

FCC TEST REPORT (Part 15, Subpart E)

Applicant:	Fibocom Wireless Inc.
Address:	1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st
	Rd, Nanshan, Shenzhen , China

Manufacturer or Supplier:	Fibocom Wireless Inc.
Address:	1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen , China
Product:	LTE Module
Brand Name:	Fibocom
Model Name:	SC206-NA
FCC ID:	ZMOSC206NA
Date of tests:	Apr. 11, 2025 - May. 14, 2025

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart E, Section 15.407

CONCLUSION: The submitted sample was found to $\underline{\text{COMPLY}}$ with the test requirement

	Prepared by Hanwen Xu	Approved by Peibo Sun
	Engineer / Mobile Department	Manager / Mobile Department
•	Lu Hannen	Simple: bo
ĺ	Date: May. 14, 2025	Date: May. 14, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/lems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by ou and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Tel: +86 (0557) 368 1008

TABLE OF CONTENTS

R	ELEASE (CONTROL RECORD	5
1	SUMN	ARY OF TEST RESULTS	6
	1.1 ME	ASUREMENT UNCERTAINTY	7
2	GENE	RAL INFORMATION	8
	2.1 GEI	NERAL DESCRIPTION OF EUT	8
		SCRIPTION OF TEST MODES	
	2.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	13
	2.3 DU	TY CYCLE OF TEST SIGNAL	
	2.4 DES	SCRIPTION OF SUPPORT UNITS	18
	2.4.1	CONFIGURATION OF SYSTEM UNDER TEST	19
	2.5 GE	NERAL DESCRIPTION OF APPLIED STANDARDS	20
3	TEST	TYPES AND RESULTS	21
	3.1 RAI	DIATED EMISSION AND BANDEDGE MEASUREMENT	21
	3.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	21
	3.1.2	LIMITS OF UNWANTED EMISSION	22
	3.1.3	TEST INSTRUMENTS	23
	3.1.4	TEST PROCEDURES	24
	3.1.5	DEVIATION FROM TEST STANDARD	24
	3.1.6	TEST SETUP	25
	3.1.7	EUT OPERATING CONDITION	26
	3.1.8	TEST RESULTS	27
	3.2 COI	NDUCTED EMISSION MEASUREMENT	169
	3.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	169
	3.2.2	TEST INSTRUMENTS	169
	3.2.3	TEST PROCEDURES	170
	3.2.4	DEVIATION FROM TEST STANDARD	171
	3.2.5	TEST SETUP	171
	3.2.6	EUT OPERATING CONDITIONS	171
	3.2.7	TEST RESULTS	172
	3.3 MA	KIMUM CONDUCTED OUTPUT POWER MEASUREMENT	174
	3.3.1	LIMITS OF MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	
	3.3.2	TEST SETUP	175
	3.3.3	TEST INSTRUMENTS	
	3.3.4	TEST PROCEDURE	177

Test Report No.: PSZ-QSZ2504020109R

	3.3.5	DEVIATION FROM	TEST STANDARD	178
	3.3.6	EUT OPERATING	CONDITIONS	178
	3.3.7	TEST RESULTS		179
	3.4 MAX	XIMUM POWER SPE	ECTRAL DENSITY MEASUREMENT	180
	3.4.1	LIMITS OF MAXIM	UM POWER SPECTRAL DENSITY MEASUR	EMENT 180
	3.4.2	TEST SETUP		180
	3.4.3	TEST INSTRUMEN	NTS	180
	3.4.4	TEST PROCEDUR	ES	181
	3.4.5	DEVIATION FROM	TEST STANDARD	181
	3.4.6	EUT OPERATING	CONDITIONS	181
	3.4.7	TEST RESULTS		182
	3.5 AU	TOMATICALLY DISC	ONTINUE TRANSMISSION	183
	3.5.1	LIMIT OF AUTOMA	ATICALLY DISCONTINUE TRANSMISSION	183
	3.5.2	TEST INSTRUMEN	NTS	183
	3.5.3	TEST RESULT		183
	3.6 AN	TENNA REQUIREME	ENTS	184
	3.6.1	STANDARD APPLI	CABLE	184
	3.6.2	ANTENNA CONNE	CTED CONSTRUCTION	184
	3.6.3	ANTENNA GAIN		185
4.	PHOT	OGRAPHS OF THE	TEST CONFIGURATION	186
5.	MODIF	FICATIONS RECORI	DERS FOR ENGINEERING CHANGES TO TI	HE FIIT RY THE I AR
J.	187	TOATIONS RECORD	DENOTION ENGINEERING CHANGES TO TH	TIL LOT DI TITL LAD
_				
6.	APPE	NDIX		188
	EMISSIO	N BANDWIDTH		188
	TEST	RESULT		188
	TEST	GRAPHS		190
	OCCUPII	ED CHANNEL BAND	WIDTH	215
	TEST	RESULT		215
	TEST	GRAPHS		218
	MIN EMIS	SSION BANDWIDTH	l	250
	TEST	RESULT B4		250
	TEST	GRAPHS B4		251
	DUTY CY	CLE		258
	TEST	RESULT		258
	TEST	GRAPHS		259
	MAXIMU	M CONDUCTED OU	TPUT POWER	262
			DOWED	000
	IEST	RESULT CHANNEL	POWER	262

