

TEST REPORT

Applicant: VTech Telecommunications Ltd

Address: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT, Hong Kong

FCC ID: EW780-S112-00

Product Name: SIP Phone

Standard(s): 47 CFR Part 15, Subpart C(15.247) ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230738438-00C

Date Of Issue: 2024/3/1

Reviewed By: Calvin Chen

Title: RF Engineer Approved By: Sun Zhong

abin Ohen Sun Zhong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION	8
1.2.1 EUT Operation Condition:	8
1.2.2 Support Equipment List and Details	8
1.2.4 Block Diagram of Test Setup	
1.3 MEASUREMENT UNCERTAINTY	.10
2. SUMMARY OF TEST RESULTS	.11
3. REQUIREMENTS AND TEST PROCEDURES	.12
3.1 AC LINE CONDUCTED EMISSIONS	.12
3.1.1 Applicable Standard	12
3.1.2 EUT Setup	13
3.1.3 EMI Test Receiver Setup	
3.1.4 Test Procedure	
3.1.5 Corrected Amplitude & Margin Calculation	
3.2 RADIATION SPURIOUS EMISSIONS	.15
3.2.1 Applicable Standard	15
3.2.2 EUT Setup	15
3.2.3 EMI Test Receiver & Spectrum Analyzer Setup	
3.2.4 Test Procedure	
3.2.5 Corrected Amplitude & Margin Calculation	
3.3 MINIMUM 6 DB EMISSION BANDWIDTH	.18
3.3.1 Applicable Standard	18
3.3.2 EUT Setup	
3.3.3 Test Procedure	18
3.4 99% OCCUPIED BANDWIDTH	.19
3.4.1 EUT Setup	19
3.4.2 Test Procedure	
3.5 MAXIMUM CONDUCTED OUTPUT POWER	
3.5.1 Applicable Standard	20
3.5.2 EUT Setup	
3.5.3 Test Procedure	
3.6 MAXIMUM POWER SPECTRAL DENSITY	
3.6.1 Applicable Standard	21
3.6.2 EUT Setup	
3.6.3 Test Procedure	
3.7 100 KHz BANDWIDTH OF FREQUENCY BAND EDGE	
3.7.1 Applicable Standard	22
3.7.2 EUT Setup	
3.7.3 Test Procedure	

Page 3 of 79

Report No.: CR230738438-00C

3.8 DUTY CYCLE	23
3.8.1 EUT Setup 3.8.2 Test Procedure 3.9 ANTENNA REQUIREMENT	
-	
3.9.1 Applicable Standard 3.9.2 Judgment	23 23
4. Test DATA AND RESULTS	24
4.1 AC LINE CONDUCTED EMISSIONS	24
4.2 RADIATION SPURIOUS EMISSIONS	27
4.3 MINIMUM 6 DB EMISSION BANDWIDTH	46
4.4 99% Occupied Bandwidth	51
4.5 MAXIMUM CONDUCTED OUTPUT POWER	56
4.6 MAXIMUM POWER SPECTRAL DENSITY	57
4.7 100 KHz Bandwidth of Frequency Band Edge:	66
4.8 DUTY CYCLE:	75
5. EUT PHOTOGRAPHS	78
6. TEST SETUP PHOTOGRAPHS	79

DOCUMENT REVISION HISTORY

Revision Number	vision Number Report Number Description of Revision		Date of Revision	
1.0	CR230738438-00C	Original Report	2024/3/1	

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	SIP Phone
EUT Model:	D892M
Multiple Model(s)	D892
Trade Name:	SNOM
Operation Frequency:	2412-2462 MHz(802.11b/g/n ht20) 2422-2452 MHz(802.11n ht40)
Maximum Peak Output Power (Conducted):	23.27 dBm
Modulation Type:	802.11b:DSSS-DBPSK, DQPSK, CCK 802.11g/n:OFDM-BPSK, QPSK, 16QAM, 64QAM
Rated Input Voltage:	DC 5V from adapter or DC 48V From POE
Serial Number:	CE&RE: 27SO-2 RF: 27SO-1
EUT Received Date:	2023/7/5
EUT Received Status:	Good

Operation Frequency Detail: For 802.11b/g/n ht20:

Channel	Channel Frequency (MHz)		Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/
Per section 15.31(m), the	below frequencies were perform	ned the test as below:	
Test	Channel		equency MHz)
Lowest			2412
N	liddle		2437
Н	ighest		2462

For 802.11n ht40:

Channel	Channel Frequency (MHz)		Frequency (MHz)	
3	2422	7	2442	
4	2427	8	2447	
5	2432	9	2452	
6	2437	/	/	
Per section 15.31(m), the	below frequencies were perfor	med the test as below:		
Test Channel Frequency (MHz)				
Lowest			2422	
Middle		2437		
Highest			2452	

Antenna Information Detail▲:

Antenna	Antenna Type	input impedance (Ohm)	Frequency Range (MHz)	Antenna Gain (dBi)
Chain 0	PCB	50	2400~2500	0
Chain 1	PCB	50	2400~2500	0
The Method of \$15	202 Compliance			

The Method of §15.203 Compliance:

Antenna was permanently attached to the unit.

Antenna use a unique type of connector to attach to the EUT.

Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

Accessory Information:						
Accessory Description	Manufacturer	Model	Parameters			
Adapter 2	Mass Power Electronic Limited	NBS12E050200UV	Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2.0A, 10.0W			
Adapter 1	ShenZhen Rongweixin Technology Co.,Ltd.	R122-0502000ID	Input: AC 100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2.0A, 10.0W			

1.2 Description of Test Configuration 1.2.1 EUT Operation Condition: For 802.11b/g/n:

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer. Per BT report test, conducted emissions test with Powered by POE was the worst. Radiated emissions test with Powered by Adapter 1 was the worst.
Equipment Modifications:	No
EUT Exercise Software:	SecureCRT

The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer \blacktriangle :

		Power Level Setting					
Test Modes	Data Rate	Lowest Channel		Middle Channel		Highest Channel	
		Chain 0	Chain 1	Chain 0	Chain 1	Chain 0	Chain 1
802.11b	1Mbps	80	80	80	80	80	80
802.11g	6Mbps	60	60	60	60	60	60
802.11n ht20	MCS8	60	60	60	60	60	60
802.11n ht40	MCS8	60	60	60	60	60	60

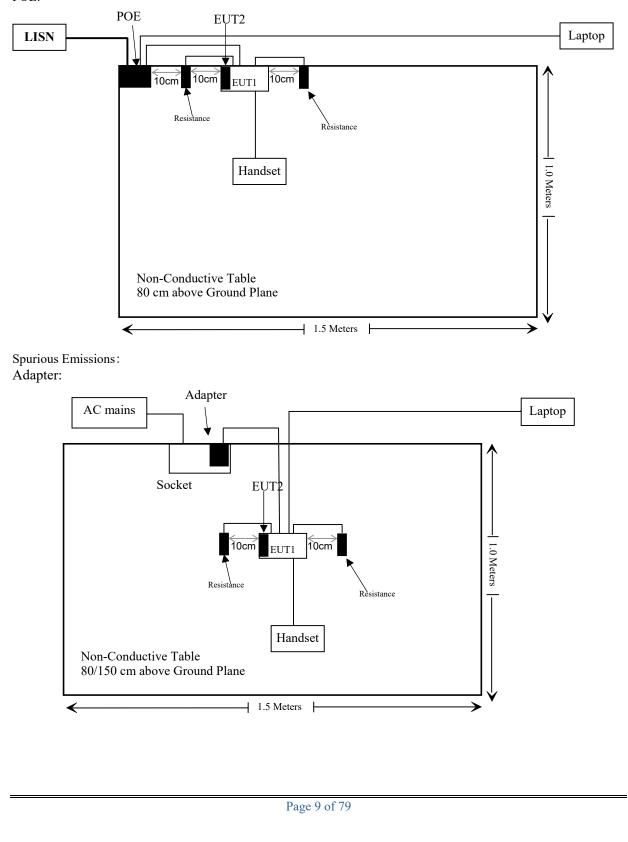
Note:

1. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.

2. The device supports SISO in all modes and MIMO in 802.11n ht20/n ht40 modes, per pretest, the MIMO mode for 802.11n ht20/n ht40 modes was the worst mode.

1.2.2 Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	Resistance*2	N/A	N/A
N/A	Headset	N/A	N/A
DELL	Laptop	E6410	GYXJ3 A00 JSD2


1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
AC cable	No	No	1.2	LISN/ AC mains	Socket
DC cable	No	No	1.5	Adapter	EUT
USB cable	No	No	0.5	EUT	Resistance
RJ45 cable	No	Yes	10.0	EUT	Laptop

EUT1: Base EUT2: Cordless handset

1.2.4 Block Diagram of Test Setup

AC line conducted emissions: POE:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
	9kHz-30MHz: 4.12dB, 30M~200MHz: 4.15 dB,
Unwanted Emissions, radiated	200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB,
	6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	Minimum 6 dB Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 Applicable Standard

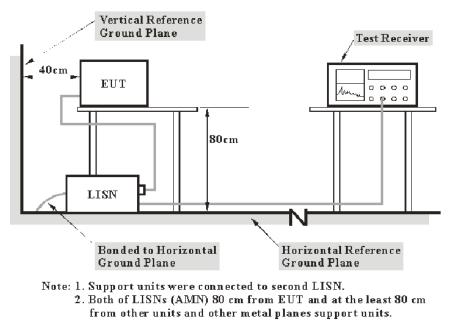
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

3.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification

used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

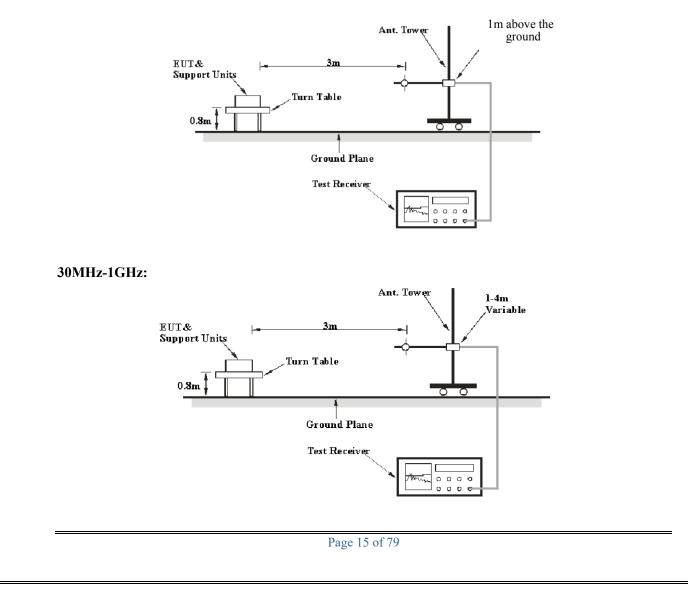
The basic equation is as follows:

Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN

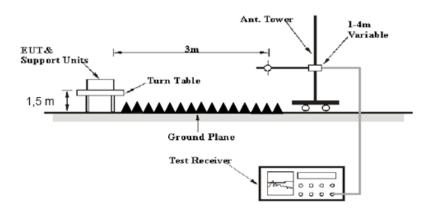
The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.2 Radiation Spurious Emissions


3.2.1 Applicable Standard

FCC §15.247 (d);


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.2.2 EUT Setup

9 kHz-30MHz:

Above 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1000MHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
0 kHz 150 kHz	/	/	200 Hz	QP/AV
9 kHz – 150 kHz	300 Hz	1 kHz	/	РК
150 kHz – 30 MHz	/	/	9 kHz	QP/AV
	10 kHz	30 kHz	/	РК
30 MHz – 1000 MHz	/	/	120 kHz	QP
30 MINZ – 1000 MINZ	100 kHz	300 kHz	/	РК

1GHz-25GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
AV	>98%	1MHz	10 Hz
	<98%	1MHz	≥1/T

Note: T is minimum transmission duration

Page 16 of 79

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz-1 GHz except 9–90 kHz, 110–490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

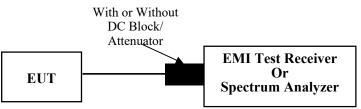
3.2.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

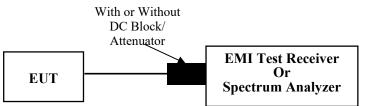

3.3 Minimum 6 dB Emission Bandwidth

3.3.1 Applicable Standard

FCC §15.247 (a)(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3.2 EUT Setup


3.3.3 Test Procedure

According to ANSI C63.10-2013 Section 11.8

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4 99% Occupied Bandwidth

3.4.1 EUT Setup

3.4.2 Test Procedure

According to ANSI C63.10-2013 Section 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

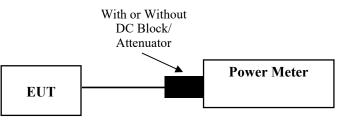
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).


