

FCC PART 15.247 TEST REPORT

For

Chengdu XGimi Technology Co., Ltd.

5F, Building A7, Tianfu Software Park, Tianfu Avenue, Hi-tech Zone, Chengdu, China

FCC ID: 2AFENB914C

Report Type: Product Name:

Original Report Remote Controller

Report Number: RSC170927001

Report Date: 2017-10-18

Sula Huang

Reviewed By: EMC Director

Bay Area Compliance Laboratories Corp. (Chengdu)

foll the

No.5040, Huilongwan Plaza, No. 1, Shawan Road,

Test Laboratory: Jinniu District, Chengdu, Sichuan, China

Tel: +86-28-65525123 Fax: +86-28-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
MECHANICAL DESCRIPTION OF EUT	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	3
MEASUREMENT UNCERTAINTY	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	5
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
TEST EQUIPMENTS LIST	
SUMMARY OF TEST RESULTS	10
FCC §15.247 (i) & §1.1310 & §2.1093 - RF EXPOSURE	11
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
Antenna Connector Construction	12
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup	
Test Procedure	14
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	15
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	19
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	22
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	25
FCC §15.247(e) - POWER SPECTRAL DENSITY	27
APPLICABLE STANDARD	27
Test Procedure	27
Test Data	27

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Chengdu XGimi Technology Co., Ltd., model number: B914C (FCC ID: 2AFENB914C) or the "EUT" as referred to in this report was one Remote Controller.

Mechanical Description of EUT

The EUT was measured approximately: 150 mm (L) x 17.67 mm (W) x 35 mm (H). Rated input voltage: DC3V from 2*AAA batteries.

Note 1: The products, test model: B914C, multiple models: B910C, B911C, B912C, B913C, B915C, B916C. Their differences were presented in Product Difference Statement provided by the applicant of this report. So, we selected model B914C to fully test.

*All measurement and test data in this report was gathered from final production sample, serial number: 170927001/01 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-09-26, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Chengdu XGimi Technology Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15 Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: 2AFENG03V.

FCC Part 15.407 NII submissions with FCC ID: 2AFENG03V.

FCC Part 15.247 DSS submissions with FCC ID: 2AFENG03V.

Report No.: RSC170927001 Page 3 of 29

Measurement Uncertainty

Item	Uncertainty		
AC power line conducte	ed emission		2.71 dB
	20M11- 200M11-	Н	4.57 dB
Radiated Emission(Field Strength)	30MHz-200MHz	V	4.81 dB
	2000411- 4011-	Н	5.69 dB
	200MHz-1GHz	V	6.07 dB
	1GHz-6GHz		5.49 dB
	6GHz-18GHz		5.57 dB
	18GHz-25GHz		5.48 dB
Conducted RF P	ower		±0.61dB
Power Spectrum D	±0.61dB		
Occupied Bandv	±5%		
Humidity	±5%		
Temperature			±1℃

Test Methodology

All measurements contained in this report were conducted with:

- 1. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- 2. KDB558074 D01 DTS Meas Guidance v04.

Test Facility

The test site used by BACL to collect test data is located No. 5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Report No.: RSC170927001 Page 4 of 29

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured in testing mode, which was provided by manufacturer.

For Bluetooth LE mode, 40 channels are provided for testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
		38	2478
19	2440	39	2480

EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The worst condition was setting by the software as following table:

Test Software Version	BeeMPTool			
Test Frequency	2402MHz	2440MHz	2480MHz	
Power Level Setting	Default	Default	Default	

Report No.: RSC170927001 Page 5 of 29

Duty Cycle information is below:

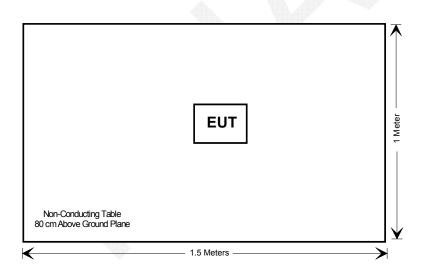
T _{on}	T _{on+off}	Duty Cycle
(ms)	(ms)	(%)
0.62	0.64	96.87

