	UT33 BUREAU VERITAS
	FCC Test Report
Report No.:	RF171003C10-4
FCC ID:	S4L4FIC1
Test Model:	4FIC1
Series Model:	4FIC0 (refer to item 3.1 for more details)
Received Date:	Oct. 03, 2017
Test Date:	Oct. 25 ~ Nov. 07, 2017
Issued Date:	Nov. 09, 2017
Applicante	Tom Tom International D \/
	TomTom International B.V.
Address:	De Ruijterkade 154, 1011 AC Amsterdam The Netherlands
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)
Test Location (1):	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN (R.O.C.)
Test Location (2):	No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan, R.O.C
FCC Registration / Designation Number:	427177 / TW0011

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	Control Record	4
1		ertificate of Conformity	
2	S	ummary of Test Results	
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	eneral Information	7
-	3.1	General Description of EUT	
	3.1	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
	3.3.1	Configuration of System under Test	
	3.4	General Description of Applied Standards	
4	Т	est Types and Results	.11
	4.1	Radiated Emission and Bandedge Measurement	.11
	4.1.1	Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.1.7	Test Results Conducted Emission Measurement	
	4.2		
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.2.7	Test Results	23
	4.3	Number of Hopping Frequency Used	
	4.3.1	Limits of Hopping Frequency Used Measurement	
	4.3.2	Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation fromTest Standard Test Results	
	4.3.0	Dwell Time on Each Channel	
	4.4.1		
		Test Setup.	
		Test Instruments	
	4.4.4	Test Procedures	29
	4.4.5	Deviation from Test Standard	29
	4.4.6	Test Results	
	4.5	Channel Bandwidth	
	4.5.1	Limits of Channel Bandwidth Measurement	
		Test Setup	
	4.5.4	Test Procedure Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.6	Hopping Channel Separation	
	4.6.1	Limits of Hopping Channel Separation Measurement	

	Test Instruments	
	Test Procedure	
	Deviation from Test Standard	
4.6.6	Test Results	
4.7	Maximum Output Power	36
4.7.1	Limits of Maximum Output Power Measurement	36
4.7.2	Test Setup	36
4.7.3	Test Instruments	36
4.7.4	Test Procedure	36
4.7.5	Deviation fromTest Standard	36
4.7.6	EUT Operating Condition	36
4.7.7	Test Results	37
4.8	Conducted Out of Band Emission Measurement	38
4.8.1	Limits Of Conducted Out Of Band Emission Measurement	38
4.8.2	Test Instruments	
4.8.3	Test Procedure	38
	Deviation from Test Standard	
4.8.5	EUT Operating Condition	38
	Test Results	
	Pictures of Test Arrangements	
	-	
Append	lix – Information on the Testing Laboratories	42

Release Control Record

Issue No.	Description	Date Issued
RF171003C10-4	Original release	Nov. 09, 2017

Certificate of Conformity 1

Product:	TomTom BRIDGE Hub
Brand:	ТОМТОМ
Test Model:	4FIC1
Series Model:	4FIC0 (refer to item 3.1 for more details)
Sample Status:	Pre-MFB build sample
Applicant:	TomTom International B.V.
Test Date:	Oct. 25 ~ Nov. 07, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Celine Choy, Date: Nov. 09, 2017

Celine Chou / Specialist

Approved by :

Ken Liu / Senior Manager

Date: Nov. 09, 2017

2 Summary of Test Results

	47 CFR FCC Part 15, Su	bpart C (Sec	ction 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -26.73dB at 0.16139MHz.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -8.40dB at 273.27MHz.
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.
15.203	Antenna Requirement	Pass	No antenna connector is used.

Note: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	2.0224 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	1.0121 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	TomTom BRIDGE Hub
Brand	ТОМТОМ
Test Model	4FIC1
Series Model	4FIC0
Model Difference	Refer to note
Sample Status	Pre-MFB build sample
Power Supply Rating	12-24Vdc, 2.0A
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1/2/3Mbps
Operating Frequency	2402~2480MHz
Number of Channel	79
Output Power	1.828mW
Antenna Type	Chip antenna with 1.69dBi gain
Antenna Connector	NA
Accessory Device	Refer to note
Data Cable Supplied	Refer to note

Note:

1. All models are listed as below.

Brand	Model	GNSS/WLAN/BT	LTE	WOIP/CAN Bus/HDMI/CVBS
TOUTON	4FIC0	0	0	Х
томтом	4FIC1	0	0	0

Note: "O" means support, "X" means no support.

* The model of the 4FIC1 was chosen for final test.

