

RF TEST REPORT

Applicant LANDLOG Ltd.

FCC ID 2AXNO-SCFD1US

Product Tracker

Brand LANDLOG

Model SCFD-1US

Report No. R2008A0578-R1V1

Issue Date December 21, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2019)/ FCC CFR 47 Part 22H (2019). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R2008A0578-R1V1

1.	Test	t Laboratory	.5
	1.1.	Notes of the Test Report	5
	1.2.	Test facility	5
	1.3.	Testing Location	5
2.	Gen	neral Description of Equipment under Test	.6
	2.3.	Applicant and Manufacturer Information	6
	2.4.	General Information	6
3.	App	lied Standards	.7
4.	Test	t Configuration	.8
5.	Test	t Case Results	.9
	5.1.	RF Power Output and Effective Radiated Power	9
	5.2.	Occupied Bandwidth1	
	5.3.	Radiates Spurious Emission1	3
6.	Mair	n Test Instruments1	17

F Test Report No.: R2008A0578-R1V1

Version	Revision description	Issue Date
Rev.0	/	September 25, 2020
Rev.1	Add RF Power Output and Effective Radiated Power and Occupied Bandwidth items.	December 21, 2020

Note This revised report (Report No. R2008A0578-R1V1) supersedes and replaces the previously issued report (Report No. R2008A0578-R1). Please discard or destroy the previously issued report and dispose of it accordingly.

F Test Report No.: R2008A0578-R1V1

Summary of measurement results

No.	Test Case Clause in FCC rules		Verdict
1	RF Power Output and Effective Radiated Power	2.1046 22.913(a)(5)	PASS
2	Occupied Bandwidth	2.1049	PASS
3	Radiates Spurious Emission	2.1053 / 22.917 (a)	PASS

Date of Testing: August 26, 2020 ~September 17, 2020 and November 25, 2020 ~ December 7, 2020

Date of Sample Receiving: August 25, 2020

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

There is only tested RF Power Output and Effective Radiated Power, Occupied Bandwidth and Radiates Spurious Emission in this report, other test items please refer to the module report (Report No.: |16D00113-RFA)

RF Test Report Report No.: R2008A0578-R1V1

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3. Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Xu Kai

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.3. Applicant and Manufacturer Information

Applicant	LANDLOG Ltd.	
Applicant address	12F Sumitomofudosan Shibadaimon 2chome Building,2-11-8	
Applicant address	Shibadaimon, Minato-ku,Tokyo 105-0012 Japan	
Manufacturer	LANDLOG Ltd.	
Manufacturar address	12F Sumitomofudosan Shibadaimon 2chome Building,2-11-8	
Manufacturer address	Shibadaimon, Minato-ku,Tokyo 105-0012 Japan	

Report No.: R2008A0578-R1V1

2.4. General Information

EUT Description				
Model	SCFD-1US			
IMEI	861475030939526			
Hardware Version	Ver 1.0			
Software Version	01000			
Power Supply	External Power Supply			
Antenna Type	PIFA Antenna			
Antenna Gain	-0.76dBi			
Test Mode(s)	WCDMA Band V;			
Test Modulation	(WCDMA) BPSK, QPSK,16QAM;			
HSDPA UE Category	24			
HSUPA UE Category	7			
DC-HSDPA UE Category	24			
HSPA+ UE Category	7			
Maximum E.R.P.	WCDMA Band V:	21.50 dBm		
Rated Power Supply Voltage	5V			
Extreme Voltage	Minimum: 4.25V Maxii	mum:5.75V		
Extreme Temperature	Lowest:-30°C Highes	t: +50°C		
Operating Voltage	Minimum: 4.8V Maximum:5.5V			
Operating Temperature	Lowest:-10°C Highest: +60°C			
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s)	WCDMA Band V	824 ~ 849	869 ~ 894	

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

Page 6 of 17

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 22H (2019)

ANSI C63.26 (2015)

Reference standard:

FCC CFR47 Part 2 (2019)

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, horizontal polarization) and the worst case was recorded.

All mode and data rates and positions were investigated. Subsequently, only the worst case emissions are reported.

The following testing in WCDMA is set based on the maximum RF Output Power.

