

Onity Inc., A Division of UTCFS

Trillium RFID Reader RFID Reader Model: RH600101 RFID Host Device Models: 10104332P1, 10104333P1

> FCC 15.225:2016 13.56 MHz Radio Using RFID

> > Report # ONIT0017.1

NVLAP Lab Code: 200630-0

CERTIFICATE OF TEST

Last Date of Test: April 25, 2016
Onity Inc., A Division of UTCFS
Trillium RFID Reader
RFID Reader Model: RH600101

RFID Host Device Models: 10104332P1, 10104333P1

Radio Equipment Testing

Standards

Specification	Method
FCC 15.225:2016	ANSI C63.10:2013

Results

Method Clause	Last Description		Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions < 30 MHz	Yes	Pass	
6.5 6.8	Field Strength of Spurious Emissions > 30 MHz	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. ONIT0017.1 3/23

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. ONIT0017.1 4/23

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

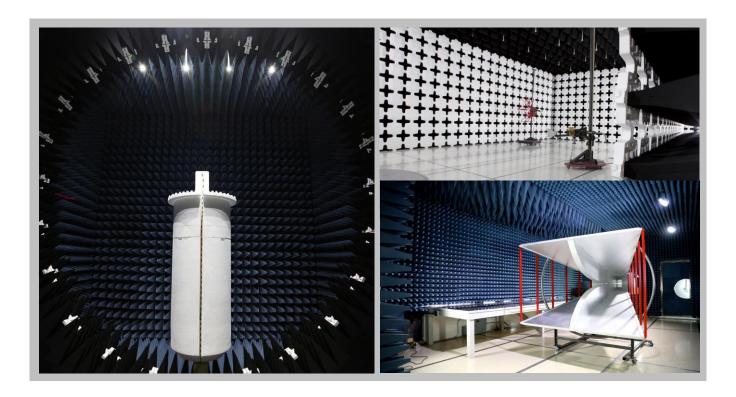
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. ONIT0017.1 5/23

FACILITIES


California			
Labs OC01-13			
41 Tesla			
rvine, CA 92618			
(949) 861-8918			

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600		
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
		Industry	Canada				
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157		

Report No. ONIT0017.1 6/23

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Onity Inc., A Division of UTCFS
Address:	4001 Fairview Industrial Drive
City, State, Zip:	Salem, OR 97302-1142
Test Requested By:	Troy Klopfenstein
	Trillium RFID Reader
Model:	RFID Reader Model: RH600101
	RFID Host Device Models: 10104332P1, 10104333P1
First Date of Test:	April 18, 2016
Last Date of Test:	April 25, 2016
Receipt Date of Samples:	April 18, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
RFID lock	

Client Justification

Model Equivalency Statement

The following lock regulatory model numbers are covered by this EMC test report due to similarities in their configuration:

Regulatory Model Number	Lock Marketing Name	Model Equivalency
10104332P1	Trillium RFID Lock	All electrical and mechanical parts in 10104333P1 are identical to 10104332P1 with the exception of layout changes to the lock control board to allow the
10104333P1	Trillium RFID Lock with DirectKey	mounting of the Bluetooth DirectKey Module, which enables Bluetooth connectivity.

NOTE: The DirectKey Module's certification information is:

Supra DirectKeyTM Module

Model: 002220

FCC ID: TCZ-10103751G1 IC: 1175F-10103751G1

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

Report No. ONIT0017.1 7/23

CONFIGURATIONS

Configuration ONIT0017- 1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
RFID Door Lock	Onity Inc.	None	100176		

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
RFID Key card	Onity Inc.	None	None	

Report No. ONIT0017.1 8/23

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	4/18/2016	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	4/18/2016	Field Strength of Spurious Emissions < 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	4/18/2016	Field Strength of Spurious Emissions > 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	4/25/2016	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. ONIT0017.1 9/23