Duty Cycle

Report No.: RSC170927001 Page 6 of 29

Support Equipment List and Details

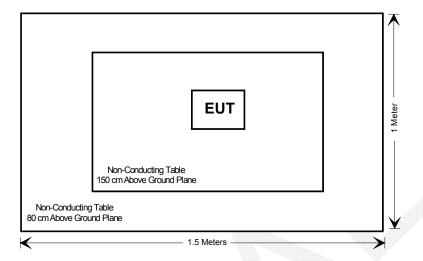
Manufacturer	Description	Model	Serial Number	
-	-	-	-	


External I/O Cable

Cable Description	Length (m)	From	То
-	-	-	-

Block Diagram of Test Setup

Radiated Emissions


Below 1GHz:

Report No.: RSC170927001 Page 7 of 29

Bay Area Compliance Laboratories Corp. (Chengdu)

Above 1GHz:

Report No.: RSC170927001 Page 8 of 29

Test Equipments List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emissions Test							
Sonoma	Pre-Amplifier	310N	186684	2017-08-18	2018-08-17		
Sunol Sciences	Broadband Antenna	JB3	A121808	2017-05-18	2020-05-17		
Rohde & Schwarz	EMI Test Receiver	ESIB 40	100215	2017-09-12	2018-09-11		
ETS	Horn Antenna	3115	003-6076	2017-05-19	2020-05-18		
A.H.Systems,inc	Horn Antenna	SAS-574	505	2016-12-02	2017-12-01		
Mini-circuits	Pre-Amplifier	ZVA-183-S+	771001215	2017-05-20	2018-05-19		
HP	Pre-Amplifier	8449B	3008A00277	2016-12-02	2017-12-01		
INMET	Attenuator	N-6dB	1	2016-11-10	2017-11-09		
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23		
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09		
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09		
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09		
Rohde & Schwarz	EMC32	N/A	V 8.52.0	N/A	N/A		
RF Conducted Test							
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2017-05-18	2018-05-17		
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09		
N/A	RF Cable	N/A	N/A	Each Time	1		

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC170927001 Page 9 of 29

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum conducted output power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Note:

Not Applicable: The device is one battery operated equipment.

Report No.: RSC170927001 Page 10 of 29

FCC §15.247 (i) & §1.1310 & §2.1093 - RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max tune-up conducted power is 1.0 dBm (1.26 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 1.26/5*($\sqrt{2.48}$) = 0.40 < 7.5

So the stand-alone SAR evaluation is not necessary.

Report No.: RSC170927001 Page 11 of 29

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

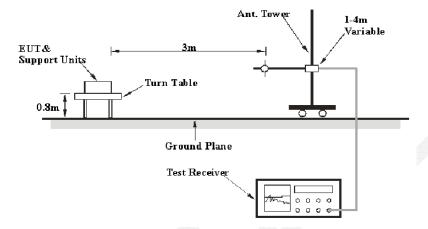
- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

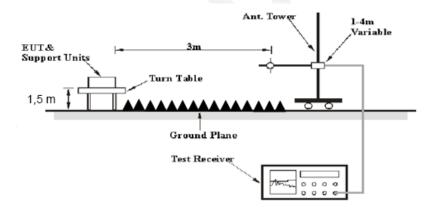
The EUT has one PCB antenna arrangement, which was permanently attached and the antenna gain is 2.7 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RSC170927001 Page 12 of 29


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RSC170927001 Page 13 of 29

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	1MHz	PK
Above 1 GHz	1MHz	3 MHz	1MHz	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Scan with X-Axis, Y-Axis and Z-Axis position to explore the highest emission level and the worst case was recorded.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

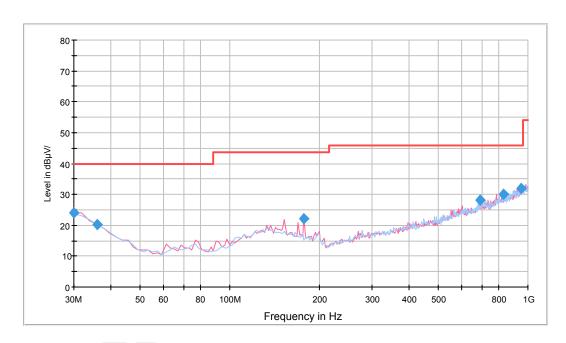
Corrected Amplitude = Receiver Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Report No.: RSC170927001 Page 14 of 29

Test Data


Environmental Conditions

Temperature:	22 °C
Relative Humidity:	64 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-10-17.