(Suzhou) Co., Ltd.

District, Suzhou City, Anhui Province, China

TEST RESULT	M	AXIMUM POWER SPECTRAL DENSITY	266
TEGT OR ARUS		TEST RESULT	266
TEST CRADIS		TEST GRAPHS	269

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSZ-QSZ2504020109RF06	Original release	May. 14, 2025

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E		
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT
15.407(b)(9)	AC Power Conducted Emission	Compliance
15.407(b) (1/2/3/4/5)	Radiated Emission & Band Edge Measurement	Compliance
15.407(a/1/2/3)	Maximum conducted output Power	Compliance
15.407(a/1/2/3)	Peak Power Spectral Density	Compliance
15.407(a)(2)(12)	26 dB Bandwidth	Compliance
15.407(e)	6 dB Bandwidth	Compliance
15.203	Antenna Requirement	Compliance

NOTE:

- 1. Except the data of RSE, Band Edge Measurement and AC Power Conducted Emission, other data please refer to Appendix.
- 2. Only the worse data was reported.

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Z.I GENERAL DESCRI			
PRODUCT*	LTE Module		
BRAND NAME*	Fibocom		
MODEL NAME*	SC206-NA		
NOMINAL VOLTAGE*	3.8Vdc		
MODULATION *	OFDM		
	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps		
TRANSFER RATE*	802.11n: up to 300.	0Mbps	
	802.11ac: up to 866.7Mbps		
OPERATING FREQUENCY*	5180~5240MHz, 52		
	5500~5720MHz, 57	′45~5825MHz	
		4 for 802.11a,802.11n/ac (20MHz)	
	5180~5240MHz	2 for 802.11n/ac (40MHz)	
		1 for 802.11ac (80MHz)	
	5260~5320MHz	4 for 802.11a,802.11n/ac(20MHz)	
		2 for 802.11n/ac(40MHz)	
NUMBER OF CHANNEL		1 for 802.11ac(80MHz)	
	5500~5720MHz	12 for 802.11a, 802.11n/ac (20MHz)	
		6 for 802.11n/ac (40MHz)	
		3 for 802.11ac (80MHz)	
		5 for 802.11a, 802.11n/ac (20MHz)	
	5745~5825MHz	2 for 802.11n/ac (40MHz)	
		1 for 802.11ac (80MHz)	
	60.95mW for 5180 ~ 5240MHz		
MAY OUTDUT DOWED	38.02mW for 5260 ~ 5320MHz		
MAX. OUTPUT POWER	29.51mW for 5500 ~ 5720MHz		
	32.89mW for 5745 ~ 5825MHz		
Huarui 7layers High Technology	Tower N, Innovation Center, 88 Zuyi Road, High-tech Tel: +86 (0557) 368 1008		

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

ANTENNA TYPE*	Dipole Antenna	
	5180 ~ 5240MHz	4.49dBi
ANTENNA GAIN*	5260 ~ 5320MHz	4.49dBi
ANTENNA GAIN	5500 ~ 5720MHz	3.32dBi
	5745 ~ 5825MHz	3.32dBi
HW VERSION*	V1.0	
SW VERSION*	SC206-U6.400.002	
I/O PORTS*	Refer to user's manual	
CABLE SUPPLIED*	N/A	

