0.130                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | EVDO Rev. A  | 25.0               | 24.92       | -0.05      | Left                    | Cheek    | 01543            | 1:1   | 0.146       | 1.019   | 0.149                |       |  |  |
| 836.52 | 384          | CDMA BC0<br>(§22H) | EVDO Rev. A  | 25.0               | 24.92       | -0.02      | Left                    | Tilt     | 01543            | 1:1   | 0.146       | 1.019   | 0.149                |       |  |  |
|        |              | ANSI / IEE         | E C95.1 1992 | - SAFETY LI        | MIT         |            | Head                    |          |                  |       |             |         |                      |       |  |  |
|        | Spatial Peak |                    |              |                    |             |            |                         |          |                  |       | V/kg (mW/g) |         |                      |       |  |  |
|        |              | Uncontrolled       | d Exposure/G | eneral Popul       | ation       |            | averaged over 1 gram    |          |                  |       |             |         |                      |       |  |  |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 70 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 70 of 110                |

#### **Table 11-8 PCS CDMA Head SAR**

|         |                                                       |              |              |                        |             | <del>, , , , , , , , , , , , , , , , , , , </del> | <u> </u>            | iu SAN   | <u> </u>         |        |                     |         |                      |                 |
|---------|-------------------------------------------------------|--------------|--------------|------------------------|-------------|---------------------------------------------------|---------------------|----------|------------------|--------|---------------------|---------|----------------------|-----------------|
|         |                                                       |              |              |                        | ME          | ASURE                                             | MENT R              | ESULTS   |                  |        |                     |         |                      |                 |
| FREQUE  | ENCY                                                  |              |              | Maximum                | Conducted   | Power                                             |                     | Test     | Device           | Duty   | SAR (1g)            | Scaling | Reported SAR<br>(1g) | <b>5</b> 1.4.11 |
| MHz     | Ch.                                                   | Mode/Band    | Service      | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB]                                        | Side                | Position | Serial<br>Number | Cycle  | (W/kg)              | Factor  | (W/kg)               | Plot#           |
| 1880.00 | 600                                                   | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.20       | 0.00                                              | Right               | Cheek    | 01544            | 1:1    | 0.151               | 1.122   | 0.169                | A8              |
| 1880.00 | 600                                                   | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.20       | 0.03                                              | Right               | Tilt     | 01544            | 1:1    | 0.093               | 1.122   | 0.104                |                 |
| 1880.00 | 600                                                   | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.20       | -0.09                                             | Left                | 0.159    |                  |        |                     |         |                      |                 |
| 1880.00 | 600                                                   | PCS CDMA     | RC3 / SO55   | 24.7                   | 24.20       | -0.04                                             | Left Tilt 01544 1:1 |          |                  |        | 0.045               | 1.122   | 0.050                |                 |
| 1880.00 | 600                                                   | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.38       | 0.05                                              | Right               | Cheek    | 01544            | 1:1    | 0.143               | 1.076   | 0.154                |                 |
| 1880.00 | 600                                                   | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.38       | 0.12                                              | Right               | Tilt     | 01544            | 1:1    | 0.091               | 1.076   | 0.098                |                 |
| 1880.00 | 600                                                   | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.38       | 0.07                                              | Left                | Cheek    | 01544            | 1:1    | 0.135               | 1.076   | 0.145                |                 |
| 1880.00 | 600                                                   | PCS CDMA     | EVDO Rev. A  | 24.7                   | 24.38       | 0.11                                              | Left                | Tilt     | 01544            | 1:1    | 0.053               | 1.076   | 0.057                |                 |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak |              |              |                        |             |                                                   |                     |          |                  |        | Head<br>V/kg (mW/g) |         |                      |                 |
|         |                                                       | Uncontrolled | d Exposure/G | eneral Popul           | lation      |                                                   |                     |          | ,                | averag | jed over 1 gra      | am      |                      |                 |

#### **Table 11-9** LTE Band 71 Head SAR

|        |                                                          |     |             |           |                    |             |            | MEAS     | SUREM                                      | ENT RES  | SULTS      |         |           |                  |       |          |         |                      |       |
|--------|----------------------------------------------------------|-----|-------------|-----------|--------------------|-------------|------------|----------|--------------------------------------------|----------|------------|---------|-----------|------------------|-------|----------|---------|----------------------|-------|
| FR     | EQUENCY                                                  | ,   | Mode        | Bandwidth | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side                                       | Test     | Modulation | RB Size | RB Offset | Device<br>Serial | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | Cł                                                       | ı.  |             | [MHz]     | Power [dBm]        | Power [dBm] | Drift [dB] | . 1      |                                            | Position |            |         |           | Number           | Cycle | (W/kg)   | Factor  | (W/kg)               |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 25.5               | 25.19       | -0.01      | 0        | Right                                      | Cheek    | QPSK       | 1       | 50        | 01552            | 1:1   | 0.096    | 1.074   | 0.103                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 24.5               | 24.20       | 0.06       | 1        | Right                                      | Cheek    | QPSK       | 50      | 0         | 01552            | 1:1   | 0.075    | 1.072   | 0.080                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 25.5               | 25.19       | 0.06       | 0        | Right Tilt QPSK 1 50 01552 1:1 0.034 1.074 |          |            |         |           |                  |       |          | 1.074   | 0.037                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 24.5               | 24.20       | 0.17       | 1        | Right Tilt QPSK 50 0 01552 1:1             |          |            |         |           |                  |       | 0.030    | 1.072   | 0.032                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 25.5               | 25.19       | 0.17       | 0        | Left                                       | Cheek    | QPSK       | 1       | 50        | 01552            | 1:1   | 0.106    | 1.074   | 0.114                | A9    |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 24.5               | 24.20       | 0.04       | 1        | Left                                       | Cheek    | QPSK       | 50      | 0         | 01552            | 1:1   | 0.082    | 1.072   | 0.088                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 25.5               | 25.19       | 0.01       | 0        | Left                                       | Tilt     | QPSK       | 1       | 50        | 01552            | 1:1   | 0.048    | 1.074   | 0.052                |       |
| 680.50 | 133297                                                   | Mid | LTE Band 71 | 20        | 24.5               | 24.20       | 0.10       | 1        | Left Tilt QPSK 50 0 01552                  |          |            |         |           |                  | 1:1   | 0.042    | 1.072   | 0.045                |       |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                    |     |             |           |                    |             |            |          | Head                                       |          |            |         |           |                  |       |          |         |                      |       |
|        | Spatial Peak<br>Uncontrolled Exposure/General Population |     |             |           |                    |             |            |          | 1.6 W/kg (mW/g) averaged over 1 gram       |          |            |         |           |                  |       |          |         |                      |       |

| FCC ID: ZNFQ720PS                     | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |     | Dogg 71 of 110                |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 71 of 110                |
| 10 DCTEST Engineering Laboratory Inc. |                     |                       |     | DEV/ 21 3 M                   |

#### **Table 11-10** LTE Band 12 Head SAR

|        |                                                       |     |             |           |                    |             |           |          |                     |                  | uu O/      |         |           |                           |       |          |         |                      |       |
|--------|-------------------------------------------------------|-----|-------------|-----------|--------------------|-------------|-----------|----------|---------------------|------------------|------------|---------|-----------|---------------------------|-------|----------|---------|----------------------|-------|
|        |                                                       |     |             |           |                    |             |           | MEAS     | SUREM               | ENT RES          | SULTS      |         |           |                           |       |          |         |                      |       |
| FR     | EQUENCY                                               | ′   | Mode        | Bandwidth | Maximum<br>Allowed | Conducted   | Power     | MPR [dB] | Side                | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial          | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | C                                                     | h.  |             | [MHz]     | Power [dBm]        | Power [dBm] | υτιπ (αΒ) |          |                     | Position         |            |         |           | Number                    | Cycle | (W/kg)   | Factor  | (W/kg)               |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 25.5               | 24.90       | -0.14     | 0        | Right               | Cheek            | QPSK       | 1       | 0         | 01545                     | 1:1   | 0.145    | 1.148   | 0.166                | A10   |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 24.5               | 24.09       | 0.06      | 1        | Right               | Cheek            | QPSK       | 25      | 0         | 01545                     | 1:1   | 0.097    | 1.099   | 0.107                |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 25.5               | 24.90       | 0.05      | 0        | Right               | Tilt             | QPSK       | 1       | 0.085     | 1.148                     | 0.098 |          |         |                      |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 24.5               | 24.09       | 0.12      | 1        | Right               | Tilt             | QPSK       | 25      | 0         | 01545                     | 1:1   | 0.053    | 1.099   | 0.058                |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 25.5               | 24.90       | 0.01      | 0        | Left                | Cheek            | QPSK       | 1       | 0         | 01545                     | 1:1   | 0.139    | 1.148   | 0.160                |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 24.5               | 24.09       | 0.06      | 1        | Left                | Cheek            | QPSK       | 25      | 0         | 01545                     | 1:1   | 0.096    | 1.099   | 0.106                |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 25.5               | 24.90       | -0.14     | 0        | Left                | Tilt             | QPSK       | 1       | 0         | 01545                     | 1:1   | 0.086    | 1.148   | 0.099                |       |
| 707.50 | 23095                                                 | Mid | LTE Band 12 | 10        | 24.5               | 24.09       | 0.06      | 1        | Left Tilt QPSK 25 0 |                  |            |         |           | 01545                     | 1:1   | 0.059    | 1.099   | 0.065                |       |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                 |     |             |           |                    |             |           |          | Head                |                  |            |         |           |                           |       |          |         |                      |       |
|        | Spatial Peak Uncontrolled Exposure/General Population |     |             |           |                    |             |           |          |                     |                  |            |         |           | .6 W/kg (n<br>eraged over |       |          |         |                      |       |
|        |                                                       |     |             |           | · · · · · ·        |             |           |          |                     |                  |            |         |           | J                         | J     |          |         |                      |       |

#### **Table 11-11** LTE Band 13 Head SAR

|        |         |     |               |            |                    |             |           | MEAS     | SUREM | ENT RE           | SULTS      |         |           |                               |       |          |         |                      |       |
|--------|---------|-----|---------------|------------|--------------------|-------------|-----------|----------|-------|------------------|------------|---------|-----------|-------------------------------|-------|----------|---------|----------------------|-------|
| FR     | EQUENCY | r   | Mode          | Bandwidth  | Maximum<br>Allowed | Conducted   | Power     | MPR [dB] | Side  | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial              | Duty  | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | C       | h.  |               | [MHZ]      | Power [dBm]        | Power [dBm] | υτιπ (αΒ) |          |       | Position         |            |         |           | Number                        | Cycle | (W/kg)   | Factor  | (W/kg)               |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 25.5               | 24.94       | 0.08      | 0        | Right | Cheek            | QPSK       | 1       | 49        | 01545                         | 1:1   | 0.158    | 1.138   | 0.180                | A11   |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.5               | 24.14       | -0.01     | 1        | Right | Cheek            | QPSK       | 25      | 0         | 01545                         | 1:1   | 0.092    | 1.086   | 0.100                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 25.5               | 24.94       | -0.12     | 0        | Right | Tilt             | QPSK       | 1       | 49        | 01545                         | 1:1   | 0.066    | 1.138   | 0.075                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.5               | 24.14       | 0.01      | 1        | Right | Tilt             | QPSK       | 25      | 0         | 01545                         | 1:1   | 0.037    | 1.086   | 0.040                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 25.5               | 24.94       | 0.08      | 0        | Left  | Cheek            | QPSK       | 1       | 49        | 01545                         | 1:1   | 0.136    | 1.138   | 0.155                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.5               | 24.14       | 0.15      | 1        | Left  | Cheek            | QPSK       | 25      | 0         | 01545                         | 1:1   | 0.077    | 1.086   | 0.084                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 25.5               | 24.94       | 0.02      | 0        | Left  | Tilt             | QPSK       | 1       | 49        | 01545                         | 1:1   | 0.082    | 1.138   | 0.093                |       |
| 782.00 | 23230   | Mid | LTE Band 13   | 10         | 24.5               | 24.14       | 0.07      | 1        | Left  | Tilt             | QPSK       | 25      | 0         | 01545                         | 1:1   | 0.047    | 1.086   | 0.051                |       |
|        |         |     | ANSI / IEEE C | Spatial Pe | ak                 |             |           |          |       |                  |            |         |           | Head<br>.6 W/kg (neraged over | nW/g) |          |         |                      |       |

#### **Table 11-12** LTE Band 26 (Cell) Head SAR

|        |          |     |                    |            |                    |             |           | Dallu    | 20 (  | Cell)    | пеаи       | SAR     |           |                  |        |          |         |                      |       |
|--------|----------|-----|--------------------|------------|--------------------|-------------|-----------|----------|-------|----------|------------|---------|-----------|------------------|--------|----------|---------|----------------------|-------|
|        |          |     |                    |            |                    |             |           | MEAS     | SUREM | ENT RE   | SULTS      |         |           |                  |        |          |         |                      |       |
| FF     | REQUENCY | ,   | Mode               | Bandwidth  | Maximum<br>Allowed | Conducted   | Power     | MPR [dB] | Side  | Test     | Modulation | RB Size | RB Offset | Device<br>Serial | Duty   | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | CI       | ı.  |                    | [MHz]      | Power [dBm]        | Power [dBm] | υτιπ (αΒ) |          |       | Position |            |         |           | Number           | Cycle  | (W/kg)   | Factor  | (W/kg)               |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 25.5               | 25.42       | -0.04     | 0        | Right | Cheek    | QPSK       | 1       | 74        | 01544            | 1:1    | 0.158    | 1.019   | 0.161                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 24.5               | 24.43       | 0.06      | 1        | Right | Cheek    | QPSK       | 36      | 18        | 01544            | 1:1    | 0.131    | 1.016   | 0.133                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 25.5               | 25.42       | -0.18     | 0        | Right | Tilt     | QPSK       | 1       | 74        | 01544            | 1:1    | 0.124    | 1.019   | 0.126                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 24.5               | 24.43       | -0.08     | 1        | Right | Tilt     | QPSK       | 36      | 18        | 01544            | 1:1    | 0.105    | 1.016   | 0.107                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 25.5               | 25.42       | 0.05      | 0        | Left  | Cheek    | QPSK       | 1       | 74        | 01544            | 1:1    | 0.155    | 1.019   | 0.158                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 24.5               | 24.43       | 0.14      | 1        | Left  | Cheek    | QPSK       | 36      | 18        | 01544            | 1:1    | 0.136    | 1.016   | 0.138                |       |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 25.5               | 25.42       | 0.02      | 0        | Left  | Tilt     | QPSK       | 1       | 74        | 01544            | 1:1    | 0.172    | 1.019   | 0.175                | A12   |
| 831.50 | 26865    | Mid | LTE Band 26 (Cell) | 15         | 24.5               | 24.43       | 0.02      | 1        | Left  | Tilt     | QPSK       | 36      | 18        | 01544            | 1:1    | 0.139    | 1.016   | 0.141                |       |
|        |          |     | ANSI / IEEE C      | 95.1 1992  | - SAFETY LI        | MIT         |           |          |       |          |            |         |           | Head             |        |          |         |                      |       |
|        |          |     |                    | Spatial Pe | ak                 |             |           |          | 1     |          |            |         | 1         | .6 W/kg (n       | nW/g)  |          |         |                      |       |
|        |          |     | Uncontrolled E     | xposure/G  | eneral Popu        | lation      |           |          |       |          |            |         | ave       | eraged over      | 1 gram |          |         |                      |       |

| DUT Type:        | D =0 (440                             |
|------------------|---------------------------------------|
| Portable Handset | Page 72 of 110                        |
|                  | REV 21.3 M<br>02/15/2019              |
|                  | · · · · · · · · · · · · · · · · · · · |

# **Table 11-13** LTE Band 66 (AWS) Head SAR

|         |         |     |                      |            |                    | _           |           |          | <del></del> |                  | Houc       | . 0,    |           |                  |        |          |         |                      |       |
|---------|---------|-----|----------------------|------------|--------------------|-------------|-----------|----------|-------------|------------------|------------|---------|-----------|------------------|--------|----------|---------|----------------------|-------|
|         |         |     |                      |            |                    |             |           | MEAS     | SUREM       | ENT RES          | SULTS      |         |           |                  |        |          |         |                      |       |
| FRE     | EQUENCY |     | Mode                 | Bandwidth  | Maximum<br>Allowed | Conducted   | Power     | MPR [dB] | Side        | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial | Duty   | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch      | 1.  |                      | [MHz]      | Power [dBm]        | Power [dBm] | υτιπ (αΒ) |          |             | Position         |            |         |           | Number           | Cycle  | (W/kg)   | Factor  | (W/kg)               | 1     |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 24.3               | 24.30       | 0.02      | 0        | Right       | Cheek            | QPSK       | 1       | 99        | 01545            | 1:1    | 0.107    | 1.000   | 0.107                | A13   |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 23.3               | 23.14       | 0.01      | 1        | Right       | Cheek            | QPSK       | 50      | 50        | 01545            | 1:1    | 0.093    | 1.038   | 0.097                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 24.3               | 24.30       | -0.14     | 0        | Right       | Tilt             | QPSK       | 1       | 99        | 01545            | 1:1    | 0.073    | 1.000   | 0.073                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 23.3               | 23.14       | -0.10     | 1        | Right       | Tilt             | QPSK       | 50      | 50        | 01545            | 1:1    | 0.058    | 1.038   | 0.060                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 24.3               | 24.30       | 0.01      | 0        | Left        | Cheek            | QPSK       | 1       | 99        | 01545            | 1:1    | 0.099    | 1.000   | 0.099                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 23.3               | 23.14       | 0.09      | 1        | Left        | Cheek            | QPSK       | 50      | 50        | 01545            | 1:1    | 0.091    | 1.038   | 0.094                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 24.3               | 24.30       | 0.01      | 0        | Left        | Tilt             | QPSK       | 1       | 99        | 01545            | 1:1    | 0.056    | 1.000   | 0.056                |       |
| 1745.00 | 132322  | Mid | LTE Band 66<br>(AWS) | 20         | 23.3               | 23.14       | -0.08     | 1        | Left        | Tilt             | QPSK       | 50      | 50        | 01545            | 1:1    | 0.052    | 1.038   | 0.054                |       |
|         |         |     | ANSI / IEEE C        | 95.1 1992  | - SAFETY LII       | MIT         |           |          |             |                  |            | •       |           | Head             | •      |          | •       |                      |       |
|         |         |     |                      | Spatial Pe | ak                 |             |           |          |             |                  |            |         | 1         | .6 W/kg (n       | nW/g)  |          |         |                      |       |
|         |         |     | Uncontrolled E       | xposure/G  | eneral Popul       | ation       |           |          |             |                  |            |         | ave       | eraged over      | 1 gram |          |         |                      |       |

# **Table 11-14** LTE Band 25 (PCS) Head SAR

|         |         |     |                      |            |                    |             |            |          | (      |          |            |         |           |                  |        |          |         |                      |       |
|---------|---------|-----|----------------------|------------|--------------------|-------------|------------|----------|--------|----------|------------|---------|-----------|------------------|--------|----------|---------|----------------------|-------|
|         |         |     |                      |            |                    |             |            | MEAS     | SUREMI | ENT RE   | SULTS      |         |           |                  |        |          |         |                      |       |
| FR      | EQUENCY |     | Mode                 | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side   | Test     | Modulation | RB Size | RB Offset | Device<br>Serial | Duty   | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | CI      | h.  | ,                    | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] |          |        | Position |            |         |           | Number           | Cycle  | (W/kg)   | Factor  | (W/kg)               |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.01      | 0        | Right  | Cheek    | QPSK       | 1       | 50        | 01552            | 1:1    | 0.153    | 1.047   | 0.160                | A14   |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | -0.12      | 1        | Right  | Cheek    | QPSK       | 50      | 25        | 01552            | 1:1    | 0.143    | 1.086   | 0.155                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | 0.02       | 0        | Right  | Tilt     | QPSK       | 1       | 50        | 01552            | 1:1    | 0.102    | 1.047   | 0.107                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | 0.07       | 1        | Right  | Tilt     | QPSK       | 50      | 25        | 01552            | 1:1    | 0.084    | 1.086   | 0.091                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | 0.19       | 0        | Left   | Cheek    | QPSK       | 1       | 50        | 01552            | 1:1    | 0.137    | 1.047   | 0.143                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | 0.00       | 1        | Left   | Cheek    | QPSK       | 50      | 25        | 01552            | 1:1    | 0.123    | 1.086   | 0.134                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.16      | 0        | Left   | Tilt     | QPSK       | 1       | 50        | 01552            | 1:1    | 0.049    | 1.047   | 0.051                |       |
| 1860.00 | 26140   | Low | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | 0.13       | 1        | Left   | Tilt     | QPSK       | 50      | 25        | 01552            | 1:1    | 0.042    | 1.086   | 0.046                |       |
|         |         |     | ANSI / IEEE C        | 95.1 1992  | - SAFETY LI        | MIT         |            |          |        | •        | •          |         |           | Head             | •      |          | •       |                      |       |
|         |         |     |                      | Spatial Pe | ak                 |             |            |          |        |          |            |         | 1         | .6 W/kg (n       | nW/g)  |          |         |                      |       |
|         |         |     | Uncontrolled E       | xposure/G  | eneral Popul       | lation      |            |          |        |          |            |         | ave       | eraged over      | 1 gram |          |         |                      |       |

| FCC ID: ZNFQ720PS                      | PCTEST INDICATE LABORATOR. INC. | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|----------------------------------------|---------------------------------|-----------------------|-----|-------------------------------|
| Document S/N:                          | Test Dates:                     | DUT Type:             |     | Daga 72 of 110                |
| 1M1904220061-01-R1.ZNF                 | 04/21/19 - 05/15/19             | Portable Handset      |     | Page 73 of 110                |
| 110 DCTEST Engineering Laboratory Inc. |                                 |                       |     | DEV/ 21 3 M                   |

### **Table 11-15** LTE Band 41 Head SAR

|               |         |         |             |                 |                    |                    |                          |                     |          |        | <u> </u>         |            |         |           |                  |               |          |                   |                      |       |
|---------------|---------|---------|-------------|-----------------|--------------------|--------------------|--------------------------|---------------------|----------|--------|------------------|------------|---------|-----------|------------------|---------------|----------|-------------------|----------------------|-------|
|               |         |         |             |                 |                    |                    |                          | MEASL               | JREMEN   | IT RES | JLTS             |            |         |           |                  |               |          |                   |                      |       |
| Power Class   | FR      | EQUENCY | ′           | Mode            | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Side   | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
|               | MHz     | С       | h.          |                 | [MILE]             | Power [dBm]        | Fower [ubin]             | Dint [ub]           |          |        | Fosition         |            |         |           | Number           | Cycle         | (W/kg)   | 1 actor           | (W/kg)               |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 25.0               | 25.00                    | -0.09               | 0        | Right  | Cheek            | QPSK       | 1       | 0         | 01545            | 1:1.58        | 0.103    | 1.000             | 0.103                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 24.0               | 24.00                    | 0.12                | 1        | Right  | Cheek            | QPSK       | 50      | 0         | 01545            | 1:1.58        | 0.070    | 1.000             | 0.070                |       |
| Power Class 2 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 27.7               | 27.35                    | 0.19                | 0        | Right  | Cheek            | QPSK       | 1       | 0         | 01545            | 1:2.31        | 0.127    | 1.084             | 0.138                | A15   |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 25.0               | 25.00                    | 0.15                | 0        | Right  | Tilt             | QPSK       | 1       | 0         | 01545            | 1:1.58        | 0.060    | 1.000             | 0.060                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 24.0               | 24.00                    | 0.16                | 1        | Right  | Tilt             | QPSK       | 50      | 0         | 01545            | 1:1.58        | 0.037    | 1.000             | 0.037                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 25.0               | 25.00                    | 0.12                | 0        | Left   | Cheek            | QPSK       | 1       | 0         | 01545            | 1:1.58        | 0.097    | 1.000             | 0.097                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 24.0               | 24.00                    | 0.14                | 1        | Left   | Cheek            | QPSK       | 50      | 0         | 01545            | 1:1.58        | 0.061    | 1.000             | 0.061                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 25.0               | 25.00                    | -0.12               | 0        | Left   | Tilt             | QPSK       | 1       | 0         | 01545            | 1:1.58        | 0.050    | 1.000             | 0.050                |       |
| Power Class 3 | 2549.50 | 40185   | Low-<br>Mid | LTE Band 41     | 20                 | 24.0               | 24.00                    | 0.14                | 1        | Left   | Tilt             | QPSK       | 50      | 0         | 01545            | 1:1.58        | 0.029    | 1.000             | 0.029                |       |
|               |         | -       | ANSI / IE   | EE C95.1 1992 - | SAFETY L           | IMIT               |                          |                     |          |        |                  |            |         |           | Head             |               |          |                   |                      |       |
|               |         |         |             | Spatial Pea     | k                  |                    |                          |                     |          | l      |                  |            |         | 1         | .6 W/kg (n       | nW/g)         |          |                   |                      |       |
|               |         | Un      | control     | ed Exposure/Ge  | neral Popu         | ılation            |                          |                     |          |        |                  |            |         | ave       | eraged over      | 1 gram        |          |                   |                      |       |

# **Table 11-16 DTS Head SAR**

|        |      |          |           |                        |                    |             | N          | MEASUF | REMENT   | RESUL            | TS     |            |                          |          |                   |                         |                      |       |
|--------|------|----------|-----------|------------------------|--------------------|-------------|------------|--------|----------|------------------|--------|------------|--------------------------|----------|-------------------|-------------------------|----------------------|-------|
| FREQUI | ENCY | Mode     | Service   | Bandwidth              | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial |        | Duty Cycle | Peak SAR of<br>Area Scan | SAR (1g) | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz    | Ch.  |          |           | [MHz]                  | Power [dBm]        | Power [dBm] | Drift [dB] |        | Position | Number           | (Mbps) | (%)        | W/kg                     | (W/kg)   | (Power)           | Cycle)                  | (W/kg)               |       |
| 2412   | 1    | 802.11b  | DSSS      | 22                     | 19.0               | 18.11       | -0.02      | Right  | Cheek    | 01540            | 1      | 99.9       | 1.559                    | 0.854    | 1.227             | 1.001                   | 1.049                |       |
| 2437   | 6    | 802.11b  | DSSS      | 22                     | 19.0               | 18.07       | 0.14       | Right  | Cheek    | 01540            | 1      | 99.9       | 1.647                    | 0.953    | 1.239             | 1.001                   | 1.182                |       |
| 2462   | 11   | 802.11b  | DSSS      | 22                     | 19.0               | 18.01       | 0.05       | Right  | Cheek    | 01540            | 1      | 99.9       | 1.523                    | 0.958    | 1.256             | 1.001                   | 1.204                | A16   |
| 2412   | 1    | 802.11b  | DSSS      | 22                     | 19.0               | 18.11       | 0.15       | Right  | Tilt     | 01540            | 1      | 99.9       | 1.074                    | 0.814    | 1.227             | 1.001                   | 1.000                |       |
| 2437   | 6    | 802.11b  | DSSS      | 22                     | 19.0               | 18.07       | -0.06      | Right  | Tilt     | 01540            | 1      | 99.9       | 1.313                    | 0.880    | 1.239             | 1.001                   | 1.091                |       |
| 2412   | 1    | 802.11b  | DSSS      | 22                     | 19.0               | 18.11       | -0.16      | Left   | Cheek    | 01540            | 1      | 99.9       | 0.405                    | 0.235    | 1.227             | 1.001                   | 0.289                |       |
| 2412   | 1    | 802.11b  | DSSS      | 22                     | 19.0               | 18.11       | 0.03       | Left   | Tilt     | 01540            | 1      | 99.9       | 0.402                    | -        | 1.227             | 1.001                   | -                    |       |
| 2462   | 11   | 802.11b  | DSSS      | 22                     | 19.0               | 18.01       | 0.13       |        |          |                  |        |            |                          |          |                   |                         |                      |       |
|        |      | ANSI /   | EEE C95.1 |                        | ETY LIMIT          |             |            |        |          |                  |        |            | Hea                      |          |                   |                         |                      |       |
|        |      | Uncontro |           | ial Peak<br>ure/Genera | l Population       |             |            |        |          |                  |        |            | 1.6 W/kg<br>averaged ov  |          |                   |                         |                      |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFQ720PS                     | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |     | Dogg 74 of 110                |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 74 of 110                |
| 10 DCTEST Engineering Laboratory Inc. |                     |                       |     | DEV/ 21 3 M                   |

