

## CFR 47 FCC PART 15 SUBPART C(DSS)

### **TEST REPORT**

For

#### Lugee Light(Bluetooth Version)

#### MODEL NUMBER: P3123TA

#### REPORT NUMBER: E04A24120339F00101

#### ISSUE DATE: December 19, 2024

### FCC ID: 2BMUD-P3123TA

Prepared for

#### ZHONGSHAN INNOVATION VALLEY CO., LTD No.56, Xinxing Middle Road, Guzhen Town, Zhongshan City

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

## REPORT NO.: E04A24120339F00101 Page 2 of 105

## **Revision History**

| Rev. | Issue Date           | Revisions     | Revised By |
|------|----------------------|---------------|------------|
| V0   | December 19,<br>2024 | Initial Issue |            |

### Summary of Test Results

| Test Item                                        | Clause                                           | Limit/Requirement          | Result |
|--------------------------------------------------|--------------------------------------------------|----------------------------|--------|
| Antenna<br>Requirement                           | N/A                                              | FCC Part 15.203/15.247 (c) | Pass   |
| AC Power Line<br>Conducted Emission              | ANSI C63.10-2013 Clause<br>6.2                   | FCC Part 15.207            | Pass   |
| Conducted Output<br>Power                        | ANSI C63.10-2013 Clause<br>7.8.5                 | FCC Part 15.247 (b)(1)     | Pass   |
| 20 dB Bandwidth<br>and 99% Occupied<br>Bandwidth | ANSI C63.10-2013 Clause<br>6.9.2                 | FCC Part 15.247 (a)(1)     | Pass   |
| Carrier Hopping<br>Channel Separation            | ANSI C63.10-2013 Clause<br>7.8.2                 | FCC Part 15.247 (a)(1)     | Pass   |
|                                                  | ANSI C63.10-2013 Clause<br>7.8.3                 | FCC Part 15.247 (b)(1)     | Pass   |
| Time of Occupancy<br>(Dwell Time)                | ANSI C63.10-2013 Clause<br>7.8.4                 | FCC Part 15.247 (a)(1)     | Pass   |
| Conducted<br>Bandedge and<br>Spurious Emission   | ANSI C63.10-2013 Clause<br>6.10.4 & Clause 7.8.8 | FCC Part 15.247(d)         | Pass   |
| Radiated Band edge<br>and Spurious<br>Emission   | ANSI C63.10-2013 Clause<br>6.3 & 6.5 & 6.6       | FCC Part 15.205/15.209     | Pass   |

\*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

\*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

## CONTENTS

| 1.  | ATTES  | TATION OF TEST RESULTS                     | .5 |
|-----|--------|--------------------------------------------|----|
| 2.  | TEST N | IETHODOLOGY                                | .6 |
| 3.  | FACILI | TIES AND ACCREDITATION                     | .6 |
| 4.  | CALIB  | RATION AND UNCERTAINTY                     | .7 |
| 4   | .1.    | MEASURING INSTRUMENT CALIBRATION           | .7 |
| 4   | .2.    | MEASUREMENT UNCERTAINTY                    | .7 |
| 5.  | EQUIPI | MENT UNDER TEST                            | .8 |
| 5   | 5.1.   | DESCRIPTION OF EUT                         | .8 |
| 5   | .2.    | CHANNEL LIST                               | .8 |
| 5   | i.3.   | MAXIMUM PEAK OUTPUT POWER                  | .9 |
| 5   | .4.    | TEST CHANNEL CONFIGURATION                 | .9 |
| 5   | .5.    | THE WORSE CASE POWER SETTING PARAMETER     | 10 |
| 5   | .6.    | DESCRIPTION OF AVAILABLE ANTENNAS          | 10 |
| 5   | .7.    | SUPPORT UNITS FOR SYSTEM TEST              | 11 |
| 5   | .8.    | SETUP DIAGRAM                              | 11 |
| 6.  | MEASU  | JRING EQUIPMENT AND SOFTWARE USED1         | 2  |
| 7.  | ANTEN  | NA PORT TEST RESULTS1                      | 4  |
| 7   | .1.    | Conducted Output Power                     | 14 |
| 7   | .2.    | 20 dB Bandwidth and 99% Occupied Bandwidth | 15 |
| 7   | .3.    | Carrier Hopping Channel Separation         | 16 |
| 7   | .4.    | Number of Hopping Frequency                | 18 |
| 7   | .5.    | Time of Occupancy (Dwell Time)             | 19 |
| 7   | .6.    | Conducted Bandedge and Spurious Emission2  | 21 |
| 8.  | RADIA  | TED TEST RESULTS                           | 23 |
| 8   | 2.1.   | Radiated Band edge and Spurious Emission2  | 29 |
| 9.  | ANTEN  | NA REQUIREMENT4                            | 11 |
| 10. |        | AC POWER LINE CONDUCTED EMISSION4          | 12 |
| 11. |        | TEST DATA - Appendix A4                    | 15 |