10/23

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Attenuator	Fairview Microwave	SA3N512-20	TWQ	5/28/2015	12
Thermometer	Omegaette	HH311	DTY	1/21/2015	36
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	0
Meter - Multimeter	Tektronix	DMM912	MMH	2/17/2016	36
Power Supply - DC	Topward	TPS-2000	TPD	NCR	0
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Probe - Near Field Set	EMCO	7405	IPD	NCR	0

TEST DESCRIPTION

A near field measurement was made using a near field probe between the EUT's integral antenna and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

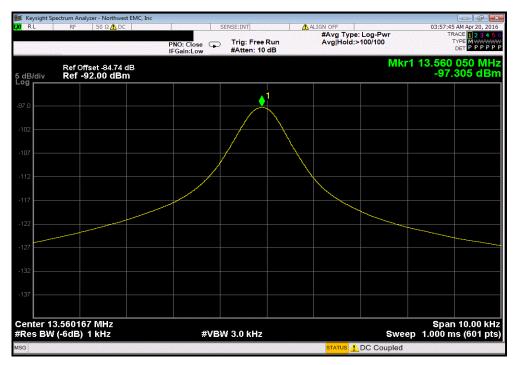
Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -30 ° to +50° C and at 10°C intervals.

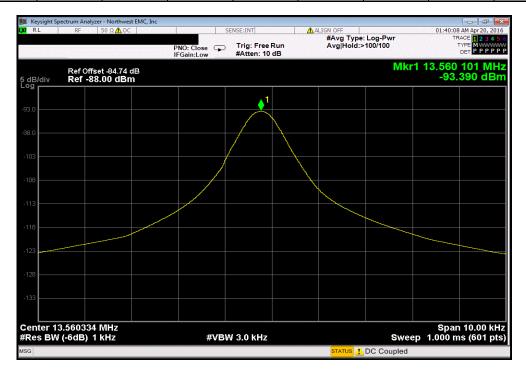
The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

