

FCC Test Report

FCC ID : MXF-WAPS232N

Equipment : RFID IOT Access Point

Model No. : WAPS-232N

Brand Name : Gemtek

Applicant : Gemtek Technology Co., Ltd.

Address : No.15-1 Zhoughua Rd, Hsinchu Industrial

Park, Hukou, Hsinchu, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.247

Received Date : Jun. 22, 2015

Tested Date : Nov. 26 ~ Dec. 02, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Ilac-MRA

Testing Laboratory

Report No.: FR562201-03-1 Report Version: Rev. 01 Page: 1 of 51

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	g
1.6	Measurement Uncertainty	Q
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Unwanted Emissions into Restricted Frequency Bands	18
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	32
3.4	Conducted Output Power	36
3.5	Number of Hopping Frequency	38
3.6	20dB and Occupied Bandwidth	40
3.7	Channel Separation	42
3.8	Number of Dwell Time	44
3.9	Power Spectral Density	49
4	TEST LABORATORY INFORMATION	51

Release Record

Report No.	Version	Description	Issued Date
FR562201-03-1	Rev. 01	Initial issue	Apr. 08, 2016

Report No.: FR562201-03-1 Page : 3 of 51

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.433MHz 34.40 (Margin -12.80dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 665.35MHz 44.63 (Margin -1.37dB) - PK	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(2)(3)	Conducted Output Power	Power [dBm]: 23.27	Pass
15.247(a)(1)(i)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(f)	Dwell Time	Meet the requirement of limit	Pass
15.247(f)	Power spectral density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR562201-03-1 Page: 4 of 51

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate(bit/sec)	Spread Factor	Channel spacing (kHz)	
902 ~ 928	902.3 ~ 924.375	1-90 [80]	1	977 ~ 5469	10 ~ 7	200 / 250	

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: The device uses CSS modulation.

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Gain (dBi)	Connector	Remark
1	TSKY Co., Ltd.	A8-A003-00108	Dipole	-0.4	N -Type Male	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	55Vdc from POE
-------------------	----------------

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
		Brand Name: Microsemi				
1	POE	Model Name: PD-9001GR/AC				
	. • -	Power Rating: I/P: 100-240Vac, 50-60Hz, 0.67A O/P: 55Vdc, 0.6A				

Report No.: FR562201-03-1 Page: 5 of 51

1.1.5 Channel List

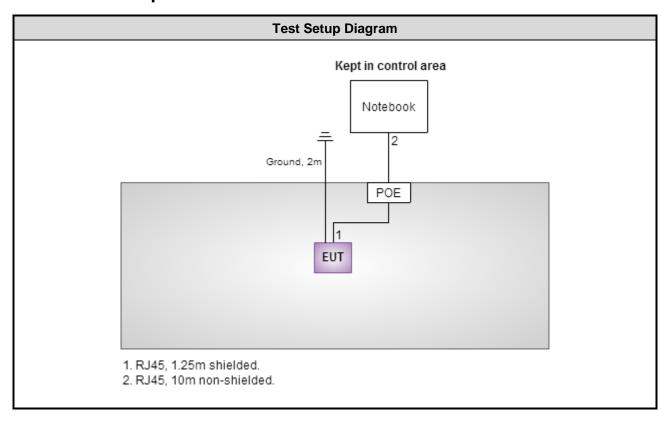
	Channel spacing									
	200 kHz								250 kHz	
Gro	up 1	Gro	up 2	Gro	up 3	Gro	up 4	Group 5		
Channel	Frequency (MHz)									
1	902.3	19	905.5	37	908.7	55	911.9	73	920.625	
2	902.5	20	905.7	38	908.9	56	912.1	74	920.875	
3	902.7	21	905.9	39	909.1	57	912.3	75	921.125	
4	902.9	22	906.1	40	909.3	58	912.5	76	921.375	
6	903.1	24	906.3	42	909.5	60	912.7	77	921.625	
7	903.3	25	906.5	43	909.7	61	912.9	78	921.875	
8	903.5	26	906.7	44	909.9	62	913.1	80	922.125	
9	903.7	27	906.9	45	910.1	63	913.3	81	922.375	
10	903.9	28	907.1	46	910.3	64	913.5	82	922.625	
11	904.1	29	907.3	47	910.5	65	913.7	83	922.875	
12	904.3	30	907.5	48	910.7	66	913.9	84	923.125	
13	904.5	31	907.7	49	910.9	67	914.1	85	923.375	
15	904.7	33	907.9	51	911.1	69	914.3	87	923.625	
16	904.9	34	908.1	52	911.3	70	914.5	88	923.875	
17	905.1	35	908.3	53	911.5	71	914.7	89	924.125	
18	905.3	36	908.5	54	911.7	72	914.9	90	924.375	

1.1.6 Test Tool and Duty Cycle

Test Tool	Putty, Ver. 0.60.0.0

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)				
	902.3	910.1	924.375		
CSS	9	10	10		


Report No.: FR562201-03-1 Page: 6 of 51

1.2 Local Support Equipment List

Support Equipment List						
No. Equipment Brand			Model	FCC ID	Signal cable / Length (m)	
1	Notebook	DELL	Latitude E6430	DoC	RJ45, 10m non-shielded.	

1.3 Test Setup Chart

Report No.: FR562201-03-1 Page: 7 of 51

1.4 The Equipment List

Test Item	Conducted Emission Conduction room 1 / (CO01-WS)							
Test Site								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016			
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015			
Measurement Software	AUDIX	e3	6.120210k	NA	NA			
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03Cl	H01-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2014	Dec. 10, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 16, 2015	Nov. 15, 2016
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 15, 2014	Dec. 14, 2015
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 15, 2014	Dec. 14, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	val of instruments liste	d above is one year.			

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016
Signal Generator	R&S	SMB100A	175727	Oct. 05, 2015	Oct. 04, 2016
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Note: Calibration Inte	rval of instruments liste	d above is one year.			

Report No.: FR562201-03-1 Page: 8 of 51

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 FCC Public notice DA 00-705 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.72 dB
Radiated emission > 1GHz	±5.65 dB

Report No.: FR562201-03-1 Page: 9 of 51

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 49%	Peter Lin
Radiated Emissions	03CH01-WS	21-23°C / 61-65%	Aska Huang Warren Lee
RF Conducted	TH01-WS	22°C / 64%	Alex Huang

FCC site registration No.: 181692IC site registration No.: 10807A-1

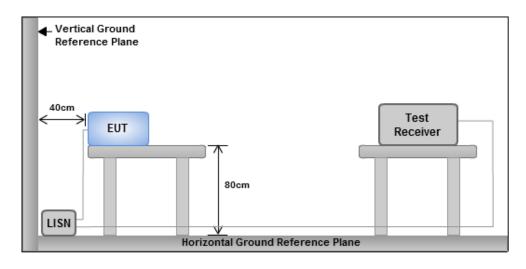
2.2 The Worst Test Modes and Channel Details