3.5 Maximum Conducted Output Power

3.5.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.5.2 EUT Setup

3.5.3 Test Procedure

For Peak Power

According to ANSI C63.10-2013 Section 11.9.1.3

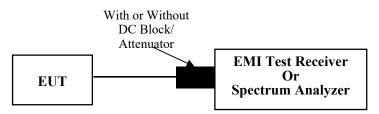
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

For Average Power

According to ANSI C63.10-2013 Section 11.9.2.3.2

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.


3.6 Maximum Power Spectral Density

3.6.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.2 EUT Setup

3.6.3 Test Procedure

According to ANSI C63.10-2013 Section 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.

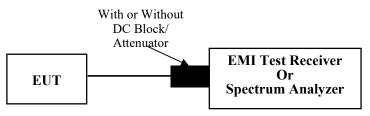
d) Set VBW \geq [3× RBW].

e) Detector = peak.

- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.


3.7 100 kHz Bandwidth of Frequency Band Edge

3.7.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.7.2 EUT Setup

3.7.3 Test Procedure

According to ANSI C63.10-2013 Section 11.11

a) Set the center frequency and span to encompass frequency range to be measured.

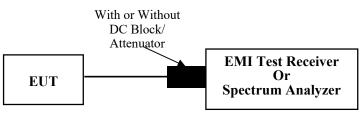
b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

3.8 Duty Cycle

3.8.1 EUT Setup

3.8.2 Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \ \mu s$.)

3.9 Antenna Requirement

3.9.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

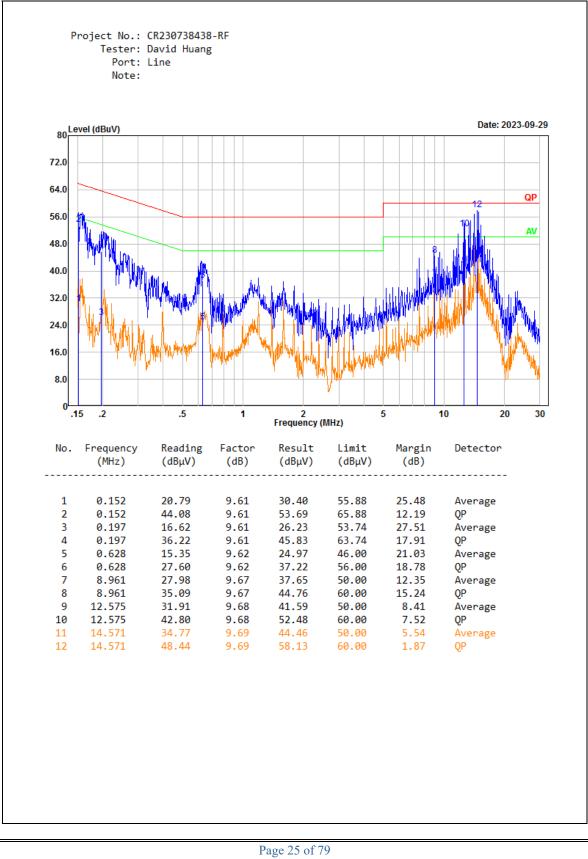
3.9.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.

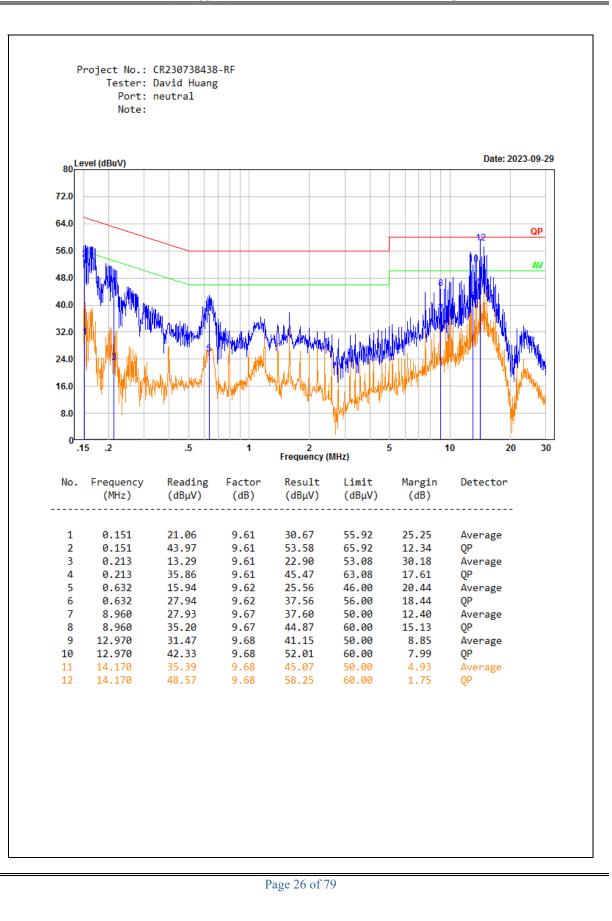
4. Test DATA AND RESULTS

4.1 AC Line Conducted Emissions

Serial Number:	27SO-2	Test Date:	2023/09/29
Test Site:	CE	Test Mode:	Transmitting(maximum output power mode 802.11n ht40 Low Channel)
Tester:	David Huang	Test Result:	Pass


Environmental Conditions:						
Temperature: (℃)	25.3	Relative Humidity: (%)	65	ATM Pressure: (kPa)	100.1	

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2023/03/31	2024/03/30
R&S	EMI Test Receiver	ESR3	102726	2023/03/31	2024/03/30
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2023/08/06	2024/08/05
Audix	Test Software	E3	190306 (V9)	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

For POE

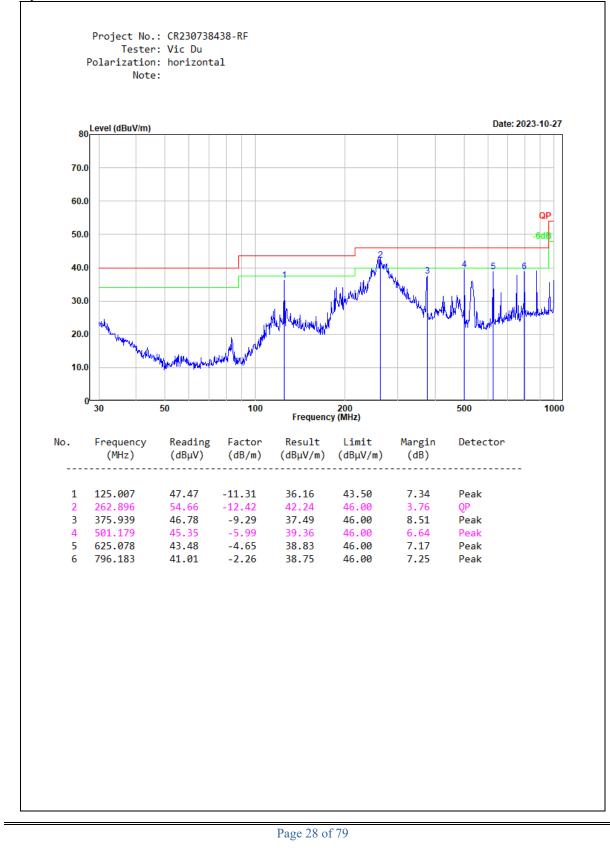
Report No.: CR230738438-00C

4.2 Radiation Spurious Emissions

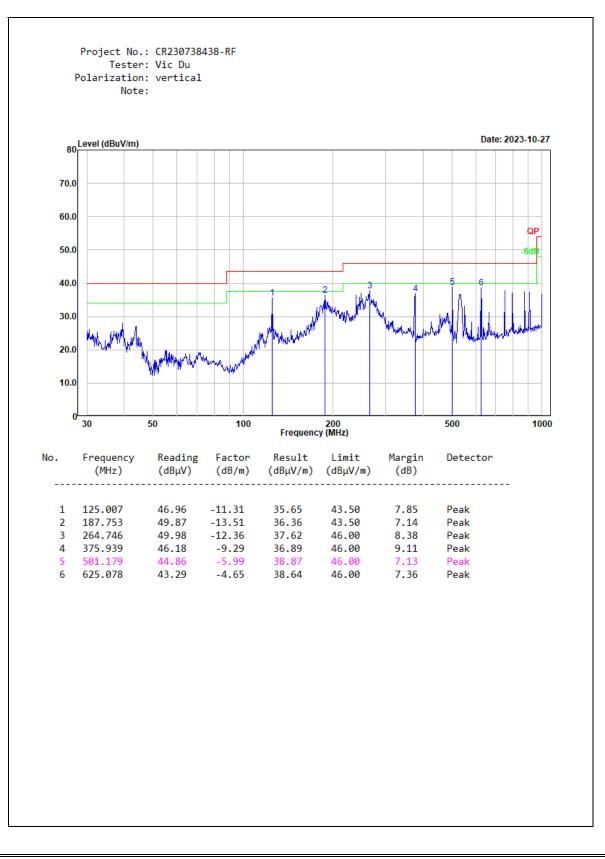
Serial Number:	27SO-2	Test Date:	Below 1GHz: 2023/10/27 Above 1GHz: 2023/9/2
Test Site:	966-1, 966-2	Test Mode:	Transmitting
Tester:	Vic Du, Mack Huang	Test Result:	Pass

Environmental	Environmental Conditions:						
Temperature: (°C)	26.2~26.3	Relative Humidity: (%)	53~67	ATM Pressure: (kPa)	99.3~100.8		

Test Equipment List and Details:

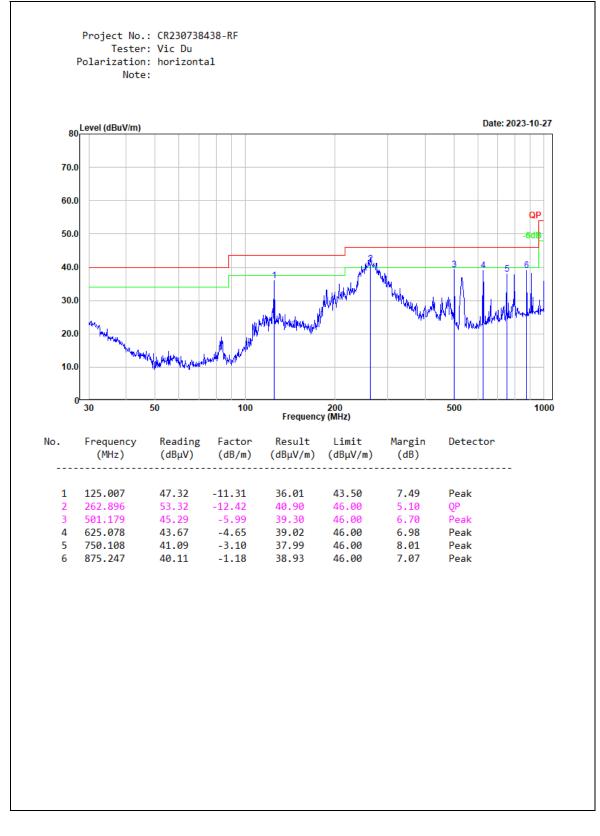

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Below 1GHz							
Sunol Sciences	Antenna	JB6	A082520-6	2023/9/18	2026/9/17			
R&S	EMI Test Receiver	ESR3	102724	2023/3/31	2024/3/30			
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2023/7/16	2024/7/15			
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2023/7/16	2024/7/15			
ЕМСО	Passive Loop Antenna	6512	9706-1209	2023/2/15	2026/2/14			
Sonoma	Amplifier	310N	186165	2023/7/16	2024/7/15			
Audix	Test Software	E3	201021 (V9)	N/A	N/A			
		Above 1GH	Iz					
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12			
R&S	Spectrum Analyzer	FSV40	101591	2023/03/31	2024/03/30			
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2023/08/06	2024/08/05			
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2023/08/06	2024/08/05			
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08			
Audix	Test Software	E3	201021 (V9)	N/A	N/A			
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/02/05	2024/02/04			
Quinstar	Preamplifier	QLW-18405536- JO	15964001005	2022/09/17	2024/09/16			
MICRO-COAX	Coaxial Cable	UFB142A-1-2362- 200200	235772-001	2023/08/06	2024/08/05			
E-Microwave	Band Rejection Filter	2400-2483.5MHz	OE01902424	2023/08/06	2024/08/05			
Mini Circuits	High Pass Filter	VHF-6010+	31119	2023/08/06	2024/08/05			