2. The EUT contains the following accessories.

Item	Brand	Model	Specification	Remark
Car Charger	TomTom	CLA 4FIC0, 4FIC.000.02	Input: 12/24Vdc, 2A Output: 12/24Vdc, 2A FUSE: 125V, 5A	Option
InCube Power Cable	TomTom	4FIC.000.01	2m non-shielded power cable without core	Accessory
InCube CLA Car Charger Cable	TomTom	4FIC.000.02	2m non-shielded power cable without core	Option
InCube Full Power Cable (Harnessed)	TomTom	4FIC.000.03	2m non-shielded power cable without core	Option

3. WLAN (2.4GHz or 5GHz), BT (BT EDR or BT LE) and WWAN technology can transmit simultaneously.

4. Spurious emission of the simultaneous operation (WLAN (2.4GHz or 5GHz), BT (BT EDR or BT LE) and WWAN) has been evaluated and no non-compliance was found.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Арр	olicable to			Description	
Mode	RE≥1G	RE<1G	PLC	APCM		Descriptio	n
А	\checkmark	\checkmark	\checkmark	\checkmark	12Vdc		
В	-	\checkmark	\checkmark	\checkmark	24Vdc		
here Measu			e 1GHz & Bandedge ssion			Emission below 1GHz	
adiated Emis] Pre-Scan h	<u>sion Test (</u> has been co	Above 10	GHz): o determine the w	vorst-cas	e mode fro	found when positioned om all possible cor with antenna dive	nbinations
) selected for the	•	•		architectu
EUT Configure Mode		e Channel	Tested Channel	Mod	ulation nology	Modulation Type	Pakcet Type
A	0 t	o 78	0, 39, 78		HSS	8DPSK	DH5
between av Following c	ailable mo	onducted t dulations,		tenna po	orts (if EUT	om all possible cor with antenna dive pelow.	
between av Following c	as been co /ailable mo :hannel(s) v	onducted t dulations,	data rates and an	tenna po final test Mod	orts (if EUT as listed b ulation	with antenna dive	
between av Following c EUT Configure Mode A, B	as been co vailable mo channel(s) v Available 0 t	onducted t dulations, was (were e Channel o 78	data rates and an) selected for the Tested Channel 0	tenna po final test Mod Tech	orts (if EUT as listed b	with antenna dive pelow.	ersity architectu
between av Following of EUT Configure Mode A, B ower Line Co Pre-Scan h between av	has been co vailable mo channel(s) v Available 0 to 0 to 0 to 0 to 0 to 0 to 0 to 0 to	onducted t dulations, was (were e Channel o 78 mission 7 onducted t dulations,	data rates and an) selected for the Tested Channel 0 Fest: o determine the w	tenna po final test Mod Tech Fi vorst-cas tenna po final test Mod	e mode fro orts (if EUT as listed to ulation nology HSS	with antenna diverse below. Modulation Type 8DPSK om all possible correl with antenna diverse	Pakcet Type DH5
between av Following of EUT Configure Mode A, B Ower Line Co Pre-Scan h between av Following of EUT Configure	has been co vailable mo channel(s) v Available 0 t nducted E has been co vailable mo channel(s) v Available	onducted t dulations, was (were e Channel o 78 mission 1 onducted t dulations, was (were	data rates and an) selected for the Tested Channel 0 Fest: o determine the w data rates and an) selected for the	tenna po final test Mod Tech Fi vorst-cas tenna po final test Mod Tech	e mode fro as listed to ulation HSS e mode fro orts (if EUT as listed to ulation	with antenna diverse below. Modulation Type 8DPSK om all possible cor with antenna diverse below.	Pakcet Type DH5 mbinations ersity architectu
between av Following of A, B Ower Line Co Pre-Scan h between av Following of EUT Configure Mode A, B Itenna Port C This item ir mode. Pre-Scan h between av Following of Following of	Available mo channel(s) v Available 0 t Available o t as been co vailable mo channel(s) v Available 0 t Conducted as been co vailable mo channel(s) v	onducted t dulations, was (were e Channel o 78 mission 1 onducted t dulations, was (were e Channel o 78 Measure test value onducted t dulations, was (were	data rates and an) selected for the Tested Channel 0 Fest: o determine the w data rates and an) selected for the Tested Channel 0 ment: of each mode, bu o determine the w data rates and an) selected for the	tenna po final test Mod Tech Fi vorst-cas tenna po final test Mod Tech t only ind vorst-cas tenna po final test	e mode fro as listed to ulation nology ISS e mode fro orts (if EUT as listed to ulation nology ISS cludes spe e mode fro orts (if EUT	with antenna diverse Modulation Type 8DPSK om all possible corr with antenna diverse Modulation Type 8DPSK Modulation Type 8DPSK Modulation Type 8DPSK ectrum plot of wors om all possible corr with antenna diverse with antenna diverse with antenna diverse below.	Pakcet Type DH5 DH5 mbinations ersity architectur Pakcet Type DH5 t value of each mbinations ersity architectur
between av Following of A, B Ower Line Co Pre-Scan h between av Following of EUT Configure Mode A, B Itenna Port C This item ir mode. Pre-Scan h between av	Available mo channel(s) v Available 0 t Available o t as been co vailable mo channel(s) v Available 0 t Conducted as been co vailable mo channel(s) v	onducted t dulations, was (were e Channel o 78 mission 1 onducted t dulations, was (were e Channel o 78 Measure test value onducted t dulations,	data rates and an) selected for the Tested Channel 0 Fest: 0 determine the w data rates and an) selected for the Tested Channel 0 ment: of each mode, bu o determine the w data rates and an	tenna po final test Mod Tech Fi vorst-cas tenna po final test Mod Tech t only ind vorst-cas tenna po final test Mod Tech	e mode fro nology ISS e mode fro orts (if EUT as listed b ulation nology ISS cludes spe e mode fro orts (if EUT as listed b ulation nology	with antenna diverse Modulation Type 8DPSK om all possible correction with antenna diverse Wodulation Type 8DPSK Modulation Type 8DPSK State Com all possible correction 8DPSK State State State 8DPSK State State <	Pakcet Type DH5 DH5 mbinations ersity architectur Pakcet Type DH5 t value of each mbinations
between av Following of A, B Ower Line Co Pre-Scan h between av Following of EUT Configure Mode A, B Itenna Port C This item ir mode. Pre-Scan h between av Following of EUT Configure	as been co vailable mo channel(s) v Available 0 t nducted E vailable mo channel(s) v Available 0 t Available 0 t Conducted ncludes all t vailable mo channel(s) v Available	onducted t dulations, was (were e Channel o 78 mission 1 onducted t dulations, was (were e Channel o 78 Measure test value onducted t dulations, was (were	data rates and an) selected for the Tested Channel 0 Fest: o determine the w data rates and an) selected for the Tested Channel 0 ment: of each mode, bu o determine the w data rates and an) selected for the	tenna po final test Mod Tech Fi vorst-cas tenna po final test Mod Tech t only ind vorst-cas tenna po final test Mod Tech	e mode fro nology ISS e mode fro orts (if EUT as listed b ulation nology ISS cludes spe e mode fro orts (if EUT as listed b ulation	with antenna diverse Modulation Type 8DPSK om all possible corr with antenna diverse Modulation Type 8DPSK Modulation Type 8DPSK Modulation Type 8DPSK ectrum plot of wors om all possible corr with antenna diverse with antenna diverse with antenna diverse below.	Pakcet Type DH5 DH5 mbinations ersity architectur Pakcet Type DH5 t value of each mbinations ersity architectur