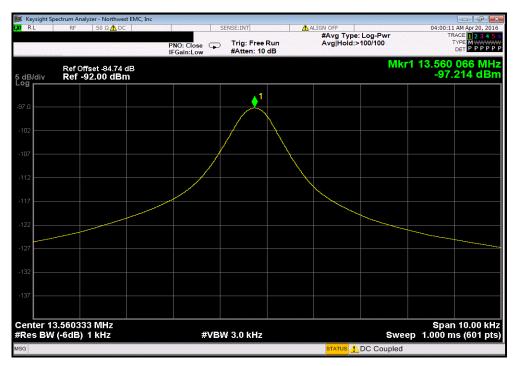
Report No. ONIT0017.1

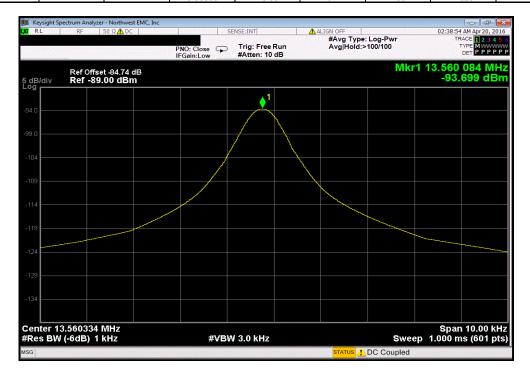


EUT:	HTRFID Lock						Work Order:	ONIT0017	
Serial Number:	100176						Date:	04/25/16	
Customer:	Onity Inc., A Division of I	UTCFS					Temperature:	23°C	
Attendees:	None						Humidity:		
Project:							Barometric Pres.:	1012 mbr	
	Brandon Hobbs		Power:	Battery			Job Site:	EV01	
TEST SPECIFICATI	IONS			Test Method					
FCC 15.225:2016				ANSI C63.10:2013					
COMMENTS									
The EUT was RFID	tag driven.								
	I TEST STANDARD								
None									
0			17.1	1 1					
Configuration #	' '	Signature	7	1					
		Signature			Measured	Assigned	Error	Limit	
					Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
RFID, 13.56 MHz					Tarao (12)	Tuluo (IIII 12)	(PP)	(PP)	11000110
111 15, 10:00 1111 12	Voltage: 115%				13.56005033	13.56	3.7	100	Pass
	Voltage: 100%				13.56010067	13.56	7.4	100	Pass
	Voltage: 85%				13.56006633	13.56	4.9	100	Pass
	Temperature: +50°				13.560084	13.56	6.2	100	Pass
	Temperature: +40°				13.560083	13.56	6.1	100	Pass
	Temperature: +30°				13.560083	13.56	6.1	100	Pass
	Temperature: +20°				13.56010067	13.56	7.4	100	Pass
	Temperature: +10°				13.560083	13.56	6.1	100	Pass
	Temperature: 0°				13.560083	13.56	6.1	100	Pass
	Temperature: -10°				13.5601	13.56	7.4	100	Pass
	Temperature: -20°				13.5601	13.56	7.4	100	Pass
	Temperature: -30°				13.56006667	13.56	4.9	100	Pass

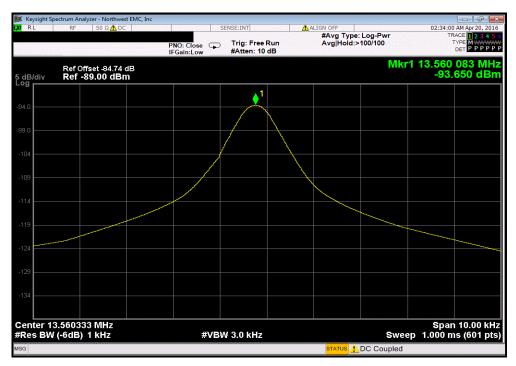

Report No. ONIT0017.1 11/23

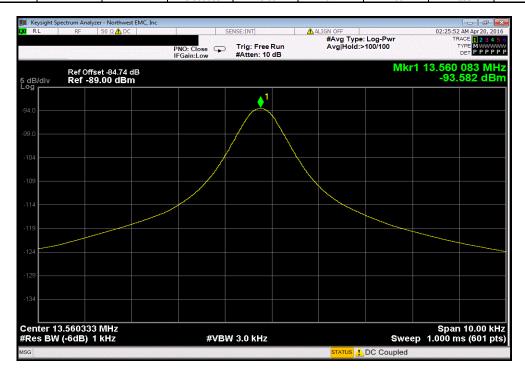
	RFID, 13	3.56 MHz, Voltag	e: 115%			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.56005033	13.56	3.7	100	Pass	


	RFID, 1	3.56 MHz, Voltag	e: 100%		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.56010067	13.56	7.4	100	Pass

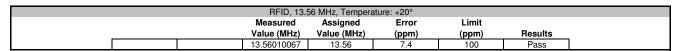

Report No. ONIT0017.1 12/23

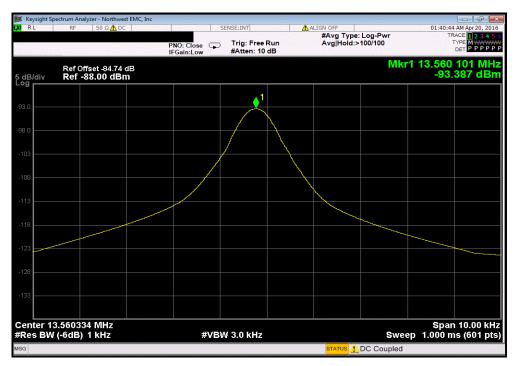
	RFID, 1	3.56 MHz, Voltag	ge: 85%			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.56006633	13.56	4.9	100	Pass	

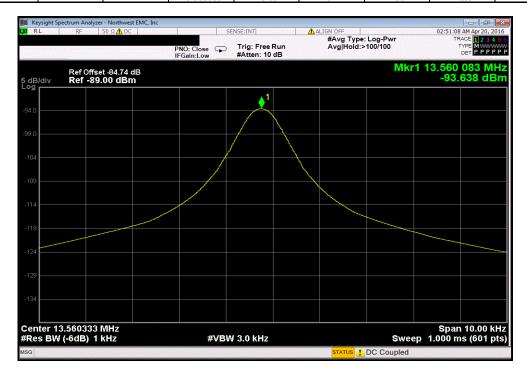

		RFID, 13.5	56 MHz, Tempera	ature: +50°		
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
İ		13.560084	13.56	6.2	100	Pass