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

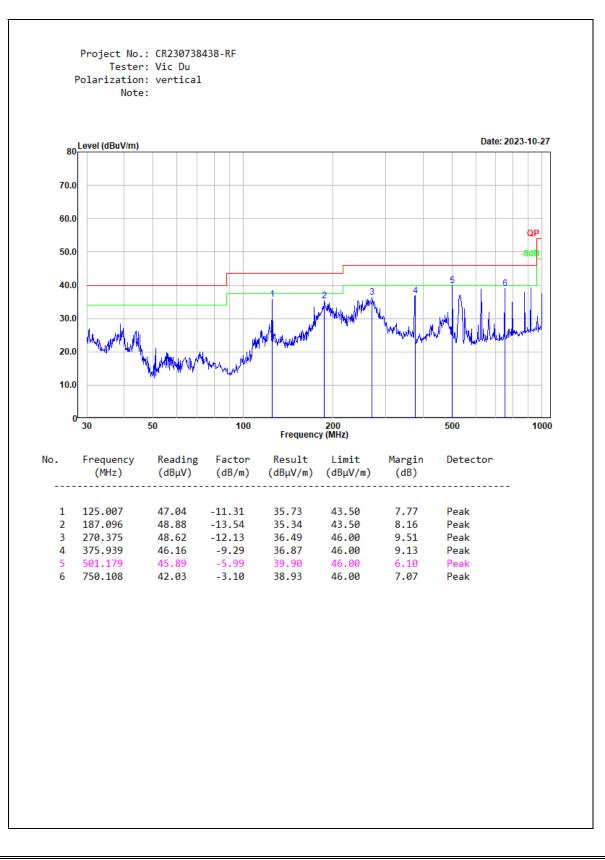

Test Data:

For 9kHz-30MHz, Test mode: maximum output power mode, 802.11n ht40, The amplitude of spurious emissions attenuated more than 20 dB below the limit was not be recorded.

1) 30MHz-1GHz (maximum output power mode, 802.11n ht40) Adapter 1 Low channel

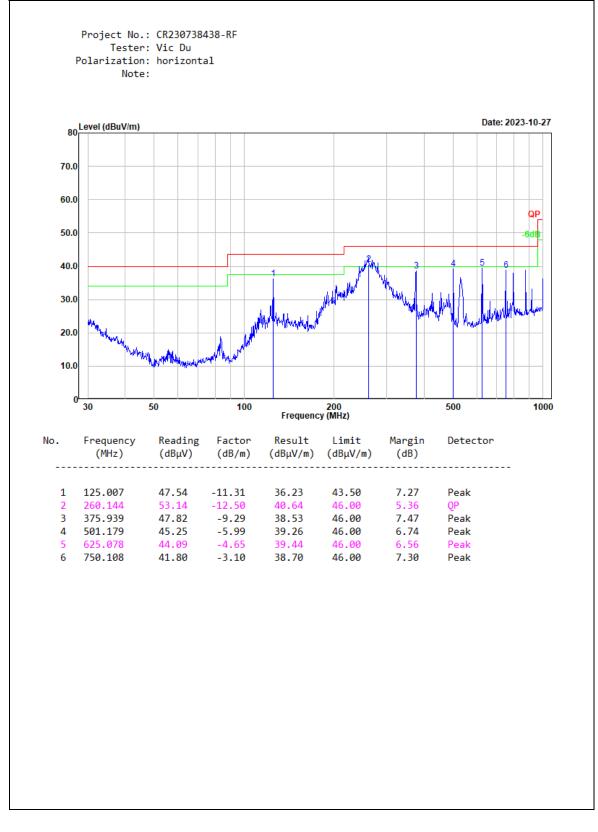


Report No.: CR230738438-00C

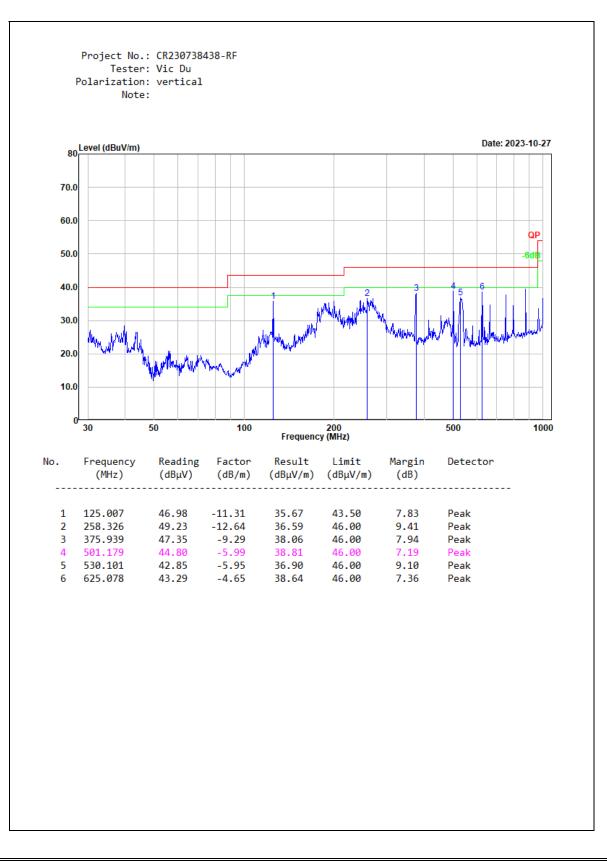


Report No.: CR230738438-00C

Middle channel



Report No.: CR230738438-00C



Report No.: CR230738438-00C

High channel

Report No.: CR230738438-00C

2) 1-25GHz:

802.11b Mode Chain 0:

Frequency (MHz)	Receiver			-					
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Low Channel: 2412 MHz									
2390.000	27.75	РК	Н	31.46	59.21	74.00	14.79		
2390.000	16.67	AV	Н	31.46	48.13	54.00	5.87		
2390.000	27.65	РК	V	31.46	59.11	74.00	14.89		
2390.000	16.54	AV	V	31.46	48.00	54.00	6.00		
4824.000	44.25	РК	Н	10.94	55.19	74.00	18.81		
4824.000	33.93	AV	Н	10.94	44.87	54.00	9.13		
4824.000	43.75	РК	V	10.94	54.69	74.00	19.31		
4824.000	33.24	AV	V	10.94	44.18	54.00	9.82		
	Middle Channel: 2437 MHz								
4874.000	45.03	РК	Н	11.05	56.08	74.00	17.92		
4874.000	34.99	AV	Н	11.05	46.04	54.00	7.96		
4874.000	44.29	РК	V	11.05	55.34	74.00	18.66		
4874.000	33.68	AV	V	11.05	44.73	54.00	9.27		
High Channel: 2462 MHz									
2483.500	27.19	РК	Н	31.64	58.83	74.00	15.17		
2483.500	16.23	AV	Н	31.64	47.87	54.00	6.13		
2483.500	26.08	РК	V	31.64	57.72	74.00	16.28		
2483.500	16.09	AV	V	31.64	47.73	54.00	6.27		
4924.000	45.64	РК	Н	11.19	56.83	74.00	17.17		
4924.000	35.80	AV	Н	11.19	46.99	54.00	7.01		
4924.000	43.81	РК	V	11.19	55.00	74.00	19.00		
4924.000	31.40	AV	V	11.19	42.59	54.00	11.41		

Report No.: CR230738438-00C

802.11b Mode Chain 1:

Frequency (MHz)	Receiver			-			
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low	Channel:	2412	MHz			
2390.000	26.81	РК	Н	31.46	58.27	74.00	15.73
2390.000	15.73	AV	Н	31.46	47.19	54.00	6.81
2390.000	26.91	РК	V	31.46	58.37	74.00	15.63
2390.000	15.54	AV	V	31.46	47.00	54.00	7.00
4824.000	42.47	РК	Н	10.94	53.41	74.00	20.59
4824.000	32.33	AV	Н	10.94	43.27	54.00	10.73
4824.000	41.91	РК	V	10.94	52.85	74.00	21.15
4824.000	31.40	AV	V	10.94	42.34	54.00	11.66
		Middle	Channel:	2437	MHz		
4874.000	43.20	РК	Н	11.05	54.25	74.00	19.75
4874.000	33.05	AV	Н	11.05	44.10	54.00	9.90
4874.000	42.63	РК	V	11.05	53.68	74.00	20.32
4874.000	31.95	AV	V	11.05	43.00	54.00	11.00
	High	Channel:	2462	MHz			
2483.500	26.58	РК	Н	31.64	58.22	74.00	15.78
2483.500	15.67	AV	Н	31.64	47.31	54.00	6.69
2483.500	25.12	РК	V	31.64	56.76	74.00	17.24
2483.500	15.17	AV	V	31.64	46.81	54.00	7.19
4924.000	43.97	РК	Н	11.19	55.16	74.00	18.84
4924.000	33.81	AV	Н	11.19	45.00	54.00	9.00
4924.000	42.67	РК	V	11.19	53.86	74.00	20.14
4924.000	32.93	AV	V	11.19	44.12	54.00	9.88

Report No.: CR230738438-00C

802.11g Mode Chain 0:

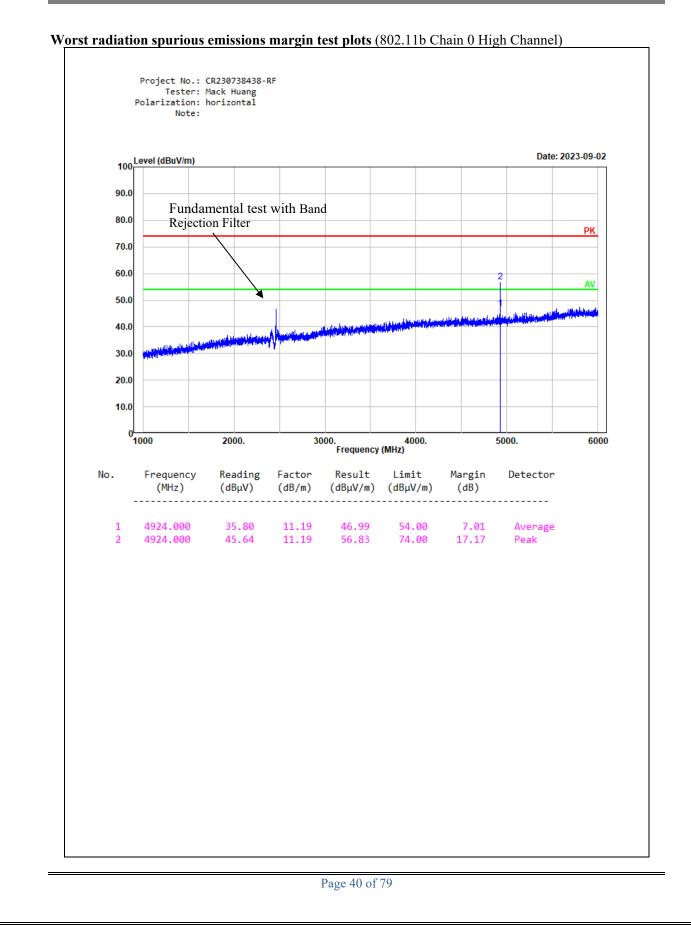
Frequency (MHz)	Receiver		D 1	_			
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		Low	Channel:	2412	MHz		
2390.000	37.83	РК	Н	31.46	69.29	74.00	4.71
2390.000	18.66	AV	Н	31.46	50.12	54.00	3.88
2390.000	36.88	РК	V	31.46	68.34	74.00	5.66
2390.000	17.95	AV	V	31.46	49.41	54.00	4.59
4824.000	43.88	РК	Н	10.94	54.82	74.00	19.18
4824.000	30.54	AV	Н	10.94	41.48	54.00	12.52
4824.000	43.12	РК	V	10.94	54.06	74.00	19.94
4824.000	29.36	AV	V	10.94	40.30	54.00	13.70
	Middle				MHz		
4874.000	44.67	РК	Н	11.05	55.72	74.00	18.28
4874.000	31.16	AV	Н	11.05	42.21	54.00	11.79
4874.000	43.51	РК	V	11.05	54.56	74.00	19.44
4874.000	30.19	AV	V	11.05	41.24	54.00	12.76
High Chanr				2462	MHz		
2483.500	36.16	РК	Н	31.64	67.80	74.00	6.20
2483.500	18.35	AV	Н	31.64	49.99	54.00	4.01
2483.500	35.35	РК	V	31.64	66.99	74.00	7.01
2483.500	17.45	AV	V	31.64	49.09	54.00	4.91
4924.000	45.27	РК	Н	11.19	56.46	74.00	17.54
4924.000	31.65	AV	Н	11.19	42.84	54.00	11.16
4924.000	44.62	РК	V	11.19	55.81	74.00	18.19
4924.000	30.14	AV	V	11.19	41.33	54.00	12.67