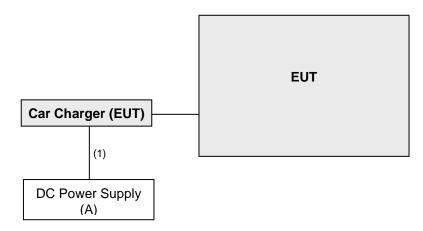
Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65% RH	12Vdc	Charles Hsiao
RE<1G	25 deg. C, 65% RH	12Vdc 24Vdc	Charles Hsiao
PLC	25 deg. C, 65% RH	12Vdc 24Vdc	Greg Lin
APCM	25 deg. C, 60% RH	12Vdc	Luke Chen

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	DC Power Supply	Topward	33010D	807748	NA	-


Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as a communication partner to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC	1	0.5	Ν	0	-

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver Agilent Technologies	N9038A	MY52260177	Jul. 05, 2017	Jul. 04, 2018
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 13, 2016	Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 16, 2016	Dec. 15, 2017
HORN Antenna ETS-Lindgren	3117	00143293	Dec. 29, 2016	Dec. 28, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 14, 2016	Dec. 13, 2017
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 17, 2017	Apr. 16, 2018
Bluetooth Tester	CBT	100980	Jun. 28, 2017	Jun. 27, 2019
Loop Antenna	HLA 6121	45745	May 19, 2017	May 18, 2018
Preamplifier Agilent	310N	187226	Jun. 23, 2017	Jun. 22, 2018
Preamplifier Agilent	83017A	MY39501357	Jun. 23, 2017	Jun. 22, 2018
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2017	Sep. 07, 2018
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2017	Sep. 07, 2018
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC-SMS- 100-SMS-120+RFC-SMS- 100-SMS-400)	Jun. 23, 2017	Jun. 22, 2018
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC-SMS- 100-SMS-24)	Jun. 23, 2017	Jun. 22, 2018
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HsinTien Chamber 1.

3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.