Test item	Test Frequency (MHz)	Modulation / SF	Test Configuration
Conducted Emissions	902.3 / 910.1 / 924.375	CSS / 10	
Radiated Emissions ≤ 1GHz	902.3 / 910.1 / 924.375	CSS / 10	
Radiated Emissions > 1GHz Conducted Output Power	902.3 / 910.1 / 924.375	CSS / 10	
Number of Hopping Channels	902.3 ~ 924.375	CSS / 10	
Hopping Channel Separation	902.3 / 910.1 / 914.9 920.625 / 924.375	CSS / 10	
Dwell Time	902.7 / 906.9 / 910.1 / 913.3 / 922.375	CSS: 10/9/8/7	
Power spectral density	902.3 / 910.1 / 924.375	CSS / 10	

Report No.: FR562201-03-1 Page: 10 of 51

3 Transmitter Test Results

3.1 Conducted Emissions

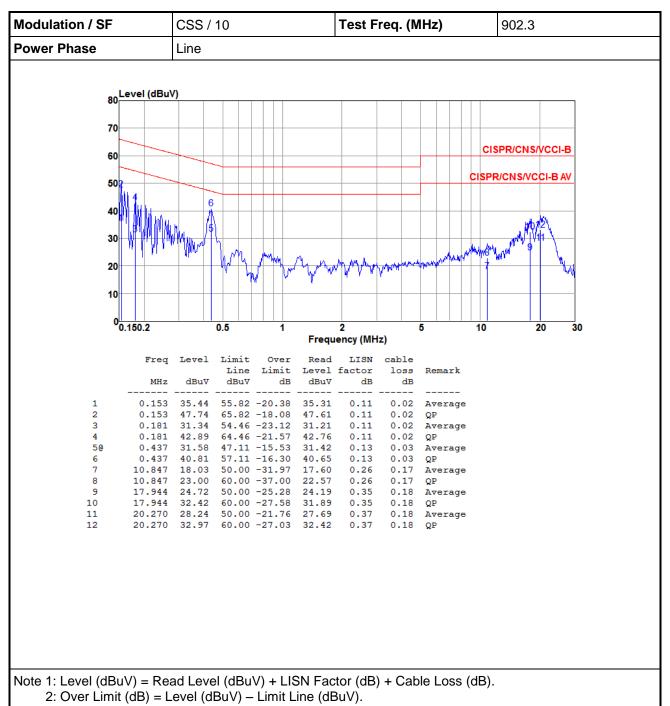

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	m of the frequency.	·

3.1.2 Test Procedures

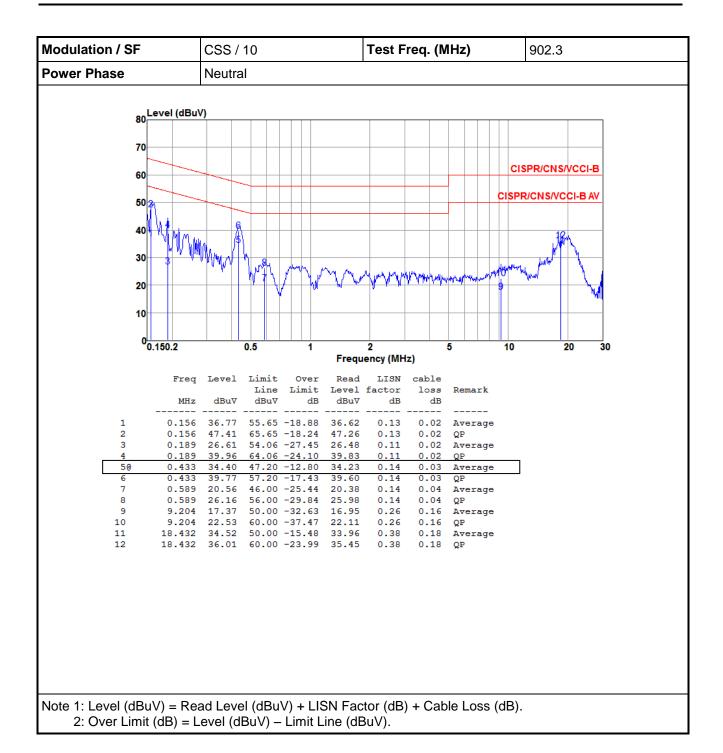
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

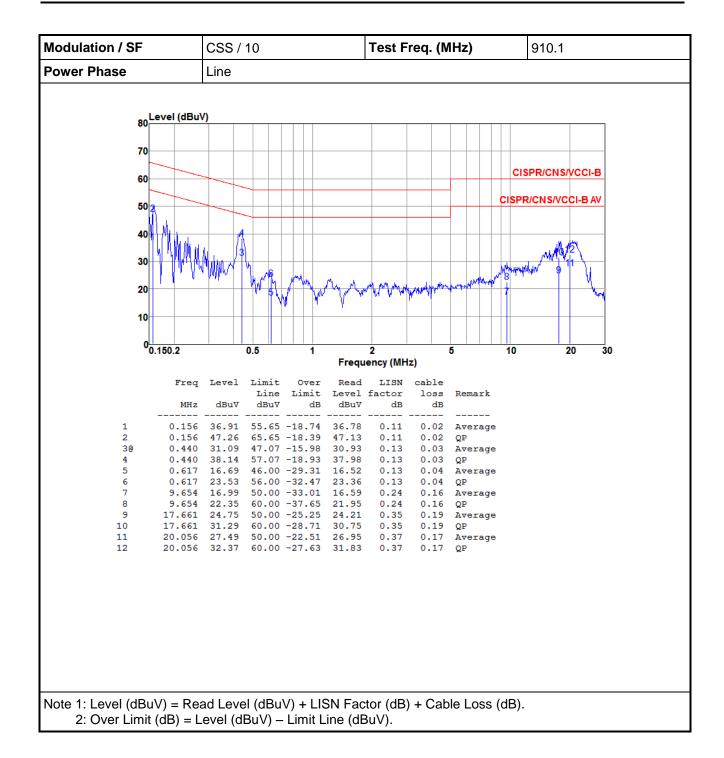

Note: 1. Support units were connected to second LISN.