Test Mode: Transmitting

1) 30 MHz to 1 GHz_Low channel-worst case

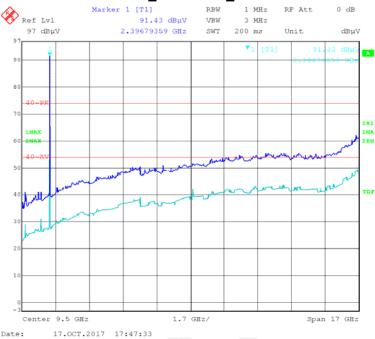
Frequency (MHz)	QuasicPeak (dB µ V/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dB µ V/m)
30.000000	24.1	100.0	V	267.0	-4.8	15.9	40.0
35.831663	20.3	100.0	Н	0.0	-8.7	19.7	40.0
177.735471	22.0	100.0	V	118.0	-12.9	21.5	43.5
692.865731	28.1	100.0	V	236.0	-3.5	17.9	46.0
826.993988	29.9	100.0	Н	81.0	-2.0	16.1	46.0
945.571142	32.0	100.0	V	32.0	0.3	14.0	46.0

Report No.: RSC170927001 Page 15 of 29

2) Above 1 GHz

F	Receiver		Rx Ar	ntenna	Cable	Amplifier	Corrected	Limais	Manain
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBµV/m	dB
	Frequency: 2402MHz								
2402	60.23	PK	Н	28.71	3.00	0.00	91.94	N/A	N/A
2402	54.59	AV	Н	28.71	3.00	0.00	86.30	N/A	N/A
2402	65.53	PK	V	28.71	3.00	0.00	97.24	N/A	N/A
2402	61.07	AV	V	28.71	3.00	0.00	92.78	N/A	N/A
2390	29.31	PK	V	28.67	3.00	0.00	60.98	74.00	13.02
2390	16.56	AV	V	28.67	3.00	0.00	47.23	54.00	5.77
4804	34.09	PK	V	33.85	5.12	26.87	46.19	74.00	27.81
4804	18.28	AV	V	33.85	5.12	26.87	30.38	54.00	23.62
7206	32.19	PK	V	36.39	6.16	26.35	48.39	74.00	25.61
7206	17.67	AV	V	36.39	6.16	26.35	33.87	54.00	20.13
	Frequency: 2440MHz								
2440	59.29	PK	Н	28.82	3.00	0.00	91.11	N/A	N/A
2440	53.96	AV	Н	28.82	3.00	0.00	85.78	N/A	N/A
2440	64.62	PK	V	28.82	3.00	0.00	96.44	N/A	N/A
2440	59.76	AV	V	28.82	3.00	0.00	91.58	N/A	N/A
4880	34.01	PK	V	34.06	5.09	26.87	46.29	74.00	27.71
4880	18.14	AV	V	34.06	5.09	26.87	30.42	54.00	23.58
7320	32.16	PK	V	36.55	6.22	26.40	48.53	74.00	25.47
7320	17.18	AV	V	36.55	6.22	26.40	33.55	54.00	20.45
			Fr	equency: 2	2480MHz	Z			
2480	58.91	PK	Н	28.94	2.99	0.00	90.84	N/A	N/A
2480	53.43	AV	Н	28.94	2.99	0.00	85.36	N/A	N/A
2480	64.89	PK	V	28.94	2.99	0.00	96.82	N/A	N/A
2480	59.34	AV	V	28.94	2.99	0.00	91.27	N/A	N/A
2483.5	29.87	PK	V	28.95	2.99	0.00	61.81	74.00	12.19
2483.5	16.02	AV	V	28.95	2.99	0.00	47.96	54.00	6.04
4960	34.21	PK	V	34.29	5.05	26.88	46.67	74.00	27.33
4960	18.19	AV	V	34.29	5.05	26.88	30.65	54.00	23.35
7440	32.69	PK	V	36.72	6.27	26.45	49.23	74.00	24.77
7440	17.23	AV	V	36.72	6.27	26.45	33.77	54.00	20.23

Note:

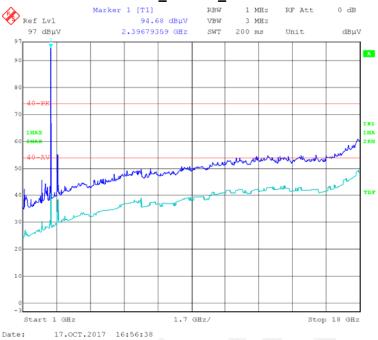

Corrected Amplitude = Corrected Factor + Reading
Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor
Margin = Limit- Corr. Amplitude

Spurious emissions more than 20 dB below the limit were not reported.