## **1. ATTESTATION OF TEST RESULTS**

#### **Applicant Information**

| Company Name: | ZHONGSHAN INNOVATION VALLEY CO., LTD                    |
|---------------|---------------------------------------------------------|
| Address:      | No.56, Xinxing Middle Road, Guzhen Town, Zhongshan City |

#### **Manufacturer Information**

| Company Name: | ZHONGSHAN INNOVATION VALLEY CO., LTD                    |
|---------------|---------------------------------------------------------|
| Address:      | No.56, Xinxing Middle Road, Guzhen Town, Zhongshan City |

#### **EUT Information**

| Product Description:  | Lugee Light(Bluetooth Version)         |
|-----------------------|----------------------------------------|
| Model:                | P3123TA                                |
| Brand:                | 1                                      |
| Sample Received Date: | December 12, 2024                      |
| Sample Status:        | Normal                                 |
| Sample ID:            | A24120339 001                          |
| Date of Tested:       | December 12, 2024 to December 19, 2024 |

#### **APPLICABLE STANDARDS**

## STANDARD

CFR 47 FCC PART 15 SUBPART C(DSS)

Pass

**TEST RESULTS** 

Prepared By:



Checked By:

San La

Alan He Laboratory Leader

Shawn Wen Laboratory Manager

## 2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

## 3. FACILITIES AND ACCREDITATION

|                           | A2LA (Certificate No.: 6947.01)                                      |
|---------------------------|----------------------------------------------------------------------|
|                           | Guangdong Global Testing Technology Co., Ltd.                        |
|                           | has been assessed and proved to be in compliance with A2LA.          |
|                           | FCC (FCC Designation No.: CN1343)                                    |
|                           | Guangdong Global Testing Technology Co., Ltd.                        |
|                           | has been recognized to perform compliance testing on equipment       |
| Accreditation Certificate | subject to Supplier's Declaration of Conformity (SDoC) and           |
|                           | Certification rules                                                  |
|                           | ISED (Company No.: 30714)                                            |
|                           | Guangdong Global Testing Technology Co., Ltd.                        |
|                           | has been registered and fully described in a report filed with ISED. |
|                           | The Company Number is 30714 and the test lab Conformity              |
|                           | Assessment Body Identifier (CABID) is CN0148.                        |

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

## 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Items                                                                               | k    | Uncertainty                                                                                                 |  |  |  |
|------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| DTS Bandwidth                                                                            | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| 20dB Emission Bandwidth                                                                  | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| Carrier Frequency Separation                                                             | 1.96 | ±9.2 PPM                                                                                                    |  |  |  |
| Time of Occupancy                                                                        | 1.96 | ±0.57%                                                                                                      |  |  |  |
| Conducted Output Power                                                                   | 1.96 | ±1.5 dB                                                                                                     |  |  |  |
| Power Spectral Density Level                                                             | 1.96 | ±1.9 dB                                                                                                     |  |  |  |
| Conducted Spurious Emission                                                              | 1.96 | 9 kHz-30 MHz: ± 0.95 dB<br>30 MHz-1 GHz: ± 1.5 dB<br>1GHz-12.75GHz: ± 1.8 dB<br>12.75 GHz-26.5 GHz: ± 2.1dB |  |  |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the |      |                                                                                                             |  |  |  |
| 95% confidence level using a coverage factor of k=1.96.                                  |      |                                                                                                             |  |  |  |

