

SAR TEST REPORT

REPORT NO.: SA911105R02A

MODEL NO.: UW320-IF

RECEIVED: Nov. 5, 2002

TESTED: Dec. 23, 2002

APPLICANT: Bromax Communications, Inc.

ADDRESS: No. 20, Kuang Fu Rd., Hsin Chu Industrial

Park, Hu Kou, Hsin Chu 303, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 47 14th Lin, Chiapau Tsun, Linko, Taipei,

Taiwan, R.O.C.

This test report consists of 13 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, NVLAP or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION	3
2.	GENERAL INFORMATION	
2.1	GENERAL DESCRIPTION OF EUT	2
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	2
3.	DESCRIPTION OF TEST MODES AND CONFIGURATIONS	5
4.	DESCRIPTION OF SUPPORT UNITS	6
5.	TEST RESULTS	7
5.1	TEST PROCEDURES	7
5.2	MEASURED SAR RESULT	7
5.3	SAR LIMITS	8
5.4	EUT CONDUCTED POWER VARIATION	8
5.5	TISSUE	9
5.6	TEST EQUIPMENT	9
6.	SYSTEM VALIDATION	
7.	MEASUREMENT UNCERTAINTIES	
8.	INFORMATION ON THE TESTING LABORATORIES	13

APPENDIX A: TEST CONFIGURATIONS AND TEST DATA

APPENDIX B: ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

1. CERTIFICATION

PRODUCT: Wireless USB Adapter

MODEL NO.: UW320-IF

BRAND: Bromax

APPLICANT: Bromax Communications, Inc.

STANDARDS: 47 CFR Part 2 (Section 2.1093), FCC OET Bulletin

65, Supplement C (01-01)

We, **Advance Data Technology Corporation**, hereby certify that one sample of the designation has been tested in our facility on 6th Dec. 2002. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts for the measurements of the sample's EMC characteristics under the conditions herein specified.

CHECKED BY: Row Wart, DATE: December 13, 2002

Rennie Wang

APPROVED BY: December 13, 2002

Dr. Alan Lane

Manager

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC CFR 47 Part 2 (2.1093) FCC OET Bulletin 65, Supplement C (01- 01)

All tests have been performed and recorded as per the above standards.

3. DESCRIPTION OF TEST MODES AND CONFIGURATIONS

CARRIER MODULATION UNDER TEST	Un-modulated CW Carrier
CREST FACTOR	1.0
CHANNEL FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER	Ch. 1: 2412MHz / 14.40dBm Ch. 6: 2437MHz / 14.43 dBm Ch. 11: 2462MHz / 14.43 dBm
ANTENNA CONFIGURATION	Dipole (2 different housing)
EUT POWER SOURCE	From Host Notebook
HOST POWER SOURCE	Fully Charged Battery

The following test configurations have been applied in this test report:

Mode a, I: EUT in the USB slot of the notebook, the bottom of the notebook contact the bottom of the flat phantom with 0cm separation distance.

Mode b, II: EUT in the USB slot of the notebook, the keyboard face of the notebook is perpendicular to the bottom of the flat phantom and the EUT is located between notebook and phantom. There is 1.5 cm separation distance between the tip of the EUT and the bottom of the

flat phantom.

Note 1: Model a & b is for folded dipole, Model I & II is for extended dipole.

Note 2: Please reference "APPENDIX A" for the photos of test configuration.

Note 3: The output power of the un-modulated CW carrier has been adjusted to be the same with that of modulated signal.

4. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	PP01L	TW-09C748-12800-19O-B2	FCC DoC
				20	APPROVED

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

5. TEST RESULTS

5.1 TEST PROCEDURES

The SAR value was calculated via the 3D spline interpolation algorithm which has been implemented in the software of DASY3 SAR measurement system manufactured and calibrated by Schmid & Partner.

A coarse scan with 20mm x 20mm grid was performed for the highest spatial SAR location. A fine scan with 5mm x 5mm x 7mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

5.2 MEASURED SAR RESULT

ENVIRONMEN AL CONDICTION	24 degree 47% Humid		TESTED	ВҮ	Bunny Yao
CHANNEL	EQUENCY (MHz)	MOE	DE	MEA	ASURED 1g SAR (W/kg)
1	2412	а			0.526
6	2437	а			0.516
11	2462	а			0.526
1	2412	b		0.014	
6	2437	b		0.013	
11	2462	b			0.013
1	2412	I			0.556
6	2437	I			0.550
11	2462	I		0.580	
1	2412	П		0.180	
6	2437	П			0.215
11	2462	[]			0.243

Note: Test configuration of each mode is described in section 3.

Note: In this testing, the limit for General Population Spatial Peak averaged over 1g, **1.6 W/kg**, is applied.

Note: Please see the Appendix for the photo of the test configuration and also the data.

5.3 SAR LIMITS

	SAR (W/kg)			
HUMAN EXPOSURE	(General Population / Uncontrolled Exposure Environment)	(Occupational / controlled Exposure Environment)		
Spatial Average (whole body)	0.08	0.4		
Spatial Peak (averaged over 1 g)	1.6	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

5.4 EUT CONDUCTED POWER VARIATION

The variation of the EUT conducted power measured before and after SAR testing should not over 5%. The test procedures for conducted power level is described in FCC rule part 2.1046.

The maximum variation in this testing is listed in the following table.

Channel	Mode	Conducted Power (Before)	Conducted Power (After)	Variation (%)
1	-	14.40 dBm	14.57 dBm	4.04 %

5.5 TISSUE

The tissue of 2450MHz for brain and body was well prepared according to the standard procedures. The required and measured dielectric parameters are listed in this table.