4. The FCC Designation Number is TW0011. The number will be varied with the Lab location and scope as attached.

5. The IC Site Registration No. is IC7450I-1.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

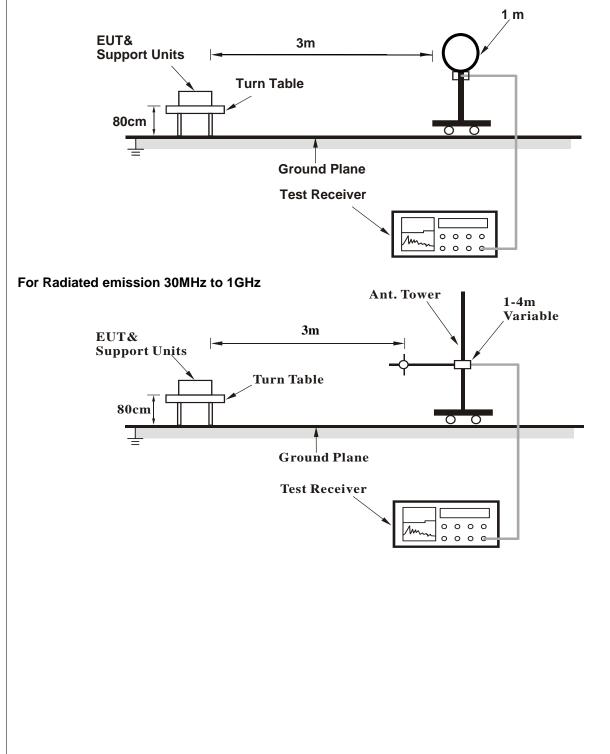
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

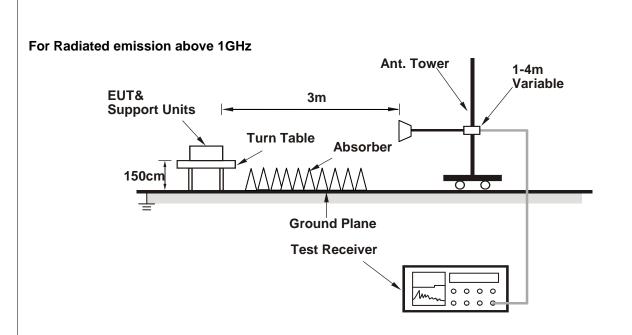
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz data:

8DPSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	12Vdc	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2387.40	40.41	38.70	54.00	-13.59	31.80	5.40	35.49	219	25	Average
2387.40	51.74	50.03	74.00	-22.26	31.80	5.40	35.49	219	25	Peak
2402.00	102.20	100.47			31.80	5.40	35.47	219	25	Average
2402.00	105.25	103.52			31.80	5.40	35.47	219	25	Peak
4804.00	38.76	30.67	54.00	-15.24	33.96	8.25	34.12	153	242	Average
4804.00	48.14	40.05	74.00	-25.86	33.96	8.25	34.12	153	242	Peak
			Antenna I	Polarity &	Test Dista	ance: Verti	cal at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2382.45	40.22	38.53	54.00	-13.78	31.78	5.40	35.49	100	275	Average
2382.45	52.07	50.38	74.00	-21.93	31.78	5.40	35.49	100	275	Peak
2402.00	96.25	94.52			31.80	5.40	35.47	100	275	Average
2402.00	99.16	97.43			31.80	5.40	35.47	100	275	Peak
4804.00	38.06	29.97	54.00	-15.94	33.96	8.25	34.12	152	177	Average
4804.00	47.16	39.07	74.00	-26.84	33.96	8.25	34.12	152	177	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	12Vdc	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)		Antenna Height (cm)	Table Angle (Degree)	Remark
2387.94	40.24	38.53	54.00	-13.76	31.80	5.40	35.49	219	25	Average
2387.94	52.04	50.33	74.00	-21.96	31.80	5.40	35.49	219	25	Peak
2441.00	102.85	100.98			31.85	5.46	35.44	219	25	Average
2441.00	105.93	104.06			31.85	5.46	35.44	219	25	Peak
2484.68	40.72	38.73	54.00	-13.28	31.88	5.53	35.42	219	25	Average
2484.68	52.26	50.27	74.00	-21.74	31.88	5.53	35.42	219	25	Peak
			Antenna I	Polarity &	Test Dista	ance: Verti	cal at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	-	Antenna Height (cm)	Table Angle (Degree)	Remark
2385.51	40.34	38.63	54.00	-13.66	31.80	5.40	35.49	100	275	Average
2385.51	51.75	50.04	74.00	-22.25	31.80	5.40	35.49	100	275	Peak
2441.00	96.35	94.48			31.85	5.46	35.44	100	275	Average
2441.00	99.14	97.27			31.85	5.46	35.44	100	275	Peak
2499.32	40.86	38.84	54.00	-13.14	31.90	5.53	35.41	100	275	Average
2499.32	51.89	49.87	74.00	-22.11	31.90	5.53	35.41	100	275	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	12Vdc	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	-	Antenna Height (cm)	Table Angle (Degree)	Remark
2480.00	102.45	100.49			31.88	5.50	35.42	219	25	Average
2480.00	105.55	103.59			31.88	5.50	35.42	219	25	Peak
2484.04	40.97	39.01	54.00	-13.03	31.88	5.50	35.42	219	25	Average
2484.04	51.87	49.91	74.00	-22.13	31.88	5.50	35.42	219	25	Peak
4960.00	40.73	32.46	54.00	-13.27	33.99	8.29	34.01	196	326	Average
4960.00	48.61	40.34	74.00	-25.39	33.99	8.29	34.01	196	326	Peak
			Antenna I	Polarity &	Test Dista	ance: Verti	cal at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	-	Antenna Height (cm)	Table Angle (Degree)	Remark
2480.00	96.36	94.40			31.88	5.50	35.42	100	275	Average
2480.00	99.75	97.79			31.88	5.50	35.42	100	275	Peak
2496.96	40.78	38.76	54.00	-13.22	31.90	5.53	35.41	100	275	Average
2496.96	51.81	49.79	74.00	-22.19	31.90	5.53	35.41	100	275	Peak
4960.00	40.64	32.37	54.00	-13.36	33.99	8.29	34.01	124	55	Average
4960.00	47.90	39.63	74.00	-26.10	33.99	8.29	34.01	124	55	Peak

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480 MHz: Fundamental frequency.