Report No.: CR230738438-00C

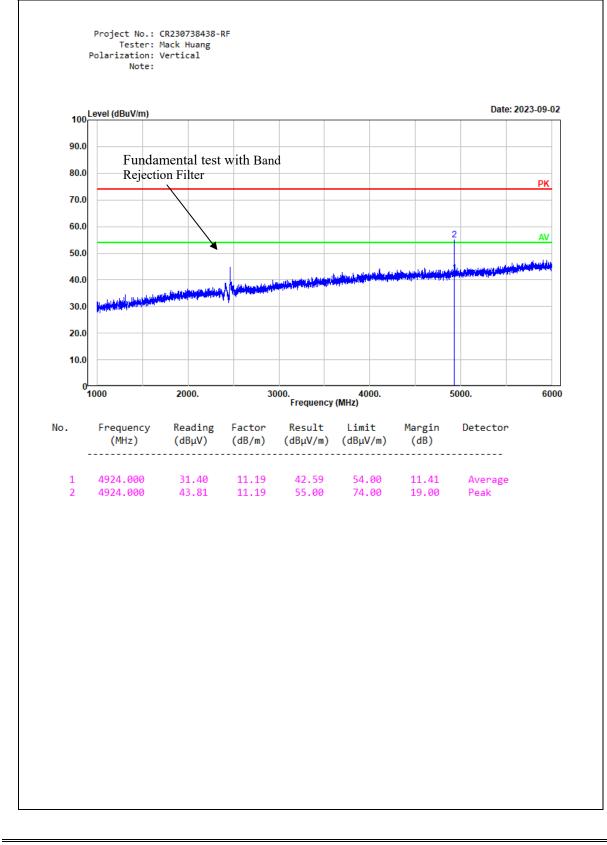
802.11g Mode Chain 1:

	Rece	eiver	D 1		D L	T • •.	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	•	Low	Channel:	2412	MHz		
2390.000	36.91	РК	Н	31.46	68.37	74.00	5.63
2390.000	17.73	AV	Н	31.46	49.19	54.00	4.81
2390.000	36.03	РК	V	31.46	67.49	74.00	6.51
2390.000	17.11	AV	V	31.46	48.57	54.00	5.43
4824.000	41.91	РК	Н	10.94	52.85	74.00	21.15
4824.000	29.02	AV	Н	10.94	39.96	54.00	14.04
4824.000	41.62	РК	V	10.94	52.56	74.00	21.44
4824.000	27.56	AV	V	10.94	38.50	54.00	15.50
	·	Middle	Channel:	2437	MHz		
4874.000	43.07	РК	Н	11.05	54.12	74.00	19.88
4874.000	29.42	AV	Н	11.05	40.47	54.00	13.53
4874.000	41.97	РК	V	11.05	53.02	74.00	20.98
4874.000	28.47	AV	V	11.05	39.52	54.00	14.48
		High	Channel:	2462	MHz		
2483.500	35.39	РК	Н	31.64	67.03	74.00	6.97
2483.500	17.45	AV	Н	31.64	49.09	54.00	4.91
2483.500	34.47	РК	V	31.64	66.11	74.00	7.89
2483.500	16.69	AV	V	31.64	48.33	54.00	5.67
4924.000	43.63	РК	Н	11.19	54.82	74.00	19.18
4924.000	29.89	AV	Н	11.19	41.08	54.00	12.92
4924.000	42.71	РК	V	11.19	53.90	74.00	20.10
4924.000	28.18	AV	V	11.19	39.37	54.00	14.63

Report No.: CR230738438-00C

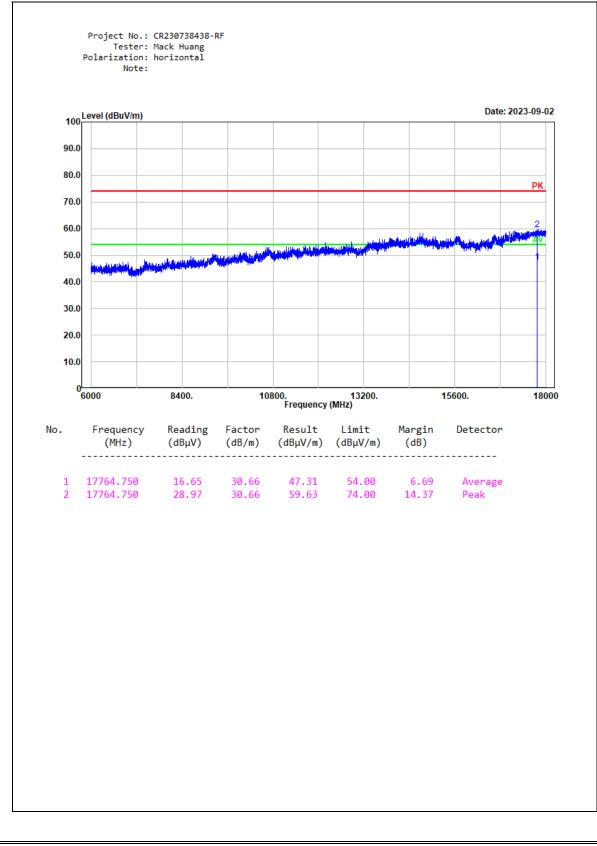

802.11n ht20 Mode:

- F	Rece	eiver	D.1	T		- • •	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		Low	Channel:	2412	MHz		
2390.000	38.22	РК	Н	31.46	69.68	74.00	4.32
2390.000	18.97	AV	Н	31.46	50.43	54.00	3.57
2390.000	37.47	РК	V	31.46	68.93	74.00	5.07
2390.000	17.56	AV	V	31.46	49.02	54.00	4.98
4824.000	43.95	РК	Н	10.94	54.89	74.00	19.11
4824.000	30.34	AV	Н	10.94	41.28	54.00	12.72
4824.000	42.65	РК	V	10.94	53.59	74.00	20.41
4824.000	29.34	AV	V	10.94	40.28	54.00	13.72
		Middle	Channel:	2437	MHz		
4874.000	44.76	РК	Н	11.05	55.81	74.00	18.19
4874.000	31.04	AV	Н	11.05	42.09	54.00	11.91
4874.000	43.24	РК	V	11.05	54.29	74.00	19.71
4874.000	30.19	AV	V	11.05	41.24	54.00	12.76
		High	Channel:	2462	MHz		
2483.500	36.98	РК	Н	31.64	68.62	74.00	5.38
2483.500	18.64	AV	Н	31.64	50.28	54.00	3.72
2483.500	36.07	РК	V	31.64	67.71	74.00	6.29
2483.500	17.62	AV	V	31.64	49.26	54.00	4.74
4924.000	45.35	РК	Н	11.19	56.54	74.00	17.46
4924.000	31.56	AV	Н	11.19	42.75	54.00	11.25
4924.000	44.22	РК	V	11.19	55.41	74.00	18.59
4924.000	30.28	AV	V	11.19	41.47	54.00	12.53

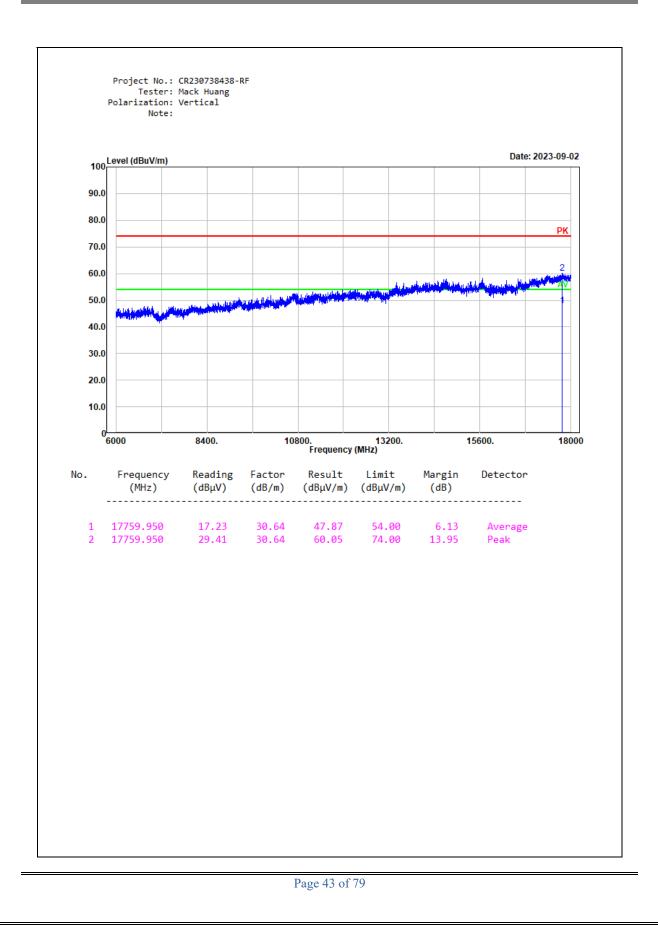

Report No.: CR230738438-00C

802.11n ht40 Mode:

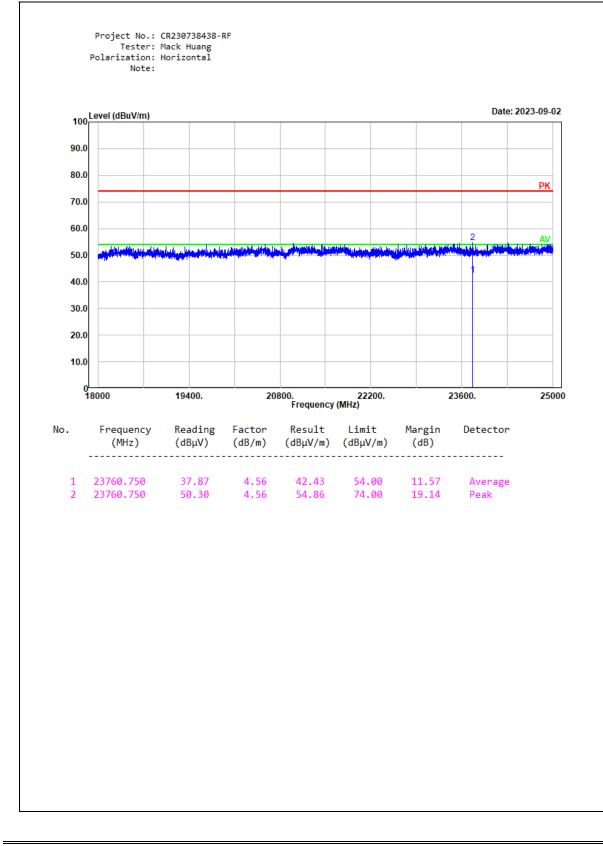
	Rece	eiver	D 1	D (T T T	
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		Low	Channel:	2422	MHz		
2390.000	37.97	РК	Н	31.46	69.43	74.00	4.57
2390.000	19.00	AV	Н	31.46	50.46	54.00	3.54
2390.000	36.84	РК	V	31.46	68.30	74.00	5.70
2390.000	18.26	AV	V	31.46	49.72	54.00	4.28
4844.000	43.44	РК	Н	10.96	54.40	74.00	19.60
4844.000	30.15	AV	Н	10.96	41.11	54.00	12.89
4844.000	42.57	РК	V	10.96	53.53	74.00	20.47
4844.000	29.35	AV	V	10.96	40.31	54.00	13.69
		Middle	Channel:	2437	MHz		
4874.000	44.15	РК	Н	11.05	55.20	74.00	18.80
4874.000	30.86	AV	Н	11.05	41.91	54.00	12.09
4874.000	43.63	РК	V	11.05	54.68	74.00	19.32
4874.000	30.07	AV	V	11.05	41.12	54.00	12.88
		High	Channel:	2452	MHz		
2483.500	37.34	РК	Н	31.64	68.98	74.00	5.02
2483.500	18.76	AV	Н	31.64	50.40	54.00	3.60
2483.500	36.52	РК	V	31.64	68.16	74.00	5.84
2483.500	17.95	AV	V	31.64	49.59	54.00	4.41
4904.000	44.70	РК	Н	11.14	55.84	74.00	18.16
4904.000	31.41	AV	Н	11.14	42.55	54.00	11.45
4904.000	43.21	РК	V	11.14	54.35	74.00	19.65
4904.000	30.42	AV	V	11.14	41.56	54.00	12.44