# Table 11-17 NII Head SAR

|        |      |          |             |            |                    |             | N          | IEASUF | REMENT   | RESUL            | TS     |            |                          |           |                   |                         |                      |       |
|--------|------|----------|-------------|------------|--------------------|-------------|------------|--------|----------|------------------|--------|------------|--------------------------|-----------|-------------------|-------------------------|----------------------|-------|
| FREQUI | ENCY | Mode     | Service     | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial |        | Duty Cycle | Peak SAR of<br>Area Scan | SAR (1g)  | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz    | Ch.  | mode     | Gervice     | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] | Olde   | Position | Number           | (Mbps) | (%)        | W/kg                     | (W/kg)    | (Power)           | Cycle)                  | (W/kg)               | 1101# |
| 5280   | 56   | 802.11a  | OFDM        | 20         | 18.5               | 18.09       | 0.12       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.521                    | 0.830     | 1.099             | 1.008                   | 0.919                |       |
| 5300   | 60   | 802.11a  | OFDM        | 20         | 18.5               | 18.10       | 0.17       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.357                    | 0.748     | 1.096             | 1.008                   | 0.826                |       |
| 5300   | 60   | 802.11a  | OFDM        | 20         | 18.5               | 18.10       | 0.13       | Right  | Tilt     | 01540            | 6      | 99.2       | 0.605                    | 0.341     | 1.096             | 1.008                   | 0.377                |       |
| 5300   | 60   | 802.11a  | OFDM        | 20         | 18.5               | 18.10       | -0.18      | Left   | Cheek    | 01540            | 6      | 99.2       | 0.354                    | -         | 1.096             | 1.008                   | -                    |       |
| 5300   | 60   | 802.11a  | OFDM        | 20         | 18.5               | 18.10       | -0.03      | Left   | Tilt     | 01540            | 6      | 99.2       | 0.310                    | -         | 1.096             | 1.008                   | -                    |       |
| 5280   | 56   | 802.11a  | OFDM        | 20         | 18.5               | 18.09       | 0.18       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.482                    | 0.701     | 1.099             | 1.008                   | 0.777                |       |
| 5520   | 104  | 802.11a  | OFDM        | 20         | 18.5               | 18.22       | 0.14       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.920                    | 0.915     | 1.067             | 1.008                   | 0.984                | A17   |
| 5600   | 120  | 802.11a  | OFDM        | 20         | 18.5               | 17.92       | 0.19       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.835                    | 0.844     | 1.143             | 1.008                   | 0.972                |       |
| 5680   | 136  | 802.11a  | OFDM        | 20         | 18.5               | 18.18       | 0.10       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.787                    | 0.779     | 1.076             | 1.008                   | 0.845                |       |
| 5520   | 104  | 802.11a  | OFDM        | 20         | 18.5               | 18.22       | 0.05       | Right  | Tilt     | 01540            | 6      | 99.2       | 1.227                    | 0.394     | 1.067             | 1.008                   | 0.424                |       |
| 5520   | 104  | 802.11a  | OFDM        | 20         | 18.5               | 18.22       | 0.04       | Left   | Cheek    | 01540            | 6      | 99.2       | 0.408                    | -         | 1.067             | 1.008                   | -                    |       |
| 5520   | 104  | 802.11a  | OFDM        | 20         | 18.5               | 18.22       | 0.03       | Left   | Tilt     | 01540            | 6      | 99.2       | 0.352                    | -         | 1.067             | 1.008                   | -                    |       |
| 5520   | 104  | 802.11a  | OFDM        | 20         | 18.5               | 18.22       | 0.16       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.551                    | 0.807     | 1.067             | 1.008                   | 0.868                |       |
| 5765   | 153  | 802.11a  | OFDM        | 20         | 18.5               | 18.20       | 0.15       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.825                    | 0.787     | 1.072             | 1.008                   | 0.850                |       |
| 5785   | 157  | 802.11a  | OFDM        | 20         | 18.5               | 18.11       | 0.16       | Right  | Cheek    | 01540            | 6      | 99.2       | 1.720                    | 0.753     | 1.094             | 1.008                   | 0.830                |       |
| 5765   | 153  | 802.11a  | OFDM        | 20         | 18.5               | 18.20       | 0.12       | Right  | Tilt     | 01540            | 6      | 99.2       | 1.235                    | 0.440     | 1.072             | 1.008                   | 0.475                |       |
| 5765   | 153  | 802.11a  | OFDM        | 20         | 18.5               | 18.20       | 0.04       | Left   | Cheek    | 01540            | 6      | 99.2       | 0.689                    |           | 1.072             | 1.008                   | -                    |       |
| 5765   | 153  | 802.11a  | OFDM        | 20         | 18.5               | 18.20       | 0.12       | Left   | Tilt     | 01540            | 6      | 99.2       | 0.618                    |           | 1.072             | 1.008                   | -                    |       |
|        |      | ANSI / I | EEE C95.1   | 1992 - SAF | ETY LIMIT          |             |            |        |          |                  | •      |            | Hea                      | ıd        |                   |                         |                      |       |
|        |      | Haras f  |             | ial Peak   | l Damilet'         |             |            |        |          |                  |        |            | 1.6 W/kg                 |           |                   |                         |                      |       |
|        |      | Uncontro | ııea Exposi | ure/Genera | l Population       |             |            |        |          |                  | ****   |            | averaged ov              | ei i gram |                   |                         |                      |       |

Note: Blue entry represents variability measurement.

### Table 11-18 DSS Head SAR

|         |      |              |              |                    |             |            |        | i icaa   |                  |           |           |              |                         |                         |                      |       |
|---------|------|--------------|--------------|--------------------|-------------|------------|--------|----------|------------------|-----------|-----------|--------------|-------------------------|-------------------------|----------------------|-------|
|         |      |              |              |                    |             | М          | EASURE | MENT F   | RESULT           | s         |           |              |                         |                         |                      |       |
| FREQUE  | ENCY | Mode         | Service      | Maximum<br>Allowed | Conducted   | Power      | Side   | Test     | Device<br>Serial | Data Rate |           | SAR (1g)     | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch.  | mode         | 5511.55      | Power [dBm]        | Power [dBm] | Drift [dB] | 0.40   | Position | Number           | (Mbps)    | Cycle (%) | (W/kg)       | Power)                  | Cycle)                  | (W/kg)               |       |
| 2441.00 | 39   | Bluetooth    | FHSS         | 11.0               | 10.70       | 0.12       | Right  | Cheek    | 01540            | 1         | 77.6      | 0.080        | 1.072                   | 1.289                   | 0.111                | A18   |
| 2441.00 | 39   | Bluetooth    | FHSS         | 11.0               | 10.70       | -0.10      | Right  | Tilt     | 01540            | 1         | 77.6      | 0.080        | 1.072                   | 1.289                   | 0.111                |       |
| 2441.00 | 39   | Bluetooth    | FHSS         | 11.0               | 10.70       | 0.13       | Left   | Cheek    | 01540            | 1         | 77.6      | 0.026        | 1.072                   | 1.289                   | 0.036                |       |
| 2441.00 | 39   | Bluetooth    | FHSS         | 11.0               | 10.70       | -0.04      | Left   | Tilt     | 01540            | 1         | 77.6      | 0.023        | 1.072                   | 1.289                   | 0.032                |       |
|         |      | ANSI / IEE   | E C95.1 1992 | - SAFETY LI        | MIT         |            |        |          |                  |           |           | Head         |                         |                         |                      |       |
|         |      |              | Spatial Pe   | ak                 |             |            |        |          |                  |           | 1.6       | W/kg (mW/    | g)                      |                         |                      |       |
|         |      | Uncontrolled | d Exposure/G | eneral Popul       | lation      |            |        |          |                  |           | avera     | ged over 1 g | ram                     |                         |                      |       |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 75 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 75 of 110               |

# 11.2 Standalone Body-Worn SAR Data

# **Table 11-19 GSM/UMTS/CDMA Body-Worn SAR**

|         |      |                     |                                                 |                    | ME          |            |         | RESULTS          |           |        |         |                                |         |                      |       |
|---------|------|---------------------|-------------------------------------------------|--------------------|-------------|------------|---------|------------------|-----------|--------|---------|--------------------------------|---------|----------------------|-------|
| FREQUE  | NCY  | Mode                | Service                                         | Maximum<br>Allowed | Conducted   | Power      | Spacing | Device<br>Serial | # of Time | Duty   | Side    | SAR (1g)                       | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz     | Ch.  |                     |                                                 | Power [dBm]        | Power [dBm] | Drift [dB] |         | Number           | Slots     | Cycle  |         | (W/kg)                         | Factor  | (W/kg)               |       |
| 836.60  | 190  | GSM 850             | GSM                                             | 33.7               | 33.60       | 0.07       | 10 mm   | 01544            | 1         | 1:8.3  | back    | 0.378                          | 1.023   | 0.387                |       |
| 836.60  | 190  | GSM 850             | GPRS                                            | 32.2               | 32.06       | -0.13      | 10 mm   | 01544            | 2         | 1:4.15 | back    | 0.420                          | 1.033   | 0.434                | A19   |
| 1880.00 | 661  | GSM 1900            | GSM                                             | 30.7               | 30.22       | 0.00       | 10 mm   | 01543            | 1         | 1:8.3  | back    | 0.311                          | 1.117   | 0.347                |       |
| 1880.00 | 661  | GSM 1900            | GPRS                                            | 29.2               | 28.73       | -0.04      | 10 mm   | 01543            | 2         | 1:4.15 | back    | 0.327                          | 1.114   | 0.364                | A20   |
| 836.60  | 4183 | UMTS 850            | RMC                                             | 25.5               | 25.43       | -0.08      | 10 mm   | 01543            | N/A       | 1:1    | back    | 0.574                          | 1.016   | 0.583                | A22   |
| 1732.40 | 1412 | UMTS 1750           | RMC                                             | 24.3               | 24.26       | 0.01       | 10 mm   | 01544            | N/A       | 1:1    | back    | 0.554                          | 1.009   | 0.559                | A23   |
| 1880.00 | 9400 | UMTS 1900           | RMC                                             | 24.3               | 24.20       | 0.00       | 10 mm   | 01543            | N/A       | 1:1    | back    | 0.548                          | 1.023   | 0.561                | A25   |
| 820.10  | 564  | CDMA BC10<br>(§90S) | TDSO / SO32                                     | 25.0               | 24.90       | -0.05      | 10 mm   | 01544            | N/A       | 1:1    | back    | 0.465                          | 1.023   | 0.476                | A27   |
| 836.52  | 384  | CDMA BC0 (§22H)     | TDSO / SO32                                     | 25.0               | 24.97       | -0.03      | 10 mm   | 01544            | N/A       | 1:1    | back    | 0.491                          | 1.007   | 0.494                | A29   |
| 1880.00 | 600  | PCS CDMA            | TDSO / SO32                                     | 24.7               | 24.21       | -0.10      | 10 mm   | 01543            | N/A       | 1:1    | back    | 0.521                          | 1.119   | 0.583                | A31   |
|         |      |                     | C95.1 1992 - S<br>Spatial Peak<br>Exposure/Gene |                    |             |            |         |                  |           | a      | 1.6 W/k | ody<br>g (mW/g)<br>over 1 gram |         |                      |       |

# **Table 11-20** LTE Body-Worn SAR

|         |                                            |     |                      |                    |                    |                          |                     |                  | *****      | <u> </u> |           |         |          |               |          |                   |                      |       |
|---------|--------------------------------------------|-----|----------------------|--------------------|--------------------|--------------------------|---------------------|------------------|------------|----------|-----------|---------|----------|---------------|----------|-------------------|----------------------|-------|
|         |                                            |     |                      |                    |                    |                          | MES                 | SAUREME          | ENT RES    | ULTS     |           |         |          |               |          |                   |                      |       |
|         | EQUENCY                                    |     | Mode                 | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Device<br>Serial | Modulation | RB Size  | RB Offset | Spacing | Side     | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz     | С                                          | h.  |                      |                    | Power [dBm]        |                          |                     | Number           |            |          |           |         |          | ,             | (W/kg)   |                   | (W/kg)               |       |
| 680.50  | 133297                                     | Mid | LTE Band 71          | 20                 | 25.5               | 25.19                    | -0.13               | 01545            | QPSK       | 1        | 50        | 10 mm   | back     | 1:1           | 0.235    | 1.074             | 0.252                | A33   |
| 680.50  | 133297                                     | Mid | LTE Band 71          | 20                 | 24.5               | 24.20                    | -0.01               | 01545            | QPSK       | 50       | 0         | 10 mm   | back     | 1:1           | 0.220    | 1.072             | 0.236                |       |
| 707.50  | 23095                                      | Mid | LTE Band 12          | 10                 | 25.5               | 24.90                    | 0.13                | 01545            | QPSK       | 1        | 0         | 10 mm   | back     | 1:1           | 0.270    | 1.148             | 0.310                | A34   |
| 707.50  | 23095                                      | Mid | LTE Band 12          | 10                 | 24.5               | 24.09                    | -0.02               | 01545            | QPSK       | 25       | 0         | 10 mm   | back     | 1:1           | 0.239    | 1.099             | 0.263                |       |
| 782.00  | 23230                                      | Mid | LTE Band 13          | 10                 | 25.5               | 24.94                    | -0.13               | 01545            | QPSK       | 1        | 49        | 10 mm   | back     | 1:1           | 0.354    | 1.138             | 0.403                | A35   |
| 782.00  | 782.00 23230 Mid LTE Band 13 10 24.5 24.14 |     |                      |                    |                    |                          |                     |                  | QPSK       | 25       | 0         | 10 mm   | back     | 1:1           | 0.325    | 1.086             | 0.353                |       |
| 831.50  | 26865                                      | Mid | LTE Band 26 (Cell)   | 15                 | 25.5               | -0.07                    | 01552               | QPSK             | 1          | 74       | 10 mm     | back    | 1:1      | 0.615         | 1.019    | 0.627             | A36                  |       |
| 831.50  | 26865                                      | Mid | LTE Band 26 (Cell)   | 15                 | 24.5               | 24.43                    | -0.05               | 01552            | QPSK       | 36       | 18        | 10 mm   | back     | 1:1           | 0.407    | 1.016             | 0.414                |       |
| 1745.00 | 132322                                     | Mid | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.30                    | -0.02               | 01552            | QPSK       | 1        | 99        | 10 mm   | back     | 1:1           | 0.565    | 1.000             | 0.565                | A37   |
| 1745.00 | 132322                                     | Mid | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.14                    | 0.01                | 01552            | QPSK       | 50       | 50        | 10 mm   | back     | 1:1           | 0.514    | 1.038             | 0.534                |       |
| 1860.00 | 26140                                      | Low | LTE Band 25<br>(PCS) | 20                 | 24.3               | 24.10                    | -0.09               | 01552            | QPSK       | 1        | 50        | 10 mm   | back     | 1:1           | 0.510    | 1.047             | 0.534                | A39   |
| 1860.00 | 26140                                      | Low | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.94                    | -0.07               | 01552            | QPSK       | 50       | 25        | 10 mm   | back     | 1:1           | 0.449    | 1.086             | 0.488                |       |
|         |                                            | Α   | NSI / IEEE C95.1     | 1992 - SAI         | FETY LIMIT         |                          |                     |                  |            |          |           |         | Во       | dy            |          |                   |                      |       |
|         |                                            |     | Spat                 | ial Peak           |                    |                          |                     |                  |            |          |           |         | 1.6 W/kg | (mW/g         | )        |                   |                      |       |
|         |                                            | Un  | controlled Expos     | ure/Genera         | al Population      | 1                        |                     |                  |            |          |           | av      | eraged o | ver 1 gra     | am       |                   |                      |       |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogo 76 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 76 of 110               |

# **Table 11-21** LTE Band 41 Body-Worn SAR

|               |         |         |          |                                |                    |                    | ME                       | ASURE               | MENT RI  | ESULTS           |            |         |           |         |                  |        |          |                   |                      |       |
|---------------|---------|---------|----------|--------------------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|------------------|--------|----------|-------------------|----------------------|-------|
| Power Class   | FR      | EQUENC  | Υ        | Mode                           | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side             | Duty   | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
|               | MHz     |         | Ch.      |                                | [MHZ]              | Power [dBm]        | Power (asm)              | υτιπ (αΒ)           |          | Number           |            |         |           |         |                  | Cycle  | (W/kg)   | Factor            | (W/kg)               |       |
| Power Class 3 | 2549.50 | 40185   | Low-Mid  | LTE Band 41                    | 20                 | 25.0               | 25.00                    | -0.19               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | back             | 1:1.58 | 0.444    | 1.000             | 0.444                |       |
| Power Class 3 | 2549.50 | 40185   | Low-Mid  | LTE Band 41                    | 20                 | 24.0               | 24.00                    | 0.01                | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | back             | 1:1.58 | 0.300    | 1.000             | 0.300                |       |
| Power Class 2 | 2549.50 | 40185   | Low-Mid  | LTE Band 41                    | 20                 | 27.7               | 27.35                    | -0.03               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | back             | 1:2.31 | 0.549    | 1.084             | 0.595                | A41   |
|               | •       | ANSI /  |          | 5.1 1992 - SAFE<br>patial Peak | TY LIMIT           |                    | •                        | •                   |          |                  |            |         |           | 1.6 V   | Body<br>//kg (m\ | N/g)   |          |                   |                      | ,     |
|               | u       | Incontr | olled Ex | posure/General                 | Population         |                    |                          |                     |          |                  |            |         |           | average | ed over 1        | gram   |          |                   |                      |       |

# **Table 11-22 DTS Body-Worn SAR**

|       |       |         |         |                    |                                          |                 | MEAS | SUREME  | NT RE            | SULTS        |      |               |                          |                                 |                   |                         |                      |       |
|-------|-------|---------|---------|--------------------|------------------------------------------|-----------------|------|---------|------------------|--------------|------|---------------|--------------------------|---------------------------------|-------------------|-------------------------|----------------------|-------|
| FREQU | IENCY | Mode    | Service | Bandwidth<br>[MHz] | Maximum<br>Allowed Power                 | Conducted Power |      | Spacing | Device<br>Serial | Data<br>Rate | Side | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (1g)                        | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.   |         |         | [WHZ]              | [dBm]                                    | [dBm]           | [dB] |         | Number           | (Mbps)       |      | (%)           | W/kg                     | (W/kg)                          | (Power)           | Cycle)                  | (W/kg)               |       |
| 2412  | 1     | 802.11b | DSSS    | 22                 | 21.0                                     | 20.78           | 0.06 | 10 mm   | 01540            | 1            | back | 99.9          | 1.026                    | 0.633                           | 1.052             | 1.001                   | 0.667                | A43   |
| 2437  | 6     | 802.11b | DSSS    | 22                 | 21.0                                     | 20.28           | 0.10 | 10 mm   | 01540            | 1            | back | 99.9          | 0.955                    | 0.598                           | 1.180             | 1.001                   | 0.706                |       |
| 2462  | 11    | 802.11b | DSSS    | 22                 | 21.0                                     | 20.34           | 0.05 | 10 mm   | 01540            | 1            | back | 99.9          | 0.769                    | 0.487                           | 1.164             | 1.001                   | 0.567                |       |
|       |       |         |         | Spatial Pe         | - SAFETY LIMIT<br>ak<br>ieneral Populati |                 |      |         |                  |              |      |               | 1.6 W/I                  | ody<br>kg (mW/g)<br>over 1 gram |                   |                         |                      |       |

# **Table 11-23 NII Body-Worn SAR**

|       |       |         |            |                        |                          |                 |                     |         | <u> </u>                | • • • • • •         |      |                |                          |          |                   |                         |                      |       |
|-------|-------|---------|------------|------------------------|--------------------------|-----------------|---------------------|---------|-------------------------|---------------------|------|----------------|--------------------------|----------|-------------------|-------------------------|----------------------|-------|
|       |       |         |            |                        |                          |                 |                     | MEAS    | SUREMENT                | RESULTS             | ;    |                |                          |          |                   |                         |                      |       |
| FREQU | IENCY | Mode    | Service    | Bandwidth<br>[MHz]     | Maximum<br>Allowed Power | Conducted Power | Power Drift<br>[dB] | Spacing | Device Serial<br>Number | Data Rate<br>(Mbps) | Side | Duty Cycle (%) | Peak SAR of<br>Area Scan | SAR (1g) | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.   |         |            | [MHZ]                  | [dBm]                    | [ubiii]         | [ub]                |         | Number                  | (wiphs)             |      |                | W/kg                     | (W/kg)   | (Power)           | Cycle)                  | (W/kg)               |       |
| 5260  | 52    | 802.11a | OFDM       | 20                     | 19.5                     | 19.06           | 0.02                | 10 mm   | 01540                   | 6                   | back | 99.2           | 1.194                    | 0.582    | 1.107             | 1.008                   | 0.649                |       |
| 5280  | 56    | 802.11a | OFDM       | 20                     | 19.5                     | 19.12           | -0.12               | 10 mm   | 01540                   | 6                   | back | 99.2           | 1.201                    | 0.591    | 1.091             | 1.008                   | 0.650                | A44   |
| 5300  | 60    | 802.11a | OFDM       | 20                     | 19.5                     | 19.15           | 0.06                | 10 mm   | 01540                   | 6                   | back | 99.2           | 1.280                    | 0.590    | 1.084             | 1.008                   | 0.645                |       |
| 5680  | 136   | 802.11a | OFDM       | 20                     | 19.5                     | 18.99           | 0.03                | 10 mm   | 01540                   | 6                   | back | 99.2           | 1.056                    | 0.482    | 1.125             | 1.008                   | 0.547                |       |
| 5805  | 161   | 802.11a | OFDM       | 20                     | 19.5                     | 18.95           | -0.03               | 10 mm   | 01540                   | 6                   | back | 99.2           | 1.128                    | 0.516    | 1.135             | 1.008                   | 0.590                |       |
|       |       | А       | NSI / IEEE | E C95.1 199            | 2 - SAFETY LIMI          | т               |                     |         |                         |                     |      |                | Body                     |          |                   |                         |                      |       |
|       |       | Unc     | ontrolled  | Spatial P<br>Exposure/ | eak<br>General Populat   | ion             |                     |         |                         |                     |      |                | W/kg (mW/gaged over 1 g  |          |                   |                         |                      |       |

# **Table 11-24 DSS Body-Worn SAR**

|       |      |                |           |                    |                          |                     | 0 000   | ,                | 0,           | ***  |               |               |                         |                         |                      |       |
|-------|------|----------------|-----------|--------------------|--------------------------|---------------------|---------|------------------|--------------|------|---------------|---------------|-------------------------|-------------------------|----------------------|-------|
|       |      |                |           |                    |                          | ME                  | ASUREI  | MENT F           | RESUL        | гѕ   |               |               |                         |                         |                      |       |
| FREQU | ENCY | Mode           | Service   | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power Drift<br>[dB] | Spacing | Device<br>Serial | Data<br>Rate | Side | Duty<br>Cycle | SAR (1g)      | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.  |                |           | Power [dBm]        | rower [ubin]             | [ub]                |         | Number           | (Mbps)       |      | (%)           | (W/kg)        | Power)                  | Cycle)                  | (W/kg)               |       |
| 2441  | 39   | Bluetooth      | FHSS      | 11.0               | 10.70                    | 0.12                | 10 mm   | 01540            | 1            | back | 77.6          | 0.030         | 1.072                   | 1.289                   | 0.041                | A46   |
|       |      | ANSI / IEEE    | C95.1 199 | 92 - SAFETY        | LIMIT                    |                     |         |                  |              |      |               | Body          |                         |                         |                      |       |
|       |      |                | Spatial I |                    |                          |                     |         |                  |              |      |               | .6 W/kg (ml   | •                       |                         |                      |       |
|       |      | Uncontrolled E | exposure  | /General Pop       | oulation                 |                     |         |                  |              |      | ave           | eraged over 1 | gram                    |                         |                      |       |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 77 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 77 of 110                |