Test modes are chosen to be reported as the worst case configuration below:

Took itama	Modes/Modulation
Test items	WCDMA Band V
	RMC
RF Power Output and Effective Radiated power	HSDPA/HSUPA
	DC-HSDPA/HSPA+
Occupied Bandwidth	RMC
Radiates Spurious Emission	RMC

5. Test Case Results

RF Test Report

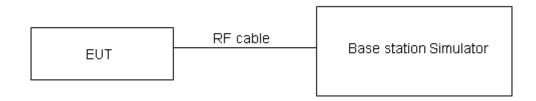
5.1. RF Power Output and Effective Radiated Power

Ambient condition

Temperature Relative humidity		Pressure	
23°C ~25°C 45%~50%		101.5kPa	

Methods of Measurement

During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.


ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi)

where:dBd refers to gain relative to an ideal dipole.

EIRP (dBm) = ERP (dBm) + 2.15 (dB).

Test Setup

Limits

No specific RF power output requirements in part 2.1046.

Rule Part 22.913(a)(5) specifies that "Mobile/portable stations are limited to 7 watts ERP".

Limit	≤ 7 W (38.45 dBm)

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for ERP.

Test Results

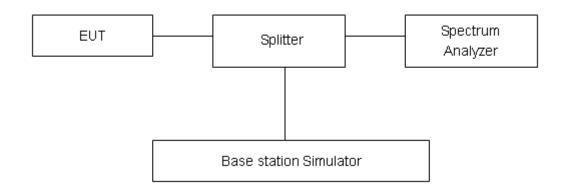
		Maximum	Output Po	wer (dBm)		ERP (dBm)	
			Channel	Channel	Channel	Channel	Channel
WCDMA	Band V	4132	4183	4233	4132	4183	4233
		826.4	836.6	846.6	826.4	836.6	846.6
			(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
RM	/IC	24.37	24.41	24.39	21.46	21.50	21.48
	Sub - Test 1	23.83	23.83	23.83	20.92	20.92	20.92
HSDPA	Sub - Test 2	23.82	23.85	23.80	20.91	20.94	20.89
ПЭДРА	Sub - Test 3	23.29	23.35	23.32	20.38	20.44	20.41
	Sub - Test 4	23.30	23.36	23.30	20.39	20.45	20.39
	Sub - Test 1	23.79	23.82	23.78	20.88	20.91	20.87
	Sub - Test 2	22.78	22.80	22.77	19.87	19.89	19.86
HSUPA	Sub - Test 3	23.25	23.28	23.26	20.34	20.37	20.35
	Sub - Test 4	22.71	22.77	22.74	19.80	19.86	19.83
	Sub - Test 5	23.72	23.75	23.72	20.81	20.84	20.81
	Sub - Test 1	23.71	23.77	23.73	20.80	20.86	20.82
DC-HSDPA	Sub - Test 2	23.70	23.76	23.72	20.79	20.85	20.81
DC-USDPA	Sub - Test 3	23.28	23.25	23.23	20.37	20.34	20.32
	Sub - Test 4	23.27	23.24	23.22	20.36	20.33	20.31
HSPA+	16QAM	23.26	23.32	23.29	20.35	20.41	20.38

5.2. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C 45%~50%		101.5kPa

Report No.: R2008A0578-R1V1


Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer.

RBW is set to 51kHz, VBW is set to 160kHz for WCDMA Band V,

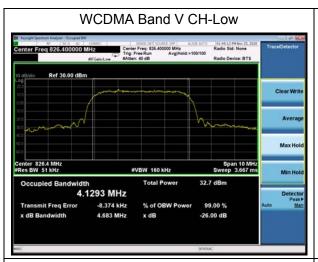
99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

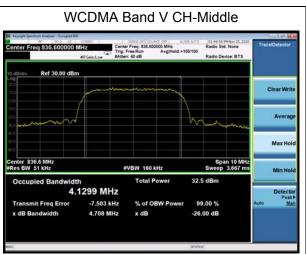
Test Setup

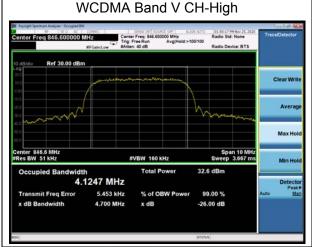
Limits

No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.