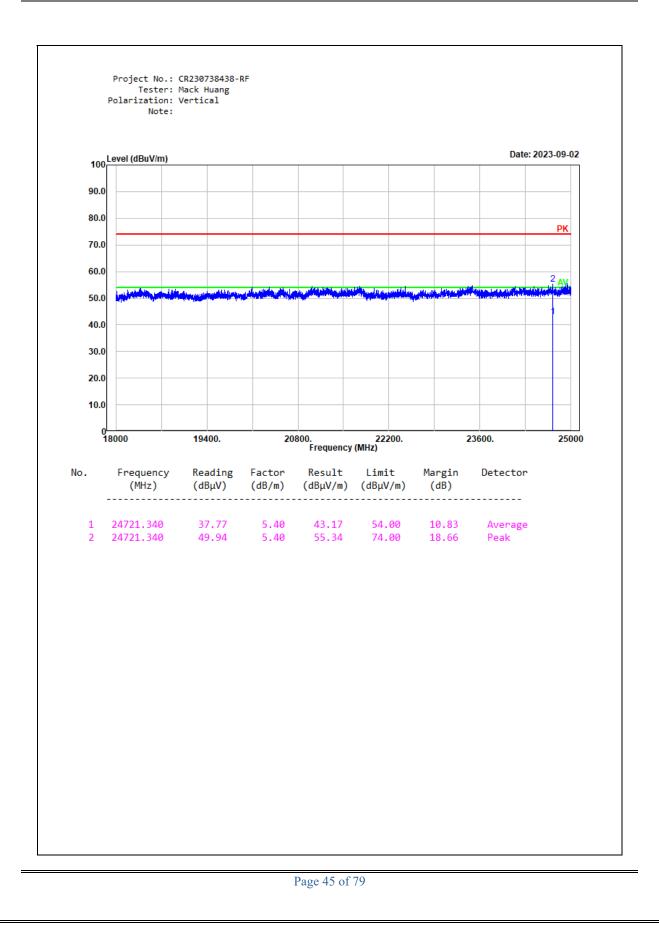


Report No.: CR230738438-00C



Page 41 of 79


Report No.: CR230738438-00C


Page 42 of 79

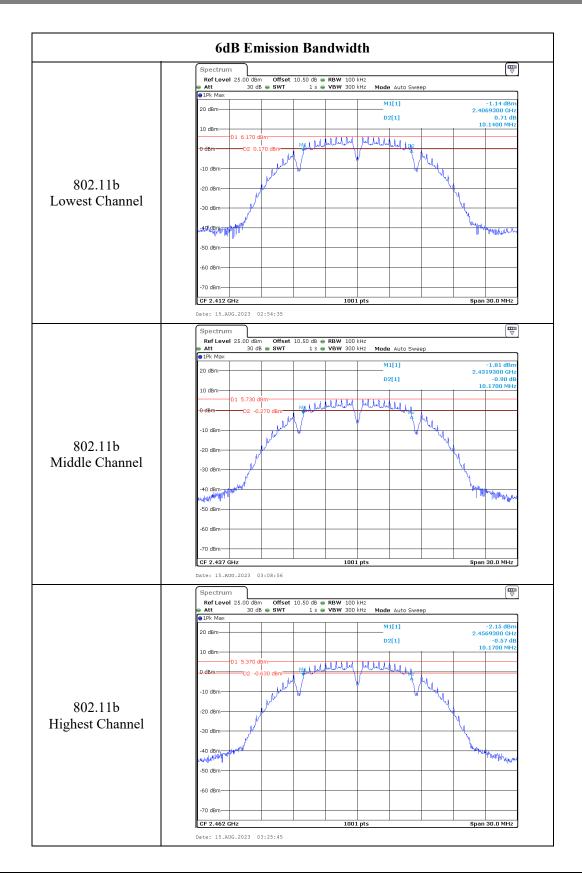
Report No.: CR230738438-00C

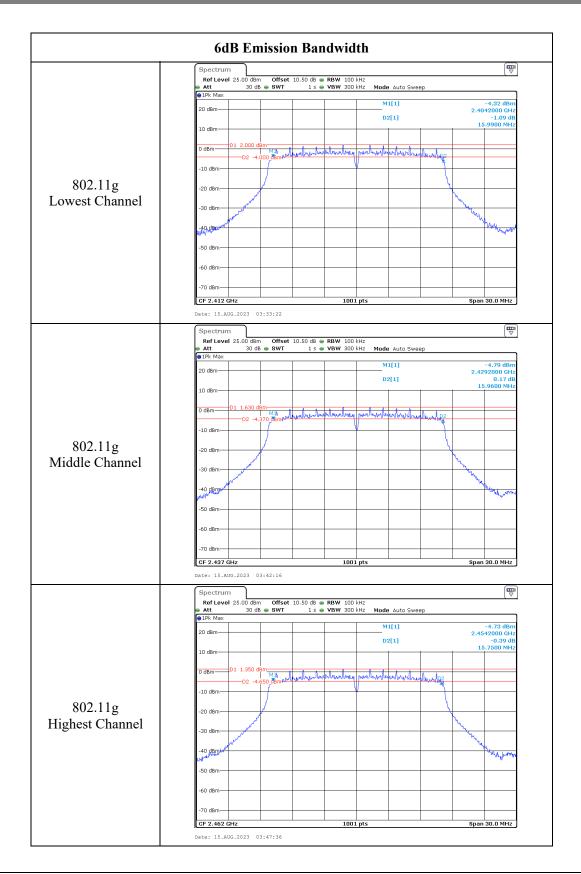
Page 44 of 79

4.3 Minimum 6 dB Emission Bandwidth

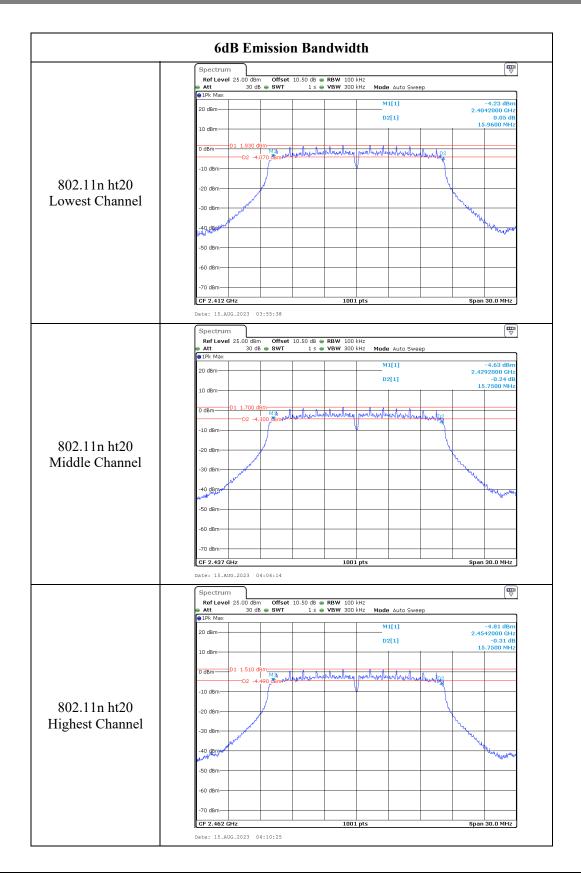
Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

Environmental Conditions:						
Temperature: (°C)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101	


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023-04-18	2024-04-17
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Modes	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)			
	2412	10.14	0.5			
802.11b	2437	10.17	0.5			
	2462	10.17	0.5			
	2412	15.99	0.5			
802.11g	2437	15.96	0.5			
	2462	15.75	0.5			
	2412	15.96	0.5			
802.11n ht20	2437	15.75	0.5			
	2462	15.75	0.5			
	2422	35.28	0.5			
802.11n ht40	2437	35.28	0.5			
	2452	35.28	0.5			
Note: Test only was performed at Chain 0.						

Page 48 of 79

Page 49 of 79

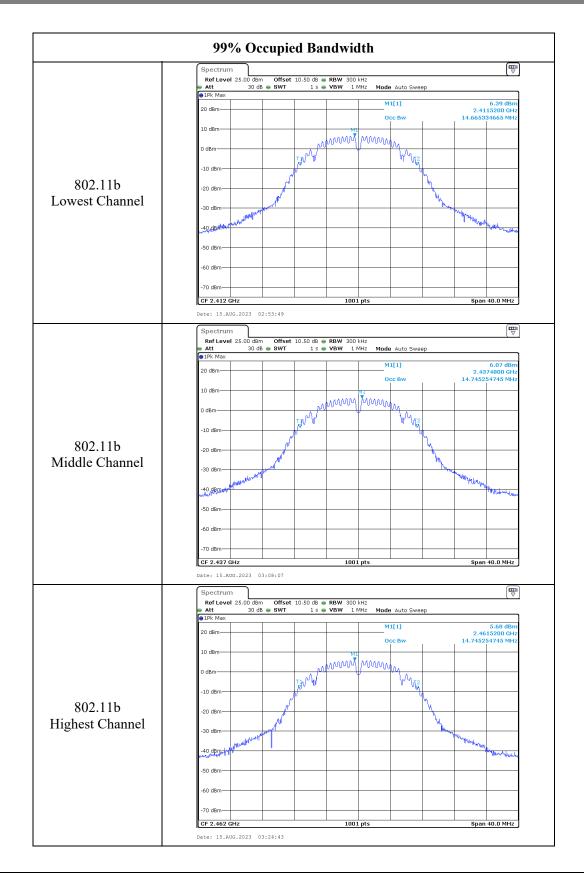
	6dB Emission Bandwidth
1	Spectrum [™]
	Ref Level 25.00 dBm Offset 10.50 dB RBW 100 kHz
	Att 30 dB SWT 1 s VBW 300 kHz Mode Auto Sweep
	20 dBm M1[1] -8.35 dBm 2.4043600 GHz
	D2[1] 1.00 dB 35.2800 MHz
	10 dBm
	0.dBm 01 -0.570 dBm
	D2 -6 20 abrillion allowed and allowed and a property allowed and a set of the set of th
	-10 dBm
802.11n ht40	-20 dBm-
Lowest Channel	
	-30 dBm
	-40 dBm
	Jul Jan Kanada
	-50 dBm
	-60 dBm
	-70 dBm
	CF 2.422 GHz 1001 pts Span 60.0 MHz
	Date: 15.AUG.2023 04:24:04
	Spectrum 🕎
	Ref Level 25:00 dBm Offset 10:50 dB RBW 100 kHz Att 30 dB SWT 1 s VBW 300 kHz Mode Auto Sweep
	●1Pk Max M1[1] -8.52 dBm
	20 dBm 2.4193600 GHz
	D2[1] -0.71 dB 35.2800 MHz
	OdBm D1 -1.070 dBm D1 -1.070 d
	0. dBm 01 -1.070 dBm 02 -7.090 dBm under under under under under der der der der der der der der der
000 11 1/40	
802.11n ht40	-20 dBm
Middle Channel	-30 dBm
	-40 dBm
	-50 dBm
	-60 dBm
	-70 dBm-
	-7/0 UDINI
	Date: 15,AUG.2023 05:25:30
	Spectrum ((∇)) Ref Level 25.00 dBm Offset 10.50 dB ● RBW 100 kHz
	Att 30 dB SWT 1s VBW 300 kHz Mode Auto Sweep
	M1[1] -8.47 dBm
	D2[1] -0.64 dB
	10 dBm 35.2800 MHz
	0.48m 01 -1.140 dam
	-10 dBm
802.11n ht40	
Highest Channel	-20 dBm
Ingliest Channel	-30 dBm
	-40 dam
	-50 dBm
	-60 dBm
	-70 dBm
	CF 2.452 GHz 1001 pts Span 60.0 MHz