# 11.3 Standalone Hotspot SAR Data

# Table 11-25 GPRS/UMTS/CDMA Hotspot SAR Data

|         |      |                     |                | JI 130/                           | UIVI I S/                |                     |         | RESULTS                    |                       | ~!\ L         | ala     |                    |                   |                |       |
|---------|------|---------------------|----------------|-----------------------------------|--------------------------|---------------------|---------|----------------------------|-----------------------|---------------|---------|--------------------|-------------------|----------------|-------|
|         |      | ı                   |                |                                   |                          | ASURE               | MENII   |                            |                       | ı             |         |                    |                   | Reported SAR   |       |
| FREQUE  | Ch.  | Mode                | Service        | Maximum<br>Allowed<br>Power [dBm] | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device<br>Serial<br>Number | # of<br>GPRS<br>Slots | Duty<br>Cycle | Side    | SAR (1g)<br>(W/kg) | Scaling<br>Factor | (1g)<br>(W/kg) | Plot# |
| 836.60  | 190  | GSM 850             | GPRS           | 32.2                              | 32.06                    | -0.13               | 10 mm   | 01544                      | 2                     | 1:4.15        | back    | 0.420              | 1.033             | 0.434          | A19   |
| 836.60  | 190  | GSM 850             | GPRS           | 32.2                              | 32.06                    | 0.18                | 10 mm   | 01544                      | 2                     | 1:4.15        | front   | 0.385              | 1.033             | 0.398          |       |
| 836.60  | 190  | GSM 850             | GPRS           | 32.2                              | 32.06                    | 0.13                | 10 mm   | 01544                      | 2                     | 1:4.15        | bottom  | 0.191              | 1.033             | 0.197          |       |
| 836.60  | 190  | GSM 850             | GPRS           | 32.2                              | 32.06                    | 0.04                | 10 mm   | 01544                      | 2                     | 1:4.15        | left    | 0.076              | 1.033             | 0.079          |       |
| 1880.00 | 661  | GSM 1900            | GPRS           | 29.2                              | 28.73                    | -0.04               | 10 mm   | 01543                      | 2                     | 1:4.15        | back    | 0.327              | 1.114             | 0.364          |       |
| 1880.00 | 661  | GSM 1900            | GPRS           | 29.2                              | 28.73                    | -0.04               | 10 mm   | 01543                      | 2                     | 1:4.15        | front   | 0.432              | 1.114             | 0.481          |       |
| 1850.20 | 512  | GSM 1900            | GPRS           | 29.2                              | 28.65                    | 0.03                | 10 mm   | 01543                      | 2                     | 1:4.15        | bottom  | 0.639              | 1.135             | 0.725          |       |
| 1880.00 | 661  | GSM 1900            | GPRS           | 29.2                              | 28.73                    | 0.00                | 10 mm   | 01543                      | 2                     | 1:4.15        | bottom  | 0.645              | 1.114             | 0.719          | A21   |
| 1909.80 |      |                     |                |                                   |                          |                     |         |                            | 2                     |               |         |                    |                   |                | AZI   |
|         | 810  | GSM 1900            | GPRS           | 29.2                              | 28.60                    | 0.02                | 10 mm   | 01543                      |                       | 1:4.15        | bottom  | 0.637              | 1.148             | 0.731          |       |
| 1880.00 | 661  | GSM 1900            | GPRS           | 29.2                              | 28.73                    | 0.13                | 10 mm   | 01543                      | 2                     | 1:4.15        | right   | 0.098              | 1.114             | 0.109          | 400   |
| 836.60  | 4183 | UMTS 850            | RMC            | 25.5                              | 25.43                    | -0.08               | 10 mm   | 01543                      | N/A                   | 1:1           | back    | 0.574              | 1.016             | 0.583          | A22   |
| 836.60  | 4183 | UMTS 850            | RMC            | 25.5                              | 25.43                    | -0.01               | 10 mm   | 01543                      | N/A                   | 1:1           | front   | 0.440              | 1.016             | 0.447          |       |
| 836.60  | 4183 | UMTS 850            | RMC            | 25.5                              | 25.43                    | 0.06                | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 0.237              | 1.016             | 0.241          |       |
| 836.60  | 4183 | UMTS 850            | RMC            | 25.5                              | 25.43                    | -0.02               | 10 mm   | 01543                      | N/A                   | 1:1           | left    | 0.106              | 1.016             | 0.108          |       |
| 1732.40 | 1412 | UMTS 1750           | RMC            | 24.3                              | 24.26                    | 0.01                | 10 mm   | 01544                      | N/A                   | 1:1           | back    | 0.554              | 1.009             | 0.559          |       |
| 1732.40 | 1412 | UMTS 1750           | RMC            | 24.3                              | 24.26                    | -0.07               | 10 mm   | 01544                      | N/A                   | 1:1           | front   | 0.678              | 1.009             | 0.684          |       |
| 1712.40 | 1312 | UMTS 1750           | RMC            | 24.3                              | 24.28                    | -0.03               | 10 mm   | 01544                      | N/A                   | 1:1           | bottom  | 0.886              | 1.005             | 0.890          |       |
| 1732.40 | 1412 | UMTS 1750           | RMC            | 24.3                              | 24.26                    | -0.02               | 10 mm   | 01544                      | N/A                   | 1:1           | bottom  | 0.934              | 1.009             | 0.942          |       |
| 1752.60 | 1513 | UMTS 1750           | RMC            | 24.3                              | 24.28                    | 0.00                | 10 mm   | 01544                      | N/A                   | 1:1           | bottom  | 0.953              | 1.005             | 0.958          | A24   |
| 1732.40 | 1412 | UMTS 1750           | RMC            | 24.3                              | 24.26                    | 0.00                | 10 mm   | 01544                      | N/A                   | 1:1           | right   | 0.225              | 1.009             | 0.227          |       |
| 1880.00 | 9400 | UMTS 1900           | RMC            | 24.3                              | 24.20                    | 0.00                | 10 mm   | 01543                      | N/A                   | 1:1           | back    | 0.548              | 1.023             | 0.561          |       |
| 1880.00 | 9400 | UMTS 1900           | RMC            | 24.3                              | 24.20                    | 0.02                | 10 mm   | 01543                      | N/A                   | 1:1           | front   | 0.711              | 1.023             | 0.727          |       |
| 1852.40 | 9262 | UMTS 1900           | RMC            | 24.3                              | 24.13                    | 0.03                | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.020              | 1.040             | 1.061          |       |
| 1880.00 | 9400 | UMTS 1900           | RMC            | 24.3                              | 24.20                    | 0.01                | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 0.983              | 1.023             | 1.006          |       |
| 1907.60 | 9538 | UMTS 1900           | RMC            | 24.3                              | 24.06                    | 0.03                | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.100              | 1.057             | 1.163          | A26   |
| 1880.00 | 9400 | UMTS 1900           | RMC            | 24.3                              | 24.20                    | 0.07                | 10 mm   | 01543                      | N/A                   | 1:1           | right   | 0.146              | 1.023             | 0.149          |       |
| 820.10  | 564  | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.0                              | 24.90                    | -0.09               | 10 mm   | 01544                      | N/A                   | 1:1           | back    | 0.391              | 1.023             | 0.400          | A28   |
| 820.10  | 564  | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.0                              | 24.90                    | -0.10               | 10 mm   | 01544                      | N/A                   | 1:1           | front   | 0.324              | 1.023             | 0.331          |       |
| 820.10  | 564  | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.0                              | 24.90                    | -0.06               | 10 mm   | 01544                      | N/A                   | 1:1           | bottom  | 0.157              | 1.023             | 0.161          |       |
| 820.10  | 564  | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.0                              | 24.90                    | -0.04               | 10 mm   | 01544                      | N/A                   | 1:1           | left    | 0.085              | 1.023             | 0.087          |       |
| 836.52  | 384  | CDMA BC0 (§22H)     | EVDO Rev. 0    | 25.0                              | 24.90                    | 0.02                | 10 mm   | 01544                      | N/A                   | 1:1           | back    | 0.412              | 1.023             | 0.421          | A30   |
| 836.52  | 384  | CDMA BC0 (§22H)     | EVDO Rev. 0    | 25.0                              | 24.90                    | -0.03               | 10 mm   | 01544                      | N/A                   | 1:1           | front   | 0.325              | 1.023             | 0.332          |       |
| 836.52  | 384  | CDMA BC0 (§22H)     | EVDO Rev. 0    | 25.0                              | 24.90                    | 0.00                | 10 mm   | 01544                      | N/A                   | 1:1           | bottom  | 0.162              | 1.023             | 0.166          |       |
| 836.52  | 384  | CDMA BC0 (§22H)     | EVDO Rev. 0    | 25.0                              | 24.90                    | 0.02                | 10 mm   | 01544                      | N/A                   | 1:1           | left    | 0.100              | 1.023             | 0.102          |       |
| 1880.00 | 600  | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.23                    | 0.03                | 10 mm   | 01543                      | N/A                   | 1:1           | back    | 0.522              | 1.114             | 0.582          |       |
| 1880.00 | 600  | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.23                    | -0.05               | 10 mm   | 01543                      | N/A                   | 1:1           | front   | 0.662              | 1.114             | 0.737          |       |
| 1851.25 | 25   | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.38                    | -0.11               | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.110              | 1.076             | 1.194          | A32   |
| 1880.00 | 600  | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.23                    | 0.00                | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.040              | 1.114             | 1.159          |       |
| 1908.75 | 1175 | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.35                    | -0.13               | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.090              | 1.084             | 1.182          |       |
| 1880.00 | 600  | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.23                    | 0.00                | 10 mm   | 01543                      | N/A                   | 1:1           | right   | 0.164              | 1.114             | 0.183          |       |
| 1851.25 | 25   | PCS CDMA            | EVDO Rev. 0    | 24.7                              | 24.38                    | -0.16               | 10 mm   | 01543                      | N/A                   | 1:1           | bottom  | 1.070              | 1.076             | 1.151          |       |
|         |      |                     | C95.1 1992 - S |                                   |                          | 0.10                |         | 0.040                      | . 4/5                 |               |         | ody                | 1.370             | 101            |       |
|         |      |                     | Spatial Peak   |                                   |                          |                     |         |                            |                       |               | 1.6 W/k | g (mW/g)           |                   |                |       |
|         |      | Uncontrolled        | Exposure/Gen   |                                   | on                       |                     |         |                            |                       | а             | veraged | over 1 gram        |                   |                |       |

Note: Blue entry represents variability measurement.

| ŀ | FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|---|------------------------|---------------------|-----------------------|------------------------------|
| Г | Document S/N:          | Test Dates:         | DUT Type:             | Daga 70 of 110               |
|   | 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 78 of 110               |
| 1 |                        |                     | DUT Type:             |                              |

### **Table 11-26** LTE Band 71 Hotspot SAR

|        |         |     |                  |             |                    |             |            | Bun      | <i></i>          | οισρο      | . 0, .  |           |         |           |            |          |         |                      |       |
|--------|---------|-----|------------------|-------------|--------------------|-------------|------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|---------|----------------------|-------|
|        |         |     |                  |             |                    |             |            | MEASU    | JREMENT          | RESULT     | s       |           |         |           |            |          |         |                      |       |
| FRE    | EQUENCY |     | Mode             | Bandwidth   | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | CI      | 1.  |                  | [MHz]       | Power [dBm]        | Power [dBm] | Drift [dB] |          | Number           |            |         |           |         |           |            | (W/kg)   | Factor  | (W/kg)               |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 25.5               | 25.19       | -0.13      | 0        | 01545            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1        | 0.235    | 1.074   | 0.252                | A33   |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 24.5               | 24.20       | -0.01      | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | back      | 1:1        | 0.220    | 1.072   | 0.236                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 25.5               | 25.19       | 0.00       | 0        | 01545            | QPSK       | 1       | 50        | 10 mm   | front     | 1:1        | 0.183    | 1.074   | 0.197                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 24.5               | 24.20       | 0.04       | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | front     | 1:1        | 0.173    | 1.072   | 0.185                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 25.5               | 25.19       | 0.05       | 0        | 01545            | QPSK       | 1       | 50        | 10 mm   | bottom    | 1:1        | 0.056    | 1.074   | 0.060                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 24.5               | 24.20       | 0.03       | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | bottom    | 1:1        | 0.053    | 1.072   | 0.057                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 25.5               | 25.19       | -0.14      | 0        | 01545            | QPSK       | 1       | 50        | 10 mm   | left      | 1:1        | 0.218    | 1.074   | 0.234                |       |
| 680.50 | 133297  | Mid | LTE Band 71      | 20          | 24.5               | 24.20       | 0.02       | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | left      | 1:1        | 0.210    | 1.072   | 0.225                |       |
|        |         | ,   | ANSI / IEEE C95. | 1 1992 - SA | FETY LIMIT         |             |            |          |                  |            |         |           |         | Body      |            |          |         |                      |       |
|        |         |     | Spa              | atial Peak  |                    |             |            |          |                  |            |         |           | 1.6 W   | //kg (mV  | V/g)       |          |         |                      |       |
|        |         | Un  | controlled Expo  | sure/Gene   | ral Populatio      | n           |            |          |                  |            |         |           | average | ed over 1 | gram       |          |         |                      |       |

# **Table 11-27** LTE Band 12 Hotspot SAR

|        |                                          |     |                  |                    |                    |                          |                     | MEASU    |                  | RESULT     |         |           |         |           |            |          |                   |                      |       |
|--------|------------------------------------------|-----|------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|-------|
| FRE    | EQUENCY                                  |     | Mode             | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | CI                                       | n.  |                  | [2]                | Power [dBm]        | . ower [abin]            | Sint [ab]           |          | Number           |            |         |           |         |           |            | (W/kg)   | , uoto.           | (W/kg)               |       |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 25.5               | 24.90                    | 0.13                | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | back      | 1:1        | 0.270    | 1.148             | 0.310                | A34   |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 24.5               | 24.09                    | -0.02               | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | back      | 1:1        | 0.239    | 1.099             | 0.263                |       |
| 707.50 |                                          |     |                  |                    |                    |                          |                     |          | 01545            | QPSK       | 1       | 0         | 10 mm   | front     | 1:1        | 0.215    | 1.148             | 0.247                |       |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 24.5               | 24.09                    | -0.04               | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | front     | 1:1        | 0.192    | 1.099             | 0.211                |       |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 25.5               | 24.90                    | -0.09               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1        | 0.073    | 1.148             | 0.084                |       |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 24.5               | 24.09                    | -0.09               | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | bottom    | 1:1        | 0.065    | 1.099             | 0.071                |       |
| 707.50 | 23095                                    | Mid | LTE Band 12      | 10                 | 25.5               | 24.90                    | -0.13               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | left      | 1:1        | 0.220    | 1.148             | 0.253                |       |
| 707.50 | 7.50 23095 Mid LTE Band 12 10 24.5 24.09 |     |                  |                    |                    |                          |                     |          | 01545            | QPSK       | 25      | 0         | 10 mm   | left      | 1:1        | 0.194    | 1.099             | 0.213                |       |
|        |                                          | -   | ANSI / IEEE C95. | 1 1992 - SA        | FETY LIMIT         |                          |                     |          |                  |            |         |           |         | Body      |            |          | •                 |                      |       |
|        |                                          |     | Spa              | atial Peak         |                    |                          |                     |          |                  |            |         |           | 1.6 W   | //kg (mV  | V/g)       |          |                   |                      |       |
|        |                                          | Un  | controlled Expo  | sure/Gene          | ral Populatio      | n                        |                     |          |                  |            |         |           | average | ed over 1 | gram       |          |                   |                      |       |

# **Table 11-28** LTF Band 13 Hotsnot SAR

|        |         |     |                  |            |                    |             |            | Danie    | וטוג             | otspo      | LOA     | <u>.r</u> |         |           |            |          |         |                      |       |
|--------|---------|-----|------------------|------------|--------------------|-------------|------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|---------|----------------------|-------|
|        |         |     |                  |            |                    |             |            | MEASU    | JREMENT          | RESULT     | s       |           |         |           |            |          |         |                      |       |
| FRI    | EQUENCY | ,   | Mode             | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling | Reported SAR<br>(1g) | Plot# |
| MHz    | CI      | h.  |                  | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] |          | Number           |            |         |           |         |           |            | (W/kg)   | Factor  | (W/kg)               |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 25.5               | 24.94       | -0.13      | 0        | 01545            | QPSK       | 1       | 49        | 10 mm   | back      | 1:1        | 0.354    | 1.138   | 0.403                | A35   |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 24.5               | 24.14       | -0.05      | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | back      | 1:1        | 0.325    | 1.086   | 0.353                |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 25.5               | 0.00        | 0          | 01545    | QPSK             | 1          | 49      | 10 mm     | front   | 1:1       | 0.277      | 1.138    | 0.315   |                      |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 24.5               | -0.02       | 1          | 01545    | QPSK             | 25         | 0       | 10 mm     | front   | 1:1       | 0.247      | 1.086    | 0.268   |                      |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 25.5               | 24.94       | -0.12      | 0        | 01545            | QPSK       | 1       | 49        | 10 mm   | bottom    | 1:1        | 0.106    | 1.138   | 0.121                |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 24.5               | 24.14       | -0.08      | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | bottom    | 1:1        | 0.102    | 1.086   | 0.111                |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 25.5               | 24.94       | 0.03       | 0        | 01545            | QPSK       | 1       | 49        | 10 mm   | left      | 1:1        | 0.109    | 1.138   | 0.124                |       |
| 782.00 | 23230   | Mid | LTE Band 13      | 10         | 24.5               | 24.14       | -0.04      | 1        | 01545            | QPSK       | 25      | 0         | 10 mm   | left      | 1:1        | 0.098    | 1.086   | 0.106                |       |
|        |         | -   | ANSI / IEEE C95. |            | FETY LIMIT         |             |            |          |                  | <u> </u>   |         |           |         | Body      |            | <u> </u> |         |                      |       |
|        |         |     | Spa              | atial Peak |                    |             |            |          |                  |            |         |           | 1.6 W   | //kg (mV  | V/g)       |          |         |                      |       |
|        |         | Un  | controlled Expo  | sure/Gene  | ral Populatio      | n           |            |          |                  |            |         |           | average | ed over 1 | gram       |          |         |                      |       |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 79 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 79 01 110               |

### **Table 11-29** LTE Band 26 (Cell) Hotspot SAR

|        |         |     |                    |                    |                    |                          |                     | IIIG E   | <del>5 (00.</del> | i) HOG     | pot     | <u>OAIX</u> |         |           |            |          |                   |                      |       |
|--------|---------|-----|--------------------|--------------------|--------------------|--------------------------|---------------------|----------|-------------------|------------|---------|-------------|---------|-----------|------------|----------|-------------------|----------------------|-------|
|        |         |     |                    |                    |                    |                          |                     | MEASU    | JREMEN1           | RESULT     | s       |             |         |           |            |          |                   |                      |       |
| FRE    | EQUENCY |     | Mode               | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial  | Modulation | RB Size | RB Offset   | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz    | CI      | h.  |                    | [MHZ]              | Power [dBm]        | Power [dbm]              | Driit [db]          |          | Number            |            |         |             |         |           |            | (W/kg)   | Factor            | (W/kg)               |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.5               | 25.42                    | -0.07               | 0        | 01552             | QPSK       | 1       | 74          | 10 mm   | back      | 1:1        | 0.615    | 1.019             | 0.627                | A36   |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.5               | 24.43                    | -0.05               | 1        | 01552             | QPSK       | 36      | 18          | 10 mm   | back      | 1:1        | 0.407    | 1.016             | 0.414                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.5               | 25.42                    | -0.08               | 0        | 01552             | QPSK       | 1       | 74          | 10 mm   | front     | 1:1        | 0.480    | 1.019             | 0.489                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.5               | 24.43                    | -0.07               | 1        | 01552             | QPSK       | 36      | 18          | 10 mm   | front     | 1:1        | 0.327    | 1.016             | 0.332                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.5               | 25.42                    | -0.08               | 0        | 01552             | QPSK       | 1       | 74          | 10 mm   | bottom    | 1:1        | 0.237    | 1.019             | 0.242                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.5               | 24.43                    | 0.05                | 1        | 01552             | QPSK       | 36      | 18          | 10 mm   | bottom    | 1:1        | 0.151    | 1.016             | 0.153                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 25.5               | 25.42                    | -0.01               | 0        | 01552             | QPSK       | 1       | 74          | 10 mm   | left      | 1:1        | 0.099    | 1.019             | 0.101                |       |
| 831.50 | 26865   | Mid | LTE Band 26 (Cell) | 15                 | 24.5               | 24.43                    | -0.08               | 1        | 01552             | QPSK       | 36      | 18          | 10 mm   | left      | 1:1        | 0.061    | 1.016             | 0.062                |       |
|        |         | -   | ANSI / IEEE C95.   | 1 1992 - SA        | FETY LIMIT         |                          |                     |          |                   | ·          |         |             |         | Body      |            |          | ·                 |                      |       |
|        |         |     | Spa                | tial Peak          |                    |                          |                     |          |                   |            |         |             | 1.6 W   | //kg (mV  | V/g)       |          |                   |                      |       |
|        |         | Ur  | controlled Expo    | sure/Gene          | ral Populatio      | n                        |                     |          |                   |            |         |             | average | ed over 1 | gram       |          |                   |                      |       |

# **Table 11-30** LTE Band 66 (AWS) Hotspot SAR

|         | LIE Ballu 66 (AWS) HOISPOI SAK                      |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         |          |            |          |                   |                      |       |
|---------|-----------------------------------------------------|------|----------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|----------|------------|----------|-------------------|----------------------|-------|
|         | MEASUREMENT RESULTS                                 |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         |          |            |          |                   |                      |       |
| FRE     | QUENCY                                              |      | Mode                 | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side     | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz     | CI                                                  | n.   |                      | [MHZ]              | Power [dBm]        | Power [abm]              | Driit [ab]          |          | Number           |            |         |           |         |          |            | (W/kg)   | ractor            | (W/kg)               |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.30                    | -0.02               | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | back     | 1:1        | 0.565    | 1.000             | 0.565                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.14                    | 0.01                | 1        | 01552            | QPSK       | 50      | 50        | 10 mm   | back     | 1:1        | 0.514    | 1.038             | 0.534                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.30                    | 0.06                | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | front    | 1:1        | 0.650    | 1.000             | 0.650                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.14                    | 0.06                | 1        | 01552            | QPSK       | 50      | 50        | 10 mm   | front    | 1:1        | 0.594    | 1.038             | 0.617                |       |
| 1720.00 | 132072                                              | Low  | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.21                    | -0.03               | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | bottom   | 1:1        | 0.864    | 1.021             | 0.882                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.30                    | -0.01               | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | bottom   | 1:1        | 0.874    | 1.000             | 0.874                |       |
| 1770.00 | 132572                                              | High | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.26                    | -0.06               | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | bottom   | 1:1        | 0.973    | 1.009             | 0.982                | A38   |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.14                    | 0.00                | 1        | 01552            | QPSK       | 50      | 50        | 10 mm   | bottom   | 1:1        | 0.760    | 1.038             | 0.789                |       |
| 1770.00 | 132572                                              | High | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.13                    | 0.02                | 1        | 01552            | QPSK       | 100     | 0         | 10 mm   | bottom   | 1:1        | 0.803    | 1.040             | 0.835                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 24.3               | 24.30                    | 0.00                | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | right    | 1:1        | 0.168    | 1.000             | 0.168                |       |
| 1745.00 | 132322                                              | Mid  | LTE Band 66<br>(AWS) | 20                 | 23.3               | 23.14                    | 0.02                | 1        | 01552            | QPSK       | 50      | 50        | 10 mm   | right    | 1:1        | 0.160    | 1.038             | 0.166                |       |
| 1770.00 | 00 132572 High LTE Band 66 (AWS) 20 24.3 24.26 -0.0 |      |                      |                    |                    |                          |                     | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | bottom   | 1:1        | 0.961    | 1.009             | 0.970                |       |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT               |      |                      |                    |                    |                          |                     |          |                  |            | •       |           | •       | Body     | •          | •        |                   |                      |       |
|         | Spatial Peak                                        |      |                      |                    |                    |                          |                     |          |                  |            |         |           | 1.6 W   | /kg (mV  | V/g)       |          |                   |                      |       |
|         |                                                     | Un   | controlled Expo      | sure/Gene          | ral Populatio      | n                        |                     |          |                  |            |         |           | average | d over 1 | gram       |          |                   |                      |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 80 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 60 01 110               |

# **Table 11-31** LTE Band 25 (PCS) Hotspot SAR

|         | LTE Baild 25 (FGS) Hotspot SAK                  |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         |           |              |          |                   |                      |       |
|---------|-------------------------------------------------|------|----------------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|--------------|----------|-------------------|----------------------|-------|
|         | MEASUREMENT RESULTS                             |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         |           |              |          |                   |                      |       |
| FRE     | QUENCY                                          | ,    | Mode                 | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power (dBm) | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle   | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
| MHz     | С                                               | h.   |                      | [2]                | Power [dBm]        | · ower [abin]            | Dinit [uD]          |          | Number           |            |         |           |         |           |              | (W/kg)   | 1 40101           | (W/kg)               |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 24.3               | 24.10                    | -0.09               | 0        | 01552            | QPSK       | 1       | 50        | 10 mm   | back      | 1:1          | 0.510    | 1.047             | 0.534                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.94                    | -0.07               | 1        | 01552            | QPSK       | 50      | 25        | 10 mm   | back      | 1:1          | 0.449    | 1.086             | 0.488                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 24.3               | 24.10                    | 0.01                | 0        | 01552            | QPSK       | 1       | 50        | 10 mm   | front     | 1:1          | 0.664    | 1.047             | 0.695                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.94                    | 0.01                | 1        | 01552            | QPSK       | 50      | 25        | 10 mm   | front     | 1:1          | 0.590    | 1.086             | 0.641                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 24.3               | 24.10                    | -0.09               | 0        | 01552            | QPSK       | 1       | 50        | 10 mm   | bottom    | 1:1          | 1.110    | 1.047             | 1.162                | A40   |
| 1882.50 | 26365                                           | Mid  | LTE Band 25<br>(PCS) | 20                 | 24.3               | 23.98                    | 0.14                | 0        | 01552            | QPSK       | 1       | 50        | 10 mm   | bottom    | 1:1          | 1.030    | 1.076             | 1.108                |       |
| 1905.00 | 26590                                           | High | LTE Band 25<br>(PCS) | 20                 | 24.3               | 23.95                    | -0.01               | 0        | 01552            | QPSK       | 1       | 99        | 10 mm   | bottom    | 1:1          | 1.030    | 1.084             | 1.117                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.94                    | -0.12               | 1        | 01552            | QPSK       | 50      | 25        | 10 mm   | bottom    | 1:1          | 0.977    | 1.086             | 1.061                |       |
| 1882.50 | 26365                                           | Mid  | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.89                    | -0.08               | 1        | 01552            | QPSK       | 50      | 25        | 10 mm   | bottom    | 1:1          | 0.934    | 1.099             | 1.026                |       |
| 1905.00 | 26590                                           | High | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.92                    | -0.13               | 1        | 01552            | QPSK       | 50      | 0         | 10 mm   | bottom    | 1:1          | 0.938    | 1.091             | 1.023                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 23.3               | 22.90                    | -0.12               | 1        | 01552            | QPSK       | 100     | 0         | 10 mm   | bottom    | 1:1          | 0.945    | 1.096             | 1.036                |       |
| 1860.00 | 26140                                           | Low  | LTE Band 25<br>(PCS) | 20                 | 24.3               | 24.10                    | 0.18                | 0        | 01552            | QPSK       | 1       | 50        | 10 mm   | right     | 1:1          | 0.178    | 1.047             | 0.186                |       |
| 1860.00 | 0 26140 Low LTE Band 25 (PCS) 20 23.3 22.94 -0. |      |                      |                    |                    |                          |                     | 1        | 01552            | QPSK       | 50      | 25        | 10 mm   | right     | 1:1          | 0.163    | 1.086             | 0.177                |       |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT           |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         | Body      |              |          |                   | •                    |       |
|         | Spatial Peak                                    |      |                      |                    |                    |                          |                     |          |                  |            |         |           | 1.6 W   | //kg (mV  | <b>V</b> /g) |          |                   |                      |       |
|         |                                                 | Ur   | ncontrolled Expo     | sure/Gene          | ral Populatio      | n                        |                     | l        |                  |            |         |           | average | ed over 1 | gram         |          |                   |                      |       |
|         |                                                 |      |                      |                    |                    |                          |                     |          |                  |            |         |           |         |           |              |          |                   |                      |       |