| Test Item                                                                                                                                     | Measurement Frequency Range | К | U(dB) |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---|-------|--|--|
| Conducted emissions from the AC mains power ports (AMN)                                                                                       | 150 kHz ~ 30 MHz            | 2 | 3.37  |  |  |
| Radiated emissions                                                                                                                            | 9 kHz ~ 30 MHz              | 2 | 4.16  |  |  |
| Radiated emissions                                                                                                                            | 30 MHz ~ 1 GHz              | 2 | 3.79  |  |  |
| Radiated emissions                                                                                                                            | 1 GHz ~ 18 GHz              | 2 | 5.62  |  |  |
| Radiated emissions                                                                                                                            | 18 GHz ~ 40 GHz             | 2 | 5.54  |  |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. |                             |   |       |  |  |

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

| EUT Name         |         | Lugee Light(Bluetooth Version) |  |  |
|------------------|---------|--------------------------------|--|--|
| Model            |         | P3123TA                        |  |  |
| Hardware Version |         | V1.0                           |  |  |
| Software Version |         | V1.0                           |  |  |
| Ratings          |         | DC 5V / Battery 3.7V           |  |  |
| Battery Ratings  |         | 3.7V 1800mAh 6.66Wh            |  |  |
| Power Supply     | DC      | 5V                             |  |  |
|                  | Battery | 3.7V                           |  |  |

| Frequency Band:       | 2400 MHz to 2483.5 MHz                                                                                                                           |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Frequency Range:      | 2402 MHz to 2480 MHz                                                                                                                             |  |  |
| Bluetooth Version:    | 5.2                                                                                                                                              |  |  |
| Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS)                                                                                                          |  |  |
| Type of Modulation:   | GFSK, π/4-DQPSK, 8DPSK                                                                                                                           |  |  |
| Number of Channels:   | 79                                                                                                                                               |  |  |
| Channel Separation:   | 1 MHz                                                                                                                                            |  |  |
| Maximum Peak Power:   | 0.62 dBm                                                                                                                                         |  |  |
| Antenna Type:         | Internal antenna                                                                                                                                 |  |  |
| Antenna Gain:         | -0.58 dBi                                                                                                                                        |  |  |
| EUT Test software:    | FCC_assist_1.0.2.2                                                                                                                               |  |  |
| Note:                 | The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this. |  |  |

## 5.2. CHANNEL LIST

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 00      | 2402               | 20      | 2422               | 40      | 2442               | 60      | 2462               |
| 01      | 2403               | 21      | 2423               | 41      | 2443               | 61      | 2463               |
| 02      | 2404               | 22      | 2424               | 42      | 2444               | 62      | 2464               |
| 03      | 2405               | 23      | 2425               | 43      | 2445               | 63      | 2465               |
| 04      | 2406               | 24      | 2426               | 44      | 2446               | 64      | 2466               |
| 05      | 2407               | 25      | 2427               | 45      | 2447               | 65      | 2467               |
| 06      | 2408               | 26      | 2428               | 46      | 2448               | 66      | 2468               |
| 07      | 2409               | 27      | 2429               | 47      | 2449               | 67      | 2469               |
| 08      | 2410               | 28      | 2430               | 48      | 2450               | 68      | 2470               |
| 09      | 2411               | 29      | 2431               | 49      | 2451               | 69      | 2471               |
| 10      | 2412               | 30      | 2432               | 50      | 2452               | 70      | 2472               |
| 11      | 2413               | 31      | 2433               | 51      | 2453               | 71      | 2473               |
| 12      | 2414               | 32      | 2434               | 52      | 2454               | 72      | 2474               |
| 13      | 2415               | 33      | 2435               | 53      | 2455               | 73      | 2475               |
| 14      | 2416               | 34      | 2436               | 54      | 2456               | 74      | 2476               |

TRF No.: 04-E001-0B

| 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 |
|----|------|----|------|----|------|----|------|
| 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 |
| 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 |
| 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 |
| 19 | 2421 | 39 | 2441 | 59 | 2461 | /  | /    |