Test Result

Mode	Channel	Frequency (MHz)	99% Power Bandwidth (MHz)	-26dBc Bandwidth(MHz)
WCDMA	4132	826.4	4.1293	4.683
Band V	4183	836.6	4.1299	4.708
(RMC)	4233	846.6	4.1247	4.700

·

Report No.: R2008A0578-R1V1

5.3. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C 45%~50%		101.5kPa

Method of Measurement

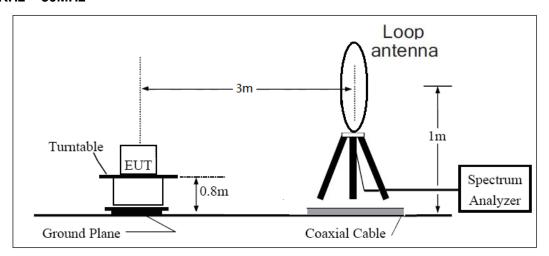
- 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=200Hz,VBW=600Hz for 9kHz-150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz, RBW=100kHz,VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, And the maximum value of the receiver should be recorded as (Pr). 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

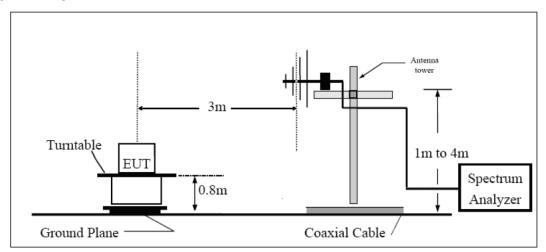
The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

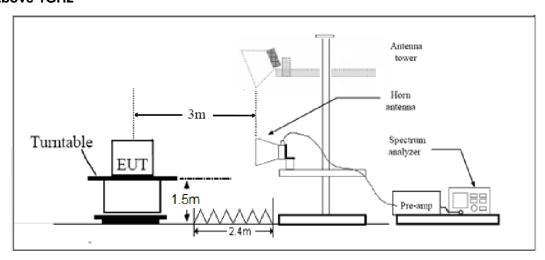
8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi)


RF Test Report No.: R2008A0578-R1V1

and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup


9KHz ~ 30MHz

30MHz ~ 1GHz

Above 1GHz

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-001R

Page 14 of 17

RF Test Report No.: R2008A0578-R1V1

Note: Area side:2.4mX3.6m

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB."

Limit	-13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

WCDMA Band V CH-Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1673.2	-60.33	2.00	10.75	Horizontal	-53.73	-13.00	40.73	315
3	2506.9	-24.45	2.51	11.05	Horizontal	-18.06	-13.00	5.06	270
4	3348.8	-54.05	4.20	11.15	Horizontal	-49.25	-13.00	36.25	90
5	4183.0	-54.88	5.20	11.15	Horizontal	-51.08	-13.00	38.08	315
6	5019.6	-53.93	5.50	11.95	Horizontal	-49.63	-13.00	36.63	45
7	5856.2	-54.85	5.70	13.55	Horizontal	-49.15	-13.00	36.15	180
8	6692.8	-56.34	6.30	13.75	Horizontal	-51.04	-13.00	38.04	135
9	7529.4	-53.43	6.80	13.85	Horizontal	-48.53	-13.00	35.53	90
10	8366.0	-53.82	6.90	14.25	Horizontal	-48.62	-13.00	35.62	315

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Base Station Simulator	R&S	CMW500	113824	2020-05-18	2021-05-17
Power Splitter	Hua Xiang	SHX-GF2-2-13	10120101	1	/
Spectrum Analyzer	Key sight	N9010A	MY50210259	2020-05-18	2021-05-17
Universal Radio Communication Tester	Key sight	E5515C	MY48367192	2020-05-27	2021-05-26
Signal Analyzer	R&S	FSV30	100815	2019-12-15	2020-12-14
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2020-04-02	2023-04-01
Trilog Antenna	SCHWARZBECK	VUBL 9163	391	2019-12-16	2021-12-15
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2021-06-19
Signal generator	R&S	SMB 100A	102594	2020-05-18	2021-05-17
Climatic Chamber	ESPEC	SU-242	93000506	2017-12-17	2020-12-16
Preampflier	R&S	SCU18	102327	2020-05-18	2021-05-17
MOB COMMS DC SUPPLY	Keysight	66319D	MY43004105	2020-05-18	2021-05-17
RF Cable	Agilent	SMA 15cm	0001	2020-06-12	2020-12-11
Software	R&S	EMC32	9.26.0	1	1

*****END OF REPORT *****