**Table 11-32** LTF Band 41 Hotspot SAR

|               | LTE Band 41 Hotspot SAR               |        |              |                |                    |                    |                          |                     |          |                  |            |         |           |         |           |            |          |                   |                      |       |
|---------------|---------------------------------------|--------|--------------|----------------|--------------------|--------------------|--------------------------|---------------------|----------|------------------|------------|---------|-----------|---------|-----------|------------|----------|-------------------|----------------------|-------|
|               |                                       |        |              |                |                    |                    | N                        | IEASUR              | EMENT    | RESULTS          | 3          |         |           |         |           |            |          |                   |                      |       |
| Power Class   | FRE                                   | QUENCY |              | Mode           | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling<br>Factor | Reported SAR<br>(1g) | Plot# |
|               | MHz                                   | С      | h.           |                | []                 | Power [dBm]        | . ower [abin]            | Dirit [GD]          |          | Number           |            |         |           |         |           |            | (W/kg)   | 1 40101           | (W/kg)               |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 25.0               | 25.00                    | -0.19               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | back      | 1:1.58     | 0.444    | 1.000             | 0.444                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 24.0               | 24.00                    | 0.01                | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | back      | 1:1.58     | 0.300    | 1.000             | 0.300                |       |
| Power Class 2 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 27.7               | 27.35                    | -0.03               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | back      | 1:2.31     | 0.549    | 1.084             | 0.595                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 25.0               | 25.00                    | 0.02                | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | front     | 1:1.58     | 0.421    | 1.000             | 0.421                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 24.0               | 24.00                    | 0.10                | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | front     | 1:1.58     | 0.289    | 1.000             | 0.289                |       |
| Power Class 3 | 2506.00                               | 39750  | Low          | LTE Band 41    | 20                 | 25.0               | 24.77                    | -0.11               | 0        | 01545            | QPSK       | 1       | 99        | 10 mm   | bottom    | 1:1.58     | 0.705    | 1.054             | 0.743                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 25.0               | 25.00                    | -0.10               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1.58     | 0.788    | 1.000             | 0.788                |       |
| Power Class 3 | 2593.00                               | 40620  | Mid          | LTE Band 41    | 20                 | 25.0               | 24.82                    | -0.10               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1.58     | 0.759    | 1.042             | 0.791                |       |
| Power Class 3 | 2636.50                               | 41055  | Mid-<br>High | LTE Band 41    | 20                 | 25.0               | 24.56                    | -0.15               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1.58     | 0.593    | 1.107             | 0.656                |       |
| Power Class 3 | 2680.00                               | 41490  | High         | LTE Band 41    | 20                 | 25.0               | 24.66                    | -0.12               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:1.58     | 0.682    | 1.081             | 0.737                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 24.0               | 24.00                    | 0.15                | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | bottom    | 1:1.58     | 0.541    | 1.000             | 0.541                |       |
| Power Class 3 | 2593.00                               | 40620  | Mid          | LTE Band 41    | 20                 | 24.0               | 23.97                    | 0.03                | 1        | 01545            | QPSK       | 100     | 0         | 10 mm   | bottom    | 1:1.58     | 0.536    | 1.007             | 0.540                |       |
| Power Class 2 | 2593.00                               | 40620  | Mid          | LTE Band 41    | 20                 | 27.7               | 27.45                    | -0.13               | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:2.31     | 1.030    | 1.059             | 1.091                | A42   |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 25.0               | 25.00                    | 0.05                | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | right     | 1:1.58     | 0.157    | 1.000             | 0.157                |       |
| Power Class 3 | 2549.50                               | 40185  | Low-<br>Mid  | LTE Band 41    | 20                 | 24.0               | 24.00                    | 0.12                | 1        | 01545            | QPSK       | 50      | 0         | 10 mm   | right     | 1:1.58     | 0.108    | 1.000             | 0.108                |       |
| Power Class 2 | 2593.00                               | 40620  | Mid          | LTE Band 41    | 20                 | 27.7               | 27.45                    | 0.03                | 0        | 01545            | QPSK       | 1       | 0         | 10 mm   | bottom    | 1:2.31     | 0.965    | 1.059             | 1.022                |       |
|               | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |        |              |                |                    |                    |                          |                     |          |                  |            |         |           |         | Body      |            |          |                   |                      |       |
|               | Spatial Peak                          |        |              |                |                    |                    |                          |                     |          |                  |            |         |           | 1.6 V   | //kg (mV  | V/g)       |          |                   |                      |       |
|               | U                                     | ncontr | olled E      | xposure/Genera | l Population       | 1                  |                          |                     |          |                  |            |         |           | average | ed over 1 | gram       |          |                   |                      |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogg 91 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 81 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

### **Table 11-33 WLAN Hotspot SAR**

|       |                                       |         |           |             |                          |                 | VV LAI |         |                  |              | Ì     |               |                          |             |                   |                         |                      |       |
|-------|---------------------------------------|---------|-----------|-------------|--------------------------|-----------------|--------|---------|------------------|--------------|-------|---------------|--------------------------|-------------|-------------------|-------------------------|----------------------|-------|
|       |                                       |         |           |             |                          |                 | MEAS   | JREME   | NT RES           | BULTS        |       |               |                          |             |                   |                         |                      |       |
| FREQU | ENCY                                  | Mode    | Service   | Bandwidth   | Maximum<br>Allowed Power | Conducted Power |        | Spacing | Device<br>Serial | Data<br>Rate | Side  | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (1g)    | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.                                   |         |           | [MHz]       | [dBm]                    | [dBm]           | [dB]   |         | Number           | (Mbps)       |       | (%)           | W/kg                     | (W/kg)      | (Power)           | Cycle)                  | (W/kg)               |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22          | 21.0                     | 20.78           | 0.06   | 10 mm   | 01540            | 1            | back  | 99.9          | 1.026                    | 0.633       | 1.052             | 1.001                   | 0.667                | A43   |
| 2437  | 6                                     | 802.11b | DSSS      | 22          | 21.0                     | 20.28           | 0.10   | 10 mm   | 01540            | 1            | back  | 99.9          | 0.955                    | 0.598       | 1.180             | 1.001                   | 0.706                |       |
| 2462  | 11                                    | 802.11b | DSSS      | 22          | 21.0                     | 20.34           | 0.05   | 10 mm   | 01540            | 1            | back  | 99.9          | 0.769                    | 0.487       | 1.164             | 1.001                   | 0.567                |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22          | 21.0                     | 20.78           | 0.03   | 10 mm   | 01540            | 1            | front | 99.9          | 0.480                    | -           | 1.052             | 1.001                   | -                    |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22          | 21.0                     | 20.78           | -0.01  | 10 mm   | 01540            | 1            | top   | 99.9          | 0.427                    | -           | 1.052             | 1.001                   | -                    |       |
| 2412  | 1                                     | 802.11b | DSSS      | 22          | 21.0                     | 20.78           | -0.01  | 10 mm   | 01540            | 1            | left  | 99.9          | 0.807                    | 0.488       | 1.052             | 1.001                   | 0.514                |       |
| 5200  | 40                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.39           | -0.02  | 10 mm   | 01540            | 6            | back  | 99.2          | 1.269                    | 0.667       | 1.026             | 1.008                   | 0.690                | A45   |
| 5220  | 44                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.22           | -0.04  | 10 mm   | 01540            | 6            | back  | 99.2          | 1.252                    | 0.620       | 1.067             | 1.008                   | 0.667                |       |
| 5240  | 48                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.21           | 0.02   | 10 mm   | 01540            | 6            | back  | 99.2          | 1.215                    | 0.603       | 1.069             | 1.008                   | 0.650                |       |
| 5200  | 40                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.39           | -0.07  | 10 mm   | 01540            | 6            | front | 99.2          | 0.242                    | -           | 1.026             | 1.008                   | -                    |       |
| 5200  | 40                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.39           | -0.05  | 10 mm   | 01540            | 6            | top   | 99.2          | 0.149                    | -           | 1.026             | 1.008                   | -                    |       |
| 5200  | 40                                    | 802.11a | OFDM      | 20          | 19.5                     | 19.39           | -0.03  | 10 mm   | 01540            | 6            | left  | 99.2          | 0.921                    | 0.416       | 1.026             | 1.008                   | 0.430                |       |
| 5805  | 161                                   | 802.11a | OFDM      | 20          | 19.5                     | 18.95           | -0.03  | 10 mm   | 01540            | 6            | back  | 99.2          | 1.128                    | 0.516       | 1.135             | 1.008                   | 0.590                |       |
| 5805  | 161                                   | 802.11a | OFDM      | 20          | 19.5                     | 18.95           | 0.12   | 10 mm   | 01540            | 6            | front | 99.2          | 0.350                    | -           | 1.135             | 1.008                   | -                    |       |
| 5805  | 161                                   | 802.11a | OFDM      | 20          | 19.5                     | 18.95           | -0.15  | 10 mm   | 01540            | 6            | top   | 99.2          | 0.102                    | -           | 1.135             | 1.008                   | -                    |       |
| 5805  | 161                                   | 802.11a | 0.10      | 10 mm       | 01540                    | 6               | left   | 99.2    | 0.759            | 0.338        | 1.135 | 1.008         | 0.387                    |             |                   |                         |                      |       |
|       | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |         |           |             |                          |                 |        |         |                  |              |       |               | В                        | ody         |                   | •                       | •                    |       |
|       | Spatial Peak                          |         |           |             |                          |                 |        |         |                  |              |       |               | 1.6 W/k                  | g (mW/g)    |                   |                         |                      |       |
|       |                                       | Unc     | ontrolled | Exposure/Ge | eneral Populatio         | n               |        |         |                  |              |       |               | averaged                 | over 1 gram |                   |                         |                      |       |

# **Table 11-34**

|       |                                       |                |          |                    |             | L           | SS H    | otspo            | t SAF        | <u> </u> |               |               |                         |                         |                      |       |
|-------|---------------------------------------|----------------|----------|--------------------|-------------|-------------|---------|------------------|--------------|----------|---------------|---------------|-------------------------|-------------------------|----------------------|-------|
|       | MEASUREMENT RESULTS                   |                |          |                    |             |             |         |                  |              |          |               |               |                         |                         |                      |       |
| FREQU | ENCY                                  | Mode           | Service  | Maximum<br>Allowed | Conducted   | Power Drift | Spacing | Device<br>Serial | Data<br>Rate | Side     | Duty<br>Cycle | SAR (1g)      | Scaling<br>Factor (Cond | Scaling<br>Factor (Duty | Reported SAR<br>(1g) | Plot# |
| MHz   | Ch.                                   |                |          | Power [dBm]        | Power [dBm] | [dB]        | ,       | Number           | (Mbps)       |          | (%)           | (W/kg)        | Power)                  | Cycle)                  | (W/kg)               |       |
| 2441  | 39                                    | Bluetooth      | FHSS     | 11.0               | 10.70       | 0.12        | 10 mm   | 01540            | 1            | back     | 77.6          | 0.030         | 1.072                   | 1.289                   | 0.041                | A46   |
| 2441  | 39                                    | Bluetooth      | FHSS     | 11.0               | 10.70       | 0.19        | 10 mm   | 01540            | 1            | front    | 77.6          | 0.015         | 1.072                   | 1.289                   | 0.021                |       |
| 2441  | 39                                    | Bluetooth      | FHSS     | 11.0               | 10.70       | 0.16        | 10 mm   | 01540            | 1            | top      | 77.6          | 0.020         | 1.072                   | 1.289                   | 0.028                |       |
| 2441  | 39                                    | Bluetooth      | FHSS     | 11.0               | 10.70       | 0.06        | 10 mm   | 01540            | 1            | left     | 77.6          | 0.029         | 1.072                   | 1.289                   | 0.040                |       |
|       | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |                |          |                    |             |             |         |                  |              |          |               | Body          |                         |                         |                      |       |
|       | Spatial Peak                          |                |          |                    |             |             |         |                  |              |          | 1             | I.6 W/kg (m\  | N/g)                    |                         |                      |       |
|       |                                       | Uncontrolled E | Exposure | General Pop        | oulation    |             |         |                  |              |          | av            | eraged over 1 | l gram                  |                         |                      |       |

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dago 92 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 82 of 110               |

# 11.4 Standalone Phablet SAR Data

### **Table 11-35 UMTS/CDMA Phablet SAR Data**

|         | MEASUREMENT RESULTS |           |                                                |                    |                          |                     |         |                  |               |        |                                        |                   |                       |       |
|---------|---------------------|-----------|------------------------------------------------|--------------------|--------------------------|---------------------|---------|------------------|---------------|--------|----------------------------------------|-------------------|-----------------------|-------|
| FREQUE  |                     | Mode      | Service                                        | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device<br>Serial | Duty<br>Cycle | Side   | SAR (10g)                              | Scaling<br>Factor | Reported SAR<br>(10g) | Plot# |
| MHz     | Ch.                 |           |                                                | Power [dBm]        |                          |                     |         | Number           |               |        | (W/kg)                                 |                   | (W/kg)                |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 24.3               | 24.20                    | -0.11               | 1 mm    | 01543            | 1:1           | back   | 1.460                                  | 1.023             | 1.494                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 24.3               | 24.20                    | 0.04                | 1 mm    | 01543            | 1:1           | front  | 1.820                                  | 1.023             | 1.862                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 24.3               | 24.20                    | -0.07               | 3 mm    | 01543            | 1:1           | bottom | 1.320                                  | 1.023             | 1.350                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 24.3               | 24.20                    | -0.03               | 0 mm    | 01543            | 1:1           | right  | 0.537                                  | 1.023             | 0.549                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 23.8               | 23.40                    | -0.04               | 0 mm    | 01543            | 1:1           | back   | 1.710                                  | 1.096             | 1.874                 |       |
| 1852.40 | 9262                | UMTS 1900 | RMC                                            | 23.8               | 23.63                    | 0.10                | 0 mm    | 01543            | 1:1           | front  | 2.560                                  | 1.040             | 2.662                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 23.8               | 23.40                    | 0.03                | 0 mm    | 01543            | 1:1           | front  | 2.570                                  | 1.096             | 2.817                 |       |
| 1907.60 | 9538                | UMTS 1900 | RMC                                            | 23.8               | 23.42                    | 0.02                | 0 mm    | 01543            | 1:1           | front  | 2.570                                  | 1.091             | 2.804                 |       |
| 1852.40 | 9262                | UMTS 1900 | RMC                                            | 23.8               | 23.63                    | -0.10               | 0 mm    | 01543            | 1:1           | bottom | 2.310                                  | 1.040             | 2.402                 |       |
| 1880.00 | 9400                | UMTS 1900 | RMC                                            | 23.8               | 23.40                    | -0.08               | 0 mm    | 01543            | 1:1           | bottom | 2.460                                  | 1.096             | 2.696                 |       |
| 1907.60 | 9538                | UMTS 1900 | RMC                                            | 23.8               | 23.42                    | -0.11               | 0 mm    | 01543            | 1:1           | bottom | 2.610                                  | 1.091             | 2.848                 | A47   |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.23                    | -0.09               | 1 mm    | 01543            | 1:1           | back   | 1.610                                  | 1.114             | 1.794                 |       |
| 1851.25 | 25                  | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.38                    | -0.10               | 1 mm    | 01543            | 1:1           | front  | 2.000                                  | 1.076             | 2.152                 |       |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.23                    | -0.06               | 1 mm    | 01543            | 1:1           | front  | 1.960                                  | 1.114             | 2.183                 |       |
| 1908.75 | 1175                | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.35                    | -0.09               | 1 mm    | 01543            | 1:1           | front  | 2.110                                  | 1.084             | 2.287                 |       |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.23                    | -0.10               | 3 mm    | 01543            | 1:1           | bottom | 1.350                                  | 1.114             | 1.504                 |       |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.7               | 24.23                    | 0.07                | 0 mm    | 01543            | 1:1           | right  | 0.548                                  | 1.114             | 0.610                 |       |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.07                    | 0.02                | 0 mm    | 01543            | 1:1           | back   | 1.510                                  | 1.030             | 1.555                 |       |
| 1851.25 | 25                  | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.09                    | 0.03                | 0 mm    | 01543            | 1:1           | front  | 2.440                                  | 1.026             | 2.503                 | A48   |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.07                    | 0.00                | 0 mm    | 01543            | 1:1           | front  | 2.400                                  | 1.030             | 2.472                 |       |
| 1908.75 | 1175                | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.10                    | 0.01                | 0 mm    | 01543            | 1:1           | front  | 2.330                                  | 1.023             | 2.384                 |       |
| 1851.25 | 25                  | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.09                    | -0.09               | 0 mm    | 01543            | 1:1           | bottom | 2.180                                  | 1.026             | 2.237                 |       |
| 1880.00 | 600                 | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.07                    | -0.08               | 0 mm    | 01543            | 1:1           | bottom | 2.310                                  | 1.030             | 2.379                 |       |
| 1908.75 | 1175                | PCS CDMA  | EVDO Rev. 0                                    | 24.2               | 24.10                    | -0.20               | 0 mm    | 01543            | 1:1           | bottom | 2.420                                  | 1.023             | 2.476                 |       |
|         |                     |           | C95.1 1992 - S<br>Spatial Peak<br>Exposure/Gen |                    |                          |                     |         |                  |               |        | Phablet<br>W/kg (mW/g<br>ed over 10 gr |                   |                       |       |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 83 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | raye os or 110               |

# Table 11-36 LTE Phablet SAR

|         | MEASUREMENT RESULTS                   |      |                      |            |                    |             |            |          |                  |            |         |           |          |           |                                         |           |         |                       |       |
|---------|---------------------------------------|------|----------------------|------------|--------------------|-------------|------------|----------|------------------|------------|---------|-----------|----------|-----------|-----------------------------------------|-----------|---------|-----------------------|-------|
| F       | REQUENCY                              |      | Mode                 | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Device<br>Serial | Modulation | RB Size | RB Offset | Spacing  | Side      | Duty Cycle                              | SAR (10g) | Scaling | Reported SAR<br>(10g) | Plot# |
| MHz     | С                                     | h.   |                      | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] |          | Number           |            |         |           |          |           | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (W/kg)    | Factor  | (W/kg)                |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.06      | 0        | 01552            | QPSK       | 1       | 50        | 1 mm     | back      | 1:1                                     | 1.370     | 1.047   | 1.434                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | -0.06      | 1        | 01552            | QPSK       | 50      | 25        | 1 mm     | back      | 1:1                                     | 1.230     | 1.086   | 1.336                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.08      | 0        | 01552            | QPSK       | 1       | 50        | 1 mm     | front     | 1:1                                     | 1.900     | 1.047   | 1.989                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | -0.12      | 1        | 01552            | QPSK       | 50      | 25        | 1 mm     | front     | 1:1                                     | 1.740     | 1.086   | 1.890                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.12      | 0        | 01552            | QPSK       | 1       | 50        | 3 mm     | bottom    | 1:1                                     | 1.380     | 1.047   | 1.445                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | -0.08      | 1        | 01552            | QPSK       | 50      | 25        | 3 mm     | bottom    | 1:1                                     | 1.240     | 1.086   | 1.347                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 24.3               | 24.10       | -0.03      | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | right     | 1:1                                     | 0.570     | 1.047   | 0.597                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.94       | -0.01      | 1        | 01552            | QPSK       | 50      | 25        | 0 mm     | right     | 1:1                                     | 0.517     | 1.086   | 0.561                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.76       | -0.02      | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | back      | 1:1                                     | 1.850     | 1.009   | 1.867                 |       |
| 1882.50 | 26365                                 | Mid  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.95       | -0.08      | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | back      | 1:1                                     | 1.800     | 1.084   | 1.951                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.70       | 0.03       | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | front     | 1:1                                     | 2.490     | 1.023   | 2.547                 |       |
| 1882.50 | 26365                                 | Mid  | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.68       | 0.10       | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | front     | 1:1                                     | 2.630     | 1.028   | 2.704                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.76       | 0.09       | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | front     | 1:1                                     | 2.800     | 1.009   | 2.825                 | A49   |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.90       | 0.12       | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | front     | 1:1                                     | 2.470     | 1.096   | 2.707                 |       |
| 1882.50 | 26365                                 | Mid  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.95       | 0.05       | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | front     | 1:1                                     | 2.520     | 1.084   | 2.732                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.92       | 0.04       | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | front     | 1:1                                     | 2.320     | 1.091   | 2.531                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.85       | 0.05       | 0.5      | 01552            | QPSK       | 100     | 0         | 0 mm     | front     | 1:1                                     | 2.320     | 1.109   | 2.573                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.70       | -0.05      | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | bottom    | 1:1                                     | 2.410     | 1.023   | 2.465                 |       |
| 1882.50 | 26365                                 | Mid  | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.68       | 0.04       | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | bottom    | 1:1                                     | 2.410     | 1.028   | 2.477                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.76       | -0.18      | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | bottom    | 1:1                                     | 2.590     | 1.009   | 2.613                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.90       | -0.04      | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | bottom    | 1:1                                     | 2.220     | 1.096   | 2.433                 |       |
| 1882.50 | 26365                                 | Mid  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.95       | -0.13      | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | bottom    | 1:1                                     | 2.330     | 1.084   | 2.526                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.92       | -0.14      | 0.5      | 01552            | QPSK       | 50      | 0         | 0 mm     | bottom    | 1:1                                     | 2.360     | 1.091   | 2.575                 |       |
| 1860.00 | 26140                                 | Low  | LTE Band 25<br>(PCS) | 20         | 23.3               | 22.85       | -0.13      | 0.5      | 01552            | QPSK       | 100     | 0         | 0 mm     | bottom    | 1:1                                     | 2.240     | 1.109   | 2.484                 |       |
| 1905.00 | 26590                                 | High | LTE Band 25<br>(PCS) | 20         | 23.8               | 23.76       | 0.03       | 0        | 01552            | QPSK       | 1       | 50        | 0 mm     | front     | 1:1                                     | 2.580     | 1.009   | 2.603                 |       |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |      |                      |            |                    |             |            |          |                  |            |         |           | Ī        | Phablet   |                                         |           |         |                       |       |
|         |                                       |      | •                    | al Peak    |                    |             |            |          |                  |            |         |           | 4.0 W    | //kg (mV  | V/g)                                    |           |         |                       |       |
|         |                                       | Unco | ontrolled Exposu     | ıre/Genera | I Population       |             |            |          |                  |            |         |           | averaged | d over 10 | grams                                   |           |         |                       |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFQ720PS                      | PCTEST:             | SAR EVALUATION REPORT | ① LG | Approved by:  Quality Manager |
|----------------------------------------|---------------------|-----------------------|------|-------------------------------|
| Document S/N:                          | Test Dates:         | DUT Type:             |      | D 04 -f 440                   |
| 1M1904220061-01-R1.ZNF                 | 04/21/19 - 05/15/19 | Portable Handset      |      | Page 84 of 110                |
| 119 PCTEST Engineering Laboratory Inc. |                     |                       |      | REV 21.3 M                    |

# Table 11-37 LTE Band 41 Phablet SAR

|                             | MEASUREMENT RESULTS |                |                |                                 |            |                        |             |                |          |                  |              |          |           |                   |          |            |           |         |                 |       |
|-----------------------------|---------------------|----------------|----------------|---------------------------------|------------|------------------------|-------------|----------------|----------|------------------|--------------|----------|-----------|-------------------|----------|------------|-----------|---------|-----------------|-------|
|                             | F                   | REQUENCY       | ,              |                                 | Bandwidth  | Maximum                | Conducted   | Power          |          | Device           | 1            |          |           |                   |          |            | SAR (10g) | Scaling | Reported SAR    |       |
| Power Class                 | MHz                 | C              | h.             | Mode                            | [MHz]      | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB]     | MPR [dB] | Serial<br>Number | Modulation   | RB Size  | RB Offset | Spacing           | Side     | Duty Cycle | (W/kg)    | Factor  | (10g)<br>(W/kg) | Plot# |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 25.0                   | 25.00       | 0.00           | 0        | 01552            | QPSK         | 1        | 0         | 1 mm              | back     | 1:1.58     | 1.200     | 1.000   | 1.200           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 24.0                   | 24.00       | 0.20           | 1        | 01552            | QPSK         | 50       | 0         | 1 mm              | back     | 1:1.58     | 1.020     | 1.000   | 1.020           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 25.0                   | 24.77       | -0.10          | 0        | 01552            | QPSK         | 1        | 99        | 1 mm              | front    | 1:1.58     | 1.580     | 1.054   | 1.665           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 25.0                   | 25.00       | 0.05           | 0        | 01552            | QPSK         | 1        | 0         | 1 mm              | front    | 1:1.58     | 1.650     | 1.000   | 1.650           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 25.0                   | 24.82       | -0.05          | 0        | 01552            | QPSK         | 1        | 0         | 1 mm              | front    | 1:1.58     | 1.520     | 1.042   | 1.584           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 25.0                   | 24.56       | -0.17          | 0        | 01552            | QPSK         | 1        | 0         | 1 mm              | front    | 1:1.58     | 1.320     | 1.107   | 1.461           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 25.0                   | 24.66       | -0.07          | 0        | 01552            | QPSK         | 1        | 0         | 1 mm              | front    | 1:1.58     | 1.250     | 1.081   | 1.351           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 24.0                   | 24.00       | 0.18           | 1        | 01552            | QPSK         | 50       | 0         | 1 mm              | front    | 1:1.58     | 1.160     | 1.000   | 1.160           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 24.0                   | 23.97       | 0.12           | 1        | 01552            | QPSK         | 100      | 0         | 1 mm              | front    | 1:1.58     | 1.080     | 1.007   | 1.088           |       |
| Power Class 3               | 2506.00<br>2549.50  | 39750<br>40185 | Low<br>Low-Mid | LTE Band 41                     | 20         | 25.0<br>25.0           | 24.77       | -0.11<br>-0.10 | 0        | 01552<br>01552   | QPSK<br>QPSK | 1        | 99        | 3 mm              | bottom   | 1:1.58     | 1.510     | 1.054   | 1.592           |       |
| Power Class 3               | 2593.00             | 40163          | Mid Mid        | LTE Band 41                     | 20         | 25.0                   | 24.82       | 0.15           | 0        | 01552            | OPSK         | 1        | 0         | 3 mm              | bottom   | 1:1.58     | 1.420     | 1.042   | 1.480           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 25.0                   | 24.62       | -0.11          | 0        | 01552            | QPSK         | 1        | 0         | 3 mm              | bottom   | 1:1.58     | 1.300     | 1.107   | 1.439           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 25.0                   | 24.66       | -0.06          | 0        | 01552            | QPSK         | 1        | 0         | 3 mm              | bottom   | 1:1.58     | 1.380     | 1.081   | 1.492           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 24.0                   | 24.00       | -0.06          | 1        | 01552            | QPSK         | 50       | 0         | 3 mm              | bottom   | 1:1.58     | 1.090     | 1.000   | 1.090           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 24.0                   | 23.97       | -0.17          | 1        | 01552            | QPSK         | 100      | 0         | 3 mm              | bottom   | 1:1.58     | 0.959     | 1.007   | 0.966           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 25.0                   | 25.00       | -0.08          | 0        | 01552            | QPSK         | 1        | 0         | 0 mm              | right    | 1:1.58     | 0.493     | 1.000   | 0.493           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 24.0                   | 24.00       | 0.05           | 1        | 01552            | QPSK         | 50       | 0         | 0 mm              | right    | 1:1.58     | 0.350     | 1.000   | 0.350           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 23.0                   | 22.55       | 0.11           | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | back     | 1:1.58     | 1.580     | 1.109   | 1.752           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.85       | 0.10           | 0        | 01552            | QPSK         | 1        | 50        | 0 mm              | back     | 1:1.58     | 1.470     | 1.035   | 1.521           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 23.0                   | 22.89       | 0.13           | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | back     | 1:1.58     | 1.550     | 1.026   | 1.590           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.63       | 0.16           | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | back     | 1:1.58     | 1.480     | 1.089   | 1.612           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.72       | 0.17           | 0        | 01552            | QPSK         | 1        | 50        | 0 mm              | back     | 1:1.58     | 1.360     | 1.067   | 1.451           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 23.0                   | 22.47       | 0.06           | 0        | 01552            | QPSK         | 50       | 0         | 0 mm              | back     | 1:1.58     | 1.500     | 1.130   | 1.695           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.78       | 0.16           | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | back     | 1:1.58     | 1.540     | 1.052   | 1.620           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 23.0                   | 22.82       | 0.18           | 0        | 01552            | QPSK         | 50       | 50        | 0 mm              | back     | 1:1.58     | 1.550     | 1.042   | 1.615           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.57       | 0.15           | 0        | 01552            | QPSK         | 50       | 50        | 0 mm              | back     | 1:1.58     | 1.460     | 1.104   | 1.612           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.63       | 0.15           | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | back     | 1:1.58     | 1.410     | 1.089   | 1.535           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.76       | 0.11           | 0        | 01552            | QPSK         | 100      | 0         | 0 mm              | back     | 1:1.58     | 1.560     | 1.057   | 1.649           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 23.0                   | 22.55       | 0.02           | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | front    | 1:1.58     | 1.620     | 1.109   | 1.797           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.85       | -0.18          | 0        | 01552            | QPSK         | 1        | 50        | 0 mm              | front    | 1:1.58     | 1.150     | 1.035   | 1.190           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 23.0                   | 22.89       | -0.12          | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | front    | 1:1.58     | 1.480     | 1.026   | 1.518           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.63       | 0.02           | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | front    | 1:1.58     | 1.040     | 1.089   | 1.133           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.72       | -0.01          | 0        | 01552            | QPSK         | 1        | 50        | 0 mm              | front    | 1:1.58     | 0.938     | 1.067   | 1.001           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 23.0                   | 22.47       | 0.02           | 0        | 01552            | QPSK         | 50       | 0         | 0 mm              | front    | 1:1.58     | 1.560     | 1.130   | 1.763           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.78       | -0.02          | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | front    | 1:1.58     | 1.170     | 1.052   | 1.231           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 23.0                   | 22.82       | 0.03           | 0        | 01552            | QPSK         | 50       | 50        | 0 mm              | front    | 1:1.58     | 1.460     | 1.042   | 1.521           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.57       | 0.00           | 0        | 01552            | QPSK         | 50       | 50        | 0 mm              | front    | 1:1.58     | 1.030     | 1.104   | 1.137           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.63       | 0.03           | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | front    | 1:1.58     | 0.974     | 1.089   | 1.061           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.76       | 0.02           | 0        | 01552            | QPSK         | 100      | 0         | 0 mm              | front    | 1:1.58     | 1.210     | 1.057   | 1.279           |       |
| Power Class 3               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 23.0                   | 22.55       | -0.15          | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | bottom   | 1:1.58     | 2.460     | 1.109   | 2.728           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.85       | -0.20          | 0        | 01552            | QPSK         | 1        | 50        | 0 mm              | bottom   | 1:1.58     | 2.260     | 1.035   | 2.339           |       |
| Power Class 3               | 2593.00             | 40620          | Mid            | LTE Band 41                     | 20         | 23.0                   | 22.89       | -0.18          | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | bottom   | 1:1.58     | 2.290     | 1.026   | 2.350           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.63       | -0.12          | 0        | 01552            | QPSK         | 1        | 99        | 0 mm              | bottom   | 1:1.58     | 2.210     | 1.089   | 2.407           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.72       | -0.12          | 0        | 01552            | QPSK         | 1 50     | 50        | 0 mm              | bottom   | 1:1.58     | 2.140     | 1.067   | 2.283           |       |
| Power Class 3               | 2506.00<br>2549.50  | 39750<br>40185 | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.47       | -0.13<br>-0.12 | 0        | 01552<br>01552   | QPSK         | 50<br>50 | 25        | 0 mm              | bottom   | 1:1.58     | 2.430     | 1.130   | 2.746           |       |
| Power Class 3 Power Class 3 | 2549.50             | 40620          | Low-Mid<br>Mid | LTE Band 41                     | 20         | 23.0                   | 22.78       | -0.12          | 0        | 01552            | QPSK         | 50       | 25<br>50  | 0 mm              | bottom   | 1:1.58     | 2.360     | 1.052   | 2.483           |       |
| Power Class 3               | 2636.50             | 41055          | Mid-High       | LTE Band 41                     | 20         | 23.0                   | 22.82       | -0.13          | 0        | 01552            | QPSK         | 50       | 50        | 0 mm              | bottom   | 1:1.58     | 2.300     | 1.1042  | 2.397           |       |
| Power Class 3               | 2680.00             | 41490          | High           | LTE Band 41                     | 20         | 23.0                   | 22.63       | -0.12          | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | bottom   | 1:1.58     | 2.230     | 1.104   | 2.428           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23.0                   | 22.76       | -0.13          | 0        | 01552            | QPSK         | 100      | 0         | 0 mm              | bottom   | 1:1.58     | 2.260     | 1.057   | 2.389           |       |
| Power Class 2               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 25.7                   | 25.36       | 0.10           | 0        | 01552            | QPSK         | 50       | 0         | 0 mm              | bottom   | 1:2.31     | 2.990     | 1.081   | 3.232           | A50   |
| Power Class 2               | 2506.00             | 39750          | Low            | LTE Band 41                     | 20         | 25.7                   | 25.36       | 0.10           | 0        | 01552            | QPSK         | 50       | 0         | 0 mm              | bottom   | 1:2.31     | 2.940     | 1.081   | 3.178           |       |
| Power Class 3               | 2549.50             | 40185          | Low-Mid        | LTE Band 41                     | 20         | 23                     | 22.78       | 0.03           | 0        | 01552            | QPSK         | 50       | 25        | 0 mm              | bottom   | 1:1.58     | 2.330     | 1.052   | 2.451           |       |
|                             |                     | ANSI           |                | 5.1 1992 - SAFET                | TY LIMIT   |                        |             |                |          |                  |              |          |           |                   | Phablet  |            |           |         |                 |       |
|                             |                     | Unconte        |                | patial Peak<br>posure/General P | Population |                        |             |                |          |                  |              |          |           | 4.0 W<br>averaged | I/kg (mV |            |           |         |                 |       |
|                             | _                   |                |                | Jones di 1                      | F ALIVII   |                        |             |                |          |                  | ****         |          |           | ugot              |          | J          |           |         |                 |       |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFQ720PS                     | PCTEST*             | SAR EVALUATION REPORT | <b>l</b> LG | Approved by: Quality Manager |
|---------------------------------------|---------------------|-----------------------|-------------|------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |             | Dama 95 of 110               |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset      |             | Page 85 of 110               |
| 10 DCTEST Engineering Laboratory Inc. |                     |                       |             | DE\/ 21 2 M                  |