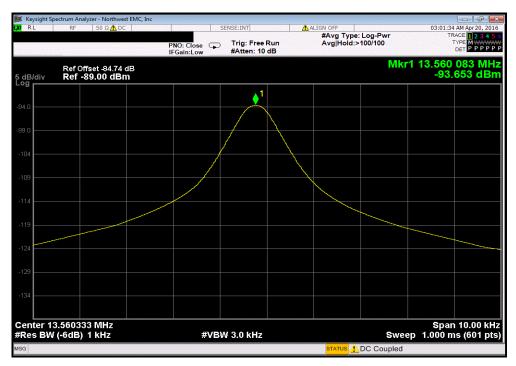

Report No. ONIT0017.1 13/23

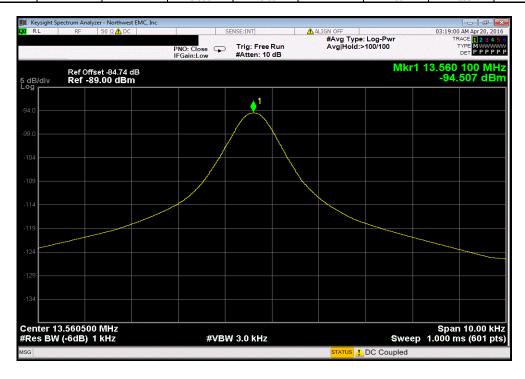
	RFID, 13.5	56 MHz, Tempera	ature: +40°			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	_
	13.560083	13.56	6.1	100	Pass	İ



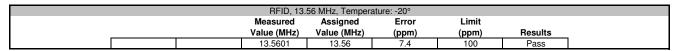

	RFID, 13.	56 MHz, Tempera	ature: +30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560083	13.56	6.1	100	Pass

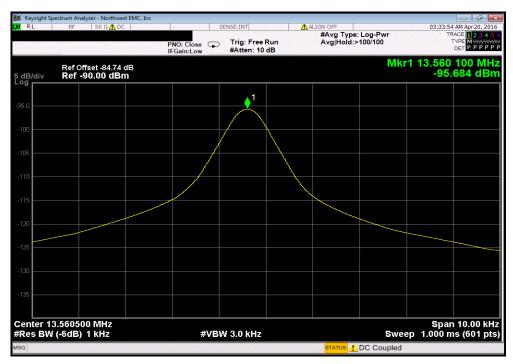

Report No. ONIT0017.1 14/23

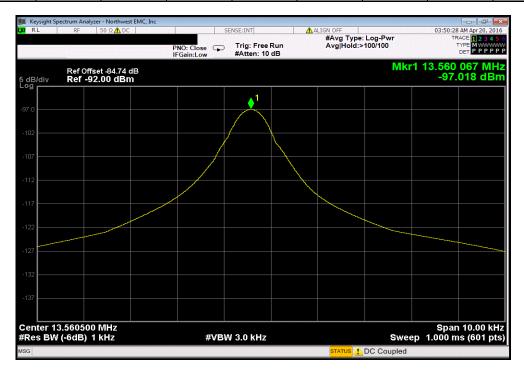

		RFID, 13.	56 MHz, Tempera	ature: +10°		
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1		13.560083	13.56	6.1	100	Pass


Report No. ONIT0017.1 15/23

	RFID, 13	.56 MHz, Tempe	rature: 0°			
	Measured	Assigned	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	13.560083	13.56	6.1	100	Pass	




	RFID, 13.	56 MHz, Tempera	ature: -10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.5601	13.56	7.4	100	Pass