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX FUNCTION
802.11a	1TX/1RX
802.11n/802.11ac (20MHz)	1TX/1RX
802.11n/802.11ac (40MHz)	1TX/1RX
802.11ac (80MHz)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

2.2 DESCRIPTION OF TEST MODES

FOR 5180~5240MHz			
802.11a, 802.11n, 802.11ac(20MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

802.11n, 802.11ac (40MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
38	5190 MHz	46	5230 MHz

802.11ac (80MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
42	5210 MHz		

FOR 5260 ~ 5320MHz			
802.11a, 802.11n, 802.11ac (20MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

802.11n, 802.11ac (40MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
54	5270 MHz	62	5310 MHz

802.11ac (80MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
58	5290 MHz		

FOR 5500 ~ 5720MHz				
	802.11a, 802.11n, 802.11ac (20MHz)			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY	
100	5500 MHz	124	5620MHz	
104	5520 MHz	128	5640MHz	
108	5540 MHz	132	5660 MHz	
112	5560 MHz	136	5680 MHz	
116	5580 MHz	140	5700 MHz	
120	5600 MHz	144	5720 MHz	

802.11n, 802.11ac (40MHz)			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
102	5510 MHz	126	5630MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

802.11ac (80MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
106	5530 MHz	138	5690 MHz

FOR 5745 ~ 5825MHz			
802.11a, 802.11n, 802.11ac (20MHz)			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

802.11n, 802.11ac (40MHz)			
CHANNEL	FREQUENCY		
142	5710 MHz	159	5795 MHz
151	5755 MHz		

802.11ac (80MHz)					
CHANNEL FREQUENCY		CHANNEL	FREQUENCY		
138	5690 MHz	155	5775 MHz		

2.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		APPLICABLE TO			DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
Α	V	$\sqrt{}$	$\sqrt{}$	-	Powered by DC Source with wifi(5G) link
В	-	-	-	$\sqrt{}$	Powered by Battery with wifi(5G) link
С	-	-	-	-	Powered by USB with wifi(5G) link

Where **RE≥1G**: Radi

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE:

The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.

NOTE: "-"means no effect

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

CONF	UT IGURE ODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
	А	802.11a	5745-5825	149 to 165	157	OFDM	MCS0

RADIATED EMISSION TEST (ABOVE 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
Α	802.11n (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n (20MHz)	5000 5000	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n (20MHz)	5500 5700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac (80MHz)		106 to 138	106, 138	OFDM	MCS0
А	802.11a		149 to 165	149, 157,165	OFDM	6.0
А	802.11n (20MHz)	5745 5005	149 to 165	149, 157,165	OFDM	MCS0
А	802.11n (40MHz)	5745-5825	151 to 159	151, 159	OFDM	MCS0
А	802.11ac (80MHz)		155	155	OFDM	MCS0

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11ac(80MHz)	5500-5720	106 to 138	138	OFDM	MCS0

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
А	802.11n (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n (20MHz)	5000 5000	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n (20MHz)	5500 5700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac (80MHz)		106 to 138	106, 138	OFDM	MCS0
А	802.11a		149 to 165	149, 157,165	OFDM	6.0
А	802.11n (20MHz)	5745 5065	149 to 165	149, 157,165	OFDM	MCS0
А	802.11n (40MHz)	5745-5825	151 to 159	151, 159	OFDM	MCS0
А	802.11ac (80MHz)		155	155	OFDM	MCS0

ANTENNA PORT CONDUCTED MEASUREMENT:

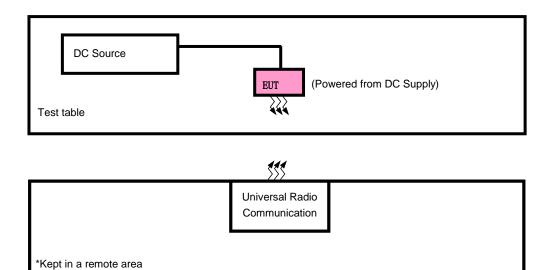
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
Α	802.11a		36 to 48	36, 40, 48	OFDM	6.0
Α	802.11n (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n (20MHz)	5000 5000	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n (20MHz)	5500 5700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac (80MHz)		106 to 138	106, 138	OFDM	MCS0
А	802.11a		149 to 165	149, 157,165	OFDM	6.0
А	802.11n (20MHz)	5745 5065	149 to 165	149, 157,165	OFDM	MCS0
А	802.11n (40MHz)	5745-5825	151 to 159	151, 159	OFDM	MCS0
А	802.11ac (80MHz)		155	155	OFDM	MCS0