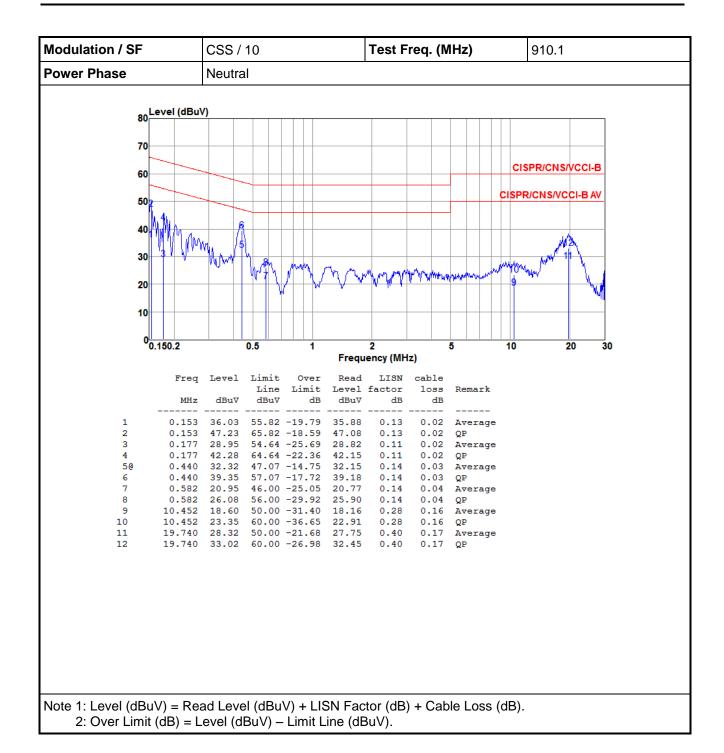
Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

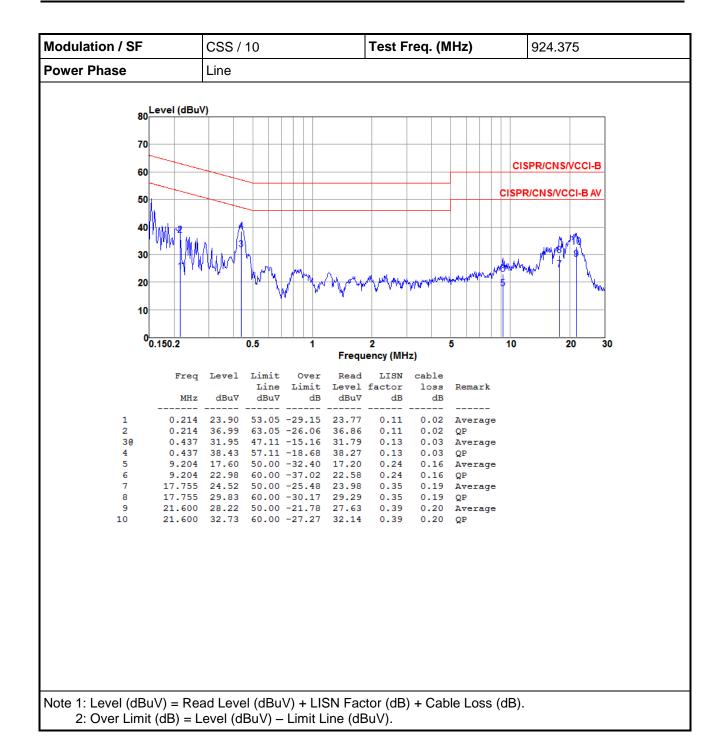
Report No.: FR562201-03-1 Page: 11 of 51

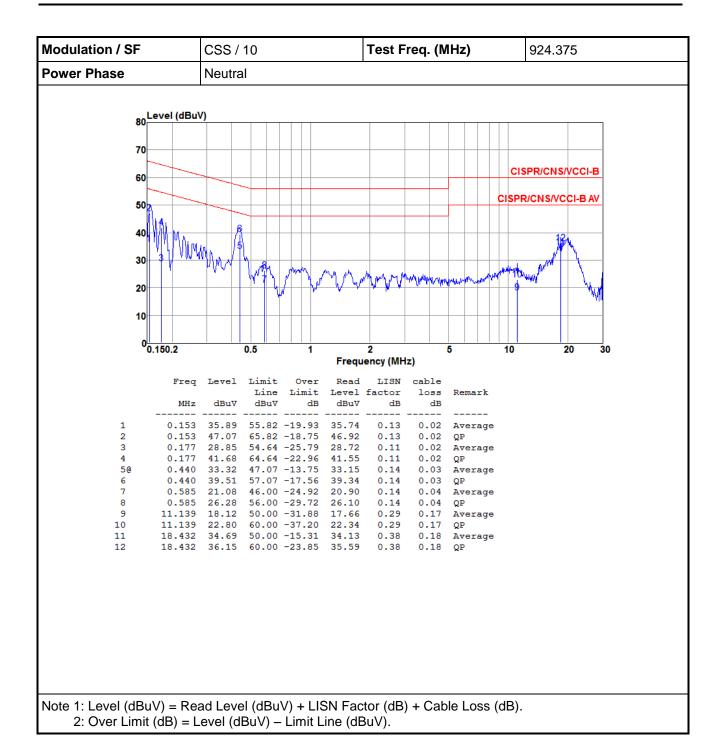


3.1.4 Test Result of Conducted Emissions


Report No.: FR562201-03-1 Page: 12 of 51


Report No.: FR562201-03-1 Page: 13 of 51


Report No.: FR562201-03-1 Page: 14 of 51


Report No.: FR562201-03-1 Page: 15 of 51

Report No.: FR562201-03-1 Page: 16 of 51

Report No.: FR562201-03-1 Page: 17 of 51

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

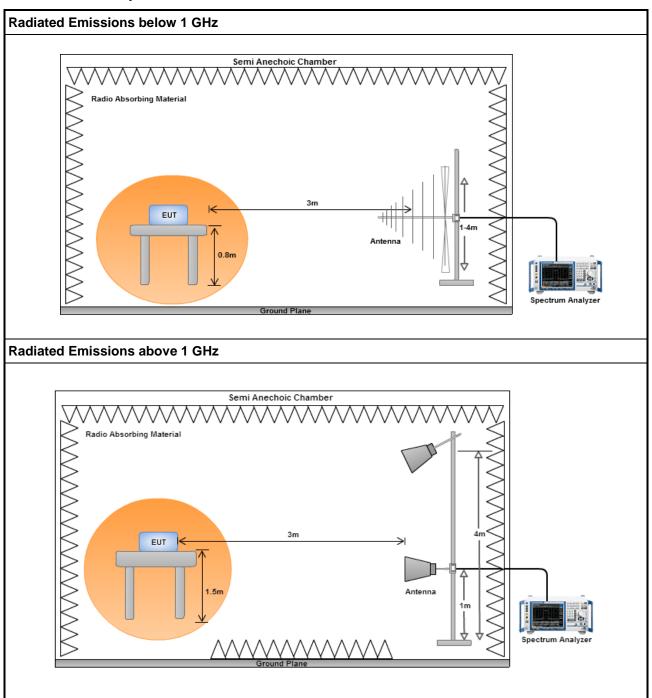
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

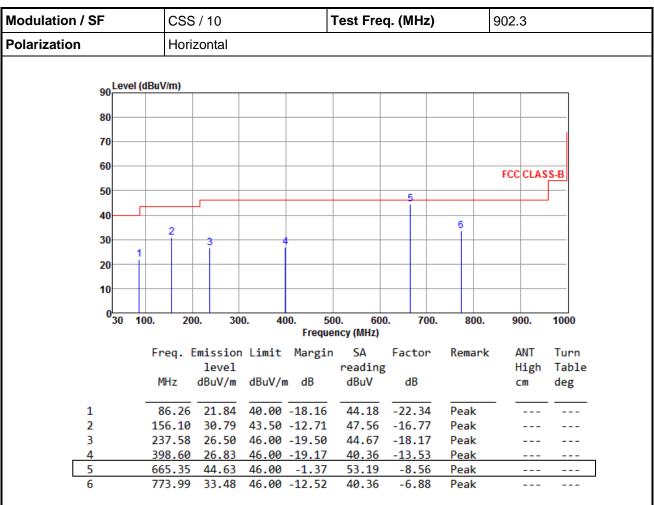
3.2.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR562201-03-1 Page: 18 of 51