Report No. ONIT0017.1 16/23

	RFID, 13.	56 MHz, Tempera	ature: -30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.56006667	13.56	4.9	100	Pass

Report No. ONIT0017.1 17/23

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 12 MHz	Stop Frequency	15 MHz
Start Frequency [12 Willi2	Stop i requericy	13 IVII 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Cable	None	10m Test Distance Cable	EVL	5/11/2015	12
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Antenna	EMCO	6502	AOA	6/24/2014	24

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

Report No. ONIT0017.1 18/23

FIELD STRENGTH OF FUNDAMENTAL

Work Order:	ONIT0017	Date:	04/18/16							
Project:	None	Temperature:	21.9 °C	1111						
Job Site:	EV11	Humidity:	42.8% RH							
Serial Number:	100176	Barometric Pres.:	1021 mbar	Tested by: Brandon Hobbs						
EUT:	HTRFID Lock									
Configuration:	1									
		Onity Inc., A Division of UTCFS								
Attendees:	None									
EUT Power:		Battery								
Operating Mode:	On Transmitting at 13.	On Transmitting at 13.56 MHz, RFID								
Deviations:	None									
Comments:	Please see data comr	Please see data comments for EUT orientation, and antenna position								

Test Specifications FCC 15.225:2016

Test Method ANSI C63.10:2013

Run#	4	Test Distance (m)	10	Antenna F	leight(s)	1(m)	Results	Pass
80								
70								
60								
50								
40								
30				-				
20								
10								
0			•	•		•		
-10								
-20		12.50	10.0	<u> </u>	12.50	14.00	14 50	15.00
12.00		12.50	13.0	iu	13.50 MHz	14.00	14.50	15.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12.965	6.2	10.8	1.0	300.0	10.0	0.0	See Commets	QP	-19.1	-2.1	29.5	-31.6	Ant perp to GND, Ant perp to EUT, EUT On Side
14.112	5.8	10.8	1.0	138.0	10.0	0.0	See Commets	QP	-19.1	-2.5	29.5	-32.0	Ant perp to GND, Ant perp to EUT, EUT On Side
13.165	6.1	10.8	1.0	246.0	10.0	0.0	See Commets	QP	-19.1	-2.2	40.5	-42.7	Ant perp to GND, Ant perp to EUT, EUT On Side
13.853	5.9	10.8	1.0	275.0	10.0	0.0	See Commets	QP	-19.1	-2.4	40.5	-42.9	Ant perp to GND, Ant perp to EUT, EUT On Side
13.567	9.5	10.8	1.0	106.0	10.0	0.0	See Commets	QP	-19.1	1.2	50.5	-49.3	Ant perp to GND, Ant perp to EUT, EUT On Side
13.553	8.3	10.8	1.0	94.0	10.0	0.0	See Commets	QP	-19.1	0.0	50.5	-50.5	Ant perp to GND, Ant perp to EUT, EUT On Side
13.560	21.5	10.8	1.0	109.0	10.0	0.0	See Commets	QP	-19.1	13.2	84.0	-70.8	Ant perp to GND, Ant perp to EUT, EUT On Side
13.560	21.1	10.8	1.0	120.0	10.0	0.0	See Commets	QP	-19.1	12.8	84.0	-71.2	Ant perp to GND, Ant perp to EUT, EUT Vertical
13.560	17.3	10.8	1.0	47.0	10.0	0.0	See Commets	QP	-19.1	9.0	84.0	-75.0	Ant perp to GND, Ant para to EUT, EUT On Side
13.560	17.2	10.8	1.0	40.0	10.0	0.0	See Commets	QP	-19.1	8.9	84.0	-75.1	Ant perp to GND, Ant para to EUT, EUT Vertical
13.560	9.7	10.8	1.0	325.0	10.0	0.0	See Commets	QP	-19.1	1.4	84.0	-82.6	Ant para to GND, Ant perp to EUT, EUT Vertical
13.560	9.6	10.8	1.0	351.0	10.0	0.0	See Commets	QP	-19.1	1.3	84.0	-82.7	Ant para to GND, Ant perp to EUT, EUT On Side
13.560	8.3	10.8	1.0	143.0	10.0	0.0	See Commets	QP	-19.1	0.0	84.0	-84.0	Ant perp to GND, Ant para to EUT, EUT Horizontal
13.560	6.6	10.8	1.0	177.0	10.0	0.0	See Commets	QP	-19.1	-1.7	84.0	-85.7	Ant perp to GND, Ant perp to EUT, EUT Horizontal
13.560	6.6	10.8	1.0	151.0	10.0	0.0	See Commets	QP	-19.1	-1.7	84.0	-85.7	Ant para to GND, Ant perp to EUT, EUT Horizontal