TEST CONDITION							
APPLICABLE TO	APPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY				
RE<1G	23deg. C, 70%RH	DC3.8V By DC Source	Hanwen Xu				
RE≥1G 23deg. C, 70%RH		DC3.8V By DC Source	Hanwen Xu				
PLC 25deg. C, 52%RH		DC3.8V By DC Source	Hanwen Xu				
APCM	25deg. C, 60%RH	DC3.8V By DC Source	Hanwen Xu				

Please Refer to Appendix of this test report.

2.4 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A
2	DC Source	HYELEC	HY3010B	551016	N/A
3	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable, 1.0m;

2.4.1 CONFIGURATION OF SYSTEM UNDER TEST

GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
ANSI C63.10-2020

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

3.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.1.2 LIMITS OF UNWANTED EMISSION

	APPLICABLE TO LIMIT		LIMIT		
RESTRICTED BANDS	789033 D02 General UNII	FIELD STRENG	FIELD STRENGTH AT 3m (dBµV/m)		
2/11/20	Test Procedures New Rules v02r01	PK : 74	AV : 54		
	APPLICABLE TO	EIRP LIMIT (dBm/MHz)	EQUIVALENT FIELD STRENGTH AT 3m (dBµV/m)		
	15.407(b)(1)				
OUT OF THE RESTRICTED BANDS	15.407(b)(2)	PK : -27	PK : 68.2		
BANDS	15.407(b)(3)				
	15.407(b)(4)	See note 2 (FCC 16-24)			

- 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3} \quad \mu \text{V/m, where P is the eirp (Watts)}.$
- 2. All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

3.1.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,23	Aug.21,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Sep.06,23	Sep.05,25
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W13.02	N/A	Apr.26,25	Apr.25,26
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.25,25
CABLE	R&S	W12.14	N/A	Apr.26,25	Apr.25,26

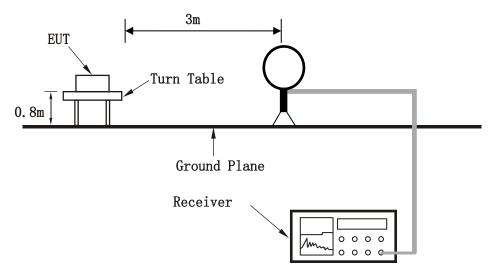
- 1. The calibration interval of the above test instruments is 12/24/36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.1.4 TEST PROCEDURES

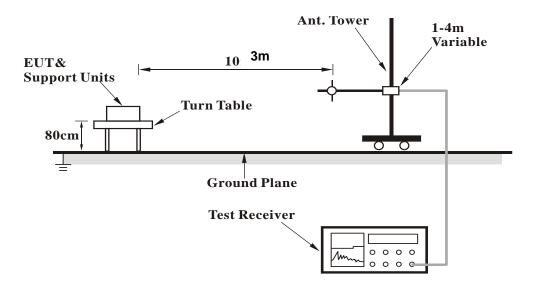
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated, and the worst-case emissions are reported.

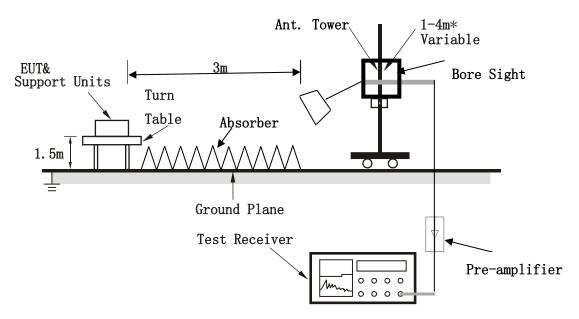

3.1.5 DEVIATION FROM TEST STANDARD

No deviation.