9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	30 MHz ~ 1 GHz	
Input Power	12Vdc	Detector Function	Peak (PK) Quasi-peak (QP)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	
Test Mode	A			

		A	ntennal P	olarity & T	est Distar	nce: Horizo	ontal at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	-	Antenna Height (cm)	Table Angle (Degree)	Remark
83.19	29.16	51.31	40.00	-10.84	8.80	1.11	32.06	134	186	Peak
209.55	33.90	53.36	43.50	-9.60	11.15	1.65	32.26	170	124	Peak
280.83	30.40	47.74	46.00	-15.60	12.75	2.03	32.12	190	312	Peak
331.50	23.27	39.33	46.00	-22.73	13.84	2.19	32.09	148	209	Peak
491.10	16.71	29.97	46.00	-29.29	16.22	2.63	32.11	146	161	Peak
694.10	29.23	39.06	46.00	-16.77	19.15	3.11	32.09	128	76	Peak
			Antennal I	Polarity &	Test Dista	ance: Verti	cal at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	•	Antenna Height (cm)	Table Angle (Degree)	Remark
42.15	28.94	46.44	40.00	-11.06	13.98	0.74	32.22	151	226	Peak
108.30	25.85	44.71	43.50	-17.65	12.11	1.28	32.25	184	192	Peak
193.62	33.19	52.97	43.50	-10.31	10.88	1.61	32.27	200	127	Peak
332.90	26.00	42.04	46.00	-20.00	13.86	2.19	32.09	162	210	Peak
622.00	22.21	33.30	46.00	-23.79	18.15	2.93	32.17	193	128	Peak
842.50	22.15	29.67	46.00	-23.85	20.93	3.38	31.83	162	224	Peak

Remarks:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value = Emission level - Limit value

EUT Test Condition		Measurement Detail				
Channel	Channel 0	Frequency Range	30 MHz ~ 1 GHz			
Input Power	24Vdc	Detector Function	Peak (PK) Quasi-peak (QP)			
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao			
Test Mode	В					

	Antennal Polarity & Test Distance: Horizontal at 3 m												
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	•	Antenna Height (cm)	Table Angle (Degree)	Remark			
66.45	27.11	47.12	40.00	-12.89	11.31	0.90	32.22	107	115	Peak			
199.29	31.20	50.77	43.50	-12.30	11.08	1.65	32.30	126	305	Peak			
273.27	37.60	55.10	46.00	-8.40	12.67	1.94	32.11	156	129	Peak			
409.90	25.29	39.97	46.00	-20.71	15.12	2.41	32.21	100	108	Peak			
635.30	34.77	45.75	46.00	-11.23	18.25	2.93	32.16	139	264	Peak			
770.40	26.31	35.13	46.00	-19.69	20.02	3.27	32.11	115	178	Peak			
			Antennal I	Polarity &	Test Dista	ance: Verti	cal at 3 m						
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	•	Antenna Height (cm)	Table Angle (Degree)	Remark			
63.75	31.04	50.02	40.00	-8.96	12.35	0.90	32.23	106	233	Peak			
159.33	31.12	53.16	43.50	-12.38	8.71	1.52	32.27	160	127	Peak			
221.16	37.34	56.52	46.00	-8.66	11.38	1.65	32.21	114	185	Peak			
325.20	27.73	44.07	46.00	-18.27	13.65	2.11	32.10	174	105	Peak			
549.90	19.44	31.80	46.00	-26.56	17.08	2.76	32.20	163	219	Peak			
750.80	25.52	34.62	46.00	-20.48	19.82	3.22	32.14	145	227	Peak			

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value = Emission level - Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Flequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

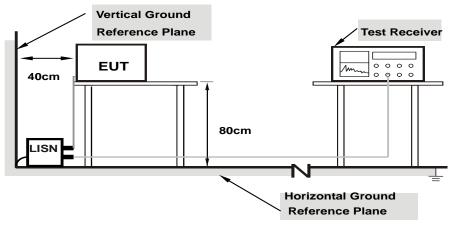
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 21, 2016	Nov. 20, 2017
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 22, 2016	Dec. 21, 2017
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 10, 2017	Mar. 09, 2018
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 15, 2017	Aug. 14, 2018
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-2040.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

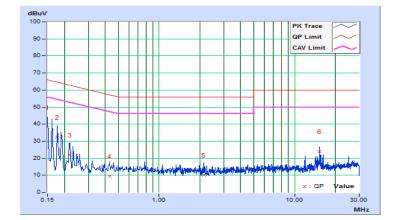
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