### **Table 11-38 WLAN Phablet SAR**

|       | WEAR FRADIEC SAIX |         |            |                    |                          |                 |       |                 |                  |              |       |               |                          |              |                   |                         |                       |       |
|-------|-------------------|---------|------------|--------------------|--------------------------|-----------------|-------|-----------------|------------------|--------------|-------|---------------|--------------------------|--------------|-------------------|-------------------------|-----------------------|-------|
|       |                   |         |            |                    |                          |                 | MEAS  | UREMEI          | NT RES           | ULTS         |       |               |                          |              |                   |                         |                       |       |
| FREQU | IENCY             | Mode    | Service    | Bandwidth<br>[MHz] | Maximum<br>Allowed Power | Conducted Power |       | Spacing         | Device<br>Serial | Data<br>Rate | Side  | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (10g)    | Scaling<br>Factor | Scaling<br>Factor (Duty | Reported SAR<br>(10g) | Plot# |
| MHz   | Ch.               |         |            | [WITZ]             | [dBm]                    | [dBm]           | [dB]  |                 | Number           | (Mbps)       |       | (%)           | W/kg                     | (W/kg)       | (Power)           | Cycle)                  | (W/kg)                |       |
| 5260  | 52                | 802.11a | OFDM       | 20                 | 19.5                     | 19.06           | -0.04 | 0 mm            | 01540            | 6            | back  | 99.2          | 10.276                   | 1.590        | 1.107             | 1.008                   | 1.774                 |       |
| 5280  | 56                | 802.11a | OFDM       | 20                 | 19.5                     | 19.12           | 0.02  | 0 mm            | 01540            | 6            | back  | 99.2          | 10.118                   | 1.520        | 1.091             | 1.008                   | 1.672                 |       |
| 5300  | 60                | 802.11a | OFDM       | 20                 | 19.5                     | 19.15           | -0.03 | 0 mm            | 01540            | 6            | back  | 99.2          | 12.448                   | 1.690        | 1.084             | 1.008                   | 1.847                 | A51   |
| 5300  | 60                | 802.11a | OFDM       | 20                 | 19.5                     | 19.15           | -0.19 | 0 mm            | 01540            | 6            | front | 99.2          | 4.197                    | 0.522        | 1.084             | 1.008                   | 0.570                 |       |
| 5300  | 60                | 802.11a | OFDM       | 20                 | 19.5                     | 19.15           | -0.12 | 0 mm            | 01540            | 6            | top   | 99.2          | 4.957                    | -            | 1.084             | 1.008                   | -                     |       |
| 5300  | 60                | 802.11a | OFDM       | 20                 | 19.5                     | 19.15           | -0.14 | 0 mm            | 01540            | 6            | left  | 99.2          | 12.658                   | 1.260        | 1.084             | 1.008                   | 1.377                 |       |
| 5680  | 136               | 802.11a | OFDM       | 20                 | 19.5                     | 18.99           | 0.02  | 0 mm            | 01540            | 6            | back  | 99.2          | 10.369                   | 1.210        | 1.125             | 1.008                   | 1.372                 |       |
| 5680  | 136               | 802.11a | OFDM       | 20                 | 19.5                     | 18.99           | -0.11 | 0 mm            | 01540            | 6            | front | 99.2          | 3.737                    | 0.556        | 1.125             | 1.008                   | 0.631                 |       |
| 5680  | 136               | 802.11a | OFDM       | 20                 | 19.5                     | 18.99           | 0.00  | 0 mm            | 01540            | 6            | top   | 99.2          | 3.813                    | •            | 1.125             | 1.008                   | -                     |       |
| 5680  | 136               | 802.11a | OFDM       | 20                 | 19.5                     | 18.99           | -0.12 | 0 mm            | 01540            | 6            | left  | 99.2          | 15.585                   | 1.290        | 1.125             | 1.008                   | 1.463                 |       |
|       |                   | AN      | ISI / IEEE | C95.1 1992         | - SAFETY LIMIT           |                 |       | Phablet         |                  |              |       |               |                          |              |                   |                         |                       |       |
|       |                   |         |            | Spatial Pea        | ak                       |                 |       | 4.0 W/kg (mW/g) |                  |              |       |               |                          |              |                   |                         |                       |       |
|       |                   | Unc     | ontrolled  | Exposure/Ge        | eneral Population        | n               |       |                 |                  |              |       |               | averaged o               | ver 10 grams | grams             |                         |                       |       |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |  |
|------------------------|---------------------|-----------------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:             | D 00 1440                     |  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 86 of 110                |  |

#### 11.5 SAR Test Notes

#### General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg for 1g SAR and 2.0 W/kg for 10g SAR. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 12. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.2. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 13. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

#### **GSM Test Notes:**

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
  TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
  GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
  was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
  more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

| PCTEST*             | SAR EVALUATION REPORT | <b>(</b> LG           | Approved by: Quality Manager |
|---------------------|-----------------------|-----------------------|------------------------------|
| Test Dates:         | DUT Type:             |                       | Dogo 97 of 110               |
| 04/21/19 - 05/15/19 | Portable Handset      |                       | Page 87 of 110               |
|                     | Test Dates:           | Test Dates: DUT Type: | Test Dates: DUT Type:        |

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

#### CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

#### **UMTS Notes:**

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

#### LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02. SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 7. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |
|------------------------|---------------------|--------------------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:                | Daga 99 of 110                |  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 88 of 110                |  |

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 14 for linearity results.

#### WLAN Notes:

- 1. For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 6. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

#### **Bluetooth Notes**

- Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
  operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
  scaled to the 100% transmission duty factor to determine compliance. See Section 9.6 for the time
  domain plot and calculation for the duty factor of the device.
- 2. Head and hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

| FCC ID: ZNFQ720PS      | PCTEST"             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogg 90 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |            | Page 89 of 110                |

# 12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

## 12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

#### 12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

# 12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR (W/kg) |
|-----------------------|-----------------------|------------------------|-------------------------------|--------------|
|                       |                       | 1                      | 2                             | 1+2          |
|                       | GSM/GPRS 850          | 0.207                  | 1.204                         | 1.411        |
|                       | GSM/GPRS 1900         | 0.101                  | 1.204                         | 1.305        |
|                       | UMTS 850              | 0.214                  | 1.204                         | 1.418        |
|                       | UMTS 1750             | 0.141                  | 1.204                         | 1.345        |
|                       | UMTS 1900             | 0.162                  | 1.204                         | 1.366        |
|                       | CDMA/EVDO BC10 (§90S) | 0.175                  | 1.204                         | 1.379        |
|                       | CDMA/EVDO BC0 (§22H)  | 0.165                  | 1.204                         | 1.369        |
| Head SAR              | PCS CDMA/EVDO         | 0.169                  | 1.204                         | 1.373        |
|                       | LTE Band 71           | 0.114                  | 1.204                         | 1.318        |
|                       | LTE Band 12           | 0.166                  | 1.204                         | 1.370        |
|                       | LTE Band 13           | 0.180                  | 1.204                         | 1.384        |
|                       | LTE Band 26 (Cell)    | 0.175                  | 1.204                         | 1.379        |
|                       | LTE Band 66 (AWS)     | 0.107                  | 1.204                         | 1.311        |
|                       | LTE Band 25 (PCS)     | 0.160                  | 1.204                         | 1.364        |
|                       | LTE Band 41           | 0.138                  | 1.204                         | 1.342        |

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |
|------------------------|---------------------|--------------------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 90 of 110                |  |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 90 01 110                |  |

**Table 12-2** Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

| Simulane              | Simultaneous Transmission Scenario With 5 GHZ WLAN (Held to Ear) |                        |                             |              |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------|------------------------|-----------------------------|--------------|--|--|--|--|--|
| Exposure<br>Condition | Mode                                                             | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR (W/kg) |  |  |  |  |  |
|                       |                                                                  | 1                      | 2                           | 1+2          |  |  |  |  |  |
|                       | GSM/GPRS 850                                                     | 0.207                  | 0.984                       | 1.191        |  |  |  |  |  |
|                       | GSM/GPRS 1900                                                    | 0.101                  | 0.984                       | 1.085        |  |  |  |  |  |
|                       | UMTS 850                                                         | 0.214                  | 0.984                       | 1.198        |  |  |  |  |  |
|                       | UMTS 1750                                                        | 0.141                  | 0.984                       | 1.125        |  |  |  |  |  |
|                       | UMTS 1900                                                        | 0.162                  | 0.984                       | 1.146        |  |  |  |  |  |
|                       | CDMA/EVDO BC10 (§90S)                                            | 0.175                  | 0.984                       | 1.159        |  |  |  |  |  |
|                       | CDMA/EVDO BC0 (§22H)                                             | 0.165                  | 0.984                       | 1.149        |  |  |  |  |  |
| Head SAR              | PCS CDMA/EVDO                                                    | 0.169                  | 0.984                       | 1.153        |  |  |  |  |  |
|                       | LTE Band 71                                                      | 0.114                  | 0.984                       | 1.098        |  |  |  |  |  |
|                       | LTE Band 12                                                      | 0.166                  | 0.984                       | 1.150        |  |  |  |  |  |
|                       | LTE Band 13                                                      | 0.180                  | 0.984                       | 1.164        |  |  |  |  |  |
|                       | LTE Band 26 (Cell)                                               | 0.175                  | 0.984                       | 1.159        |  |  |  |  |  |
|                       | LTE Band 66 (AWS)                                                | 0.107                  | 0.984                       | 1.091        |  |  |  |  |  |
|                       | LTE Band 25 (PCS)                                                | 0.160                  | 0.984                       | 1.144        |  |  |  |  |  |
|                       | LTE Band 41                                                      | 0.138                  | 0.984                       | 1.122        |  |  |  |  |  |

**Table 12-3** Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

|                       | iedus Transinission de | TIGITO WILL            | Biaotootii              | (IIIOIG to Eai) |
|-----------------------|------------------------|------------------------|-------------------------|-----------------|
| Exposure<br>Condition | Mode                   | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg)    |
|                       |                        | 1                      | 2                       | 1+2             |
|                       | GSM/GPRS 850           | 0.207                  | 0.111                   | 0.318           |
|                       | GSM/GPRS 1900          | 0.101                  | 0.111                   | 0.212           |
|                       | UMTS 850               | 0.214                  | 0.111                   | 0.325           |
|                       | UMTS 1750              | 0.141                  | 0.111                   | 0.252           |
|                       | UMTS 1900              | 0.162                  | 0.111                   | 0.273           |
|                       | CDMA/EVDO BC10 (§90S)  | 0.175                  | 0.111                   | 0.286           |
|                       | CDMA/EVDO BC0 (§22H)   | 0.165                  | 0.111                   | 0.276           |
| Head SAR              | PCS CDMA/EVDO          | 0.169                  | 0.111                   | 0.280           |
|                       | LTE Band 71            | 0.114                  | 0.111                   | 0.225           |
|                       | LTE Band 12            | 0.166                  | 0.111                   | 0.277           |
|                       | LTE Band 13            | 0.180                  | 0.111                   | 0.291           |
|                       | LTE Band 26 (Cell)     | 0.175                  | 0.111                   | 0.286           |
|                       | LTE Band 66 (AWS)      | 0.107                  | 0.111                   | 0.218           |
|                       | LTE Band 25 (PCS)      | 0.160                  | 0.111                   | 0.271           |
|                       | LTE Band 41            | 0.138                  | 0.111                   | 0.249           |

| FCC ID: ZNFQ720PS      | PCTEST INSURE LAUSACION, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                   | DUT Type:                | Page 91 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19           | Portable Handset         | rage 91 01 110               |

**Table 12-4** Simultaneous Transmission Scenario with 5 GHz WLAN and Bluetooth (Held to Ear)

| IIIIuitaneou          | otti (neiu to Ea      |                        |                             |                         |              |
|-----------------------|-----------------------|------------------------|-----------------------------|-------------------------|--------------|
| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg) |
|                       |                       | 1                      | 2                           | 3                       | 1+2+3        |
|                       | GSM/GPRS 850          | 0.207                  | 0.984                       | 0.111                   | 1.302        |
|                       | GSM/GPRS 1900         | 0.101                  | 0.984                       | 0.111                   | 1.196        |
|                       | UMTS 850              | 0.214                  | 0.984                       | 0.111                   | 1.309        |
|                       | UMTS 1750             | 0.141                  | 0.984                       | 0.111                   | 1.236        |
|                       | UMTS 1900             | 0.162                  | 0.984                       | 0.111                   | 1.257        |
|                       | CDMA/EVDO BC10 (§90S) | 0.175                  | 0.984                       | 0.111                   | 1.270        |
|                       | CDMA/EVDO BC0 (§22H)  | 0.165                  | 0.984                       | 0.111                   | 1.260        |
| Head SAR              | PCS CDMA/EVDO         | 0.169                  | 0.984                       | 0.111                   | 1.264        |
|                       | LTE Band 71           | 0.114                  | 0.984                       | 0.111                   | 1.209        |
|                       | LTE Band 12           | 0.166                  | 0.984                       | 0.111                   | 1.261        |
|                       | LTE Band 13           | 0.180                  | 0.984                       | 0.111                   | 1.275        |
|                       | LTE Band 26 (Cell)    | 0.175                  | 0.984                       | 0.111                   | 1.270        |
|                       | LTE Band 66 (AWS)     | 0.107                  | 0.984                       | 0.111                   | 1.202        |
|                       | LTE Band 25 (PCS)     | 0.160                  | 0.984                       | 0.111                   | 1.255        |
|                       | LTE Band 41           | 0.138                  | 0.984                       | 0.111                   | 1.233        |

| PCTEST INC.        | SAR EVALUATION REPORT | Approved by:  Quality Manager |  |
|--------------------|-----------------------|-------------------------------|--|
| Test Dates:        | DUT Type:             | Dama 02 of 110                |  |
| 4/21/19 - 05/15/19 | Portable Handset      | Page 92 of 110                |  |
|                    | est Dates:            | est Dates: DUT Type:          |  |

# **Body-Worn Simultaneous Transmission Analysis**

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|------------------------|-------------------------------|-----------------|
|                       |                    | 1                      | 2                             | 1+2             |
|                       | GSM/GPRS 850       | 0.434                  | 0.706                         | 1.140           |
|                       | GSM/GPRS 1900      | 0.364                  | 0.706                         | 1.070           |
|                       | UMTS 850           | 0.583                  | 0.706                         | 1.289           |
|                       | UMTS 1750          | 0.559                  | 0.706                         | 1.265           |
|                       | UMTS 1900          | 0.561                  | 0.706                         | 1.267           |
|                       | CDMA BC10 (§90S)   | 0.476                  | 0.706                         | 1.182           |
|                       | CDMA BC0 (§22H)    | 0.494                  | 0.706                         | 1.200           |
| Body-Worn             | PCS CDMA           | 0.583                  | 0.706                         | 1.289           |
|                       | LTE Band 71        | 0.252                  | 0.706                         | 0.958           |
|                       | LTE Band 12        | 0.310                  | 0.706                         | 1.016           |
|                       | LTE Band 13        | 0.403                  | 0.706                         | 1.109           |
|                       | LTE Band 26 (Cell) | 0.627                  | 0.706                         | 1.333           |
|                       | LTE Band 66 (AWS)  | 0.565                  | 0.706                         | 1.271           |
|                       | LTE Band 25 (PCS)  | 0.534                  | 0.706                         | 1.240           |
|                       | LTE Band 41        | 0.595                  | 0.706                         | 1.301           |

**Table 12-6** Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|------------------------|-----------------------------|-----------------|
|                       |                    | 1                      | 2                           | 1+2             |
|                       | GSM/GPRS 850       | 0.434                  | 0.650                       | 1.084           |
|                       | GSM/GPRS 1900      | 0.364                  | 0.650                       | 1.014           |
|                       | UMTS 850           | 0.583                  | 0.650                       | 1.233           |
|                       | UMTS 1750          | 0.559                  | 0.650                       | 1.209           |
|                       | UMTS 1900          | 0.561                  | 0.650                       | 1.211           |
|                       | CDMA BC10 (§90S)   | 0.476                  | 0.650                       | 1.126           |
|                       | CDMA BC0 (§22H)    | 0.494                  | 0.650                       | 1.144           |
| Body-Worn             | PCS CDMA           | 0.583                  | 0.650                       | 1.233           |
|                       | LTE Band 71        | 0.252                  | 0.650                       | 0.902           |
|                       | LTE Band 12        | 0.310                  | 0.650                       | 0.960           |
|                       | LTE Band 13        | 0.403                  | 0.650                       | 1.053           |
|                       | LTE Band 26 (Cell) | 0.627                  | 0.650                       | 1.277           |
|                       | LTE Band 66 (AWS)  | 0.565                  | 0.650                       | 1.215           |
|                       | LTE Band 25 (PCS)  | 0.534                  | 0.650                       | 1.184           |
|                       | LTE Band 41        | 0.595                  | 0.650                       | 1.245           |

| FCC ID: ZNFQ720PS      | ENPETEST SERVICES LABORATOR, INC. | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|-----------------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:                       | DUT Type:                | Dogg 02 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19               | Portable Handset         | Page 93 of 110                |

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

**Table 12-7** Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

| uncous iic            | ilisiilissioii Scellailo | With Black             | Cotti (Boa)             | y-vvoili at i   |
|-----------------------|--------------------------|------------------------|-------------------------|-----------------|
| Exposure<br>Condition | Mode                     | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|                       |                          | 1                      | 2                       | 1+2             |
|                       | GSM/GPRS 850             | 0.434                  | 0.041                   | 0.475           |
|                       | GSM/GPRS 1900            | 0.364                  | 0.041                   | 0.405           |
|                       | UMTS 850                 | 0.583                  | 0.041                   | 0.624           |
|                       | UMTS 1750                | 0.559                  | 0.041                   | 0.600           |
|                       | UMTS 1900                | 0.561                  | 0.041                   | 0.602           |
|                       | CDMA BC10 (§90S)         | 0.476                  | 0.041                   | 0.517           |
|                       | CDMA BC0 (§22H)          | 0.494                  | 0.041                   | 0.535           |
| Body-Worn             | PCS CDMA                 | 0.583                  | 0.041                   | 0.624           |
|                       | LTE Band 71              | 0.252                  | 0.041                   | 0.293           |
|                       | LTE Band 12              | 0.310                  | 0.041                   | 0.351           |
|                       | LTE Band 13              | 0.403                  | 0.041                   | 0.444           |
|                       | LTE Band 26 (Cell)       | 0.627                  | 0.041                   | 0.668           |
|                       | LTE Band 66 (AWS)        | 0.565                  | 0.041                   | 0.606           |
|                       | LTE Band 25 (PCS)        | 0.534                  | 0.041                   | 0.575           |
|                       | LTE Band 41              | 0.595                  | 0.041                   | 0.636           |

**Table 12-8** Simultaneous Transmission Scenario with 5 GHz WLAN and Bluetooth (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|--------------------|------------------------|-----------------------------|-------------------------|-----------------|
|                       |                    | 1                      | 2                           | 3                       | 1+2+3           |
|                       | GSM/GPRS 850       | 0.434                  | 0.650                       | 0.041                   | 1.125           |
|                       | GSM/GPRS 1900      | 0.364                  | 0.650                       | 0.041                   | 1.055           |
|                       | UMTS 850           | 0.583                  | 0.650                       | 0.041                   | 1.274           |
|                       | UMTS 1750          | 0.559                  | 0.650                       | 0.041                   | 1.250           |
|                       | UMTS 1900          | 0.561                  | 0.650                       | 0.041                   | 1.252           |
|                       | CDMA BC10 (§90S)   | 0.476                  | 0.650                       | 0.041                   | 1.167           |
|                       | CDMA BC0 (§22H)    | 0.494                  | 0.650                       | 0.041                   | 1.185           |
| Body-Worn             | PCS CDMA           | 0.583                  | 0.650                       | 0.041                   | 1.274           |
|                       | LTE Band 71        | 0.252                  | 0.650                       | 0.041                   | 0.943           |
|                       | LTE Band 12        | 0.310                  | 0.650                       | 0.041                   | 1.001           |
|                       | LTE Band 13        | 0.403                  | 0.650                       | 0.041                   | 1.094           |
|                       | LTE Band 26 (Cell) | 0.627                  | 0.650                       | 0.041                   | 1.318           |
|                       | LTE Band 66 (AWS)  | 0.565                  | 0.650                       | 0.041                   | 1.256           |
|                       | LTE Band 25 (PCS)  | 0.534                  | 0.650                       | 0.041                   | 1.225           |
|                       | LTE Band 41        | 0.595                  | 0.650                       | 0.041                   | 1.286           |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 94 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 94 of 110               |