3.1.6 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.7 EUT OPERATING CONDITION

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.1.8 TEST RESULTS

NOTE: The 9K \sim 30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BAND EDGE MEASUREMENT BADN 1

_											_
						802.1	1a				
С	HAN	NEL		TX	Channel 36	ô	DETECTO)R	Peak (PK	<u>.</u>)	
F	REQU	JENCY RAI	NGE	1G	Hz ~ 40GH	Z	FUNCTIO	N	Average	(AV)	
		Al	NTENNA	4 P	OLARITY 8	k TEST DIS	STANCE: H	ORIZONTAL	AT 3 M		
	Rg	Frequency [MHz]	PK+ Lev [dBµV/ı		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
	1	5 134 500	51 00		74.00	23.00	11 74	н	302.2	2 00	1

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,134.500	51.00	74.00	23.00	11.74	Н	302.2	2.00
1	5,150.000	49.64	74.00	24.36	11.76	Н	112.1	2.00
1	5,179.000	92.31			11.85	Н	355.1	2.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,148.000	36.15	54.00	17.85	11.76	Н	253.8	1.00
1	5,150.000	36.35	54.00	17.65	11.76	Н	302.2	2.00
1	5,181.500	80.72			11.85	Н	253.8	1.00
125 125 125 125 125 125 125 125 125 125								

20 5.11 G 5.115 G 5.120 G 5.125 G 5.130 G 5.135 G 5.140 G 5.145 G 5.155 G 5.165 G 5.165 G 5.175 G 5.175 G 5.180 G 5.185 G 5.190 G 5.195 G 5.20 G 5.18 Frequency in Hz

√AVG Level @Spectrum Overview

√AVG Limit @5G WIFI 20M-B1_CH36

AVG Level @5G WIFI 20M-B1_CH36

AVG Limit WIFI 2

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,136.500	50.72	74.00	23.28	11.74	٧	28.3	2.00
1	5,150.000	49.63	74.00	24.37	11.76	V	359	1.00
1	5,181.500	89.16			11.85	V	28.3	2.00
125 120 117.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 100.			P					

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,147.000	35.83	54.00	18.17	11.75	V	359	2.00
1	5,150.000	35.93	54.00	18.07	11.76	V	355.7	2.00
1	5,179.000	76.81			11.85	V	40.3	2.00
125 125 125 125 125 125 125 125 125 125				P		P		

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5180MHz: Fundamental frequency.

IAN	NEL		TX (Channel 40)	DETECTO	OR	Peak (PK	<u>(</u>)	
EQU	JENCY RAI	NGE	1GF	GHz ~ 40GHz			Average	Average (AV)		
	Al	NTENN.	A PC	DLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	5,117.500	50.84	1	74.00	23.16	11.72	Н	355.1	2.00	
2	5,150.000	49.59	•	74.00	24.41	11.76	Н	320.8	1.00	
2	5,197.000	87.82	2			11.90	Н	355.1	2.00	
E/NT48P = 125 117.	Φ								Y	
22.5 20	.11 G 5.115 G 5.	125 G 5	.135 G	5.145 G 5	i.155 G 5.165 G	5.175 G	5.185 G 5.195 G	5.205 G 5.21	5 G 5.23 Frequency in H	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,148.000	35.79	54.00	18.21	11.76	Н	359	1.00
2	5,150.000	35.83	54.00	18.17	11.76	Н	257.4	1.00
2	5,199.000	76.17			11.91	Н	355.7	2.00
125 125 107.5 115 112.5 107.5			φφ					
27.5 25 22.5 20	11 G 5.115 G 5.	125 G 5.135 G	5.145 G 5	.155 G 5.165 G	5.175 G	5.185 G 5.195 G	5.205 G 5.21	5 G 5.23

O AVG Level @CriticalPoint

₹g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,118.500	50.94	74.00	23.06	11.73	V	194.1	1.00
2	5,150.000	49.37	74.00	24.63	11.76	V	1	2.00
2	5,201.500	86.99			11.92	V	5.8	2.00
120 117.5 112.5 110.0 107.5 100.0 102.5 95 95.5 95.5 95.8 82.5 80.7 77.5 70.6 60.5 55.5 50.5 60.3 77.5 70.5 60.3 77.5 70.5 70.5 70.5 70.5 70.5 70.5 70.5	φ						Φ	

2 5, 2 5, 125 117.5 115 112.5 110 107.5	,134.500 ,150.000 ,199.000	35.85 35.82 77.58	54.00 54.00	18.15 18.18	11.74 11.76	V	359	2.00
2 5, 125 120 117.5 115 112.5 110 107.5 105			54.00	18.18	11 76			
125 120 - 117.5 - 115 - 112.5 - 110 - 107.5 -	,199.000	77.58			11.70	V	36.7	2.00
120			I		11.91	V	36.7	2.00
102.5 100 97.5 98.5 99								

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5200MHz: Fundamental frequency.