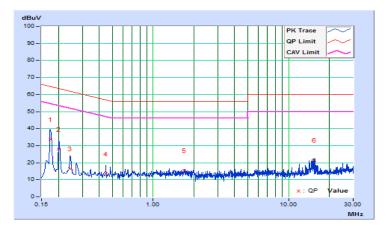

4.2.7 Test Results

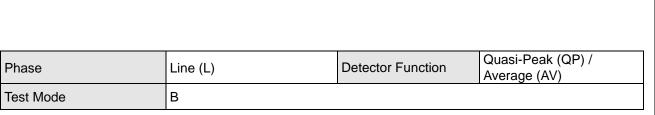
Worst-case data: 8DPSK

Phase	Line (L)	LIATECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
Test Mode	А		

	Frog	Corr.	Reading Value		Emission Level		Limit		Ma	rgin
No	No Freq. Factor		[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.45	27.68	12.68	38.13	23.13	66.00	56.00	-27.87	-32.87
2	0.17737	10.45	21.78	10.18	32.23	20.63	64.61	54.61	-32.38	-33.98
3	0.22038	10.46	11.37	2.64	21.83	13.10	62.80	52.80	-40.97	-39.70
4	0.43122	10.51	7.09	4.32	17.60	14.83	57.23	47.23	-39.63	-32.40
5	2.12455	10.53	8.45	5.08	18.98	15.61	56.00	46.00	-37.02	-30.39
6	15.25042	11.19	12.73	9.04	23.92	20.23	60.00	50.00	-36.08	-29.77

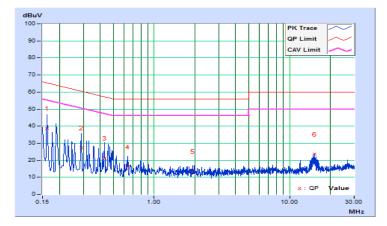
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.





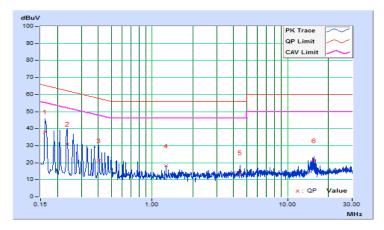
Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	А		

	Frog	Corr.	Reading Value		Emissic	Emission Level		Limit		rgin
No	No Freq. Factor		[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17374	10.21	23.50	10.78	33.71	20.99	64.78	54.78	-31.07	-33.79
2	0.20084	10.22	17.63	11.39	27.85	21.61	63.58	53.58	-35.73	-31.97
3	0.24407	10.23	6.10	3.24	16.33	13.47	61.96	51.96	-45.63	-38.49
4	0.44716	10.24	3.35	0.32	13.59	10.56	56.93	46.93	-43.34	-36.37
5	1.69836	10.30	5.15	3.07	15.45	13.37	56.00	46.00	-40.55	-32.63
6	15.43419	10.88	10.80	6.96	21.68	17.84	60.00	50.00	-38.32	-32.16


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Free		Corr.	Reading Value		Emission Level		Limit		Ма	rgin
No	No Freq.	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16139	10.45	28.21	12.67	38.66	23.12	65.39	55.39	-26.73	-32.27
2	0.29076	10.48	16.96	12.11	27.44	22.59	60.50	50.50	-33.06	-27.91
3	0.43152	10.51	10.69	7.31	21.20	17.82	57.22	47.22	-36.02	-29.40
4	0.63875	10.50	5.57	4.24	16.07	14.74	56.00	46.00	-39.93	-31.26
5	1.93687	10.52	2.97	0.63	13.49	11.15	56.00	46.00	-42.51	-34.85
6	15.25042	11.19	12.46	8.76	23.65	19.95	60.00	50.00	-36.35	-30.05

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	Frog	Corr.	Reading Value		Emission Level		Limit		Ма	rgin
No	No Freq. Factor		[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16181	10.21	27.97	12.63	38.18	22.84	65.37	55.37	-27.19	-32.53
2	0.23586	10.23	20.77	10.77	31.00	21.00	62.24	52.24	-31.24	-31.24
3	0.40415	10.24	10.97	5.27	21.21	15.51	57.77	47.77	-36.56	-32.26
4	1.26826	10.28	7.88	4.65	18.16	14.93	56.00	46.00	-37.84	-31.07
5	4.43927	10.43	3.67	0.26	14.10	10.69	56.00	46.00	-41.90	-35.31
6	15.61796	10.89	10.22	6.16	21.11	17.05	60.00	50.00	-38.89	-32.95