3.2.3 Test Setup

Report No.: FR562201-03-1 Page: 19 of 51

3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 20 of 51

Modulation / SF	CS	S / 10			est Free	q. (MHz)		902.3	
Polarization	Ver	tical		1					
	•								
90 <mark>Le</mark>	/el (dBuV/m)								
80									
70									
60									
								FCC C	LASS-B
50									
40—						5	6		
30	2 3	4					ĭl		
30	ĺĺ								
20									
10									
0 30	100. 2	00. 30	0. 40	00. 50	0. 600 ncy (MHz)	0. 700.	800.	900.	1000
	Г	C				C+	Dl-	AN ⁻	T Turn
	Freq.	Emission level	LIMIC	margin	SA reading	Factor	Remark	Hi ₈	
	MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		Cm	deg
1	31.94			-9.89	47.82	-17.71	Peak		
2	94.99 156.10			-16.32	49.34		Peak		
3 4	237.58			-15.15 -16.73	47.44	-16.77 -18.17	Peak Peak		
5	665.35			-8.32	46.24	-8.56	Peak		
6	776.90	35.51	46.00	-10.49	42.35	-6.84	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 21 of 51

Modulation / SF	CSS / 1	0	-	Test Free	q. (MHz)	910.1		
Polarization	Horizon	ıtal	·					
90 Level (d	BuV/m)							
80								
70								
60								
							FCC CLAS	SS-B
50					5			
40						6		
20	2	3				ĭ		
30			4					
20								
10								
030 10	. 200.	300.		0. 600	o. 700 .	800.	900.	1000
				ncy (MHz)		ъ .	ANT	-
	•	ssion Limit evel	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	_	uV/m dBuV/	m dB	dBuV	dB		cm	deg
_							_	
1			-18.91	41.87	-20.78	Peak		
2			-11.64	48.63	-16.77	Peak		
3 4		8.94 46.00 6.34 46.00	-17.06	46.83 39.87	-17.89 -13.53	Peak Peak		
5		0.34 46.00 4.35 46.00		52.91	-8.56	Peak		
6			-11.26	41.62	-6.88	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 22 of 51

Modulation / SF	CSS / 10	т	CSS / 10 Test Freq. (MHz) 910.1									
Polarization	Vertical				•							
90 Level (dBu	ıV/m)											
80												
80												
70												
60												
50					FCC CLAS	S-B						
50												
40				5 6								
30	2 3	4										
20												
10												
0 30 100.	200 200	400 500	2 000	700 0	20 000	4000						
°30 100.	200. 300.		0. 600. ncy (MHz)	700. 8	00. 900.	1000						
F	req. Emission	Limit Margin	SA Fa	ctor Rema	ark ANT	Turn						
	level		reading		High	Table						
	MHz dBuV/m	dBuV/m dB	dBuV	dB	CM	deg						
1 -	32.91 26.73	40.00 -13.27	44.39 -1	7.66 Peal								
		43.50 -15.04		6.77 Peal								
		46.00 -14.63		7.89 Peal								
		46.00 -18.50		3.53 Peal								
5 6	65.35 37.11 75.93 34.36	46.00 -8.89	45.67 -	8.56 Peal								

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 23 of 51

Modulation /	SF		CSS / 1	10		-	Test Fre	q. (M	IHz)		924.	.375	
Polarization			Horizor	ntal							•		
	90Le	vel (dBu	V/m)									_	
	80												
	80												
	70												
	60										FC(CLAS	e n
	50										FCC	CLAS	5-В
								<u>5</u>	-				١
	40		2	3						6			
	30		1	1		1							
	20	_1_											
	10												
	030	100.	200.	30	0. 4	00. 50 Freque	0. 60 ncy (MHz)	0.	700.	800	. 9	00.	1000
		Fi	req. Emi	ssion	ı Limit	_		Fac	tor	Remar	k A	ANT	Turn
				evel		6	reading					High	Table
		ı	MHz dB	uV/m	dBuV/ı	n dB	dBuV	d	В		(cm	deg
	1		94.99 2	1.50	43.50	-22.00	43.66	-22	.16	Peak			
	2			1.27		-12.23	48.04	-16		Peak			
	3			1.22		-14.78	48.71			Peak			
	4 5					-18.89 -1.54	40.64 53.02		.53 .56	Peak Peak			
	5 5		74.96 3				40.54		.87	Peak			

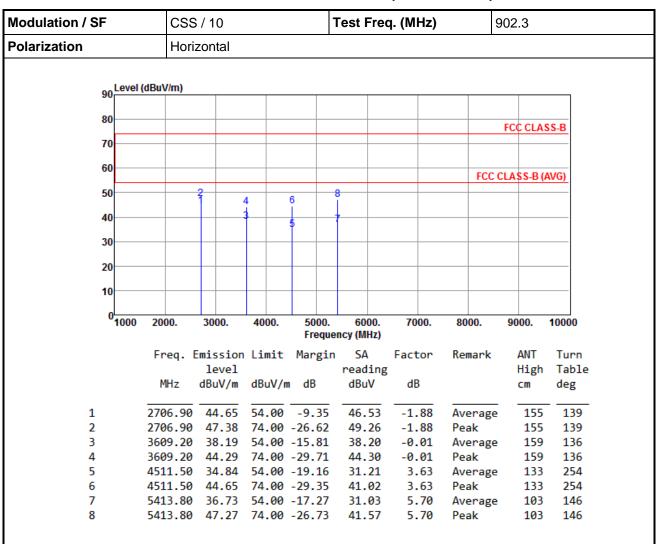
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 24 of 51

Modulation / SF	C	SS / 10	1		-	Test Fre	q. (N	(Hz		924.	375	
Polarization	Vertical											
90 Lev	el (dBuV/m))										
80			_									
70												
60			\neg							FCC	CLAS	S-B
50												
40								5—				
30		3	3		1				6			
	Ī											
20												
10												
030	100.	200.	300). 40		00. 60 ency (MHz)	0.	700	. 800	. 9	00.	1000
	Eneg	Fmico	ion	limi+	Margin		Ear	tor	Remar	k /	ANT	Turn
	1164	lev		LIMIC	Mai gin	reading		COI	Kelliai		ligh	Table
	MHz	dBu\	//m	dBuV/r	n dB	dBuV	d	IB		(cm -	deg
1	31.	94 30.	12	40.00	-9.88	47.83	-17	7.71	Peak			
2	156.		77		-15.73	44.54	-16	.77	Peak			
3	258.				-15.15	48.34		.49	Peak			
4 5	398. 665.				-18.04 -8.38	41.49 46.18		3.53 3.56	Peak Peak			
6					-11.89	40.16		5.84	Peak			