IAN	NEL		ΤX	Channel 48	3	DETECTO	OR	Peak (PK	()
EQL	JENCY RAI			Hz ~ 40GH:		FUNCTIO		Average	(AV)
	Al	NTENN	<u> </u>	OLARITY 8	R TEST DIS	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,132.500	50.76	6	74.00	23.24	11.74	Н	195.4	1.00
3	5,150.000	49.30)	74.00	24.70	11.76	Н	355	2.00
3	5,241.500	93.64	1			11.93	Н	259.9	1.00
EL 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20		Φ							
27.5 25 22.5 20	11 G 5.12 G	5.13 G 5.1	14 G	5.15 G 5.16 G	5.17 G 5.18 G	S 5.19 G 5.20	G 5.21 G 5.22 G	5.23 G 5.24 G	3 5.25 G 5.26 c Frequency in H

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,146.000	35.78	54.00	18.22	11.75	Н	359	2.00
3	5,150.000	35.76	54.00	18.24	11.76	Н	355.1	2.00
3	5,239.000	80.45			11.93	Н	294.6	1.00
125 125 117.			7 0					

√AVG Level @Spectrum Overview

√AVG Limit @5G WIFI 20M-B1_CH48

AVG Limit WIFI 2

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,141.000	51.35	74.00	22.65	11.75	٧	331.6	1.00
3	5,150.000	49.49	74.00	24.51	11.76	V	197.8	1.00
3	5,239.000	88.85			11.93	V	30.7	2.00
125 125 120 120 120 120 120 120 120 120 120 120								

◆ PK+ Level @Spectrum Overview |
◆ PK+ Limit @5G WIFI 20M-B1_CH48

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,134.000	35.82	54.00	18.18	11.74	٧	359	1.00
3	5,150.000	35.82	54.00	18.18	11.76	V	1.6	2.00
3	5,241.500	76.80			11.93	V	28.3	2.00
= 125 125		•	0					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5240MHz: Fundamental frequency.

					802.11n (2	20MHz)		_	
ANI	NEL		тх	Channel 36	6	DETECTO	OR	Peak (PK)	
EQL	JENCY RAI	NGE	1G	GHz ~ 40GHz		FUNCTIO	FUNCTION Average (AV)	(AV)	
	Al	NTENN	ΑP	OLARITY 8	R TEST DIS	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,115.500	51.03	3	74.00	22.97	11.72	Н	355	2.00
1	5,150.000	49.93	3	74.00	24.07	11.76	Н	355	2.00
1	5,176.000	91.38	8			11.84	Н	355	2.00
97.5 95.5 90.87.5 80.77.5 70.5 72.5 70.5 62.5 60.57.5 52.5 52.5 42.5 40.37.5 32.5							φ ,		
30 27.5 25 22.5 20	11 G 5.115 G 5.120 G	5 5.125 G 5.1	30 G 5	.135 G 5.140 G 5.145	G 5.150 G 5.155 G	5.160 G 5.185 G 5.170	OG 5.175 G 5.180 G 5.185	G 5.190 G 5.195 G	5.200 G 5.21

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,145.000	35.84	54.00	18.16	11.75	Н	308.9	1.00
1	5,150.000	36.00	54.00	18.00	11.76	Н	308.9	1.00
1	5,178.500	79.14			11.84	Н	355	2.00
125 117.5 115.5 112.5 112.5 110.0 107.5 102.5 95.9 97.5 90.7 97.5 90.7 92.5 90.7 75.7 95.7 95.7 95.7 95.7 95.7 95.7 95						Φ		

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,122.000	50.66	74.00	23.34	11.73	V	75.8	1.00
1	5,150.000	49.34	74.00	24.66	11.76	V	1	2.00
1	5,181.500	86.28			11.85	V	1	2.00
E 1250 1250 1250 1250 1250 1250 1250 1250	-	Q	150, 5100, 515	0. 51500. 51650		G 5.175 G 5.180 G 5.185		5200 G 5.21

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,146.500	35.80	54.00	18.20	11.75	V	15.5	2.00
1	5,150.000	35.81	54.00	18.19	11.76	V	359	2.00
1	5,179.000	74.79			11.85	V	15.5	2.00
120 120 115 117 120 110 110 110 110 110 110 110 110 110	11 G 5.115 G 5.120 (

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5180MHz: Fundamental frequency.