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

GFSK Contract of the tip of	RBW 300 KHZ VBW 300 KHZ SWT 2.5 ms
VBW 300 H/z 252 Ref 25.2 dBin Att 20 dB SWT 2.5 ms 200 Offset 15.2 dB 200 Offset 15.2 dB 200 10 MMM WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	VBW 300 kHz
VBW 300 H/z XE	VBW 300 kHz
252 Ref 25.2 dBm Att 20 dB SWT 2.5 ms 20 Offset 15.2 dB Offset 15.2 dB Offset 15.2 dB 0 10 Offset 15.2 dB 0 -10	SWT 2.5 ms
20 Offset 152 dB 10 Offset 15	****
-10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-10	MMMMMMM
-10- -10- -10- -10- -10- -10- -10- -10-	<u>~~~~~~~~</u>
-10	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
-20	
-20	
-30	
-40	
-50	I
-00-	
-70	(*************************************
-74.8	BUREAU
Start 2.4 GHz 4.1 MHz/ Stop 2.441 GHz VERITAS Start 2.441 GHz 4.25 M	
8DPSK	
RBW 300 kHz [T1] MP MAXH	RBW 300 kHz [T1] MP MAXH
VBW 300 kHz	VBW 300 kHz
25.2-1 Ref 25.2 dBm Att 20 dB SWT 2.5 ms 25.2 - Ref 25.2 dBm Att 20 dB 25.2 - Ref 25.2 dBm Att 20 dB	SWT 2.5 ms
20 Offset 15.2 dB 20 Offset 15.2 dB	
Why have a second secon	******
-10	
-20	
-30	
	↓
-40	
ř I I I	\
-50	\a.
-60	
-70	(" vig ")
-74.8	BUREAU
	MHz/ Stop 2.4835 GHz VERITAS

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with ime difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK

Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
50 (times / 5 sec) * 6.32 = 316.00 times	0.414	130.82	400
25 (times / 5 sec) * 6.32 = 158.00 times	1.698	268.28	400
18 (times / 5 sec) * 6.32 = 113.76 times	2.932	333.54	400
	31.6 (79Hopping*0.4) 50 (times / 5 sec) * 6.32 = 316.00 times 25 (times / 5 sec) * 6.32 = 158.00 times	Number of transmission in a 31.6 (79Hopping*0.4) transmission time (msec) 50 (times / 5 sec) * 6.32 = 316.00 times 0.414 25 (times / 5 sec) * 6.32 = 158.00 times 1.698	Number of transmission in a $31.6 (79Hopping*0.4)$ transmission time (msec)Result (msec)50 (times / 5 sec) * $6.32 = 316.00$ times 0.414 130.82 25 (times / 5 sec) * $6.32 = 158.00$ times 1.698 268.28

Note: Test plots of the transmitting time slot are shown as below.



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316.00 times	0.437	138.09	400
DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.722	282.96	400
DH5	17 (times / 5 sec) * 6.32 = 107.44 times	2.988	321.03	400
Nata: Teat a	late of the transmitting time alot are about			

Note: Test plots of the transmitting time slot are shown as below.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

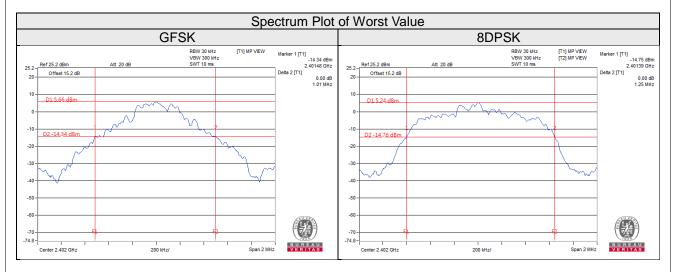
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel		20dB Bandwidth (MHz)					
	Frequency (MHz)	GFSK	8DPSK				
0	2402	1.010	1.250				
39	2441	1.000	1.240				
78	2480	0.930	1.240				

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

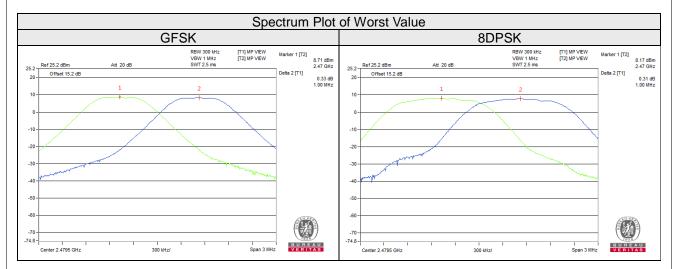
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency	Adjacent Channel Separation (MHz)		-	dB th (MHz)	Minimum L	Pass / Fail	
ondinier	(MHz)	GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	1 455 / 1 41
0	2402	1.00	1.00	1.010	1.250	0.68	0.84	Pass
39	2441	1.00	1.00	1.320	1.240	0.88	0.83	Pass
78	2480	1.00	1.00	0.930	1.240	0.62	0.83	Pass

Note: The minimum limit is two-third 20dB bandwidth.

4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Detector = peak.
- e. Measure the captured power within the band and recording the plot.
- f. Repeat above procedures until all frequencies required were complete.