# 12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-9
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR (W/kg)    |
|-----------------------|--------------------|------------------------|-------------------------------|-----------------|
|                       |                    | 1                      | 2                             | 1+2             |
|                       | GPRS 850           | 0.434                  | 0.706                         | 1.140           |
|                       | GPRS 1900          | 0.731                  | 0.706                         | 1.437           |
|                       | UMTS 850           | 0.583                  | 0.706                         | 1.289           |
|                       | UMTS 1750          | 0.958                  | 0.706                         | See Table Below |
|                       | UMTS 1900          | 1.163                  | 0.706                         | See Table Below |
|                       | EVDO BC10 (§90S)   | 0.400                  | 0.706                         | 1.106           |
| l latan at            | EVDO BC0 (§22H)    | 0.421                  | 0.706                         | 1.127           |
| Hotspot<br>SAR        | PCS EVDO           | 1.194                  | 0.706                         | See Table Below |
| JAIN                  | LTE Band 71        | 0.252                  | 0.706                         | 0.958           |
|                       | LTE Band 12        | 0.310                  | 0.706                         | 1.016           |
|                       | LTE Band 13        | 0.403                  | 0.706                         | 1.109           |
|                       | LTE Band 26 (Cell) | 0.627                  | 0.706                         | 1.333           |
|                       | LTE Band 66 (AWS)  | 0.982                  | 0.706                         | See Table Below |
|                       | LTE Band 25 (PCS)  | 1.162                  | 0.706                         | See Table Below |
|                       | LTE Band 41        | 1.091                  | 0.706                         | See Table Below |

| Simult Tx | Configuration | UMTS 1750<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | UMTS 1900<br>SAR (W/kg)            | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|-------------------------|-------------------------------|-----------------|-----------|---------------|------------------------------------|-------------------------------|-----------------|
|           |               | 1                       | 2                             | 1+2             |           |               | 1                                  | 2                             | 1+2             |
|           | Back          | 0.559                   | 0.706                         | 1.265           |           | Back          | 0.561                              | 0.706                         | 1.267           |
|           | Front         | 0.684                   | 0.706*                        | 1.390           |           | Front         | 0.727                              | 0.706*                        | 1.433           |
| Hotspot   | Тор           | -                       | 0.706*                        | 0.706           | Hotspot   | Тор           | -                                  | 0.706*                        | 0.706           |
| SAR       | Bottom        | 0.958                   | -                             | 0.958           | SAR       | Bottom        | 1.163                              | -                             | 1.163           |
|           | Right         | 0.227                   | -                             | 0.227           |           | Right         | 0.149                              | -                             | 0.149           |
|           | Left          | -                       | 0.514                         | 0.514           |           | Left          | -                                  | 0.514                         | 0.514           |
| Simult Tx | Configuration | PCS EVDO<br>SAR (W/kg)  | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band<br>66 (AWS)<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|           |               | 1 2 1+2                 |                               |                 | 1         | 2             | 1+2                                |                               |                 |
|           | Back          | 0.582                   | 0.706                         | 1.288           |           | Back          | 0.565                              | 0.706                         | 1.271           |
|           | Front         | 0.737                   | 0.706*                        | 1.443           |           | Front         | 0.650                              | 0.706*                        | 1.356           |
| Hotspot   | Тор           | -                       | 0.706*                        | 0.706           | Hotspot   | Тор           | -                                  | 0.706*                        | 0.706           |
| SAR       | Bottom        | 1.194                   | -                             | 1.194           | SAR       | Bottom        | 0.982                              | -                             | 0.982           |
|           | Right         | 0.183                   | -                             | 0.183           |           | Right         | 0.168                              | -                             | 0.168           |
|           | Left          | -                       | 0.514                         | 0.514           |           | Left          | -                                  | 0.514                         | 0.514           |

| PCTEST*             | SAR EVALUATION REPORT | <b>(</b> LG           | Approved by: Quality Manager |
|---------------------|-----------------------|-----------------------|------------------------------|
| Test Dates:         | DUT Type:             |                       | Dogg 05 of 110               |
| 04/21/19 - 05/15/19 | Portable Handset      |                       | Page 95 of 110               |
|                     | Test Dates:           | Test Dates: DUT Type: | Test Dates: DUT Type:        |

| Simult Tx | Configuration | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|------------------------------------|-------------------------------|-----------------|-----------|---------------|------------------------------|-------------------------------|-----------------|
|           |               | 1                                  | 2                             | 1+2             |           |               | 1                            | 2                             | 1+2             |
|           | Back          | 0.534                              | 0.706                         | 1.240           |           | Back          | 0.444                        | 0.706                         | 1.150           |
|           | Front         | 0.695                              | 0.706*                        | 1.401           |           | Front         | 0.421                        | 0.706*                        | 1.127           |
| Hotspot   | Тор           | -                                  | 0.706*                        | 0.706           | Hotspot   | Тор           | -                            | 0.706*                        | 0.706           |
| SAR       | Bottom        | 1.162                              | -                             | 1.162           | SAR       | Bottom        | 1.091                        | -                             | 1.091           |
|           | Right         | 0.186                              | -                             | 0.186           |           | Right         | 0.157                        | -                             | 0.157           |
|           | Left          | -                                  | 0.514                         | 0.514           |           | Left          | -                            | 0.514                         | 0.514           |

**Table 12-10** Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

| uitaiieous            | rransınıssıdır əcenai | io with 5 G            | IIIZ VVLAIN                 | (Hotspot at 1.0 |
|-----------------------|-----------------------|------------------------|-----------------------------|-----------------|
| Exposure<br>Condition | Mode                  | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR (W/kg)    |
|                       |                       | 1                      | 2                           | 1+2             |
|                       | GPRS 850              | 0.434                  | 0.690                       | 1.124           |
|                       | GPRS 1900             | 0.731                  | 0.690                       | 1.421           |
|                       | UMTS 850              | 0.583                  | 0.690                       | 1.273           |
|                       | UMTS 1750             | 0.958                  | 0.690                       | See Table Below |
|                       | UMTS 1900             | 1.163                  | 0.690                       | See Table Below |
|                       | EVDO BC10 (§90S)      | 0.400                  | 0.690                       | 1.090           |
| Listanat              | EVDO BC0 (§22H)       | 0.421                  | 0.690                       | 1.111           |
| Hotspot<br>SAR        | PCS EVDO              | 1.194                  | 0.690                       | See Table Below |
| SAIN                  | LTE Band 71           | 0.252                  | 0.690                       | 0.942           |
|                       | LTE Band 12           | 0.310                  | 0.690                       | 1.000           |
|                       | LTE Band 13           | 0.403                  | 0.690                       | 1.093           |
|                       | LTE Band 26 (Cell)    | 0.627                  | 0.690                       | 1.317           |
|                       | LTE Band 66 (AWS)     | 0.982                  | 0.690                       | See Table Below |
|                       | LTE Band 25 (PCS)     | 1.162                  | 0.690                       | See Table Below |
|                       | LTE Band 41           | 1.091                  | 0.690                       | See Table Below |

| Simult Tx      | Configuration | UMTS 1750<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx      | Configuration | UMTS 1900<br>SAR (W/kg)            | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|----------------|---------------|-------------------------|-----------------------------|-----------------|----------------|---------------|------------------------------------|-----------------------------|-----------------|
|                |               | 1                       | 2                           | 1+2             |                |               | 1                                  | 2                           | 1+2             |
|                | Back          | 0.559                   | 0.690                       | 1.249           |                | Back          | 0.561                              | 0.690                       | 1.251           |
|                | Front         | 0.684                   | 0.690*                      | 1.374           |                | Front         | 0.727                              | 0.690*                      | 1.417           |
| Hotspot        | Тор           | -                       | 0.690*                      | 0.690           | Hotspot        | Тор           | -                                  | 0.690*                      | 0.690           |
| SAR            | Bottom        | 0.958                   | -                           | 0.958           | SAR            | Bottom        | 1.163                              | -                           | 1.163           |
|                | Right         | 0.227                   | -                           | 0.227           |                | Right         | 0.149                              | -                           | 0.149           |
|                | Left          | -                       | 0.430                       | 0.430           |                | Left          | -                                  | 0.430                       | 0.430           |
| Simult Tx      | Configuration | PCS EVDO<br>SAR (W/kg)  | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx      | Configuration | LTE Band<br>66 (AWS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|                |               | 1                       | 2                           | 1+2             |                |               | 1                                  | 2                           | 1+2             |
|                |               |                         |                             |                 |                | D I .         | 0.505                              | 0.000                       | 4 055           |
|                | Back          | 0.582                   | 0.690                       | 1.272           |                | Back          | 0.565                              | 0.690                       | 1.255           |
|                | Back<br>Front | 0.582<br>0.737          | 0.690<br>0.690*             | 1.272<br>1.427  |                | Front         | 0.565                              | 0.690*                      | 1.255           |
| Hotspot        |               |                         |                             |                 | Hotspot        |               |                                    |                             |                 |
| Hotspot<br>SAR | Front         |                         | 0.690*                      | 1.427           | Hotspot<br>SAR | Front         |                                    | 0.690*                      | 1.340           |
|                | Front<br>Top  | 0.737                   | 0.690*                      | 1.427<br>0.690  |                | Front<br>Top  | 0.650                              | 0.690*                      | 1.340<br>0.690  |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 96 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Fage 90 01 110               |

| Simult Tx | Configuration | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|------------------------------------|-----------------------------|-----------------|-----------|---------------|------------------------------|-----------------------------|-----------------|
|           |               | 1                                  | 2                           | 1+2             |           |               | 1                            | 2                           | 1+2             |
|           | Back          | 0.534                              | 0.690                       | 1.224           |           | Back          | 0.444                        | 0.690                       | 1.134           |
|           | Front         | 0.695                              | 0.690*                      | 1.385           |           | Front         | 0.421                        | 0.690*                      | 1.111           |
| Hotspot   | Тор           | -                                  | 0.690*                      | 0.690           | Hotspot   | Тор           | -                            | 0.690*                      | 0.690           |
| SAR       | Bottom        | 1.162                              | 1.162 - 1.162 SA            | SAR             | Bottom    | 1.091         | -                            | 1.091                       |                 |
|           | Right         | 0.186                              | -                           | 0.186           |           | Right         | 0.157                        | -                           | 0.157           |
|           | Left          | -                                  | 0.430                       | 0.430           |           | Left          | -                            | 0.430                       | 0.430           |

**Table 12-11** Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

| muitaneous            | lotspot at 1.0 c   |                        |                         |              |
|-----------------------|--------------------|------------------------|-------------------------|--------------|
| Exposure<br>Condition | Mode               | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg) |
|                       |                    | 1                      | 2                       | 1+2          |
|                       | GPRS 850           | 0.434                  | 0.041                   | 0.475        |
|                       | GPRS 1900          | 0.731                  | 0.041                   | 0.772        |
|                       | UMTS 850           | 0.583                  | 0.041                   | 0.624        |
|                       | UMTS 1750          | 0.958                  | 0.041                   | 0.999        |
|                       | UMTS 1900          | 1.163                  | 0.041                   | 1.204        |
|                       | EVDO BC10 (§90S)   | 0.400                  | 0.041                   | 0.441        |
| Listanet              | EVDO BC0 (§22H)    | 0.421                  | 0.041                   | 0.462        |
| Hotspot<br>SAR        | PCS EVDO           | 1.194                  | 0.041                   | 1.235        |
| OAK                   | LTE Band 71        | 0.252                  | 0.041                   | 0.293        |
|                       | LTE Band 12        | 0.310                  | 0.041                   | 0.351        |
|                       | LTE Band 13        | 0.403                  | 0.041                   | 0.444        |
|                       | LTE Band 26 (Cell) | 0.627                  | 0.041                   | 0.668        |
|                       | LTE Band 66 (AWS)  | 0.982                  | 0.041                   | 1.023        |
|                       | LTE Band 25 (PCS)  | 1.162                  | 0.041                   | 1.203        |
|                       | LTE Band 41        | 1.091                  | 0.041                   | 1.132        |

| FCC ID: ZNFQ720PS                      | PCTEST*               | SAR EVALUATION REPORT | Approved by: Quality Manager |  |
|----------------------------------------|-----------------------|-----------------------|------------------------------|--|
| Document S/N:                          | Test Dates: DUT Type: |                       |                              |  |
| 1M1904220061-01-R1.ZNF                 | 04/21/19 - 05/15/19   | Portable Handset      | Page 97 of 110               |  |
| 10 DCTEST Engineering Laboratory, Inc. | 04/21/19 - 03/13/19   | 1 Ortable Haliuset    | DEV/ 24 2 M                  |  |

**Table 12-12** Simultaneous Transmission Scenario with 5 GHz WLAN and Bluetooth (Hotspot at 1.0 cm)

| t <u>anocao iri</u>   | alisiilissioii Scellalic | With 0 On              | Z VVEAIV ai                 | a Blactoot              | ii (iiotopot at i |
|-----------------------|--------------------------|------------------------|-----------------------------|-------------------------|-------------------|
| Exposure<br>Condition | Mode                     | 2G/3G/4G<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR (W/kg)      |
|                       |                          | 1                      | 2                           | 3                       | 1+2+3             |
|                       | GPRS 850                 | 0.434                  | 0.690                       | 0.041                   | 1.165             |
|                       | GPRS 1900                | 0.731                  | 0.690                       | 0.041                   | 1.462             |
|                       | UMTS 850                 | 0.583                  | 0.690                       | 0.041                   | 1.314             |
|                       | UMTS 1750                | 0.958                  | 0.690                       | 0.041                   | See Table Below   |
|                       | UMTS 1900                | 1.163                  | 0.690                       | 0.041                   | See Table Below   |
|                       | EVDO BC10 (§90S)         | 0.400                  | 0.690                       | 0.041                   | 1.131             |
| I leten et            | EVDO BC0 (§22H)          | 0.421                  | 0.690                       | 0.041                   | 1.152             |
| Hotspot<br>SAR        | PCS EVDO                 | 1.194                  | 0.690                       | 0.041                   | See Table Below   |
| OAIX                  | LTE Band 71              | 0.252                  | 0.690                       | 0.041                   | 0.983             |
|                       | LTE Band 12              | 0.310                  | 0.690                       | 0.041                   | 1.041             |
|                       | LTE Band 13              | 0.403                  | 0.690                       | 0.041                   | 1.134             |
|                       | LTE Band 26 (Cell)       | 0.627                  | 0.690                       | 0.041                   | 1.358             |
|                       | LTE Band 66 (AWS)        | 0.982                  | 0.690                       | 0.041                   | See Table Below   |
|                       | LTE Band 25 (PCS)        | 1.162                  | 0.690                       | 0.041                   | See Table Below   |
|                       | LTE Band 41              | 1.091                  | 0.690                       | 0.041                   | See Table Below   |

|           |               |                                    | 5 GHz                       |                         |                 |           |               |                                    | 5 GHz                       |                         |                 |
|-----------|---------------|------------------------------------|-----------------------------|-------------------------|-----------------|-----------|---------------|------------------------------------|-----------------------------|-------------------------|-----------------|
| Simult Tx | Configuration | UMTS 1750<br>SAR (W/kg)            | WI WI CVD                   | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | UMTS 1900<br>SAR (W/kg)            | WLAN SAR<br>(W/kg)          | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|           |               | 1                                  | 2                           | 3                       | 1+2+3           |           |               | 1                                  | 2                           | 3                       | 1+2+3           |
|           | Back          | 0.559                              | 0.690                       | 0.041                   | 1.290           |           | Back          | 0.561                              | 0.690                       | 0.041                   | 1.292           |
|           | Front         | 0.684                              | 0.690*                      | 0.021                   | 1.395           | ]         | Front         | 0.727                              | 0.690*                      | 0.021                   | 1.438           |
| Hotspot   | Тор           | -                                  | 0.690*                      | 0.028                   | 0.718           | Hotspot   | Тор           | -                                  | 0.690*                      | 0.028                   | 0.718           |
| SAR       | Bottom        | 0.958                              | -                           | -                       | 0.958           | SAR       | Bottom        | 1.163                              | -                           | -                       | 1.163           |
|           | Right         | 0.227                              | -                           | -                       | 0.227           | 1         | Right         | 0.149                              | -                           | -                       | 0.149           |
|           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |
| Simult Tx | Configuration | PCS EVDO<br>SAR (W/kg)             |                             | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band<br>66 (AWS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|           |               | 1                                  | 2                           | 3                       | 1+2+3           |           |               | 1                                  | 2                           | 3                       | 1+2+3           |
|           | Back          | 0.582                              | 0.690                       | 0.041                   | 1.313           |           | Back          | 0.565                              | 0.690                       | 0.041                   | 1.296           |
|           | Front         | 0.737                              | 0.690*                      | 0.021                   | 1.448           | ]         | Front         | 0.650                              | 0.690*                      | 0.021                   | 1.361           |
| Hotspot   | Тор           | -                                  | 0.690*                      | 0.028                   | 0.718           | Hotspot   | Тор           | -                                  | 0.690*                      | 0.028                   | 0.718           |
| SAR       | Bottom        | 1.194                              | -                           | -                       | 1.194           | SAR       | Bottom        | 0.982                              | -                           | -                       | 0.982           |
|           | Right         | 0.183                              | -                           | -                       | 0.183           |           | Right         | 0.168                              | -                           | -                       | 0.168           |
|           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |
| Simult Tx | Configuration | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg)       | 5 GHz<br>WLAN SAR<br>(W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|           |               | 1                                  | 2                           | 3                       | 1+2+3           |           |               | 1                                  | 2                           | 3                       | 1+2+3           |
|           | Back          | 0.534                              | 0.690                       | 0.041                   | 1.265           |           | Back          | 0.444                              | 0.690                       | 0.041                   | 1.175           |
| 1         | Front         | 0.695                              | 0.690*                      | 0.021                   | 1.406           |           | Front         | 0.421                              | 0.690*                      | 0.021                   | 1.132           |
| Hotspot   | Top           |                                    | 0.690*                      | 0.028                   | 0.718           | Hotspot   | Тор           | -                                  | 0.690*                      | 0.028                   | 0.718           |
| SAR       | Bottom        | 1.162                              | -                           | -                       | 1.162           | SAR       | Bottom        | 1.091                              | -                           | -                       | 1.091           |
| 1         | Right         | 0.186                              | -                           | -                       | 0.186           | l         | Right         | 0.157                              | -                           | -                       | 0.157           |
|           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |           | Left          | -                                  | 0.430                       | 0.040                   | 0.470           |

| FCC ID: ZNFQ720PS      | PETEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 98 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 96 01 110               |

# 12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

**Table 12-13** Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

| Simult Tx | Configuration      | IWIANSARI                          |                             | PCS EVDO<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |                              |                             |                 |
|-----------|--------------------|------------------------------------|-----------------------------|------------------------|-----------------------------|-----------------|------------------------------|-----------------------------|-----------------|
|           |                    | 1                                  | 2                           | 1+2                    |                             |                 | 1                            | 2                           | 1+2             |
|           | Back               | 1.874                              | 1.847                       | 3.721                  |                             | Back            | 1.794                        | 1.847                       | 3.641           |
|           | Front              | 2.817                              | 0.631                       | 3.448                  |                             | Front           | 2.503                        | 0.631                       | 3.134           |
| Phablet   | Top - 1.847* 1.847 |                                    | Phablet                     | Top                    | -                           | 1.847*          | 1.847                        |                             |                 |
| SAR       | Bottom             | 2.848                              | <b>2.848</b> - 2.848        |                        | SAR                         | Bottom          | 2.476                        | -                           | 2.476           |
|           | Right              | 0.549                              | -                           | 0.549                  |                             | Right           | 0.610                        | -                           | 0.610           |
|           | Left - 1.463 1.463 |                                    |                             | Left                   | -                           | 1.463           | 1.463                        |                             |                 |
| Simult Tx | Configuration      | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg)        | Simult Tx                   | Configuration   | LTE Band<br>41 SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|           |                    | 1                                  | 2                           | 1+2                    |                             |                 | 1                            | 2                           | 1+2             |
|           | Back               | 1.951                              | 1.847                       | 3.798                  |                             | Back            | 1.752                        | 1.847                       | 3.599           |
|           | Front              | 2.825                              | 0.631                       | 3.456                  |                             | Front           | 1.797                        | 0.631                       | 2.428           |
| Phablet   | Тор                | -                                  | 1.847*                      | 1.847                  | Phablet                     | Тор             | -                            | 1.847*                      | 1.847           |
|           | D - 4              | 2.613                              |                             | 2.613                  | SAR                         | Bottom          | 3.232                        | _                           | 3.232           |
| SAR       | Bottom             | 2.013                              | _                           | 2.010                  |                             |                 | 0.202                        |                             |                 |
| SAR       | Right              | 0.597                              | -                           | 0.597                  | 57.11.                      | Right<br>Left   | 0.493                        | -                           | 0.493           |

#### 12.7 **Simultaneous Transmission Conclusion**

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 00 of 110                |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 99 of 110                |

# 13 SAR MEASUREMENT VARIABILITY

# 13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1 Head SAR Measurement Variability Results

|      | nead OAK measurement variability Results                                                    |     |                           |         |                    |           |                      |                             |                               |                             |        |                             |        |     |
|------|---------------------------------------------------------------------------------------------|-----|---------------------------|---------|--------------------|-----------|----------------------|-----------------------------|-------------------------------|-----------------------------|--------|-----------------------------|--------|-----|
|      | HEAD VARIABILITY RESULTS                                                                    |     |                           |         |                    |           |                      |                             |                               |                             |        |                             |        |     |
| Band | FREQUENCY                                                                                   |     | Mode/Band                 | Service | Side Test Position | Data Rate | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | Ratio                         | 2nd<br>Repeated<br>SAR (1g) | Ratio  | 3rd<br>Repeated<br>SAR (1g) | Ratio  |     |
|      | MHz                                                                                         | Ch. |                           |         |                    |           |                      | (W/kg)                      | (W/kg)                        |                             | (W/kg) |                             | (W/kg) |     |
| 2450 | 2462.00                                                                                     | 11  | 802.11b, 22 MHz Bandwidth | DSSS    | Right              | Cheek     | 1                    | 0.958                       | 0.957                         | 1.00                        | N/A    | N/A                         | N/A    | N/A |
| 5250 | 5280.00                                                                                     | 56  | 802.11a, 20 MHz Bandwidth | OFDM    | Right              | Cheek     | 6                    | 0.830                       | 0.701                         | 1.18                        | N/A    | N/A                         | N/A    | N/A |
| 5600 | 5520.00                                                                                     | 104 | 802.11a, 20 MHz Bandwidth | OFDM    | Right              | Cheek     | 6                    | 0.915                       | 0.807                         | 1.13                        | N/A    | N/A                         | N/A    | N/A |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population |     |                           |         |                    |           |                      | a                           | Hea<br>1.6 W/kg<br>veraged ov | (mW/g)                      | n      |                             |        |     |

| SNG INLESSES LABORATRES, INC. | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|-------------------------------|-----------------------|-------------------------------|
| Test Dates:                   | DUT Type:             | Dags 100 of 110               |
| 04/21/19 - 05/15/19           | Portable Handset      | Page 100 of 110               |
|                               | Test Dates:           | Test Dates: DUT Type:         |

# **Table 13-2** Body SAR Measurement Variability Results

|      | Body SAR Measurement Variability Results |         |                                        |                             |                |            |                      |                             |          |                                 |        |                             |       |
|------|------------------------------------------|---------|----------------------------------------|-----------------------------|----------------|------------|----------------------|-----------------------------|----------|---------------------------------|--------|-----------------------------|-------|
|      | BODY VARIABILITY RESULTS                 |         |                                        |                             |                |            |                      |                             |          |                                 |        |                             |       |
| Band | FREQUENCY                                |         | Mode                                   | Service                     | Service Side S | de Spacing | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | Ratio    | 2nd<br>Repeated<br>tio SAR (1g) | Ratio  | 3rd<br>Repeated<br>SAR (1g) | Ratio |
|      | MHz                                      | Ch.     |                                        |                             |                |            | (W/kg)               | (W/kg)                      |          | (W/kg)                          | (W/kg) | (W/kg)                      |       |
| 1900 | 1851.25                                  | 25      | PCS CDMA                               | EVDO Rev. 0                 | bottom         | 10 mm      | 1.110                | 1.070                       | 1.04     | N/A                             | N/A    | N/A                         | N/A   |
| 1750 | 1770.00                                  | 132572  | LTE Band 66 (AWS), 20 MHz<br>Bandwidth | QPSK, 1 RB, 99<br>RB Offset | bottom         | 10 mm      | 0.973                | 0.961                       | 1.01     | N/A                             | N/A    | N/A                         | N/A   |
| 2600 | 2593.00                                  | 40620   | LTE Band 41 PC2, 20 MHz<br>Bandwidth   | QPSK, 1 RB, 0<br>RB Offset  | bottom         | 10 mm      | 1.030                | 0.965                       | 1.07     | N/A                             | N/A    | N/A                         | N/A   |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |         |                                        |                             |                |            |                      |                             | Во       | dy                              |        |                             |       |
|      | Spatial Peak                             |         |                                        |                             |                |            |                      | 1                           | I.6 W/kg | (mW/g)                          |        |                             |       |
|      |                                          | Uncontr | olled Exposure/General Popula          | ation                       |                |            |                      | ave                         | eraged o | ver 1 gram                      |        |                             |       |

**Table 13-3 Phablet SAR Measurement Variability Results** 

|      | Thubitt OAR medicalionic variability resource |        |                                        |                              |        |         |                       |                              |          |                                   |        |                              |       |
|------|-----------------------------------------------|--------|----------------------------------------|------------------------------|--------|---------|-----------------------|------------------------------|----------|-----------------------------------|--------|------------------------------|-------|
|      | PHABLET VARIABILITY RESULTS                   |        |                                        |                              |        |         |                       |                              |          |                                   |        |                              |       |
| Band | FREQUENCY<br>Band                             |        | Mode                                   | Service                      | Side   | Spacing | Measured<br>SAR (10g) | 1st<br>Repeated<br>SAR (10g) | Ratio    | 2nd<br>Repeated<br>SAR (10g) Rati | Ratio  | 3rd<br>Repeated<br>SAR (10g) | Ratio |
|      | MHz                                           | Ch.    |                                        |                              |        |         | (W/kg)                | (W/kg)                       |          | (W/kg)                            | (W/kg) |                              |       |
| 1900 | 1905.00                                       | 26590  | LTE Band 25 (PCS), 20 MHz<br>Bandwidth | QPSK, 1 RB, 50<br>RB Offset  | front  | 0 mm    | 2.800                 | 2.580                        | 1.09     | N/A                               | N/A    | N/A                          | N/A   |
| 2450 | 2506.00                                       | 39750  | LTE Band 41 PC2, 20 MHz<br>Bandwidth   | QPSK, 50 RB, 0<br>RB Offset  | bottom | 0 mm    | 2.990                 | 2.940                        | 1.02     | N/A                               | N/A    | N/A                          | N/A   |
| 2600 | 2549.50                                       | 40185  | LTE Band 41 PC3, 20 MHz<br>Bandwidth   | QPSK, 50 RB, 25<br>RB Offset | bottom | 0 mm    | 2.360                 | 2.330                        | 1.01     | N/A                               | N/A    | N/A                          | N/A   |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT         |        |                                        |                              |        |         |                       | Pha                          | blet     |                                   |        |                              |       |
|      | Spatial Peak                                  |        |                                        |                              |        |         | 4                     | I.0 W/kg                     | (mW/g)   |                                   |        |                              |       |
|      | - I                                           | Jncont | rolled Exposure/General Popul          | ation                        |        |         |                       | ave                          | raged ov | er 10 gram                        | S      |                              |       |

# 13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

| FCC ID: ZNFQ720PS                     | PCTEST NUMBER INC.  | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |     | Dags 101 of 110              |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 101 of 110              |
| 10 DCTEST Engineering Laboratory Inc. |                     |                       |     | DEV/ 21.3 M                  |

# 14 ADDITIONAL TESTING PER FCC GUIDANCE

# 14.1 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g and < 3.5 W/kg for 10g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

Table 14-1 LTE Band 41 Head Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |
|-------------------------------------|-----------------|-----------------|
| Maximum Allowed Output Power (dBm)  | 25              | 27.7            |
| Measured Output Power (dBm)         | 25              | 27.35           |
| Measured SAR (W/kg)                 | 0.103           | 0.127           |
| Measured Power (mW)                 | 316.23          | 543.25          |
| Duty Cycle                          | 63.3%           | 43.3%           |
| Frame Averaged Output Power (mW)    | 200.17          | 235.23          |
| % deviation from expected linearity |                 | 4.93%           |

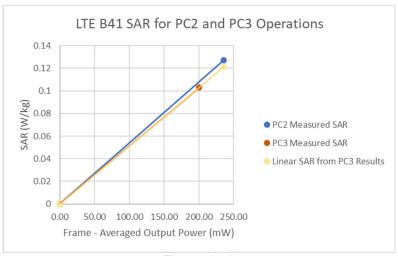



Figure 14-1 LTE Band 41 Head Linearity

| FCC ID: ZNFQ720PS      | PCTEST:             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 102 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 102 01 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

02/15/2019

**Table 14-2** LTE Band 41 Body-Worn Linearity Data

|                                     | <u></u>         |                 |
|-------------------------------------|-----------------|-----------------|
|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |
| Maximum Allowed Output Power (dBm)  | 25              | 27.7            |
| Measured Output Power (dBm)         | 25              | 27.35           |
| Measured SAR (W/kg)                 | 0.444           | 0.549           |
| Measured Power (mW)                 | 316.23          | 543.25          |
| Duty Cycle                          | 63.3%           | 43.3%           |
| Frame Averaged Output Power (mW)    | 200.17          | 235.23          |
| % deviation from expected linearity |                 | 5.22%           |