INAH	NEL		TX (Channel 40)	DETECTO	OR	Peak (PK	<u>.</u>)	
REQU	JENCY RAI	NGE	1GF	1GHz ~ 40GHz		FUNCTIO	FUNCTION		(AV)	
	Al	NTENN	A PC	DLARITY 8	TEST DI	STANCE: HORIZONTAL AT 3 M				
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	5,131.000	50.41		74.00	23.59	11.74	Н	1.8	2.00	
2	5,150.000	49.05	5	74.00	24.95	11.76	Н	232.4	1.00	
2	5,198.500	93.14	4			11.91	Н	232.4	1.00	
102.5 100.0 97.5 95 92.5 92.5 82.5 75.5 75.5 75.5 66.6 62.5 55.5 50.4 47.5 40.3 42.5 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3		Q.			\					
30 27.5 25 22.5 20 5.	.11 G 5.115 G 5.	125 G 5	.135 G	5.145 G 5	.155 G 5.165 G	5.175 G	5.185 G 5.195 G	5.205 G 5.21	5 G 5.23	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,133.500	35.81	54.00	18.19	11.74	Н	358.1	1.00
2	5,150.000	35.78	54.00	18.22	11.76	Н	355.1	2.00
2	5,201.500	80.39			11.92	Н	232.4	1.00
125 125 120 120 120 120 120 120 120 120 120 120								

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,116.500	50.86	74.00	23.14	11.72	V	273	1.00
2	5,150.000	49.47	74.00	24.53	11.76	V	194.6	2.00
2	5,201.500	86.59			11.92	V	16.2	2.00
1255 - 117.5.5.110 - 117.5.5.110 - 117.5.5.110 - 117.5.5.110 - 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	φ							

√PK+ Level @Spectrum Overview

√PK+ Limit @5G WIFI 20M-B1_CH40

OPK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,134.000	35.88	54.00	18.12	11.74	V	234.7	1.00
2	5,150.000	35.82	54.00	18.18	11.76	V	1	2.00
2	5,201.500	76.27			11.92	V	45.1	2.00
120 120 120 120 120 120 120 120 120 120		0						

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5200MHz: Fundamental frequency.

IAN	NEL		ΤX	Channel 48	3	DETECTO	OR .	Peak (PK	()	
REQU	JENCY RAI	NGE	1GI	GHz ~ 40GHz		FUNCTIO	FUNCTION		Average (AV)	
	Al	NTENN	A P	OLARITY 8	STANCE: H	ORIZONTAL	AT 3 M			
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
3	5,121.500	50.46	6	74.00	23.54	11.73	Н	319.6	1.00	
3	5,150.000	49.33	3	74.00	24.67	11.76	Н	359	1.00	
3	5,238.000	87.77	7			11.93	Н	238.3	1.00	
- 102.5 100.0 97.5 92.5 92.5 88.5 75.7 72.5 65.7 65.5 62.5 55.5 50.4 42.5 40.3 37.5 30.2 27.5										
22.5 20	-									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,146.000	35.78	54.00	18.22	11.75	Н	355.1	2.00
3	5,150.000	35.80	54.00	18.20	11.76	Н	241.9	1.00
3	5,239.000	79.65			11.93	Н	241.9	1.00
125 120 117.5 111.5 112.5 1107.5 100.5 95.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 90.7 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97			7 6					

√AVG Level @Spectrum Overview

√AVG Limit @5G WIFI 20M-B1_CH48

AVG Limit WIFI 2

O AVG Level @CriticalPoint

Rg	Fre	que MHz	ncy :]	PK [d	(+ Le BµV	evel /m]	PK- [dB	⊦ Lin βμV/r	nit n]	N	PK+ largiı [dB]	n		rection dB]	ף	Pola	rizati	on	imu deg	H	ten eigh [m]	
3	5,1	22.0	00		50.6	4	7	4.00		2	23.36		1	1.73			٧		0.9	:	2.00	
3	5,150.000		150.000 49.90	74.00	24.10		11.76				٧		26	2.00								
3	5,2	42.0	000		86.5	8							1	1.93			٧		26	:	2.00	
125 125 117.			Q																			

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,134.000	35.83	54.00	18.17	11.74	V	119.2	2.00
3	5,150.000	35.79	54.00	18.21	11.76	V	200.6	2.00
3	5,241.500	76.30			11.93	V	39.1	2.00
12b 12b 17b 17b 17b 17b 17b 17b 17b 17b 17b 17			•					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5240MHz: Fundamental frequency.