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-03-1 Page: 25 of 51

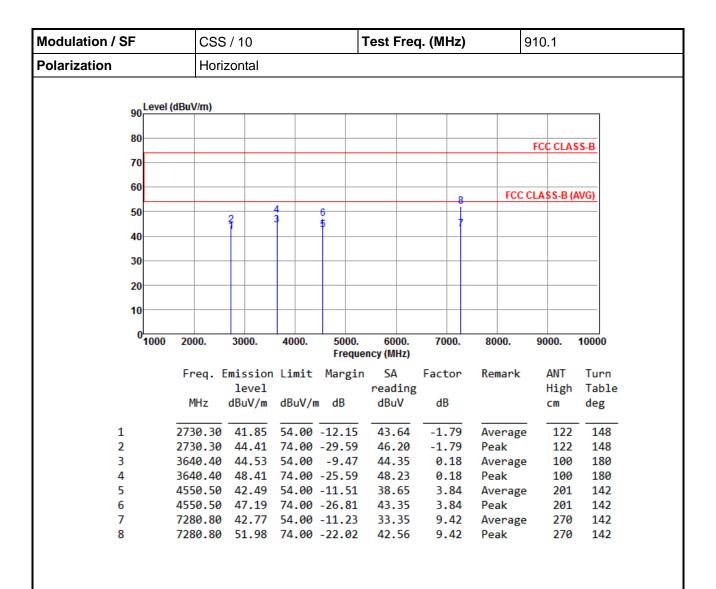
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

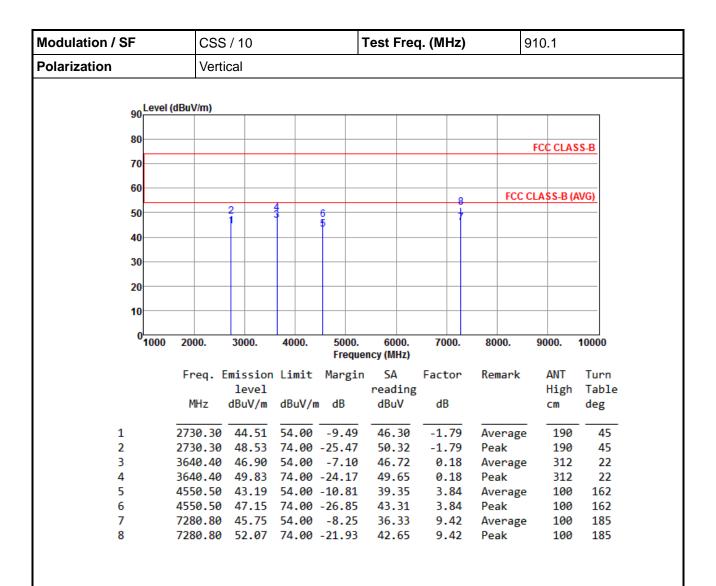
Report No.: FR562201-03-1 Page: 26 of 51



Modulation / SF	CSS / 10			-	Test Fre	9	902.3		
Polarization	Verti	cal		1			•		
Lavel (d	IDu\//m\								
90 Level (d	IBUV/III)								
80									
								FCC CLAS	SS-B
70									
60									
	2				8		FCC CLASS-B (AV		AVG)
50		1	4	6	8				
40				5					
20				Ĭ					
30									
20									
10									
10									
0 <mark>1000</mark>	2000.	3000.	4000.	5000. Freque	6000.	7000.	8000.	9000.	10000
	Freg. F	mission	limit	Margin	SA	Factor	Remark	ANT	Turn
		level		6	reading			High	Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1	2706.90	46.24	54.00	-7.76	48.12	-1.88	Average	164	221
	2706.90			-25.55	50.33	-1.88	Peak	164	221
		36.50			36.51	-0.01	Average		156
		43.10			43.11	-0.01	Peak	249	156
		35.26			31.63	3.63	Average		189
		45.16 41.93				3.63 5.70	Peak Average	283 193	189 130
	5413.80			-25.76	42.54	5.70	Peak	193	130

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-03-1 Page: 27 of 51



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-03-1 Page: 28 of 51

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-03-1 Page: 29 of 51

Modulation / SF	CSS / 10			Ι	est Free	924.375			
Polarization	arization Horizontal								
90 Level (d	BuV/m)								
80								FCC CLAS	SS-B
70									
60									
00							FCC	CLASS-B (A	AVG)
50		2	4 1	6		-			
40		1	Ĭ	5					
30									
20									
40									
10									
0 <mark>1000</mark>	2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	10000
				Freque	ncy (MHz)				
	Freq. E		Limit	Margin		Factor	Remark	ANT	Turn
		level	ID 144		reading			High	Table
	MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg
1 2	2773.13	41.68	54.00	-12.32	43.32	-1.64	Average	117	146
2 2	2773.13	44.94	74.00	-29.06	46.58	-1.64	Peak	117	146
		44.20			43.65	0.55	Average		183
	3697.50			-25.24	48.21	0.55	Peak	100	183
		42.74			38.57	4.17	Average		136
		47.49 43.19			43.32 33.56	4.17 9.63	Peak Average	206 272	136 105
	7395.00	51.91		-22.09	42.28	9.63	Peak	272	105

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-03-1 Page: 30 of 51

Modulation / SF	CS	CSS / 10			Test Freq. (MHz)			924.375			
Polarization	Ve	Vertical									
	1										
90 ^{Le} 1	vel (dBuV/m)										
80								FCC CLAS	S-B		
70											
60											
00							FCC CLASS-B (A		AVG)		
50		2	3	6		- 7					
40											
30											
20											
10											
0 100	00 2000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	10000		
					ncy (MHz)						
	Freq.	Emission	Limit	Margin		Factor	Remark	ANT	Turn		
		level			reading			High	Table		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg		
1	2773.1	3 44.57	54.00	-9.43	46.21	-1.64	Average	195	21		
2			74.00		50.43	-1.64	Peak	195	21		
3	3697.5	0 46.90	54.00	-7.10	46.35	0.55	Average	325	3		
4		0 49.88			49.33	0.55	Peak	325	3		
5		8 43.39			39.22	4.17	Average		156		
6		8 48.71			44.54	4.17	Peak	100	156		
7 8	7395.0	0 47.28 0 51.78	74.00		37.65 42.15	9.63 9.63	Average Peak	100 100	178 178		
0	7333.0	0 31./0	74.00	-22.22	42.13	3.03	reak	100	1/0		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

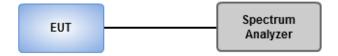
Report No.: FR562201-03-1 Page: 31 of 51