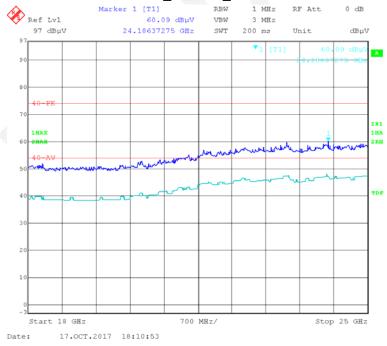
Report No.: RSC170927001 Page 16 of 29

Please refer to the below pre-scan plot of worst case:

Low Channel_Horizontal_1GHz-18GHz



Low Channel_Horizontal_18GHz-25GHz



Report No.: RSC170927001 Page 17 of 29

Low Channel_Vertical_1GHz-18GHz

Low Channel_Vertical_18GHz-25GHz

Report No.: RSC170927001 Page 18 of 29

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

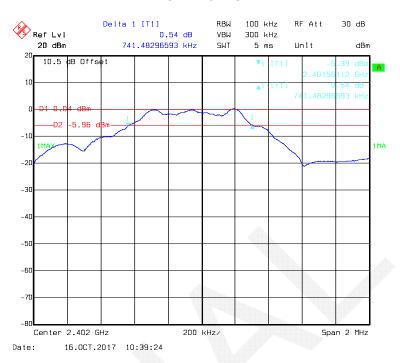
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

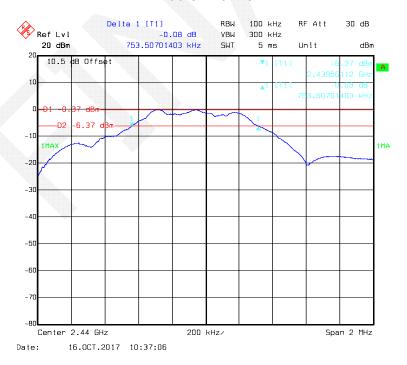
Environmental Conditions

Temperature:		
Relative Humidity:		
ATM Pressure:	96.3 kPa	

^{*} The testing was performed by Tom Tang on 2017-10-16.


Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots.


Mode	Channel	Frequency (MHz)	6dB OBW (MHz)	Limit (MHz)
	Low	2402	0.74	≥0.50
BLE	Middle	2440	0.75	≥0.50
	High	2480	0.77	≥0.50

Report No.: RSC170927001 Page 19 of 29

Low Channel



Middle Channel

Report No.: RSC170927001 Page 20 of 29

High Channel

Report No.: RSC170927001 Page 21 of 29

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

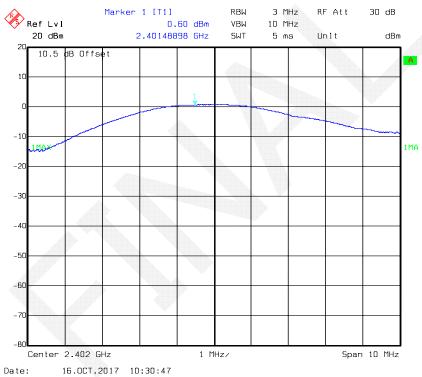
- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 · RBW].
- c) Set span \geq [3 · RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Test Data

Environmental Conditions

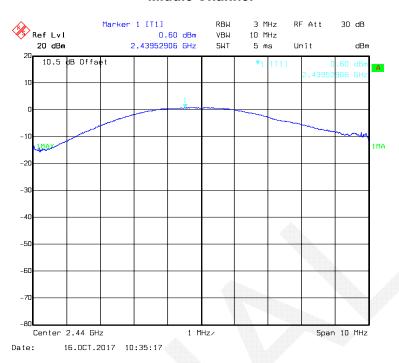
Temperature:	20 °C	
Relative Humidity:	58 %	
ATM Pressure:	96.3 kPa	

^{*} The testing was performed by Tom Tang on 2017-10-16.