Report No. ONIT0017.1 19/23

FIELD STRENGTH OF SPURIOUS EMISSIONS < 30MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 10 kHz	Stop Frequency	30 MHz
Start Frequency Fro RFIZ	lotop i requericy	100 IVII IZ

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Antenna	EMCO	6502	AOA	6/24/2014	24
Cable	None	3m Test Distance Cable	EVM	5/11/2015	12

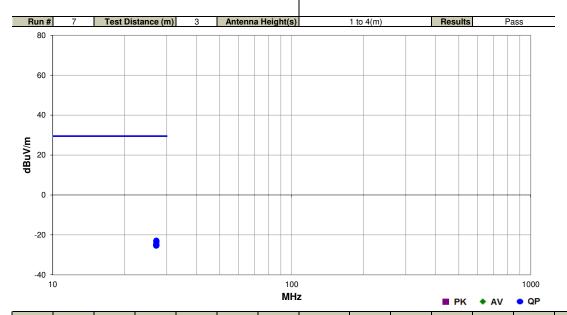
TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

PSA-ESCI 2016.03.11 EmiR5 2016.03.11



FIELD STRENGTH OF SPURIOUS EMISSIONS < 30MHz

Work Order:	ONIT0017	Date:	04/18/16							
Project:	None	Temperature:	21.9 °C	111						
Job Site:	EV11	Humidity:	42.8% RH							
Serial Number:	100176	Barometric Pres.:	1021 mbar	Tested by: Brandon Hobbs						
EUT:	HTRFID Lock									
Configuration:	1									
Customer:	Onity Inc., A Division of	of UTCFS								
Attendees:	None	None								
EUT Power:	Battery	3attery								
Operating Mode:	On Transmitting at 13.	56 MHz, RFID								
Deviations:	None	None								
Comments:	Please see data comments for EUT orientation, and antenna position									
Test Specifications			Test Metho	d						

Test Specifications FCC 15.225:2016

Test Method ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
27.121	7.9	9.2	1.0	81.0	3.0	0.0	See Comments	QP	-40.0	-22.9	29.5	-52.4	Ant perp to GND, Ant perp to EUT, EUT Horizontal
27.121	7.6	9.2	1.0	87.0	3.0	0.0	See Comments	QP	-40.0	-23.2	29.5	-52.7	Ant para to GND, Ant perp to EUT, EUT Horizontal
27.121	7.1	9.2	1.0	316.0	3.0	0.0	See Comments	QP	-40.0	-23.7	29.5	-53.2	Ant para to GND, Ant perp to EUT, EUT Vertical
27.120	6.2	9.2	1.0	161.0	3.0	0.0	See Comments	QP	-40.0	-24.6	29.5	-54.1	Ant perp to GND, Ant perp to EUT, EUT Vertical
27.120	5.9	9.2	1.0	258.0	3.0	0.0	See Comments	QP	-40.0	-24.9	29.5	-54.4	Ant para to GND, Ant perp to EUT, EUT On Side
27.119	5.7	9.2	1.0	133.0	3.0	0.0	See Comments	QP	-40.0	-25.1	29.5	-54.6	Ant perp to GND, Ant perp to EUT, EUT On Side
27.120	5.7	9.2	1.0	59.0	3.0	0.0	See Comments	QP	-40.0	-25.1	29.5	-54.6	Ant perp to GND, Ant para to EUT, EUT Vertical
27.152	5.5	9.2	1.0	58.0	3.0	0.0	See Comments	QP	-40.0	-25.3	29.5	-54.8	Ant perp to GND, Ant para to EUT, EUT On Side
27.091	5.4	9.2	1.0	239.0	3.0	0.0	See Comments	QP	-40.0	-25.4	29.5	-54.9	Ant perp to GND, Ant para to EUT, EUT Horizontal