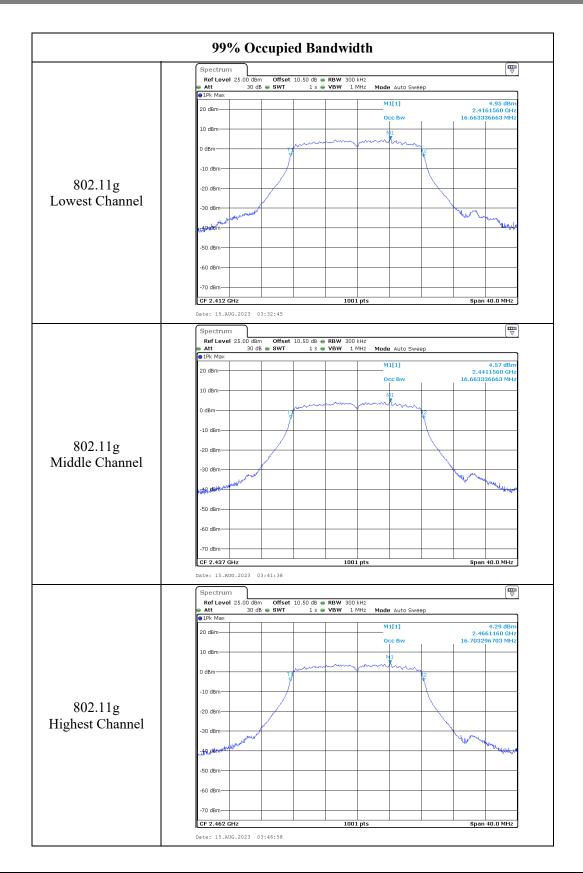
Page 50 of 79

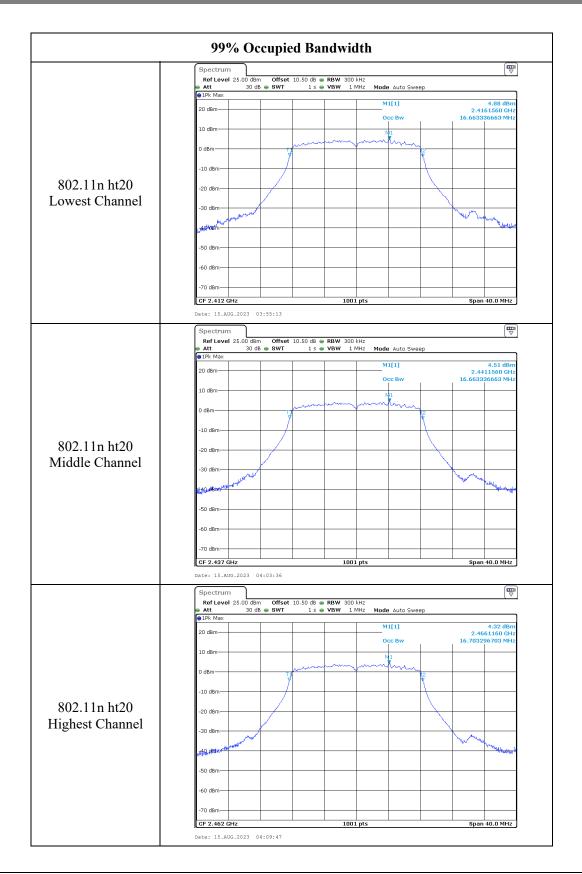
4.4 99% Occupied Bandwidth

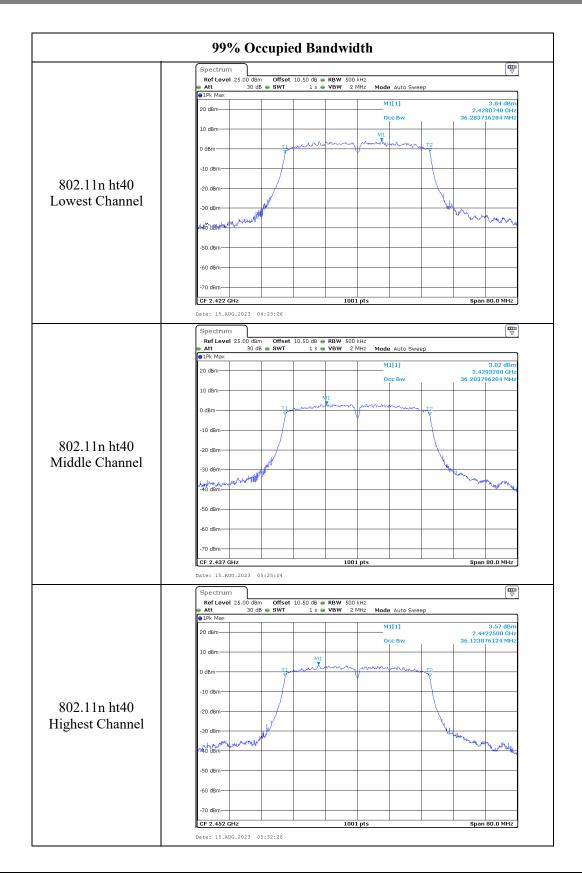
Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	N/A

Environmental Conditions:						
Temperature: (°C)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101	


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023-04-18	2024-04-17
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Modes	Test Channel	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)			
	Lowest	2412	14.67			
802.11b	Middle	2437	14.75			
	Highest	2462	14.75			
	Lowest	2412	16.66			
802.11g	Middle	2437	16.66			
	Highest	2462	16.70			
	Lowest	2412	16.66			
802.11n ht20	Middle	2437	16.66			
	Highest	2462	16.70			
	Lowest	2422	36.28			
802.11n ht40	Middle	2437	36.20			
	Highest	2452	36.12			
Note: Test only was performed at Chain 0.						

4.5 Maximum Conducted Output Power

Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

Environmental	Conditions:				
Temperature: (℃)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A
Anritsu	Power Meter	ML2495A	1106009	2023/8/4	2024/8/3
Anritsu	Pulse Power Sensor	MA2411A	10780	2023/8/4	2024/8/3

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Frequency (MHz)				
(101112)	Chain 0	Chain 1	Total	(dBm)
2412	19.00	14.84	/	30
2437	18.56	14.65	/	30
2462	18.22	14.32	/	30
2412	21.51	18.92	/	30
2437	20.98	18.66	/	30
2462	20.74	18.36	/	30
2412	21.35	18.24	23.08	30
2437	21.01	18.02	22.78	30
2462	20.72	17.75	22.49	30
2422	21.50	18.52	23.27	30
2437	20.88	18.13	22.73	30
2452	20.88	17.95	22.67	30
	(MHz) 2412 2437 2462 2412 2437 2462 2412 2437 2462 2412 2437 2462 2422 2437	Test Frequency (MHz) Chain 0 2412 19.00 2437 18.56 2462 18.22 2412 21.51 2437 20.98 2462 20.74 2412 21.35 2437 21.01 2462 20.72 2437 21.01 2462 20.72 2437 21.50 2437 20.88	Test Frequency (MHz)(dBm)Chain 0Chain 1241219.0014.84243718.5614.65246218.2214.32241221.5118.92243720.9818.66246220.7418.36241221.3518.24243721.0118.02246220.7217.75242221.5018.52243720.8818.13	$\begin{tabular}{ c c c c c } \hline Test Frequency (MHz) & (dBm) \\\hline \hline Chain 0 & Chain 1 & Total \\\hline 2412 & 19.00 & 14.84 & / \\\hline 2437 & 18.56 & 14.65 & / \\\hline 2462 & 18.22 & 14.32 & / \\\hline 2462 & 21.51 & 18.92 & / \\\hline 2437 & 20.98 & 18.66 & / \\\hline 2462 & 20.74 & 18.36 & / \\\hline 2462 & 20.74 & 18.36 & / \\\hline 2412 & 21.35 & 18.24 & 23.08 \\\hline 2437 & 21.01 & 18.02 & 22.78 \\\hline 2462 & 20.72 & 17.75 & 22.49 \\\hline 2422 & 21.50 & 18.52 & 23.27 \\\hline 2437 & 20.88 & 18.13 & 22.73 \\\hline \end{tabular}$

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$

	Antenna Gain:	0.00	dBi	Directional gain:	0.00	dBi
--	---------------	------	-----	-------------------	------	-----

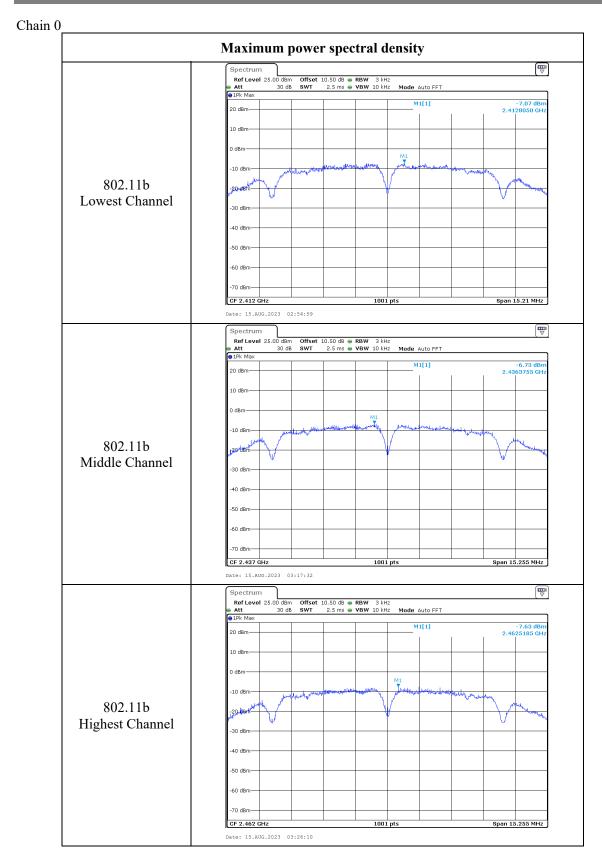
4.6 Maximum Power Spectral Density

Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

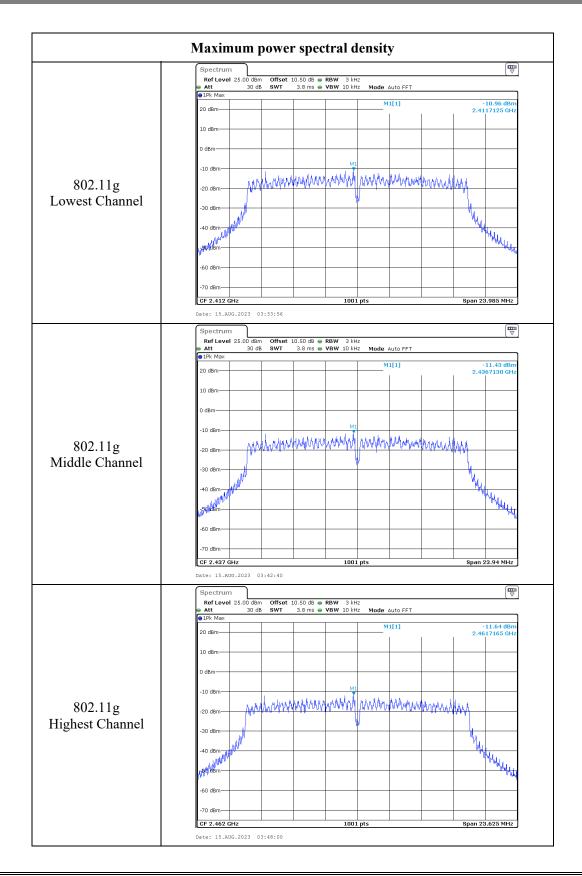
Environmental	Environmental Conditions:						
Temperature: (°C)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101		

Test Equipment List and Details:

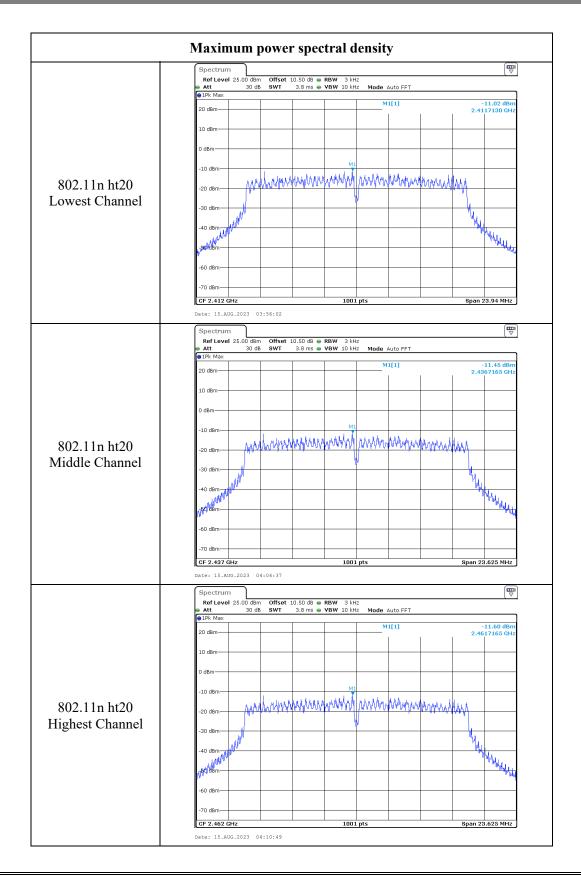
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023-04-18	2024-04-17
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A

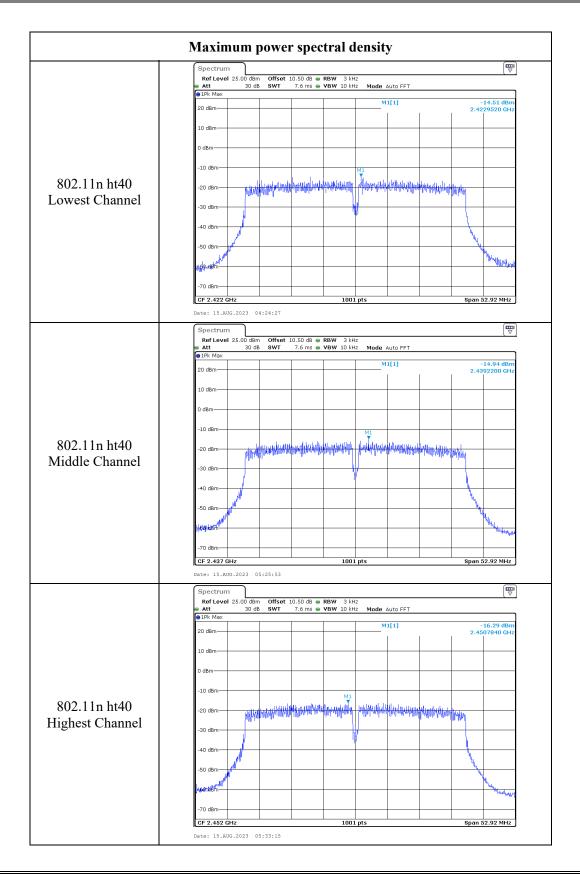

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

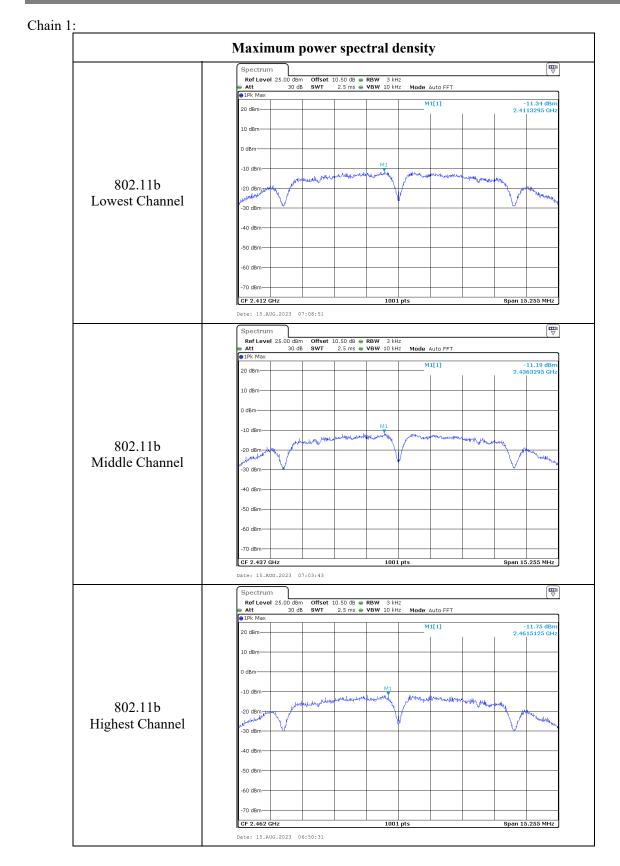
Test Data:

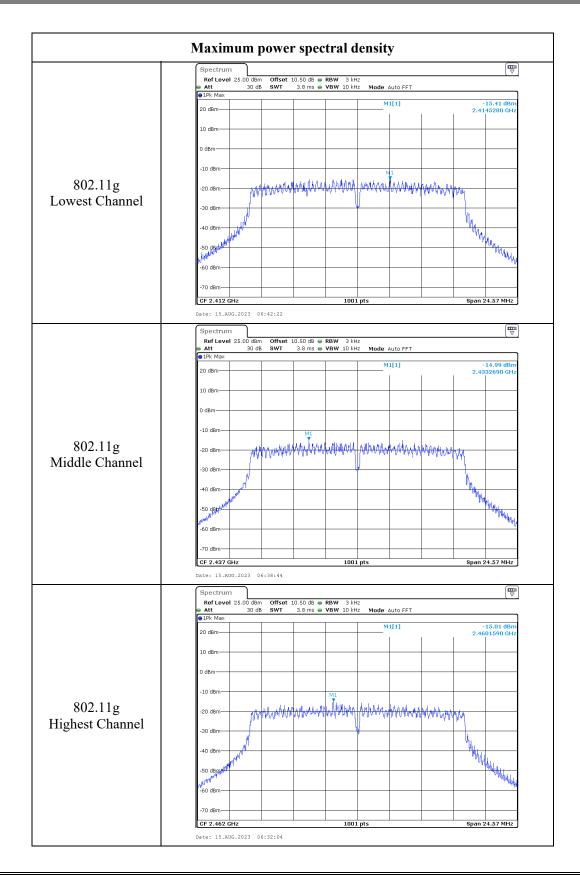

Test Modes	Test Frequency (MHz)	Reading (dBm/3kHz)		Maximum Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
		Chain 0	Chain 1	Total	
	2412	-7.07	-11.34	/	8
802.11b	2437	-6.73	-11.19	/	8
	2462	-7.63	-11.75	/	8
802.11g	2412	-10.96	-15.41	/	8
	2437	-11.43	-14.99	/	8
	2462	-11.64	-15.01	/	8
802.11n ht20	2412	-11.02	-14.98	-9.55	8
	2437	-11.45	-16.04	-10.15	8
	2462	-11.60	-15.83	-10.21	8
	2422	-14.51	-17.69	-12.80	8
802.11n ht40	2437	-14.94	-18.98	-13.50	8
	2452	-16.29	-19.20	-14.50	8

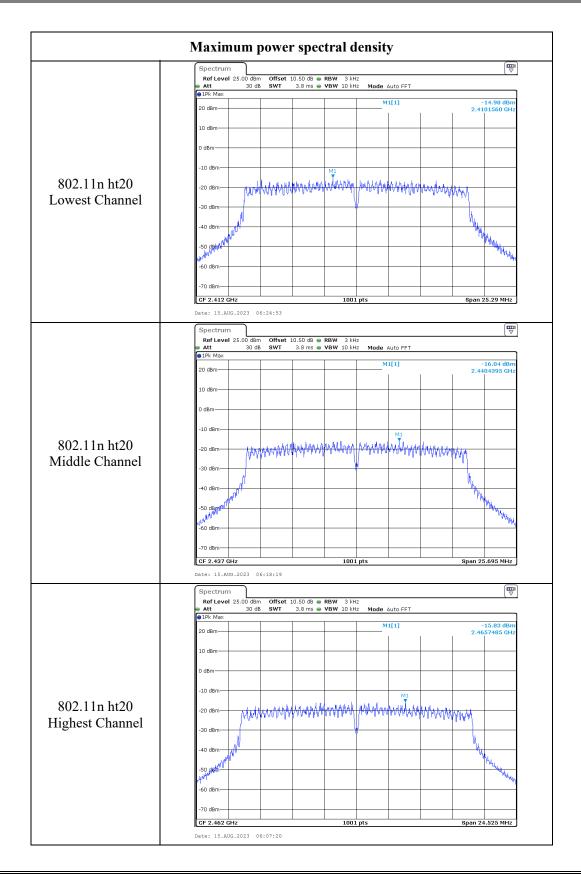
The device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$

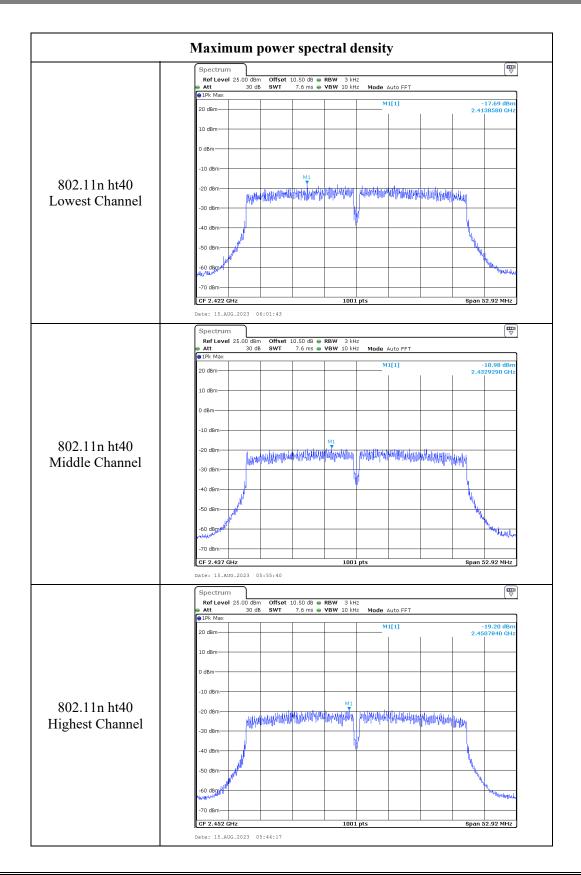

Antenna Gain: 0.00 dBi Directional gain: 3.00 dBi


Page 58 of 79


Page 59 of 79


Page 60 of 79


Page 61 of 79


Page 62 of 79

Page 63 of 79

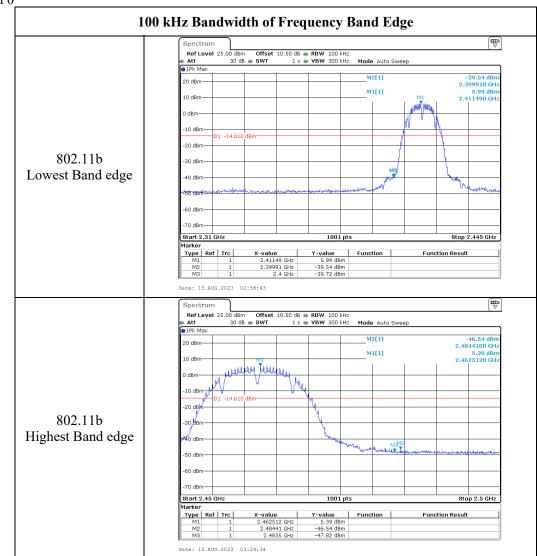
Page 64 of 79

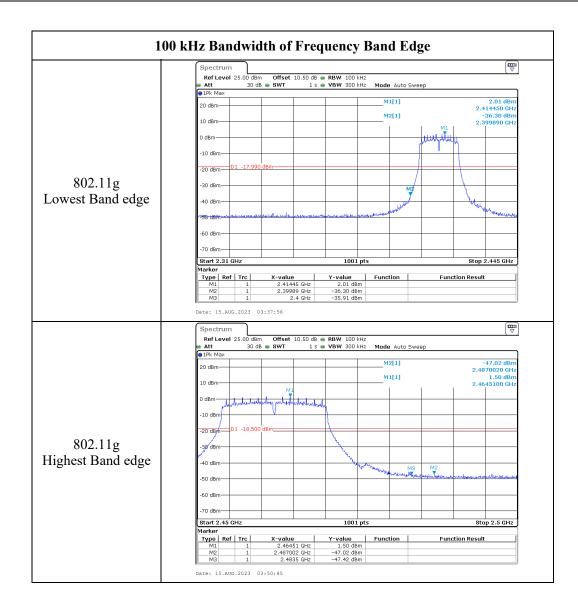
Page 65 of 79

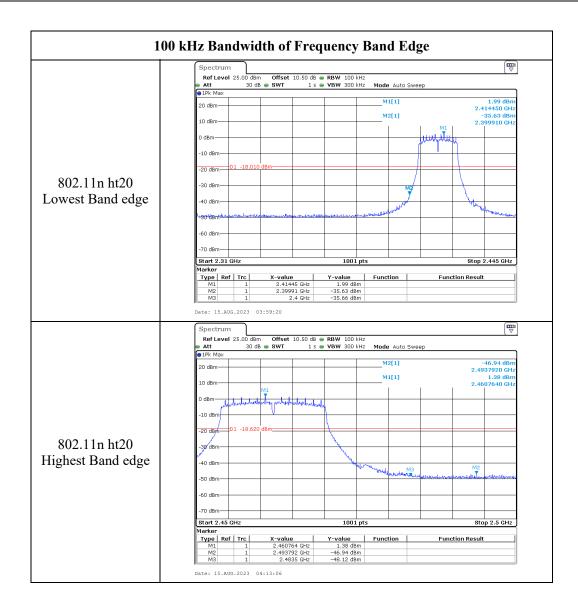
4.7 100 kHz Bandwidth of Frequency Band Edge:

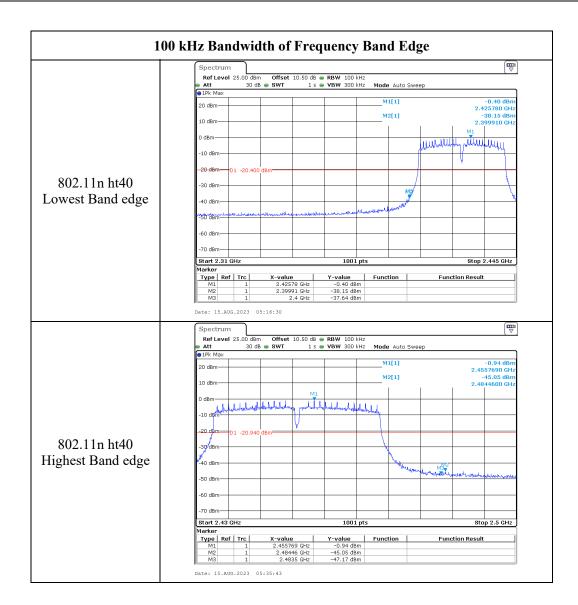
Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	Pass

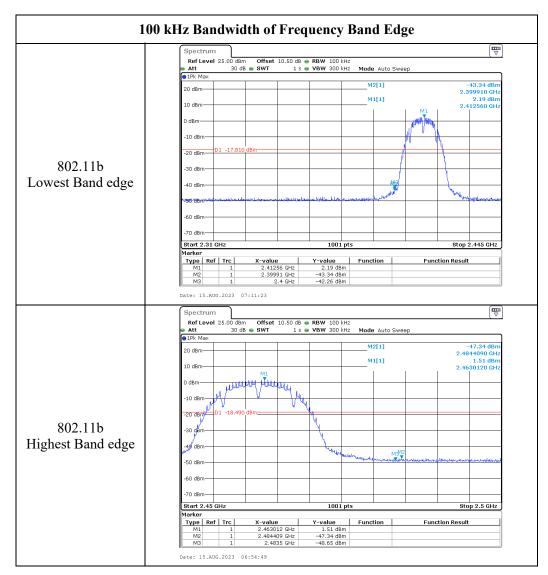
Environmental Conditions:							
Temperature: (℃)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101		

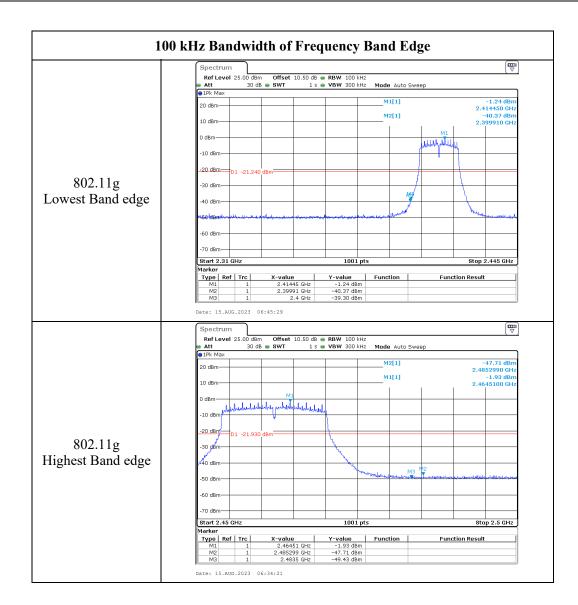

Test Equipment List and Details:

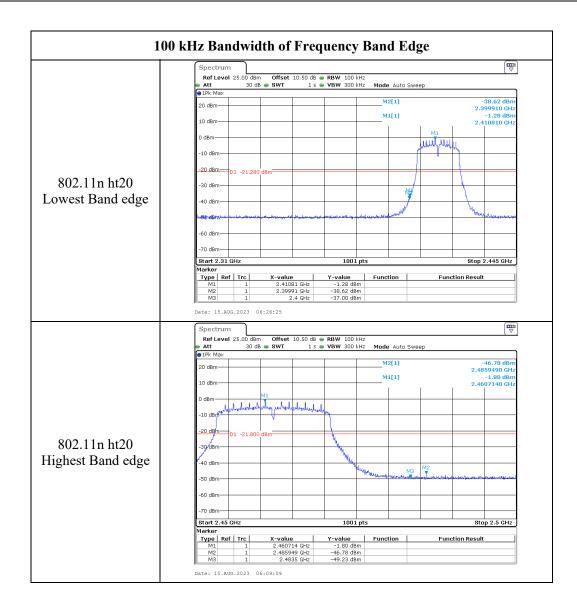

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023-04-18	2024-04-17
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A

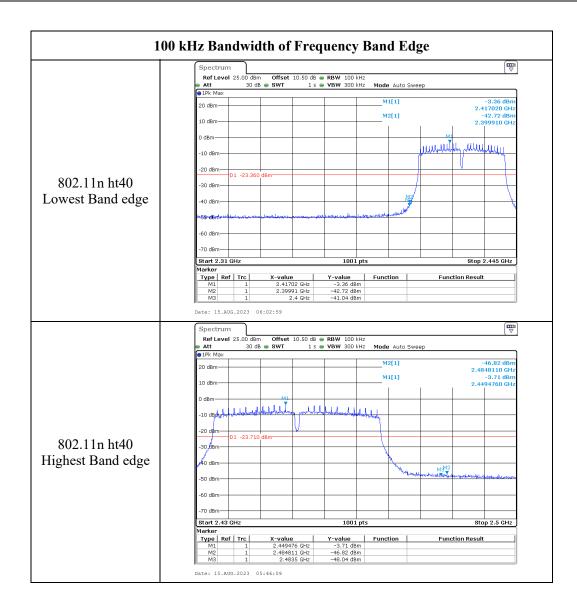

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:









Chain 1

4.8 Duty Cycle:

Serial Number:	27SO-1	Test Date:	2023/8/15
Test Site:	RF	Test Mode:	Transmitting
Tester:	Ken Tang	Test Result:	N/A

Environmental	Conditions:				
Temperature: (°C)	25.5	Relative Humidity: (%)	64	ATM Pressure: (kPa)	101

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40-N	102259	2023-04-18	2024-04-17
zhuoxiang	Coaxial Cable	SMA-178	211003	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK- 18G	21060301	Each time	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	VBW setting (Hz)
802.11b	12.406	12.844	96.59	81	100
802.11g	2.063	2.209	93.39	485	500
802.11n ht20	2.064	2.188	94.33	484	500
802.11n ht40	0.944	1.148	82.23	1059	2000
Note: Test only wa	as performed at Chai	n 0.			

Report No.: CR230738438-00C

	Duty Cycle	
1	Spectrum	
	Ref Level 25.00 dBm Offset 10.50 dB . RBW 10 MHz	[♥]
	● Att 30 dB ● SWT 50 ms ● VBW 10 MHz SGL	
	●1Rm Clrw	
	20 dBm M1 D3[1] 12.	-0.08 dB 84375 ms
		4.42 dom
		10000 ms
	0 dBm	
	-10 dBm	
	-20 dBm-	
802.11b	-30 dBm	
802.110		
	440 dBm	
	-50 dBm-	
	-60 dBm-	
	-70 dBm	
	CF 2.437 GHz 8001 pts	5.0 ms/
	Marker Type Ref Trc X-value Y-value Function Function Result	
	M1 1 13.1 ms 14.42 dBm	
	D2 M1 1 12.40625 ms -0.34 dB D3 M1 1 12.84375 ms -0.08 dB	
	Date: 15.AUG.2023 03:03:34	
	(Spacker um)	
	Spectrum Ref Level 25.00 dBm Offset 10.50 dB RBW 10 MHz	
	Att 30 dB SWT 30 ms VBW 10 MHz	
	SGL IRm Cirw	
	20 dBm	7.34 dBm 11.25 μs
		3.60 dB
		06250°ms
	0 dBm	
	-10 dBm D1 -7.907 dBm	
	-20 dBm	
802.11g	-30 dBm	
802.11g	-40 dBm	
	-50 dBm	
	-60 dBm	
	-70 dBm	
	CF 2.437 GHz 8001 pts	3.0 ms/
	Marker Type Ref Trc X-value Y-value Function Function Result	
	M1 1 11.25 µs 7.34 dBm D2 M1 1 2.0625 ms 3.60 dB	
	D2 M1 1 2.20875 ms 3.53 dB	
	Date: 15.AUG.2023 03:39:45	
	Spectrum	
	Ref Level 25.00 dBm Offset 10.50 dB RBW 10 MHz	<u>(*)</u>
	● Att 30 dB ● SWT 10 ms ● VBW 10 MHz SGL	
	IRm Cirw	0.55 dDm
	20 aBm	0.55 dBm 645.00 μs
	استايت والمانية جاملاني الأسبية ومعاركة والمكفورة فالشابعي ومعقوما ليتعطيه ومنافعات والمتعدية والشارية والمتعادية والمتحي فتستند	
		·
	01 -6.721 dBm	
	-20 dBh	
802.11n ht20	-30 dBm	
-	-40 dig	
	-50 dBm	-4
	-60 dBm	
	-70 dBm	
	CF 2.437 GHz 8001 pts Marker	1.0 ms/
	Type Ref Trc X-value Y-value Function Function Result	
	M1 1 645.0 µs 10.55 dBm D2 M1 1 2.06375 ms ~3.89 dB	
	D3 M1 1 2.1875 ms 0.13 dB	
	Date: 15.AUG.2023 04:01:44	

Report No.: CR230738438-00C

	Ref Leve Att SGL 1Rm Cirw		dBm Offset 0 dB e SWT	10.50 dB (4 ms (10 MH; 10 MH;				-2.21 dB
802.11n ht40	20 dBm 		20 dBm				үц[1] часта (дойно) Чүчтүүү (үзэрээн)		lean and a second secon	1.148125 ms 5.06 dBm Storter and as an an a
	-50 dBm									
	CF 2.437	GHz	1			8001 p	ts	1		400.0 µs/
	Marker Type Re	f Trc	X-valı	ie	Y-va	lue	Function	1	Function Res	ult
	M1 D2 N	1 11 1 11 1	ç	79.5 µs 943.5 µs 8125 ms	5	.06 dBm 3.99 dB 2.21 dB				

5. EUT PHOTOGRAPHS

Please refer to the attachment CR230738438-FP-EXP EUT EXTERNAL PHOTOGRAPHS and CR230738438-FP-INP EUT INTERNAL PHOTOGRAPHS

6. TEST SETUP PHOTOGRAPHS

Please refer to the attachment CR230738438-00C-TSP TEST SETUP PHOTOGRAPHS.

===== END OF REPORT ====

Page 79 of 79