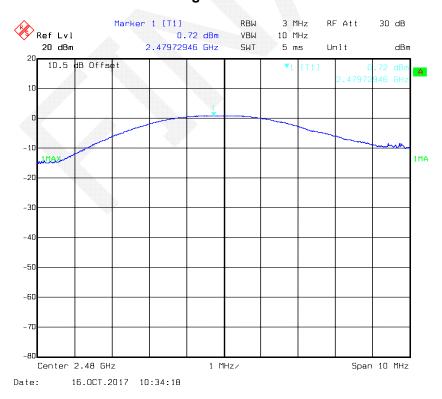

Report No.: RSC170927001 Page 22 of 29

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table.


Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Limit (dBm)
Low	2402	0.60	30
Middle	2440	0.60	30
High	2480	0.72	30

Low Channel



Report No.: RSC170927001 Page 23 of 29

Middle Channel

High Channel

Report No.: RSC170927001 Page 24 of 29

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

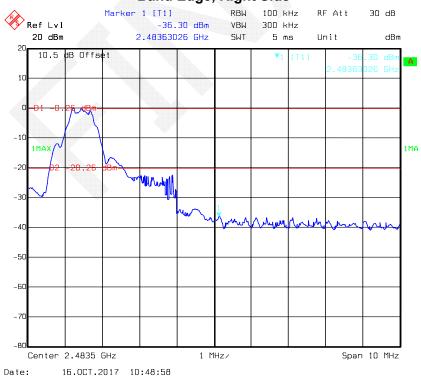
Test Data

Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	58 %	
ATM Pressure:	96.3 kPa	

^{*} The testing was performed by Tom Tang on 2017-10-16.

Test mode: Transmitting


Test Result: Compliance. Please refer to following plots.

Report No.: RSC170927001 Page 25 of 29

Band Edge, Left Side

Band Edge, Right Side

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

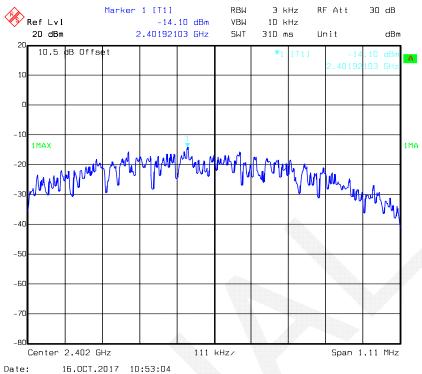
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

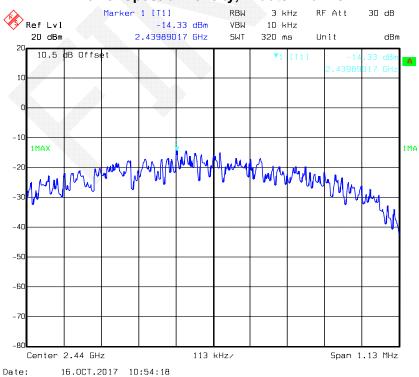
Environmental Conditions

Temperature:	20 °C	
Relative Humidity:	58 %	
ATM Pressure:	96.3 kPa	

^{*} The testing was performed by Tom Tang on 2017-10-16.

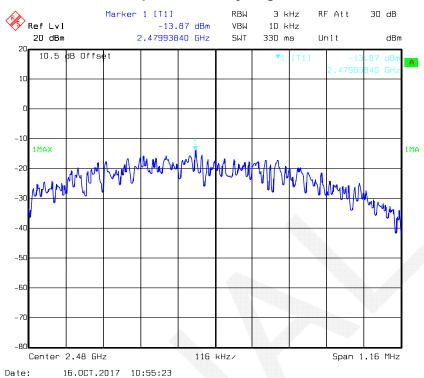

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots


Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-14.10	≤ 8
Middle	2440	-14.33	≤ 8
High	2480	-13.87	≤ 8

Report No.: RSC170927001 Page 27 of 29

Power Spectral Density, Low Channel



Power Spectral Density, Middle Channel

Report No.: RSC170927001 Page 28 of 29

Power Spectral Density, High Channel

***** END OF REPORT *****

Report No.: RSC170927001 Page 29 of 29