4.7.5 Deviation fromTest Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Frequency (MHz)			-	Power 3m)	Power	Pass / Fail	
		GFSK	8DPSK	GFSK	8DPSK	Limit (mW)	1 000 / 1 01	
0	2402	1.191	1.396	0.76	1.45	125	Pass	
39	2441	1.442	1.828	1.59	2.62	125	Pass	
78	2480	1.132	1.419	0.54	1.52	125	Pass	

Spectrum Plot of Worst Value

			GFS	K						8DP	SK		
35.2 - Ref 35.	.2 dBm	Att 20 dB		RBW 3 MHz VBW 10 MHz SWT 2.5 ms	[T1] MP VIEW	Marker 1 [T1] 1.59 dBm 2.440846 GHz	35.2-Ref	35.2 dBm	Att 20 dB		RBW 3 MHz VBW 10 MHz SWT 2.5 ms	[T1] MP VIEW	Marker 1 [T1] 2.62 dBm 2.441087 GHz
30 - Of	ffset 15.2 dB					-	30	Offset 15.2 dB					-
20-			-			-	20			1			
0		ا است	L 			-	0			+			-
-10-							-10-						
-20 -						-	-20						
-40						_	-40						-
-50							-50						
-60 - -64.8 - Center	1 I 2.441 GHz	1 1	600 kHz/	I	I I Span 6 MH:	BUREAU	-60 - -64.8 - Cen	I I Iter 2.441 GHz	1 1	I I 600 kHz/	I	I I Span 6 MH	

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

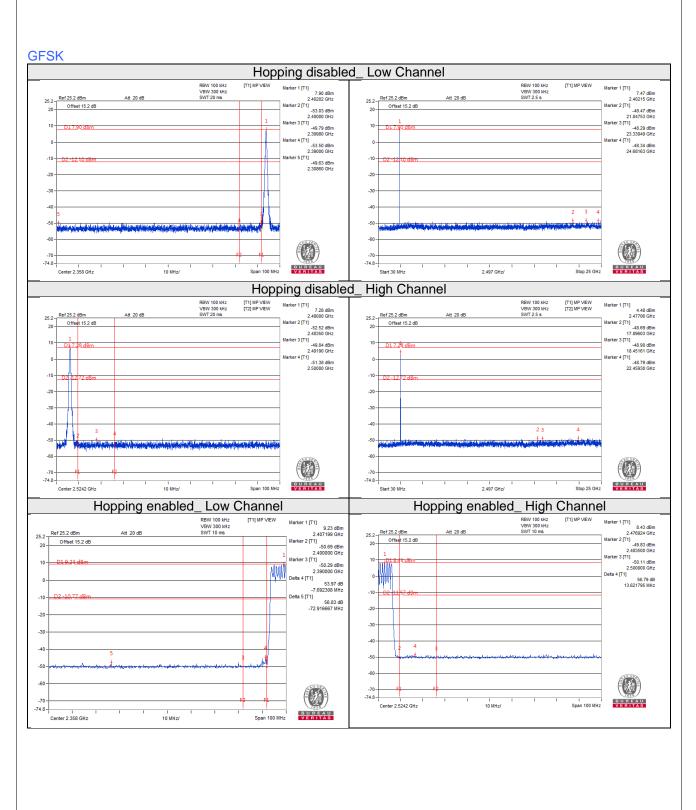
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

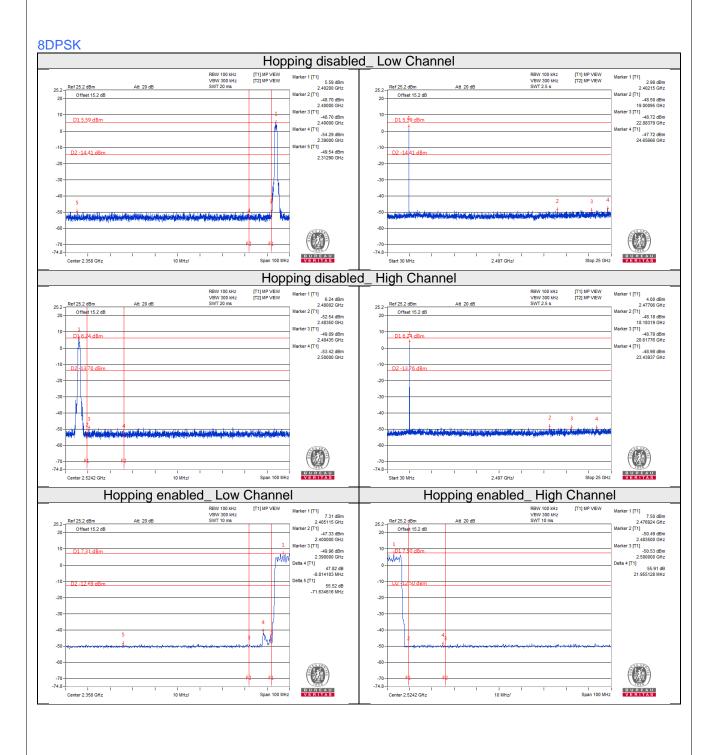
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---