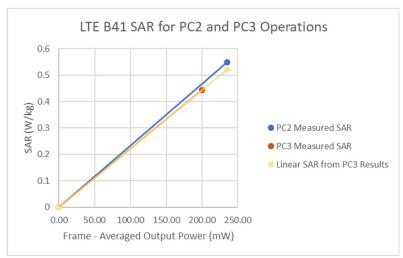



Figure 14-2 LTE Band 41 Body-Worn Linearity

| PCTEST                     | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|----------------------------|-----------------------|-------------------------------|
| S/N: Test Dates: DUT Type: |                       | Dama 102 of 110               |
| 04/21/19 - 05/15/19        | Portable Handset      | Page 103 of 110               |
|                            | Test Dates:           | Test Dates: DUT Type:         |

Table 14-3 LTE Band 41 Hotspot Linearity Data

| 212 Bana 41 Hotopot Embanty Bata    |                 |                 |  |  |  |  |  |
|-------------------------------------|-----------------|-----------------|--|--|--|--|--|
|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |  |  |  |  |
| Maximum Allowed Output Power (dBm)  | 25              | 27.7            |  |  |  |  |  |
| Measured Output Power (dBm)         | 24.82           | 27.45           |  |  |  |  |  |
| Measured SAR (W/kg)                 | 0.759           | 1.03            |  |  |  |  |  |
| Measured Power (mW)                 | 303.39          | 555.90          |  |  |  |  |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |  |  |  |  |
| Frame Averaged Output Power (mW)    | 192.05          | 240.71          |  |  |  |  |  |
| % deviation from expected linearity |                 | 8.27%           |  |  |  |  |  |

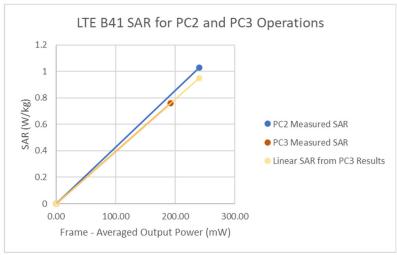



Figure 14-3 LTE Band 41 Hotspot Linearity

| FCC ID: ZNFQ720PS                     | PCTEST INSTITUTE LABOUR THE   | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager |
|---------------------------------------|-------------------------------|-----------------------|-----|------------------------------|
| Document S/N:                         | nt S/N: Test Dates: DUT Type: |                       |     | D 404 -f 440                 |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19           | Portable Handset      |     | Page 104 of 110              |
| 10 DCTEST Engineering Laboratory Inc. |                               |                       |     | DEV/ 21 3 M                  |

Table 14-4
LTE Band 41 Phablet Linearity Data

|                                     | LTE Band 41 PC3 | LTE Band 41 PC2 |  |  |  |  |  |
|-------------------------------------|-----------------|-----------------|--|--|--|--|--|
| Maximum Allowed Output Power (dBm)  | 23              | 25.7            |  |  |  |  |  |
| Measured Output Power (dBm)         | 22.47           | 25.36           |  |  |  |  |  |
| Measured SAR (W/kg)                 | 2.43            | 2.99            |  |  |  |  |  |
| Measured Power (mW)                 | 176.60          | 343.56          |  |  |  |  |  |
| Duty Cycle                          | 63.3%           | 43.3%           |  |  |  |  |  |
| Frame Averaged Output Power (mW)    | 111.79          | 148.76          |  |  |  |  |  |
| % deviation from expected linearity |                 | -7.53%          |  |  |  |  |  |

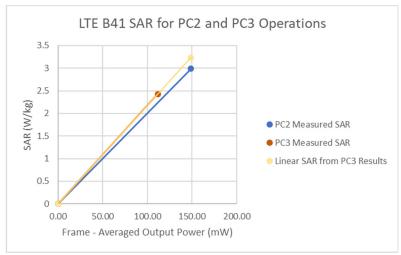



Figure 14-4 LTE Band 41 Phablet Linearity

| FCC ID: ZNFQ720PS                     | PCTEST*                    | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|----------------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | S/N: Test Dates: DUT Type: |                       |     | Dogg 105 of 110               |
| 1M1904220061-01-R1.ZNF                | 04/21/19 - 05/15/19        | Portable Handset      |     | Page 105 of 110               |
| 10 DCTEST Engineering Laboratory Inc. |                            |                       |     | DEV/ 24.2 M                   |

| Manufacturer                                   | Model                  | Description                                                  | Cal Date   | Cal Interval     | Cal Due    | Serial Number            |
|------------------------------------------------|------------------------|--------------------------------------------------------------|------------|------------------|------------|--------------------------|
| Agilent                                        | E5515C                 | 8960 Series 10 Wireless Communications Test Set              | 12/18/2018 | Annual           | 12/18/2019 | GB42230325               |
| Agilent                                        | E4438C                 | ESG Vector Signal Generator                                  | 3/8/2019   | Biennial         | 3/8/2021   | MY42082385               |
| Agilent                                        | E4438C                 | ESG Vector Signal Generator                                  | 3/11/2019  | Biennial         | 3/11/2021  | MY45090700               |
| Agilent                                        | N9020A                 | MXA Signal Analyzer                                          | 4/20/2019  | Annual           | 4/20/2020  | US46470561               |
| Agilent                                        | N5182A-506             | MXG Vector Signal Generator                                  | 6/19/2018  | Annual           | 6/19/2019  | MY48180366               |
| Agilent                                        | N5182A                 | MXG Vector Signal Generator                                  | 11/28/2018 | Annual           | 11/28/2019 | MY47420603               |
| Agilent                                        | 8753ES                 | S-Parameter Network Analyzer                                 | 3/11/2019  | Annual           | 3/11/2020  | US39170122               |
| Agilent                                        | 8753ES                 | S-Parameter Vector Network Analyzer                          | 8/30/2018  | Annual           | 8/30/2019  | MY40003841               |
| Agilent                                        | E5515C                 | Wireless Communications Test Set                             | 5/22/2018  | Biennial         | 5/22/2020  | GB43193563               |
| Agilent                                        | N4010A                 | Wireless Connectivity Test Set                               | N/A        | N/A              | N/A        | GB46170464               |
| Amplifier Research                             | 15S1G6                 | Amplifier                                                    | CBT        | N/A              | CBT        | 433972                   |
| Amplifier Research                             | 15S1G6                 | Amplifier                                                    | CBT        | N/A              | CBT        | 433974                   |
| Anritsu                                        | ML2496A                | Power Meter                                                  | 5/21/2018  | Annual           | 5/21/2019  | 1351001                  |
| Anritsu                                        | ML2496A                | Power Meter                                                  | 6/19/2018  | Annual           | 6/19/2019  | 1306009                  |
| Anritsu                                        | MA2411B                | Pulse Power Sensor                                           | 11/20/2018 | Annual           | 11/20/2019 | 1339008                  |
| Anritsu                                        | MA2411B                | Pulse Power Sensor                                           | 3/6/2019   | Annual           | 3/6/2020   | 1339018                  |
| Anritsu                                        | MT8821C                | Radio Communication Analyzer                                 | 1/25/2019  | Annual           | 1/25/2020  | 6261895213               |
| Anritsu                                        | MT8821C                | Radio Communication Analyzer                                 | 3/6/2019   | Annual           | 3/6/2020   | 6201381794               |
| Anritsu                                        | MT8820C                | Radio Communication Analyzer                                 | 3/29/2019  | Annual           | 3/29/2020  | 6201300731               |
| Anritsu                                        | MA24106A               | USB Power Sensor                                             | 4/17/2019  | Annual           | 4/17/2020  | 1344556                  |
| Anritsu                                        | MA24106A               | USB Power Sensor                                             | 4/17/2019  | Annual           | 4/17/2020  | 1349514                  |
| Control Company                                | 4040                   | Therm./ Clock/ Humidity Monitor                              | 10/9/2018  | Biennial         | 10/9/2020  | 181647811                |
| Control Company                                | 4040                   | Therm./ Clock/ Humidity Monitor                              | 10/9/2018  | Biennial         | 10/9/2020  | 181647802                |
| Control Company                                | 4352                   | Ultra Long Stem Thermometer                                  | 11/29/2018 | Biennial         | 11/29/2020 | 181766816                |
| Control Company                                | 4352                   | Ultra Long Stem Thermometer                                  | 11/29/2018 | Biennial         | 11/29/2020 | 181766817                |
| Keysight                                       | 772D                   | Dual Directional Coupler                                     | CBT        | N/A              | CBT        | MY52180215               |
|                                                | 85033F                 | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)      | 6/4/2018   | Annual           | 6/4/2019   | MY53401181               |
| Keysight Technologies<br>Keysight Technologies | 85033E<br>U3401A       | Digital Multimeter                                           | 5/17/2018  | Annual           | 5/17/2019  | MY53401181<br>MY57201470 |
|                                                |                        |                                                              |            |                  |            |                          |
| MCL<br>Mini-Circuits                           | BW-N6W5+<br>BW-N20W5+  | 6dB Attenuator DC to 18 GHz Precision Fixed 20 dB Attenuator | N/A<br>CBT | N/A<br>N/A       | N/A<br>CBT | 1139<br>N/A              |
| Mini-Circuits                                  | NLP-1200+              | Low Pass Filter DC to 1000 MHz                               | CBT        | N/A<br>N/A       | CBT        | N/A<br>N/A               |
| Mini-Circuits<br>Mini-Circuits                 | NLP-1200+<br>NLP-2950+ |                                                              | CBT        | N/A<br>N/A       | CBT        | N/A<br>N/A               |
|                                                |                        | Low Pass Filter DC to 2700 MHz                               |            |                  |            | ,                        |
| MiniCircuits                                   | VLF-6000+              | Low Pass Filter                                              | CBT        | B/A              | CBT        | N/A                      |
| Mitutoyo                                       | CD-6"CSX               | Digital Caliper                                              | 4/18/2018  | Biennial         | 4/18/2020  | 13264165                 |
| Narda                                          | 4014C-6                | 4 - 8 GHz SMA 6 dB Directional Coupler                       | CBT        | N/A              | CBT        | N/A                      |
| Narda                                          | 4772-3                 | Attenuator (3dB)                                             | CBT        | N/A              | CBT        | 9406                     |
| Narda                                          | BW-S3W2                | Attenuator (3dB)                                             | CBT        | N/A              | CBT        | 120                      |
| Pasternack                                     | PE2208-6               | Bidirectional Coupler                                        | CBT        | N/A              | CBT        | N/A                      |
| Pasternack                                     | PE2209-10              | Bidirectional Coupler                                        | CBT        | N/A              | CBT        | N/A                      |
| Pasternack                                     | NC-100                 | Torque Wrench                                                | 11/7/2017  | Biennial         | 11/7/2019  | N/A                      |
| Pasternack                                     | NC-100                 | Torque Wrench                                                | 5/23/2018  | Biennial         | 5/23/2020  | N/A                      |
| Rohde & Schwarz                                | CMU200                 | Base Station Simulator                                       | 5/18/2018  | Annual           | 5/18/2019  | 109892                   |
| Rohde & Schwarz                                | CMW500                 | Radio Communication Tester                                   | 4/15/2019  | Annual           | 4/15/2020  | 167284                   |
| Rohde & Schwarz                                | CMW500                 | Radio Communication Tester                                   | 4/17/2019  | Annual           | 4/17/2020  | 167285                   |
| Rohde & Schwarz                                | CMW500                 | Radio Communication Tester                                   | 4/19/2019  | Annual           | 4/19/2020  | 128633                   |
| Rohde & Schwarz                                | CMW500                 | Wideband Radio Communication Tester                          | 1/30/2019  | Annual           | 1/30/2020  | 162125                   |
| SPEAG                                          | D750V3                 | 750 MHz SAR Dipole                                           | 10/19/2018 | Annual           | 10/19/2019 | 1161                     |
| SPEAG                                          | D835V2                 | 835 MHz SAR Dipole                                           | 1/22/2019  | Annual           | 1/22/2020  | 4d132                    |
| SPEAG                                          | D835V2                 | 835 MHz SAR Dipole                                           | 10/19/2018 | Annual           | 10/19/2019 | 4d133                    |
| SPEAG                                          | D1750V2                | 1750 MHz SAR Dipole                                          | 5/9/2017   | Biennial         | 5/9/2019   | 1148                     |
| SPEAG                                          | D1765V2                | 1765 MHz SAR Dipole                                          | 5/23/2018  | Annual           | 5/23/2019  | 1008                     |
| SPEAG                                          | D1900V2                | 1900 MHz SAR Dipole                                          | 10/23/2018 | Annual           | 10/23/2019 | 5d080                    |
| SPEAG                                          | D1900V2                | 1900 MHz SAR Dipole                                          | 2/21/2019  | Annual           | 2/21/2020  | 5d148                    |
| SPEAG                                          | D1900V2                | 1900 MHz SAR Dipole                                          | 10/23/2018 | Annual           | 10/23/2019 | 5d149                    |
| SPEAG                                          | D2450V2                | 2450 MHz SAR Dipole                                          | 8/16/2018  | Annual           | 8/16/2019  | 981                      |
| SPEAG                                          | D2450V2                | 2450 MHz SAR Dipole                                          | 8/17/2017  | Biennial         | 8/17/2019  | 719                      |
| SPEAG                                          | D2450V2                | 2450 MHz SAR Dipole                                          | 9/11/2017  | Biennial         | 9/11/2019  | 797                      |
| SPEAG                                          | D2600V2                | 2600 MHz SAR Dipole                                          | 6/7/2017   | Biennial         | 6/7/2019   | 1064                     |
| SPEAG                                          | D2600V2                | 2600 MHz SAR Dipole                                          | 9/13/2016  | Triennial        | 9/13/2019  | 1071                     |
| SPEAG                                          | D5GHzV2                | 5 GHz SAR Dipole                                             | 8/10/2018  | Annual           | 8/10/2019  | 1237                     |
| SPEAG                                          | D5GHzV2                | 5 GHz SAR Dipole                                             | 1/16/2018  | Biennial         | 1/16/2020  | 1057                     |
| SPEAG                                          | DAK-3.5                | Dielectric Assessment Kit                                    | 9/11/2018  | Annual           | 9/11/2019  | 1091                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 6/18/2018  | Annual           | 6/18/2019  | 1334                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 7/11/2018  | Annual           | 7/11/2019  | 1322                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 8/22/2018  | Annual           | 8/22/2019  | 1450                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 10/3/2018  | Annual           | 10/3/2019  | 1558                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 1/15/2019  | Annual           | 1/15/2020  | 1530                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 2/13/2019  | Annual           | 2/13/2020  | 665                      |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 2/14/2019  | Annual           | 2/14/2020  | 1272                     |
| SPEAG                                          | DAE4                   | Dasy Data Acquisition Electronics                            | 4/18/2019  | Annual           | 4/18/2020  | 1407                     |
| SPEAG                                          | EX3DV4                 | SAR Probe                                                    | 6/25/2018  | Annual           | 6/25/2019  | 7409                     |
| SPEAG                                          | EX3DV4                 | SAR Probe                                                    | 7/20/2018  | Annual           | 7/20/2019  | 7410                     |
| SPEAG                                          | FX3DV4                 | SAR Probe                                                    | 8/23/2018  | Annual           | 8/23/2019  | 7308                     |
| SPEAG                                          | EX3DV4                 | SAR Probe                                                    | 1/24/2019  | Annual           | 1/24/2020  | 7488                     |
| SPEAG                                          | EX3DV4                 | SAR Probe                                                    | 1/25/2019  |                  | 1/25/2020  | 3589                     |
| SPEAG                                          | EX3DV4<br>EX3DV4       | SAR Probe                                                    | 2/19/2019  | Annual<br>Annual | 2/19/2020  | 3914                     |
| SPEAG                                          | EX3DV4<br>EX3DV4       | SAR Probe                                                    | 2/19/2019  | Annual           | 2/19/2020  | 3914<br>7417             |
| SPEAG                                          | EX3DV4<br>EX3DV4       | SAR Probe                                                    | 4/24/2019  | Annual           | 4/24/2020  | 7357                     |
| SPEAG                                          | EA3DV4                 | 24K LLODG                                                    | 4/24/2019  | Annual           | 4/24/2020  | /35/                     |

Each equipment was used solely within its calibration period.

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dama 106 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      | Page 106 of 110               |

© 2019 PCTEST Engineering Laboratory, Inc.

REV 21.3 M 02/15/2019

| a                                                                             | С      | d     | e=     | f    | g      | h =            | i =            | k              |
|-------------------------------------------------------------------------------|--------|-------|--------|------|--------|----------------|----------------|----------------|
|                                                                               |        |       | f(d,k) |      |        | c x f/e        | c x g/e        |                |
|                                                                               | Tol.   | Prob. |        | Ci   | Ci     | 1gm            | 10gms          |                |
| Uncertainty Component                                                         | (± %)  | Dist. | Div.   | 1gm  | 10 gms | u <sub>i</sub> | u <sub>i</sub> | v <sub>i</sub> |
|                                                                               | (= /0/ | 2.50  |        |      |        | (± %)          | (± %)          | ''             |
| Measurement System                                                            |        |       |        | •    | •      |                |                |                |
| Probe Calibration                                                             | 6.55   | Ν     | 1      | 1.0  | 1.0    | 6.6            | 6.6            | œ              |
| Axial Isotropy                                                                | 0.25   | Ν     | 1      | 0.7  | 0.7    | 0.2            | 0.2            | œ              |
| Hemishperical Isotropy                                                        | 1.3    | Ν     | 1      | 0.7  | 0.7    | 0.9            | 0.9            | œ              |
| Boundary Effect                                                               | 2.0    | R     | 1.73   | 1.0  | 1.0    | 1.2            | 1.2            | œ              |
| Linearity                                                                     | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | œ              |
| System Detection Limits                                                       | 0.25   | R     | 1.73   | 1.0  | 1.0    | 0.1            | 0.1            | œ              |
| Readout Electronics                                                           | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | œ              |
| Response Time                                                                 | 0.8    | R     | 1.73   | 1.0  | 1.0    | 0.5            | 0.5            | œ              |
| Integration Time                                                              | 2.6    | R     | 1.73   | 1.0  | 1.0    | 1.5            | 1.5            | œ              |
| RF Ambient Conditions - Noise                                                 | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | œ              |
| RF Ambient Conditions - Reflections                                           | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | œ              |
| Probe Positioner Mechanical Tolerance                                         | 0.4    | R     | 1.73   | 1.0  | 1.0    | 0.2            | 0.2            | œ              |
| Probe Positioning w/ respect to Phantom                                       | 6.7    | R     | 1.73   | 1.0  | 1.0    | 3.9            | 3.9            | œ              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | 4.0    | R     | 1.73   | 1.0  | 1.0    | 2.3            | 2.3            | œ              |
| Test Sample Related                                                           |        |       |        |      |        |                |                |                |
| Test Sample Positioning                                                       | 2.7    | Ν     | 1      | 1.0  | 1.0    | 2.7            | 2.7            | 35             |
| Device Holder Uncertainty                                                     | 1.67   | Ν     | 1      | 1.0  | 1.0    | 1.7            | 1.7            | 5              |
| Output Power Variation - SAR drift measurement                                | 5.0    | R     | 1.73   | 1.0  | 1.0    | 2.9            | 2.9            | œ              |
| SAR Scaling                                                                   | 0.0    | R     | 1.73   | 1.0  | 1.0    | 0.0            | 0.0            | œ              |
| Phantom & Tissue Parameters                                                   |        |       |        |      |        |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | 7.6    | R     | 1.73   | 1.0  | 1.0    | 4.4            | 4.4            | œ              |
| Liquid Conductivity - measurement uncertainty                                 | 4.2    | N     | 1      | 0.78 | 0.71   | 3.3            | 3.0            | 10             |
| Liquid Permittivity - measurement uncertainty                                 | 4.1    | N     | 1      | 0.23 | 0.26   | 1.0            | 1,1            | 10             |
| Liquid Conductivity - Temperature Uncertainty                                 | 3.4    | R     | 1.73   | 0.78 | 0.71   | 1.5            | 1.4            | oc             |
| Liquid Permittivity - Temperature Unceritainty                                | 0.6    | R     | 1.73   | 0.23 | 0.26   | 0.1            | 0.1            | œ              |
| Liquid Conductivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.64 | 0.43   | 1.8            | 1.2            | œ              |
| Liquid Permittivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.60 | 0.49   | 1.7            | 1.4            | 00             |
| Combined Standard Uncertainty (k=1)                                           |        | RSS   | L J    | 2.00 |        | 11.5           | 11.3           | 60             |
| Expanded Uncertainty                                                          |        | k=2   |        |      |        | 23.0           | 22.6           |                |
| (95% CONFIDENCE LEVEL)                                                        |        |       |        |      |        | 23.0           |                |                |

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|-----|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |     | Dogg 107 of 110              |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset      |     | Page 107 of 110              |

© 2019 PCTEST Engineering Laboratory, Inc.

# 17 CONCLUSION

### 17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: ZNFQ720PS      | PCTEST              | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 100 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 108 of 110               |

#### 18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 100 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 109 of 110               |

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

| FCC ID: ZNFQ720PS      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogg 110 of 110               |
| 1M1904220061-01-R1.ZNF | 04/21/19 - 05/15/19 | Portable Handset         | Page 110 of 110               |

### APPENDIX A: SAR TEST DATA

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.942 \text{ S/m}; \ \epsilon_r = 42.776; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section;

Test Date: 04-21-2019; Ambient Temp: 22.3°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 836.6 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.40 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.250 W/kg

SAR(1 g) = 0.200 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, \_GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.411 \text{ S/m}; \ \epsilon_r = 39.433; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

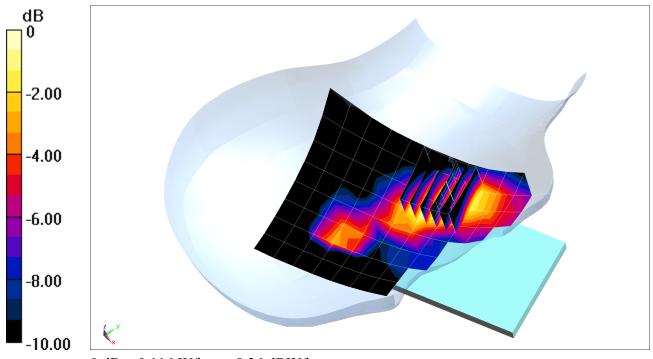
Test Date: 05-08-2019; Ambient Temp: 23.8°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7410; ConvF(8.16, 8.16, 8.16) @ 1880 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: GPRS 1900, Right Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.221 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.091 W/kg



0 dB = 0.116 W/kg = -9.36 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.942 \text{ S/m}; \ \epsilon_r = 42.776; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

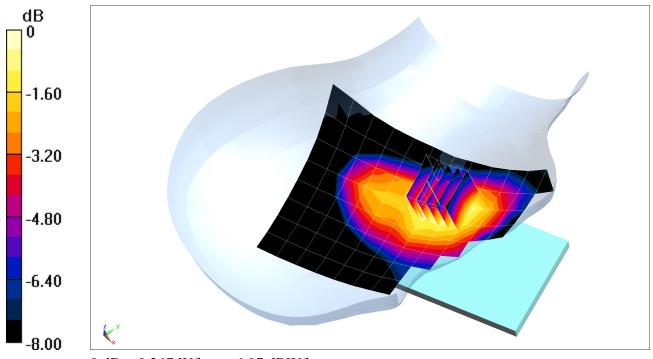
Test Date: 04-21-2019; Ambient Temp: 22.3°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 836.6 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.08 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.211 W/kg



0 dB = 0.247 W/kg = -6.07 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated):  $f = 1732.4 \text{ MHz}; \ \sigma = 1.381 \text{ S/m}; \ \epsilon_r = 41.71; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

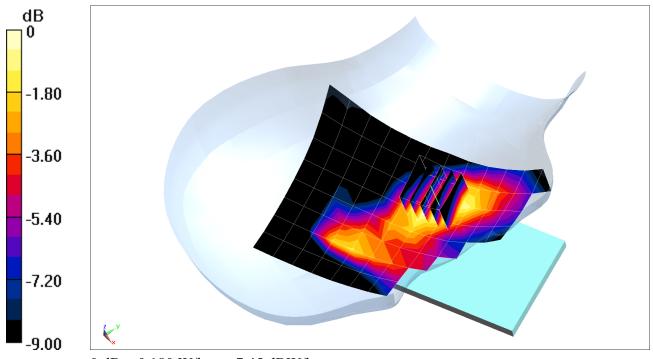
Test Date: 05-06-2019; Ambient Temp: 21.9°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7409; ConvF(8.43, 8.43, 8.43) @ 1732.4 MHz; Calibrated: 6/25/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018

Phantom: SAM 30 with CRP v5.0 right; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

### Mode: UMTS 1750, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.47 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.208 W/kg

SAR(1 g) = 0.140 W/kg



0 dB = 0.180 W/kg = -7.45 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.411 \text{ S/m}; \ \epsilon_r = 39.433; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

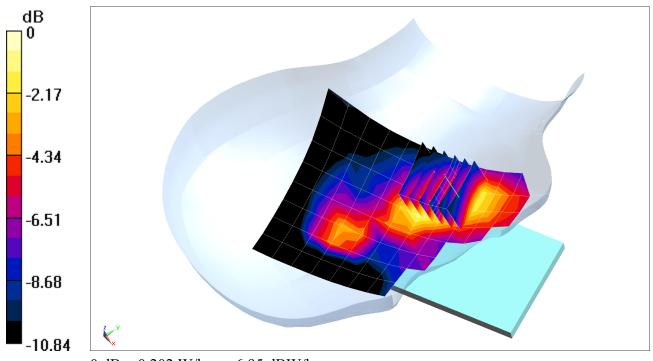
Test Date: 05-08-2019; Ambient Temp: 23.8°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7410; ConvF(8.16, 8.16, 8.16) @ 1880 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.85 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.158 W/kg



0 dB = 0.202 W/kg = -6.95 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

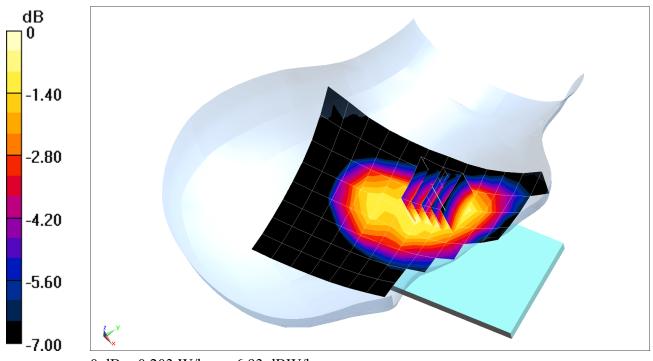
Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.931 \text{ S/m}; \ \epsilon_r = 41.94; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

Test Date: 04-24-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 820.1 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. CDMA BC10, Rule Part 90S, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.95 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.172 W/kg



0 dB = 0.203 W/kg = -6.93 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

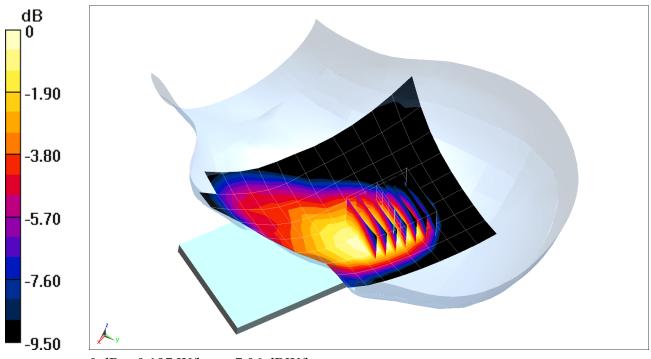
Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.937 \text{ S/m}; \ \epsilon_r = 41.887; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section;