					802.11n (4	40MHz)				
CHAN	NEL		TX Cha	nnel 38	8	DETECTO	DR .	Peak (PK	<u> </u>	
REQ	JENCY RAI	NGE	1GHz ~	40GH	Z	FUNCTIO	N	Average (AV)		
	Al	NTENN	A POLA	RITY 8	STANCE: H	ORIZONTAL	AT 3 M			
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel PK+ m] [dB	Limit µV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	5,135.500	36.99	9 74	1.00	37.01	11.74	Н	1	1.00	
1	5,150.000	36.90	74	1.00	37.10	11.76	Н	85.3	1.00	
1	5,187.500	80.66	3			11.87	Н	265.8	1.00	
E 125 127 117.5 117.5 117.5 117.5 117.5 117.5 107.5 107.5			Φ		Φ					

₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	36.03	54.00	17.97	11.76	Н	282.6	1.00
1	5,150.000	36.00	54.00	18.00	11.76	Н	282.6	1.00
1	5,177.500	76.42			11.84	Н	355.1	2.00
120 117.5 110.5 110.5 110.0 107.5 100.5 100.5 96.5 97.5 98.5 80.77.5 72.55 60.77.5 72.5 50.5 60.5 50.5						•		

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,138.500	37.28	74.00	36.72	11.75	V	93	2.00
1	5,150.000	36.81	74.00	37.19	11.76	V	359.1	1.00
1	5,179.000	74.34			11.85	V	9.3	2.00
125 120 117.5 117.5 117.5 117.5 117.5 117.5 117.5 117.5 117.5 102.						P		
42.5 40 37.5 35 32.5 30 27.5 25 22.5 20			Φ	0				

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,135.000	35.76	54.00	18.24	11.74	٧	1	2.00
1	5,150.000	50.000 35.79	54.00	18.21	11.76	V	1	2.00
1	5,179.000	73.04			11.85	٧	20.5	2.00
125 125 125 125 125 125 125 125 125 125				φ				

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5190MHz: Fundamental frequency.

A۱	INEL		ΤX	Channel 46	3	DETECTO	OR	Peak (PK	()	
EQ	UENCY RA			Hz ~ 40GH:		FUNCTIO	N Average) (AV)	
	Α	NTENN	<u> </u>	ORIZONTAL	AT 3 M					
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	5,115.625	50.60)	74.00	23.40	11.72	Н	0.9	2.00	
2	5,152.000	49.10	5	74.00	24.84	11.76	Н	87.8	1.00	
2	5,219.500	93.00)			11.92	Н	269.5	1.00	
92 87 82 87 77 67 62 62 62 57 52 42 42 42 43 37 32 33 32		^		~~~						
22	25 - .5 -									

√PK+ Level @Spectrum Overview

| ✓PK+ Limit @5G WIFI 40M-B1_CH46

O AVG Level @CriticalPoint

BUREAU Test Report No.: PSZ-QSZ2504020109RF06

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,136.625	35.80	54.00	18.20	11.74	Н	359.1	1.00
2	5,152.000	35.84	54.00	18.16	11.76	Н	359.1	1.00
2	5,218.750	79.62			11.92	Н	270.6	1.00
125 125 117.								
35 32.5 30 27.5 25 22.5 20			Ψ					

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,117.875	50.58	74.00	23.42	11.72	٧	355	2.00
2	5,152.000	152.000 49.34		24.66	11.76	V	5.5	1.00
2	5,222.125	85.05			11.92	V	7.8	2.00
1255 1200 117.5.110 117.5.110 107.5.								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,133.625	35.76	54.00	18.24	11.74	V	43.5	1.00
2	5,152.000	35.76	54.00	18.24	11.76	V	355	2.00
2	5,218.750	72.68			11.92	V	3	2.00
125 (25) 17.5 (2		φ	φ					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5230MHz: Fundamental frequency.