	Bra	ain	Muscle		
	Required Measured		Required	Measured	
Permitivity (ε_r)	39.2±5%	NA	52.7±5%	52.95	
Conductivity (σ)	1.8±5%	NA	1.95±5%	1.990	

The measured parameters of the used tissue.

Tissue Prepared and Measured on 23 th Dec. 2002							
	Brain Muscle						
	Value	Freq. (MHz)	Value	Freq.(MHz)			
Max Permitivity	NA	NA	53.11	2400			
Min. Permitivity	NA	NA	52.85	2500			
Max Conductivity	NA	NA	2.044	2500			
Min Conductivity	NA	NA	1.932	2400			

5.6 TEST EQUIPMENT FOR TISSUE PROPERTY

Item	Name	Provider	Type	Series No.	Calibrated Until
1	Network Analyzer	Agilent	8720ES	NA	May 6, 2003
2	Dielectric Probe	Agilent	85070C	NA	NA

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue, and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 50mW RF input power was used instead of 250mW used by Schmid & Partner, then the measured SAR will be linearly extrapolated to that of 250mW RF power.

6.1 TEST EQUIPMENT

Item	Name	Provider	Туре	Series No.	Calibrated Until
1	SAM Phantom	S&P	QD000 P40 CA	PT-1150	NA
2	Validation Dipole	S&P	D2450V2	716	Sept. 25, 2004
3	Signal Generator	R&S	SMP04	10001	May 5, 2003
4	E-Field Probe	S&P	ET3DV6	1687	Sept. 27, 2003
5	DAE	S&P	DAE3 V1	510	April 10, 2004
6	Robot Positioner	Staubli Unimation	NA	NA	NA

6.2 VALIDATION RESULT

Environmental Condition	24 degree C 47% Humidity	Test Engineer	Bunny Yao					
2450MHz System Validation Test in Body Tissue								
Required	Measured	Deviation (%)	Separation Distance					
14.30 (1g)	14.0	2.1	1.0 cm					
6.74 (10g)	6.65	1.3	1.0 cm					

Note: Please see Appendix for the photo of system validation test.

7. MEASUREMENT UNCERTAINTIES

	Uncertainty Value	Probability Distribution	Divisor	C i	Stantard Uncertainty
Test Sample Related					
Test Sample	±6%	Normal	1	1	±6%
Positioning					
Drift of Output Power	±5%	Rectangular	√3	1	±2.9%
Phantom and Setup					
Phantom Uncertainty	±0%	Rectangular	√3	1	±0%
Liquid	±5%	Rectangular	$\sqrt{3}$	0.5	±1.4%
Conductivity(target)					2.22/
Liqiuid	±10%	Rectangular	√3	0.5	±2.9%
Conductivity(meas)	. 50/	Deeterender	<u></u>	0.5	14.40/
Liquid Permittivity(target)	±5%	Rectangular	√3	0.5	±1.4%
Liquid	±5%	Rectangular	√3	0.5	±1.4%
Permittivity(meas)	10 /0	rectarigular	γJ	0.5	11.470
RF Ambient Conditions	±3%	Rectangular	√3	1	±1.7%
System Check		<u> </u>	· -		
Calibration	± 2.6 %	normal	1	1	± 2.6 %
Axial isotropy	± 2.3 %	rectangular	√3	(1-cp) ^{1/2}	± 0.9 %
Hemispherical	± 9.6 %	rectangular	√3	√cp	± 3.9 %
isotropy			•		
Spatial resolution	± 0.5 %	rectangular	√3	1	± 0.3 %
Boundary effect	± 4.0 %	rectangular	√3	1	± 6.4 %
Linearity	± 4.7 %	rectangular	√3	1	± 2.7 %
Detection Limit	± 2.0 %	rectangular	√3	1	± 1.2 %
Readout Electronics	± 1.0 %	normal	1	1	± 1.0 %
Mechanical Constrains	± 0.4 %	normal	1	1	± 0.4 %
of Robot					
Probe positioning	± 5.0 %	rectangular	√3	1	± 2.9 %
Extrapolation/Integratio	± 3.9 %	rectangular	$\sqrt{3}$	1	± 2.3 %
n				_	
Dipole/Liquid Distance	± 1.0 %	rectangular	√3	1	± 0.6 %
Dipole Input Power	± 4.7 %		1	1	± 4.7 %
Liquid conductivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(target)	. 40.0/		<u></u>	0.0	. 2.5.0/
Liquid conductivity	± 10 %	rectangular	$\sqrt{3}$	0.6	± 3.5 %
(meas.) Liquid permittivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(target)	± 0.0 /0	Toolarigulai	V	0.0	1.7 /0
Liquid permittivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(meas.)	_ 0.0 ,0		ν •	3.0	/
\/		1		ı	

RF Ambient condition	± 3.0 %	normal	1	1	± 1.7 %
Combined Standard Uncertainty					±12.4 %
Expanded Uncertainty (K=2)					±24.9 %

8. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA FCC, NVLAP TUV Rheinland

Japan VCCI
New Zealand MoC
Norway NEMKO

R.O.C. BSMI, DGT, CNLA

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml.

If you have any comments, please feel free to contact us at the following:

 Lin Kou EMC Lab:
 Hsin Chu EMC Lab:

 Tel: 886-2-26052180
 Tel: 886-35-935343

 Fax: 886-2-26052943
 Fax: 886-35-935342

Lin Kou Safety Lab: Lin Kou RF&Telecom Lab

Tel: 886-2-26093195 Tel: 886-3-3270910 Fax: 886-2-26093184 Fax: 886-3-3270892

Email: service@mail.adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.