Test Date: 04-24-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 836.52 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. CDMA BC0, Rule Part 22H, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.37 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.165 W/kg



0 dB = 0.197 W/kg = -7.06 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.411 \text{ S/m}; \ \epsilon_r = 39.433; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

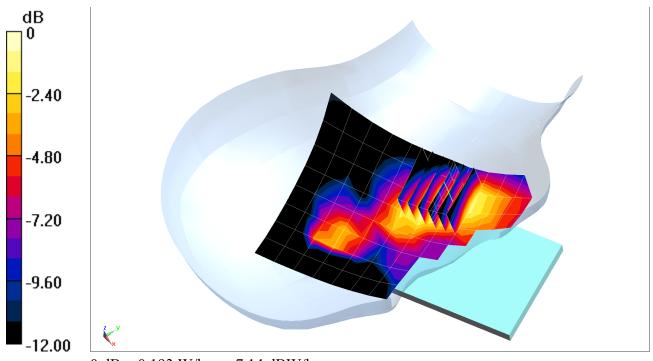
Test Date: 05-08-2019; Ambient Temp: 23.8°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7410; ConvF(8.16, 8.16, 8.16) @ 1880 MHz; Calibrated: 7/20/2018

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: PCS CDMA, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.61 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.151 W/kg



0 dB = 0.193 W/kg = -7.14 dBW/kg

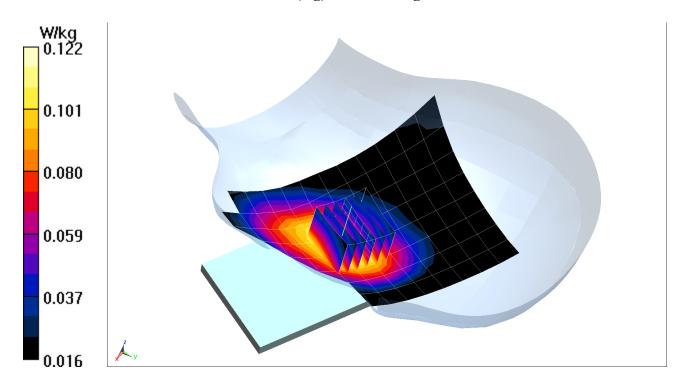
DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01552

Communication System: UID 0, LTE Band 71; Frequency: 680.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated):  $f = 680.5 \text{ MHz}; \ \sigma = 0.894 \text{ S/m}; \ \epsilon_r = 43.1; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 05-09-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN3914; ConvF(10, 10, 10) @ 680.5 MHz; Calibrated: 2/19/2019
Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/14/2019
Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

# Mode: LTE Band 71, Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.18 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.134 W/kg

SAR(1 g) = 0.106 W/kg;



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01545

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.871 \text{ S/m}; \ \epsilon_r = 43.706; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

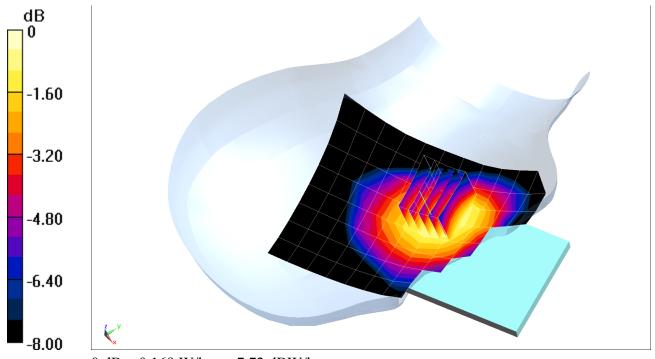
Test Date: 05-04-2019; Ambient Temp: 22.1°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7409; ConvF(9.91, 9.91, 9.91) @ 707.5 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1334; Calibrated: 6/18/2018

Phantom: SAM 30 with CRP v5.0 right; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7450)

# Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.36 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.145 W/kg



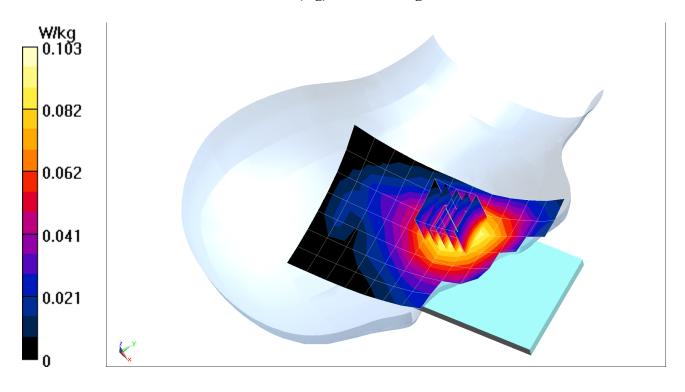
DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01545

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 MHz Head Medium parameters used (interpolated):  $f = 782 \text{ MHz}; \ \sigma = 0.899 \text{ S/m}; \ \epsilon_r = 43.473; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

Test Date: 05-04-2019; Ambient Temp: 22.1°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7409; ConvF(9.91, 9.91, 9.91) @ 782 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2018
Phantom: SAM 30 with CRP v5.0 right; Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7450)

# Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.90 V/m; Power Drift = 0.08dB

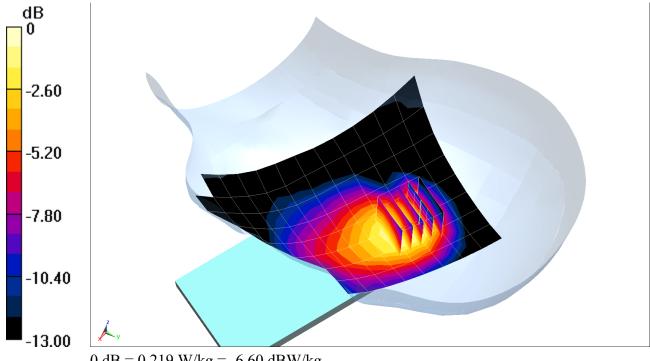
Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.158 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 831.5 \text{ MHz}; \sigma = 0.935 \text{ S/m}; \epsilon_r = 41.902; \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section;


Test Date: 04-24-2019; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3914; ConvF(9.5, 9.5, 9.5) @ 831.5 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: SAM Left with CRP v5.0; Type: QD000P40CD; Serial: TP:1687

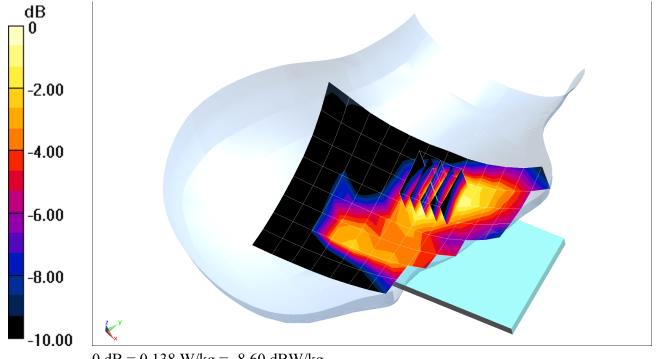
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

### Mode: LTE Band 26 (Cell.), Left Head, Tilt, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 74 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.49 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.261 W/kgSAR(1 g) = 0.172 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01545


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated):  $f = 1745 \text{ MHz}; \sigma = 1.389 \text{ S/m}; \epsilon_r = 41.69; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-06-2019; Ambient Temp: 21.9°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7409; ConvF(8.43, 8.43, 8.43) @ 1745 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM 30 with CRP v5.0 right; Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

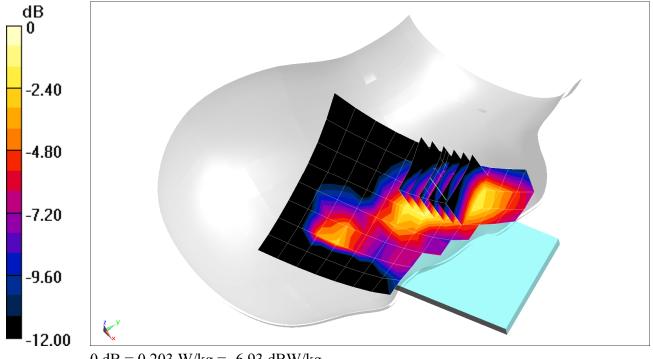
### Mode: LTE Band 66 (AWS), Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.463 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.159 W/kgSAR(1 g) = 0.107 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01552

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated):  $f = 1860 \text{ MHz}; \ \sigma = 1.429 \text{ S/m}; \ \epsilon_r = 39.928; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section


Test Date: 05-14-2019; Ambient Temp: 23.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(7.08, 7.08, 7.08) @ 1860 MHz; Calibrated: 1/25/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

### Mode: LTE Band 25 (PCS), Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.73 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.251 W/kgSAR(1 g) = 0.153 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01545

Communication System: UID 0, LTE Band 41 (Class 2); Frequency: 2549.5 MHz; Duty Cycle: 1:2.31 Medium: 2450 Head Medium parameters used:  $f = 2550 \text{ MHz}; \ \sigma = 1.896 \text{ S/m}; \ \epsilon_r = 37.66; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

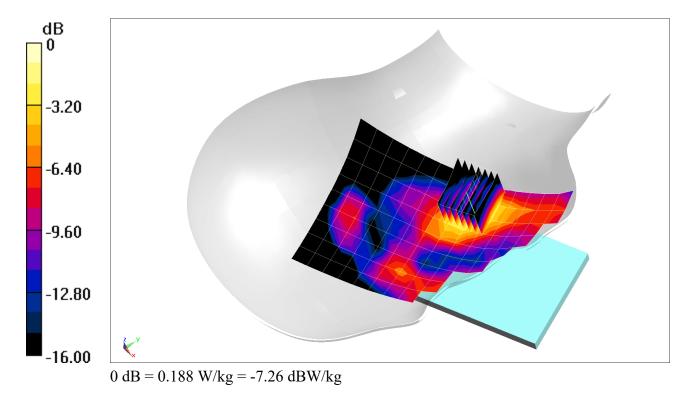
Test Date: 05-06-2019; Ambient Temp: 22.9°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN3589; ConvF(6.25, 6.25, 6.25) @ 2549.5 MHz; Calibrated: 1/25/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/22/2018

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

# Mode: LTE Band 41 HPUE, Right Head, Cheek, Low-Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

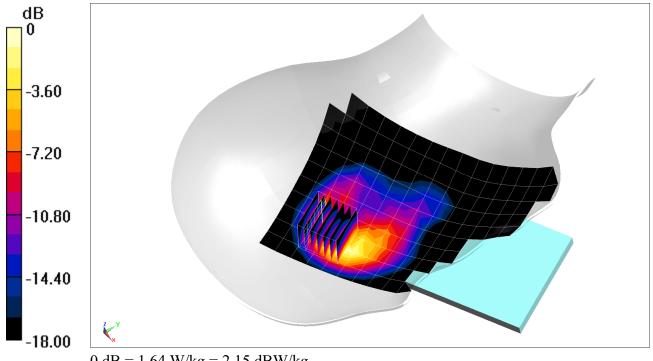
Reference Value = 7.405 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.127 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01540


Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated):  $f = 2462 \text{ MHz}; \sigma = 1.83 \text{ S/m}; \epsilon_r = 37.731; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 04-29-2019; Ambient Temp: 20.1°C; Tissue Temp: 19.9°C

Probe: EX3DV4 - SN7308; ConvF(7.45, 7.45, 7.45) @ 2462 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 10/3/2018 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.30 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.15 W/kgSAR(1 g) = 0.958 W/kg

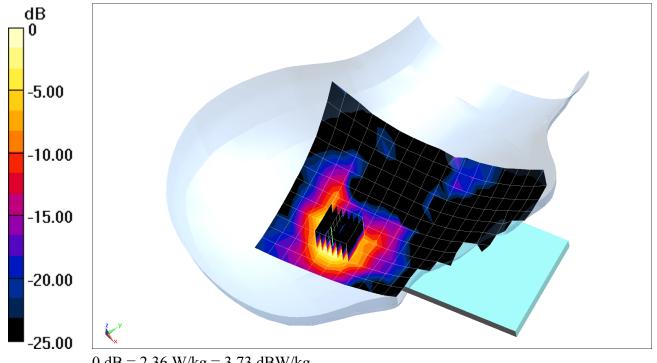


0 dB = 1.64 W/kg = 2.15 dBW/kg

DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01540

Communication System: UID 0, IEEE 802.11a; Frequency: 5520 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used:  $f = 5520 \text{ MHz}; \ \sigma = 4.952 \text{ S/m}; \ \varepsilon_r = 35.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section;

Test Date: 05-07-2019; Ambient Temp: 21.9°C; Tissue Temp: 21.7°C


Probe: EX3DV4 - SN7409; ConvF(4.77, 4.77, 4.77) @ 5520 MHz; Calibrated: 6/25/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1334; Calibrated: 6/18/2018

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Right Head, Cheek, Ch 104, 6 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 3.406 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 4.45 W/kgSAR(1 g) = 0.915 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01540

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.289 Medium: 2450 Head Medium parameters used (interpolated):  $f = 2441 \text{ MHz}; \ \sigma = 1.813 \text{ S/m}; \ \epsilon_r = 37.768; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section;

Test Date: 04-29-2019; Ambient Temp: 20.1°C; Tissue Temp: 19.9°C

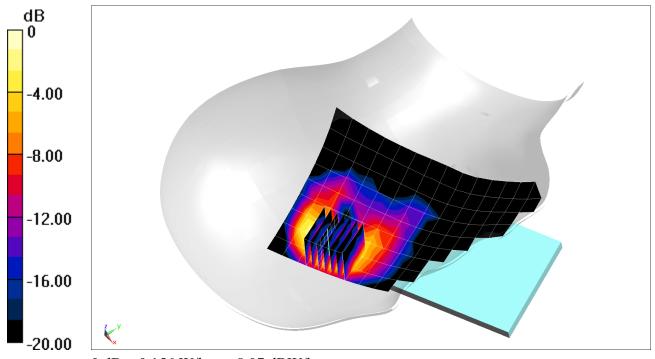
Probe: EX3DV4 - SN7308; ConvF(7.45, 7.45, 7.45) @ 2441 MHz; Calibrated: 8/23/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1558; Calibrated: 10/3/2018

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: Bluetooth, Right Head, Cheek, Ch 39, 1Mbps


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.773 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.205 W/kg

SAR(1 g) = 0.080 W/kg



DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01514

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.979 \text{ S/m}; \ \epsilon_r = 53.678; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-13-2019; Ambient Temp: 19.7°C; Tissue Temp: 19.2°C

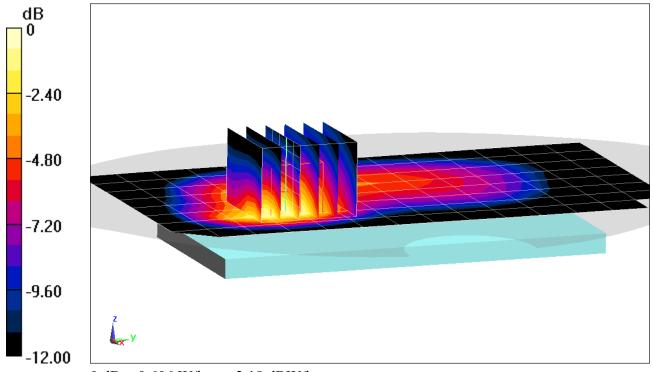
Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.6 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.58 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.722 W/kg

SAR(1 g) = 0.420 W/kg



0 dB = 0.606 W/kg = -2.18 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.562 \text{ S/m}; \ \epsilon_r = 51.834; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

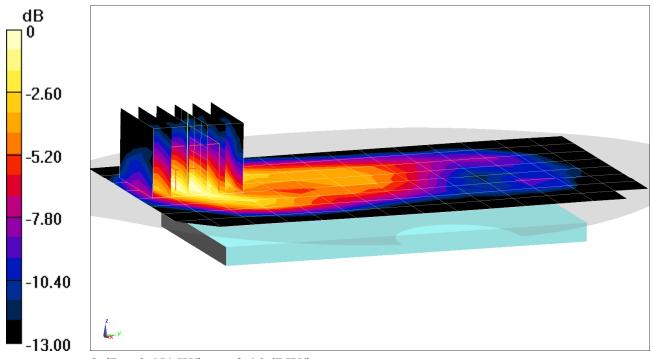
Test Date: 04-29-2019; Ambient Temp: 20.0°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN7357; ConvF(7.93, 7.93, 7.93) @ 1880 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 Front Right; Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.72 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.327 W/kg;



0 dB = 0.451 W/kg = -3.46 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

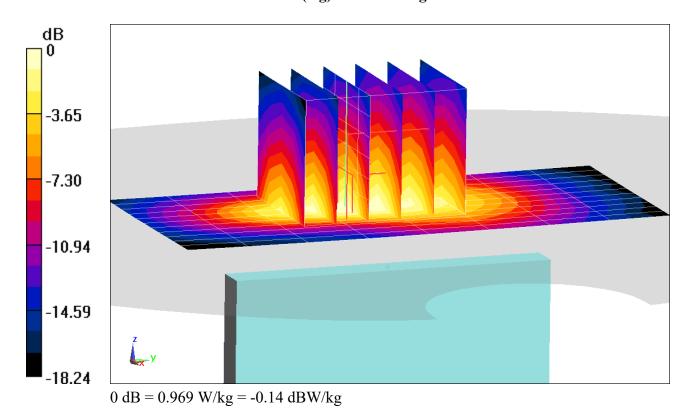
Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.518 \text{ S/m}; \ \epsilon_r = 51.958; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7357; ConvF(7.93, 7.93, 7.93) @ 1880 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 Front Right; Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7450)

#### Mode: GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots


Area Scan (12x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.55 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.645 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 1.002 \text{ S/m}; \ \epsilon_r = 52.819; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-01-2019; Ambient Temp: 23.3°C; Tissue Temp: 22.4°C

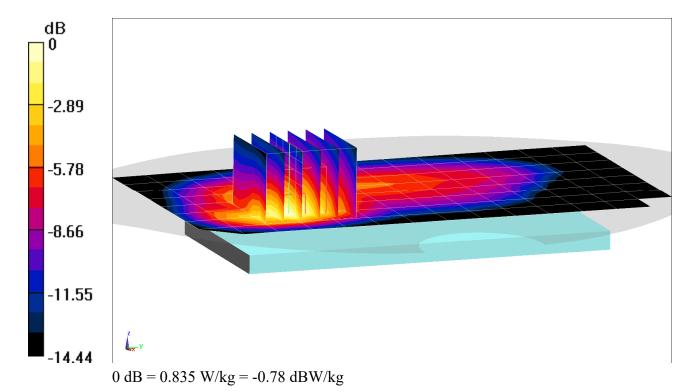
Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.6 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.93 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.993 W/kg

SAR(1 g) = 0.574 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

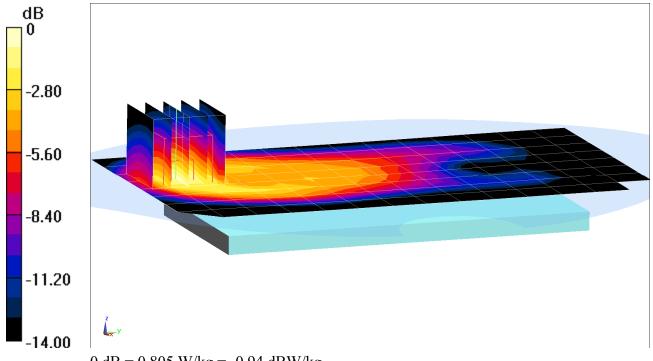
Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1732.4 \text{ MHz}; \ \sigma = 1.475 \text{ S/m}; \ \epsilon_r = 52.257; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(7.89, 7.89, 7.89) @ 1732.4 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 1750, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.30 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.962 W/kg

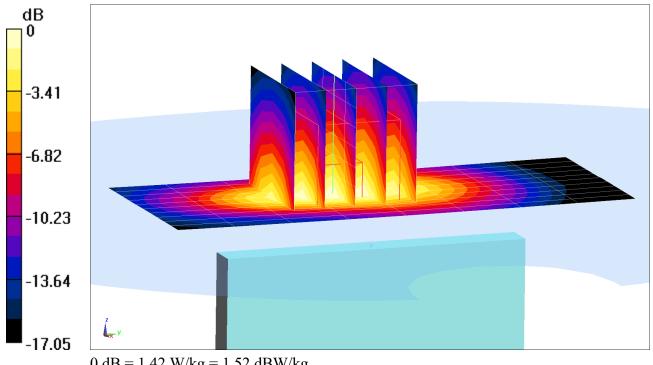
SAR(1 g) = 0.554 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1752.6 \text{ MHz}; \ \sigma = 1.498 \text{ S/m}; \ \epsilon_r = 52.186; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2019; Ambient Temp: 22.2°C; Tissue Temp: 21.7°C


Probe: EX3DV4 - SN3914; ConvF(7.89, 7.89, 7.89) @ 1752.6 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 1750, Body SAR, Bottom Edge, High.ch

**Area Scan (11x9x1):** Measurement grid: dx=5mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.43 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.68 W/kg SAR(1 g) = 0.953 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.48 \text{ S/m}; \ \epsilon_r = 51.473; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

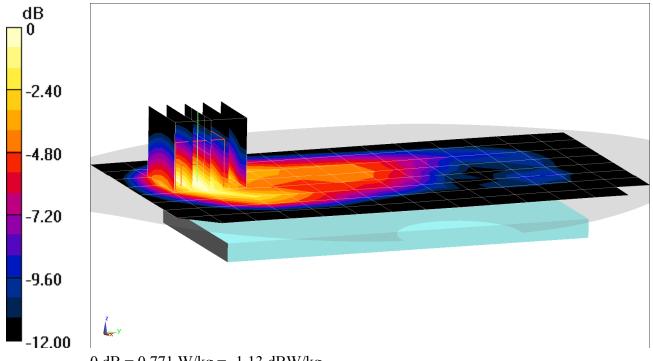
Test Date: 05-02-2019; Ambient Temp: 22.3°C; Tissue Temp: 23.8°C

Probe: EX3DV4 - SN7357; ConvF(7.93, 7.93, 7.93) @ 1880 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 Front Right; Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.42 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.548 W/kg



0 dB = 0.771 W/kg = -1.13 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01543

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated):  $f = 1907.6 \text{ MHz}; \ \sigma = 1.509 \text{ S/m}; \ \epsilon_r = 51.397; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

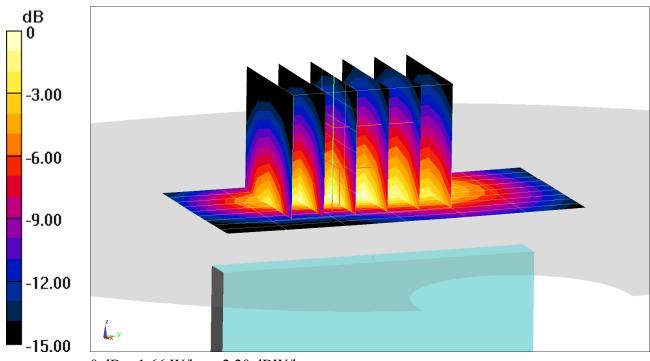
Test Date: 05-02-2019; Ambient Temp: 22.3°C; Tissue Temp: 23.8°C

Probe: EX3DV4 - SN7357; ConvF(7.93, 7.93, 7.93) @ 1907.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Twin-SAM V4.0 Front Right; Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: UMTS 1900, Body SAR, Bottom Edge, High.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.16 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 1.1 W/kg



0 dB = 1.66 W/kg = 2.20 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.977 \text{ S/m}; \ \epsilon_r = 54.307; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2019; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 820.1 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. CDMA BC10, Rule Part 90S, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.13 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.798 W/kg

SAR(1 g) = 0.465 W/kg



0 dB = 0.656 W/kg = -1.83 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.977 \text{ S/m}; \ \epsilon_r = 54.307; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2019; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

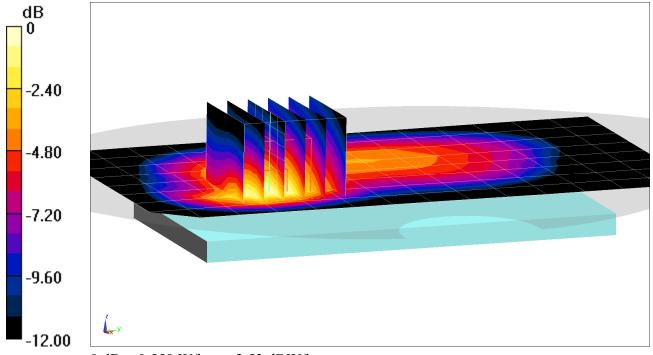
Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 820.1 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. EVDO Rev. 0 BC10, Rule Part 90S, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.88 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.661 W/kg

SAR(1 g) = 0.391 W/kg



0 dB = 0.559 W/kg = -2.53 dBW/kg

#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.984 \text{ S/m}; \ \epsilon_r = 54.282; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2019; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

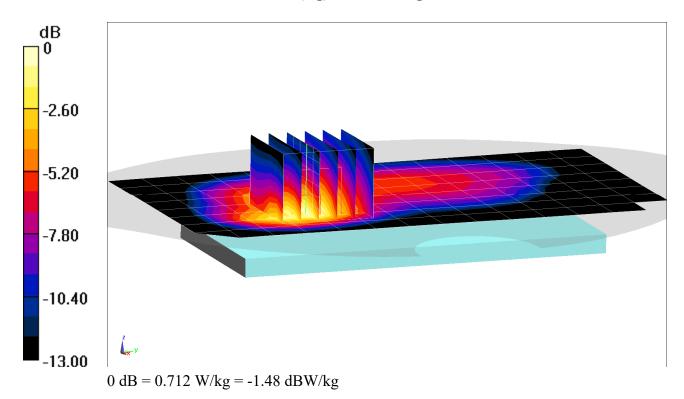
Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.52 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. CDMA BC0, Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.05 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.852 W/kg

SAR(1 g) = 0.491 W/kg



#### DUT: ZNFQ720PS; Type: Portable Handset; Serial: 01544

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.984 \text{ S/m}; \ \epsilon_r = 54.282; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2019; Ambient Temp: 21.9°C; Tissue Temp: 20.0°C

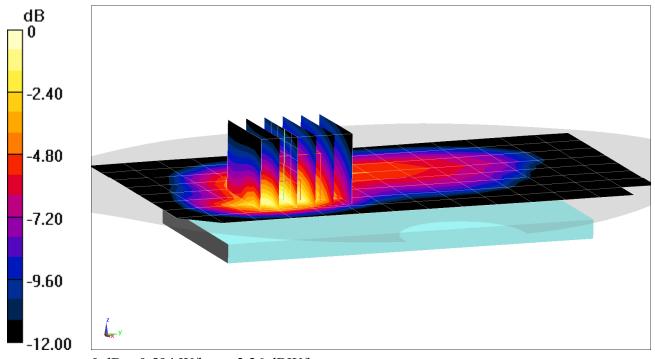
Probe: EX3DV4 - SN7488; ConvF(11.03, 11.03, 11.03) @ 836.52 MHz; Calibrated: 1/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

#### Mode: Cell. EVDO Rev. 0, BC0 Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.23 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.701 W/kg

SAR(1 g) = 0.412 W/kg



0 dB = 0.594 W/kg = -2.26 dBW/kg