## 5.3. MAXIMUM PEAK OUTPUT POWER

| Test Mode  | Frequency<br>(MHz) | Channel Number | Maximum Peak Output Power (dBm) |
|------------|--------------------|----------------|---------------------------------|
| GFSK       | 2402 ~ 2480        | 0-78[79]       | -0.64                           |
| π /4-DQPSK | 2402 ~ 2480        | 0-78[79]       | 0.19                            |
| 8DPSK      | 2402 ~ 2480        | 0-78[79]       | 0.62                            |

## 5.4. TEST CHANNEL CONFIGURATION

| Test Mode  | Test Channel                                                  | Frequency                    |
|------------|---------------------------------------------------------------|------------------------------|
| GFSK       | CH 0(Low Channel), CH 39(MID Channel),<br>CH 78(High Channel) | 2402 MHz, 2441 MHz, 2480 MHz |
| π /4-DQPSK | CH 0(Low Channel), CH 39(MID Channel),<br>CH 78(High Channel) | 2402 MHz, 2441 MHz, 2480 MHz |
| 8DPSK      | CH 0(Low Channel), CH 39(MID Channel),<br>CH 78(High Channel) | 2402 MHz, 2441 MHz, 2480 MHz |

Note: The hop is hopping mode.

## PACKET TYPE CONFIGURATION

| Test Mode  | Packet Type Setting (Packet Length |      |
|------------|------------------------------------|------|
|            | DH1                                | 27   |
| GFSK       | DH3                                | 183  |
|            | DH1                                | 339  |
|            | 2-DH1                              | 54   |
| π /4-DQPSK | 2-DH3                              | 367  |
|            | 2-DH5                              | 679  |
|            | 3-DH1                              | 83   |
| 8DPSK      | 3-DH3                              | 552  |
|            | 3-DH5                              | 1021 |

## 5.5. THE WORSE CASE POWER SETTING PARAMETER

| Bluetooth Mode | Modulation<br>Technology | Modulation Type | Data Rate<br>(Mbps) |
|----------------|--------------------------|-----------------|---------------------|
| BR             | FHSS                     | GFSK            | 1Mbit/s             |
| EDR            | FHSS                     | π /4-DQPSK      | 2Mbit/s             |
| EDR            | FHSS                     | 8DPSK           | 3Mbit/s             |

#### WORST-CASE CONFIGURATIONS

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

| The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band |                  |                             |       |       |  |
|--------------------------------------------------------------------|------------------|-----------------------------|-------|-------|--|
| Test Se                                                            | oftware          | FCC_assist_1.0.2.2          |       |       |  |
| Modulation Type                                                    | Transmit Antenna | Test Software setting value |       |       |  |
|                                                                    | Number           | CH 00                       | CH 39 | CH 78 |  |
| GFSK                                                               | 1                | 10                          | 10    | 10    |  |
| π /4-DQPSK                                                         | 1                | 10                          | 10    | 10    |  |
| 8DPSK                                                              | 1                | 10                          | 10    | 10    |  |

## 5.6. DESCRIPTION OF AVAILABLE ANTENNAS

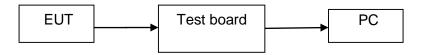
| Antenna | Frequency (MHz) | Antenna Type     | MAX Antenna Gain (dBi) |
|---------|-----------------|------------------|------------------------|
| 1       | 2402-2480       | Internal antenna | -0.58                  |

| Test Mode  | Transmit and<br>Receive Mode | Description                                              |
|------------|------------------------------|----------------------------------------------------------|
| GFSK       | ⊠1TX, 1RX                    | Antenna 1 can be used as transmitting/receiving antenna. |
| π /4-DQPSK | ⊠1TX, 1RX                    | Antenna 1 can be used as transmitting/receiving antenna. |
| 8DPSK      | ⊠1TX, 1RX                    | Antenna 1 can be used as transmitting/receiving antenna. |

## 5.7. SUPPORT UNITS FOR SYSTEM TEST

| No. | Equipment  | Manufacturer | Model No. | Serial No. |
|-----|------------|--------------|-----------|------------|
| 1   | PC         | Lenovo       | T14       | /          |
| 2   | Test board | /            | /         | /          |
| 3   | Adapter    | UGREEN       | CD170     | /          |

## 5.8. SETUP DIAGRAM


AC conducted emission :