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

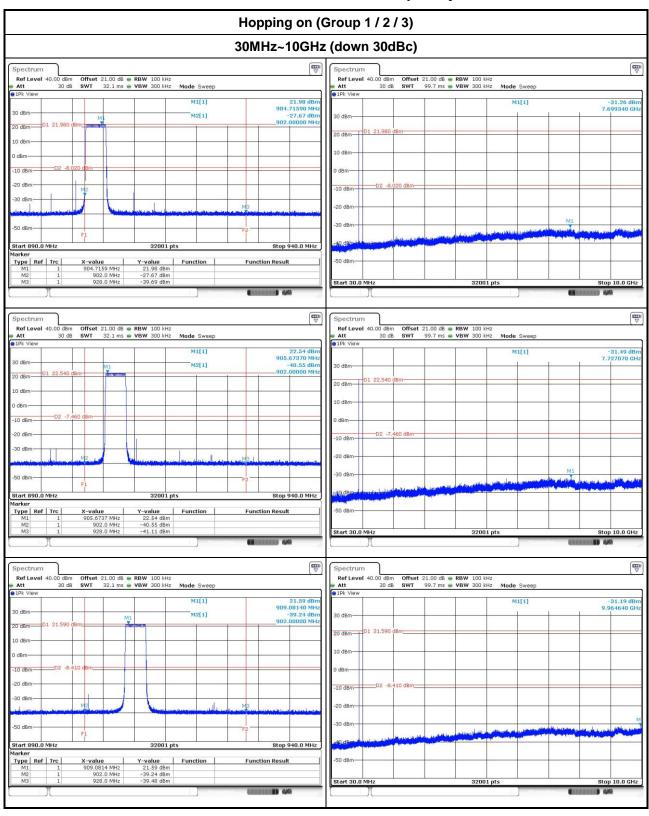
3.3.2 Test Procedures


Reference Level Measurement

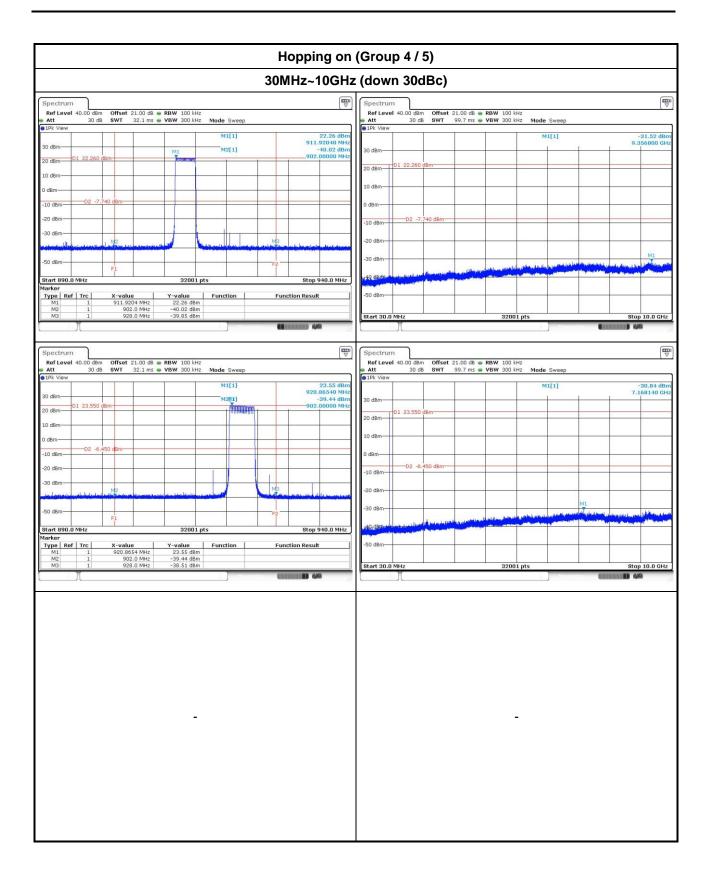
- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

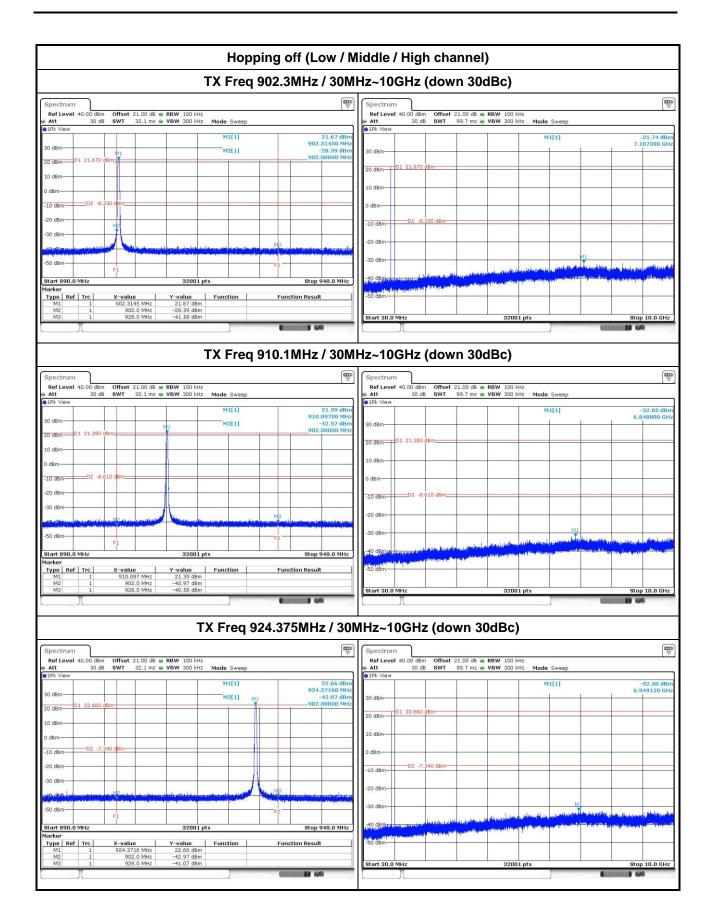
- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


3.3.3 Test Setup

Report No.: FR562201-03-1 Page: 32 of 51



3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands


Report No.: FR562201-03-1 Page: 33 of 51

Report No.: FR562201-03-1 Page: 34 of 51

Report No.: FR562201-03-1 Page: 35 of 51

3.4 Conducted Output Power

3.4.1 Limit of Conducted Output Power

□ 1 Watt, systems employing at least 50 hopping channels;

0.25 Watt, for systems employing less than 50 hopping channels, but at least 25 hopping channels,

3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

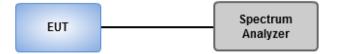
Report No.: FR562201-03-1 Page: 36 of 51

3.4.4 Test Result of Conducted Output Power

Modulation / SF	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (W)
CSS / 10	902.3	166.72	22.22	1
CSS / 10	910.1	159.22	22.02	1
CSS / 10	924.375	212.32	23.27	1