PSA-ESCI 2016.03.11

FIELD STRENGTH OF SPURIOUS EMISSION > 30MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On Transmitting at 13.56 MHz, RFID

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ONIT0017 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

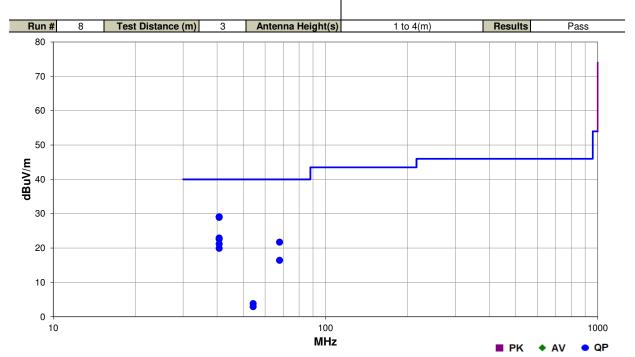
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval (mo)
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2/13/2016	12
Cable	None	3m Test Distance Cable	EVM	5/11/2015	12
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	3/11/2016	12
Antenna - Biconilog	EMCO	3141	AXL	NCR	0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009).



FIELD STRENGTH OF SPURIOUS EMISSION > 30MHz

Work Order:	ONIT0017	Date:	04/18/16						
Project:	None	Temperature:	21.9 °C	1					
Job Site:	EV11	Humidity:	42.8% RH						
Serial Number:	100176	Barometric Pres.:	1021 mbar	Tested by: Brandon Hobbs					
EUT:	HTRFID Lock								
Configuration:	1								
Customer:	Onity Inc., A Division	of UTCFS							
Attendees:	None								
EUT Power:	Battery	Battery							
Operating Mode:	On Transmitting at 13	.56 MHz, RFID							
Deviations:	None	None							
Comments:		nents for EUT orientatio	n						
Test Specifications	I		Tost Moti	nod					

 Test Specifications
 Test Method

 FCC 15.225:2016
 ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
40.685	55.2	-26.1	1.0	272.0	3.0	0.0	Vert	QP	0.0	29.1	40.0	-10.9	EUT Vert
40.683	55.0	-26.1	1.0	106.0	3.0	0.0	Vert	QP	0.0	28.9	40.0	-11.1	EUT On Side
40.683	49.0	-26.1	4.0	-5.0	3.0	0.0	Horz	QP	0.0	22.9	40.0	-17.1	EUT Vert
40.682	48.7	-26.1	3.9	180.0	3.0	0.0	Horz	QP	0.0	22.6	40.0	-17.4	EUT On Side
67.802	52.8	-31.1	1.0	261.0	3.0	0.0	Vert	QP	0.0	21.7	40.0	-18.3	EUT Vert
40.682	47.3	-26.1	2.7	192.0	3.0	0.0	Horz	QP	0.0	21.2	40.0	-18.8	EUT Horz
40.682	46.0	-26.1	1.0	131.0	3.0	0.0	Vert	QP	0.0	19.9	40.0	-20.1	EUT Horz
67.803	47.5	-31.1	2.7	159.0	3.0	0.0	Horz	QP	0.0	16.4	40.0	-23.6	EUT Vert
54.248	33.9	-30.1	3.8	298.0	3.0	0.0	Horz	QP	0.0	3.8	40.0	-36.2	EUT Vert
54.247	33.0	-30.1	3.1	258.0	3.0	0.0	Vert	QP	0.0	2.9	40.0	-37.1	EUT Vert

Report No. ONIT0017.1 23/23