Radiated Emission:



RF conducted:



| 6. | <b>MEASURING EQUIPMENT</b> | AND SOFTWARE USED |
|----|----------------------------|-------------------|
|----|----------------------------|-------------------|

|                                           | Test Equipment of Conducted RF |                         |             |            |            |  |  |  |
|-------------------------------------------|--------------------------------|-------------------------|-------------|------------|------------|--|--|--|
| Equipment                                 | Manufacturer                   | Model No.               | Serial No.  | Last Cal.  | Due Date   |  |  |  |
| Spectrum Analyzer                         | Rohde &<br>Schwarz             | FSV40                   | 102257      | 2024/09/14 | 2025/09/13 |  |  |  |
| Spectrum Analyzer                         | KEYSIGHT                       | N9020A                  | MY51285127  | 2024/09/14 | 2025/09/13 |  |  |  |
| EXG Analog Signal<br>Generator            | KEYSIGHT                       | N5173B                  | MY61253075  | 2024/09/14 | 2025/09/13 |  |  |  |
| Vector Signal<br>Generator                | Rohde &<br>Schwarz             | SMM100A                 | 101899      | 2024/09/14 | 2025/09/13 |  |  |  |
| RF Control box                            | MWRF-test                      | MW100-RFCB              | MW220926GTG | 2024/09/14 | 2025/09/13 |  |  |  |
| Wideband Radio<br>Communication<br>Tester | Rohde &<br>Schwarz             | CMW270                  | 102792      | 2024/09/14 | 2025/09/13 |  |  |  |
| Wideband Radio<br>Communication<br>Tester | Rohde &<br>Schwarz             | CMW500                  | 103235      | 2024/09/14 | 2025/09/13 |  |  |  |
| temperature humidity<br>chamber           | Espec                          | SH-241                  | SH-241-2014 | 2024/09/14 | 2025/09/13 |  |  |  |
| RF Test Software                          | MWRF-test                      | MTS8310E<br>(Ver. V2/0) | N/A         | N/A        | N/A        |  |  |  |

|                             | Test Equipment of Radiated emissions below 1GHz |                               |            |            |            |  |  |  |
|-----------------------------|-------------------------------------------------|-------------------------------|------------|------------|------------|--|--|--|
| Equipment                   | Manufacturer                                    | Model No.                     | Serial No. | Last Cal.  | Due Date   |  |  |  |
| 3m Semi-anechoic<br>Chamber | ETS                                             | 9m*6m*6m                      | Q2146      | 2022/08/30 | 2025/08/29 |  |  |  |
| EMI Test Receiver           | Rohde &<br>Schwarz                              | ESCI3                         | 101409     | 2024/09/14 | 2025/09/13 |  |  |  |
| Spectrum Analyzer           | KEYSIGHT                                        | N9020A                        | MY51283932 | 2024/09/14 | 2025/09/13 |  |  |  |
| Pre-Amplifier               | HzEMC                                           | HPA-9K0130                    | HYPA21001  | 2024/09/14 | 2025/09/13 |  |  |  |
| Biconilog Antenna           | Schwarzbeck                                     | VULB 9168                     | 01315      | 2022/10/10 | 2025/10/09 |  |  |  |
| Biconilog Antenna           | ETS                                             | 3142E                         | 00243646   | 2022/03/23 | 2025/03/22 |  |  |  |
| Loop Antenna                | ETS                                             | 6502                          | 243668     | 2022/03/30 | 2025/03/29 |  |  |  |
| Test Software               | Farad                                           | EZ-EMC<br>(Ver.FA-03A2<br>RE) | N/A        | N/A        | N/A        |  |  |  |