Report No.: FR562201-03-1 Page: 37 of 51

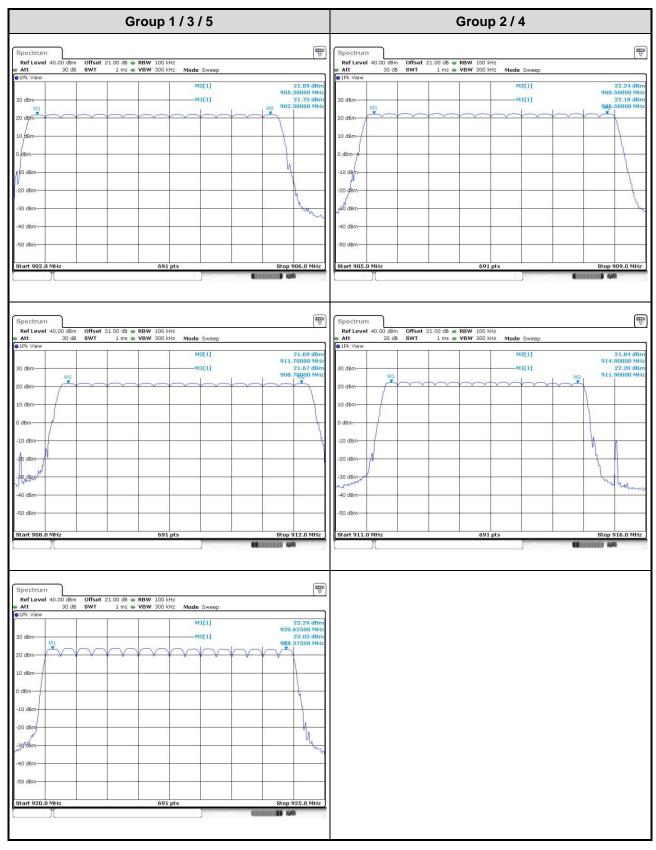
3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

	Number of Hopping Frequencies Limit for Frequency Hopping Systems			
\boxtimes	902-928 MHz Band:			
	N ≥ 50, 20 dB bandwidth of the hopping channel is less than 250 kHz			
	N ≥ 25, 20 dB bandwidth of the hopping channel is 250 kHz or greater			
	Hybrid mode, No minimum number of hopping channels associated with hybrid system.			
N: N	N: Number of Hopping Frequencies			

3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.


3.5.3 Test Setup

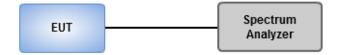
Report No.: FR562201-03-1 Page: 38 of 51

3.5.4 Test Result of Number of Hopping Frequency

Report No.: FR562201-03-1 Page: 39 of 51

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

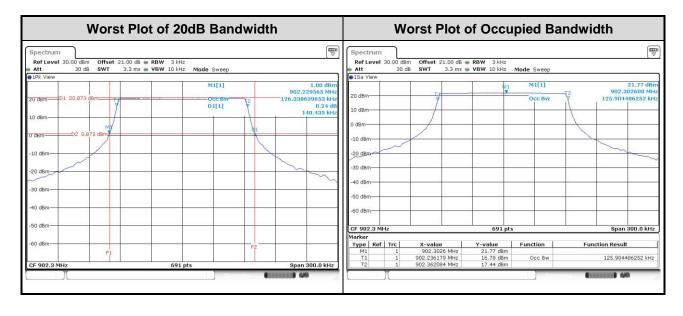

20dB Bandwidth

- 1. Set RBW=3kHz, VBW=10kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- 2 Allow trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- Set RBW=3kHz, VBW=10kHz,Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.6.2 Test Setup



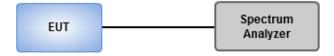
Report No.: FR562201-03-1 Page: 40 of 51

3.6.3 Test result of 20dB and Occupied Bandwidth

Modulation / SF	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
CSS / 10	902.3	0.140	0.126
CSS / 10	910.1	0.140	0.126
CSS / 10	914.9	0.140	0.126
CSS / 10	920.625	0.140	0.126
CSS / 10	924.375	0.140	0.126

Report No.: FR562201-03-1 Page: 41 of 51

3.7 Channel Separation

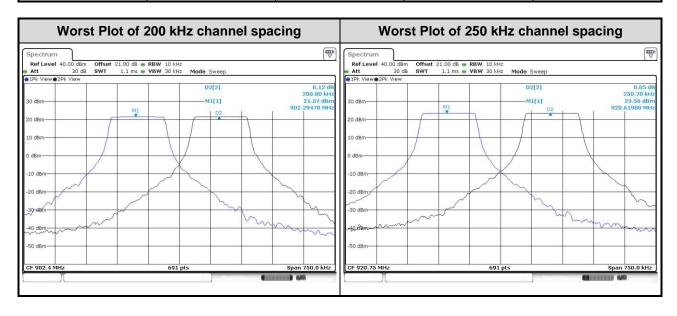

3.7.1 Limit of Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=10kHz, VBW=30kHz, Sweep time=Auto, Detector=Peak Trace max hold.
- 2 Allow trace to stabilize.
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.7.3 Test Setup



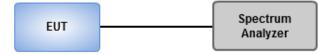
Report No.: FR562201-03-1 Page: 42 of 51

3.7.4 Test result of Channel Separation

Modulation / SF	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Pass/Fail
CSS / 10	902.3	0.20080	0.140	Pass
CSS / 10	910.1	0.20080	0.140	Pass
CSS / 10	914.9	0.20080	0.140	Pass
CSS / 10	920.625	0.25070	0.140	Pass
CSS / 10	924.375	0.25070	0.140	Pass

Report No.: FR562201-03-1 Page: 43 of 51

3.8 Number of Dwell Time

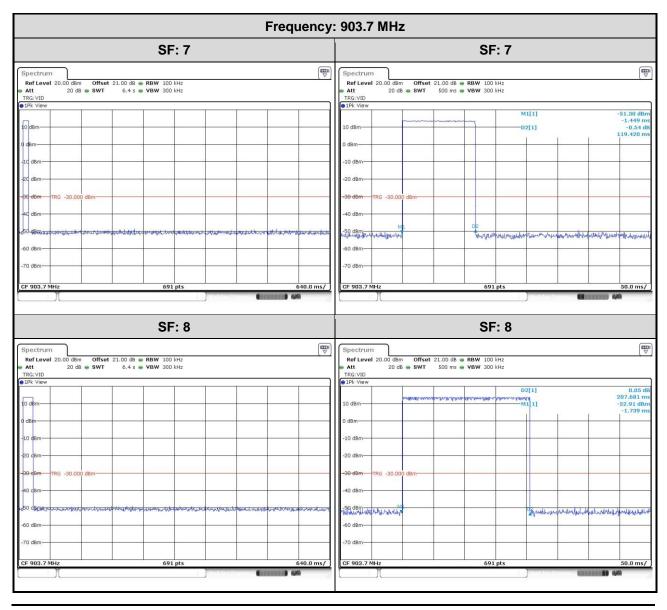

3.8.1 Limit of Dwell time

Time of Occupancy (Dwell Time) Limit for Frequency Hopping Systems				
	\leq 0.4 second within a 20 second period, 20 dB bandwidth of the hopping channel is less than 250 kHz			
	\leq 0.4 second within a 10 second period, 20 dB bandwidth of the hopping channel is 250 kHz or greater			
	Hybrid mode ,an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4			

