7.3 MAXIMUM PERMISSIBLE EXPOSURE # LIMITS Per FCC Table 1 & Section §1.1310 §1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter. Model: IT-105 TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) | Frequency range
(MHz) | Electric field
strength
(V/m) | Magnetic field
strength
(A/m) | Power density
(mW/cm²) | Averaging time
(minutes) | |---|-------------------------------------|-------------------------------------|--|-----------------------------| | (A) Limi | its for Occupational | /Controlled Exposure | es | | | 0.3–3.0
3.0–30
30–300
300–1500
1500–100,000 | 614
1842/f
61.4 | 1.63
4.89/f
0.163 | *(100)
*(900/F²)
1.0
f/300
5 | 6
6
6
6 | | (B) Limits f | or General Populati | on/Uncontrolled Exp | osure | | | 0.3–1.34
1.34–30
TABLE 1—LIMITS FOR M | 614
824/f
AXIMUM PERMISS | 1.63
2.19/f | *(100)
*(180/f²)
(MPE)—Continu | 30
30
led | | Frequency range (MHz) | Electric field
strength | Magnetic field
strength | Power density
(mW/cm²) | Averaging time
(minutes) | | Frequency range
(MHz) | Electric field
strength
(V/m) | Magnetic field
strength
(A/m) | Power density
(mW/cm²) | Averaging time
(minutes) | | |--------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|--| | 30-300 | 27.5 | 0.073 | 0.2 | 30 | | | 300-1500 | | | f/1500 | 30 | | | 1500–100,000 | | | 1.0 | 30 | | f = frequency in MHz # LIMITS per RSS-102, Table 1 & Section 2.5 Table 1: SAR evaluation - Exemption limits for routine evaluation based on frequency and separation distance | Frequency
(MHz) | Exemption Limits (mW) | | | | | | |--------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--| | | At separation
distance of
≤5 mm | At separation
distance of
10 mm | At separation
distance of
15 mm | At separation
distance of
20 mm | At separation
distance of
25 mm | | | ≤300 | 71 mW | 101 mW | 132 mW | 162 mW | 193 mW | | | 450 | 52 mW | 70 mW | 88 mW | 106 mW | 123 mW | | | 835 | 17 mW | 30 mW | 42 mW | 55 mW | 67 mW | | | 1900 | 7 mW | 10 mW | 18 mW | 34 mW | 60 mW | | | 2450 | 4 mW | $7 \mathrm{mW}$ | 15 mW | 30 mW | 52 mW | | | 3500 | 2 mW | 6 mW | 16 mW | 32 mW | 55 mW | | | 5800 | 1 mW | 6 mW | 15 mW | 27 mW | 41 mW | | | Frequency
(MHz) | Exemption Limits (mW) | | | | | | |--------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|--| | | At separation
distance of
30 mm | At separation
distance of
35 mm | At separation
distance of
40 mm | At separation
distance of
45 mm | At separation
distance of
≥50 mm | | | ≤300 | 223 mW | 254 mW | 284 mW | 315 mW | 345 mW | | | 450 | 141 mW | 159 mW | 177 mW | 195 mW | 213 mW | | | 835 | 80 mW | 92 mW | 105 mW | 117 mW | 130 mW | | | 1900 | 99 mW | 153 mW | 225 mW | 316 mW | 431 mW | | | 2450 | 83 mW | 123 mW | 173 mW | 235 mW | 309 mW | | | 3500 | 86 mW | 124 mW | 170 mW | 225 mW | 290 mW | | | 5800 | 56 mW | 71 mW | 85 mW | 97 mW | 106 mW | | f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure. ## Per 2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows: Model: IT-105 • below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance); • at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where *f* is in MHz; • at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance); • at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x $10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; • at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived. #### **CALCULATIONS** Given $$E = \sqrt{(30 * P * G)} / d$$ and $$S = E ^ 2 / 3770$$ where E = Field Strength in Volts/meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power Density in milliwatts/square centimeter Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields: $$d = \sqrt{(30 * P * G) / (3770 * S)}$$ Changing to units of Power to mW and Distance to cm, using: $$P(mW) = P(W) / 1000$$ and $$d (cm) = 100 * d (m)$$ yields $$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$ $$d = 0.282 * \sqrt{(P * G / S)}$$ where d = distance in cm P = Power in mW G = Numeric antenna gain $S = Power Density in mW/cm^2$ Substituting the logarithmic form of power and gain using: P $$(mW) = 10 ^ (P (dBm) / 10)$$ and $G (numeric) = 10 ^ (G (dBi) / 10)$ yields $$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$ Equation (1) $$S = 0.0795 * 10 ^ ((P + G)/10) / d^2$$ Equation (2) where Page 18 of 55 EUT: Clear Repeater Report No: 0048-180813-02-FCC-IC FCC ID:ST2-IT105 IC:6012A-IT105 d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$ Equation (1) and the measured Output power is used to calculate the MPE distance. Equation (2) and the measured Output power is used to calculate the Power density. Model: IT-105 # APPLICABLE LIMITS for separation >= 20cm FCC: From §1.1310 Table 1 (B), for Public S = 1.0 mW/cm²; for Professional, S = 5.0 mW/cm² IC: With formula of 1.31 x 10^{-2} $f^{0.6834}$ W, more restricted EIRP limit value are 1.37W at 902MHz, 2.67W at 2400MHz. ### **RESULTS** No non-compliance noted. For this EUT, P+G=23.90+3=26.90 dBm, and d=20cm A. For FCC, plug all three items into equation (2), yielding, | Power Density | Output | Antenna] | Power | |---------------|--------|----------|-----------------------| | Limit | Power | Gain | Density | | (mV/cm^2) | (dBm) | (dBi) | (mW/ cm ²⁾ | | 1.0/5.0 | 23.90 | 3 | 0.1 | B. For IC, max. eirp= 0.490W with max. 3dB gain antenna., much less than the limit of 1.37W. NOTE: For mobile or fixed location transmitters, the minimum separation distance between the antenna & radiating structures of the device and nearby persons is 20 cm, even if calculations indicate that the MPE distance would be less.