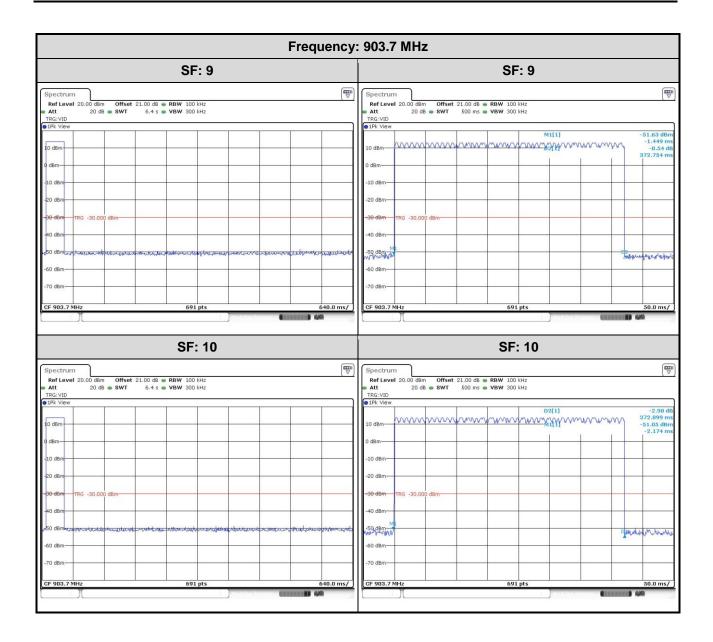
3.8.2 Test Procedures

- Set RBW=100kHz, VBW=300kHz, Sweep time=6.4s / 500ms, Detector=Peak, Span=0Hz, Trace max hold.
- 2. Measure and record the burst on time.

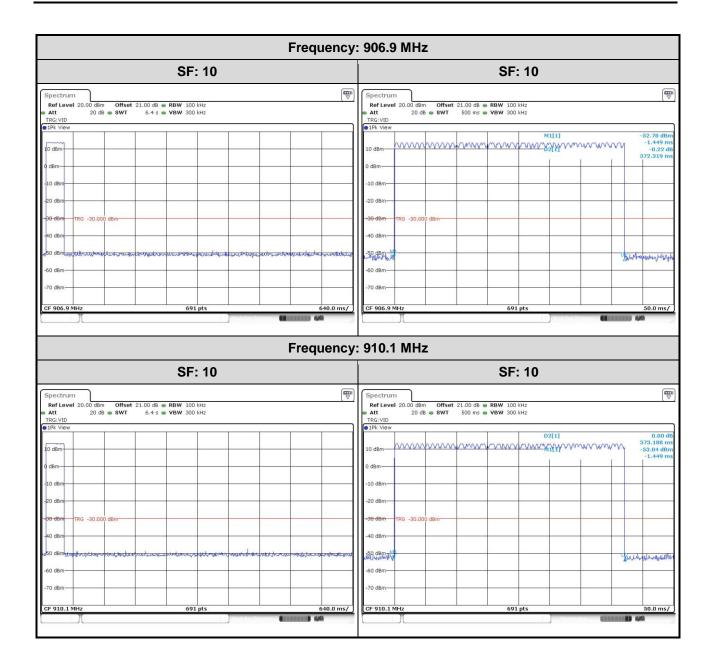
3.8.3 Test Setup

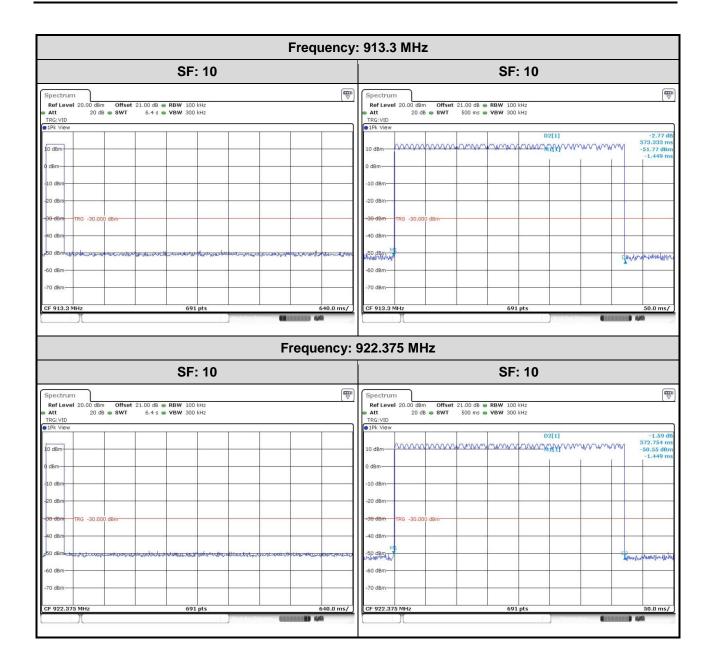


Report No.: FR562201-03-1 Page: 44 of 51


3.8.4 Test Result of Dwell Time

Modulation / SF	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 6.4 (16 Hopping*0.4)	Result (s)	Limit (s)
CSS/7	903.7	0.11942	1	0.11942	0.4
CSS / 8	903.7	0.20768	1	0.20768	0.4
CSS / 9	903.7	0.37275	1	0.37275	0.4
CSS / 10	903.7	0.37290	1	0.37290	0.4
CSS / 10	906.9	0.37232	1	0.37232	0.4
CSS / 10	910.1	0.37319	1	0.37319	0.4
CSS / 10	913.3	0.37333	1	0.37333	0.4
CSS / 10	922.375	0.37275	1	0.37275	0.4

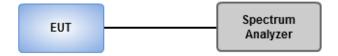

Report No.: FR562201-03-1 Page: 45 of 51


Report No.: FR562201-03-1 Page: 46 of 51

Report No.: FR562201-03-1 Page: 47 of 51

Report No.: FR562201-03-1 Page: 48 of 51

3.9 Power Spectral Density

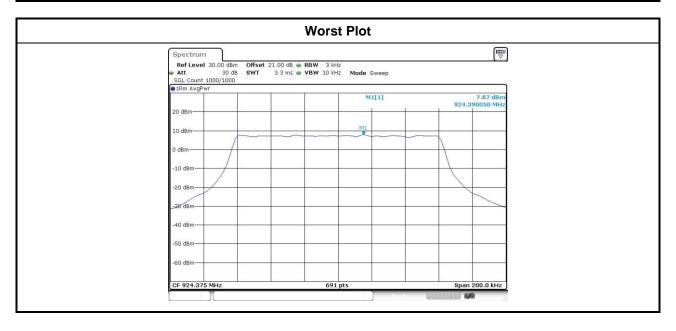

3.9.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band. This item is for Hybrid mode.

3.9.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 3kHz, VBW = 10 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Employ trace averaging (RMS) mode over a minimum of 100 traces
 - 4. Use the peak marker function to determine the maximum amplitude level.

3.9.3 Test Setup



Report No.: FR562201-03-1 Page: 49 of 51

3.9.4 Test Result of Power Spectral Density

Modulation / SF	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
CSS / 10	902.3	6.49	8.00
CSS / 10	910.1	6.80	8.00
CSS / 10	924.375	7.87	8.00

Report No.: FR562201-03-1 Page: 50 of 51

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR562201-03-1 Page: 51 of 51