| Test Equipment of Radiated emissions above 1GHz                                       |                    |            |            |            |            |
|---------------------------------------------------------------------------------------|--------------------|------------|------------|------------|------------|
| Equipment         Manufacturer         Model No.         Serial No.         Last Cal. |                    |            |            |            |            |
| 3m Semi-anechoic<br>Chamber                                                           | ETS                | 9m*6m*6m   | Q2149      | 2022/08/30 | 2025/08/29 |
| Spectrum Analyzer                                                                     | Rohde &<br>Schwarz | FSV40      | 101413     | 2024/09/14 | 2025/09/13 |
| Spectrum Analyzer                                                                     | KEYSIGHT           | N9020A     | MY51283932 | 2024/09/14 | 2025/09/13 |
| Pre-Amplifier                                                                         | A-INFO             | HPA-1G1850 | HYPA21003  | 2024/09/14 | 2025/09/13 |
| Horn antenna                                                                          | A-INFO             | 3117       | 246069     | 2022/03/11 | 2025/03/10 |
| Pre-Amplifier                                                                         | ZKJC               | HPA-184057 | HYPA21004  | 2024/09/14 | 2025/09/13 |

TRF No.: 04-E001-0B

Global Testing , Great Quality.

| Horn antenna  | ZKJC  | 3116C                          | 246265 | 2022/03/29 | 2025/03/28 |
|---------------|-------|--------------------------------|--------|------------|------------|
| Test Software | Farad | EZ-EMC<br>(Ver.FA-03A2<br>RE+) | N/A    | N/A        | N/A        |

| Test Equipment of Conducted emissions |                    |                                    |            |            |            |
|---------------------------------------|--------------------|------------------------------------|------------|------------|------------|
| Equipment                             | Manufacturer       | Model No.                          | Serial No. | Last Cal.  | Due Date   |
| Shielded Room                         | CHENG YU           | 8m*5m*4m                           | N/A        | 2022/10/29 | 2025/10/28 |
| EMI Test Receiver                     | Rohde &<br>Schwarz | ESR3                               | 102647     | 2024/09/14 | 2025/09/13 |
| LISN/AMN                              | Rohde &<br>Schwarz | ENV216                             | 102843     | 2024/09/14 | 2025/09/13 |
| NNLK 8129 RC                          | Schwarzbeck        | NNLK 8129 RC                       | 5046       | 2024/09/14 | 2025/09/13 |
| Test Software                         | Farad              | EZ-EMC (Ver.<br>EMC-con-3A1<br>1+) | N/A        | N/A        | N/A        |

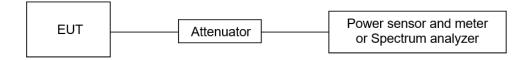
# 7. ANTENNA PORT TEST RESULTS 7.1. CONDUCTED OUTPUT POWER

#### <u>LIMITS</u>

| CFR 47 FCC Part15 (15.247) Subpart C          |                              |                  |             |  |
|-----------------------------------------------|------------------------------|------------------|-------------|--|
| Section Test Item Limit Frequency Range (MHz) |                              |                  |             |  |
| CFR 47 FCC 15.247(b)(3)                       | Peak Conduct<br>Output Power | 1 watt or 30 dBm | 2400-2483.5 |  |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.5.


Connect the EUT to the spectrum Analyzer and use the following settings:

| Center Frequency | The center frequency of the channel under test                               |
|------------------|------------------------------------------------------------------------------|
| Detector         | Peak                                                                         |
| RBW              | >20 dB bandwidth of the emission being measured                              |
| VBW              | ≥RBW                                                                         |
| Span             | Approximately five times the 20 dB bandwidth, centered on a hopping channel. |
| Trace            | Max hold                                                                     |
| Sweep time       | Auto                                                                         |

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

#### TEST SETUP



#### **TEST ENVIRONMENT**

| Temperature         | <b>23.5℃</b> | Relative Humidity | 58% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

#### <u>LIMITS</u>

| CFR 47FCC Part15 (15.247) Subpart C |                 |                                    |                          |
|-------------------------------------|-----------------|------------------------------------|--------------------------|
| Section                             | Test Item       | Limit                              | Frequency Range<br>(MHz) |
| CFR 47 FCC 15.247 (a) (1)           | 20 dB Bandwidth | None; for reporting purposes only. | 2400-2483.5              |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Detector         | Peak                                                                                                                        |
| IBBW/            | For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth<br>For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth |
|                  | For 20 dB Bandwidth: approximately 3×RBW<br>For 99 % Occupied Bandwidth: ≥ 3×RBW                                            |
| Span             | Approximately 2 to 3 times the 20dB bandwidth                                                                               |
| Trace            | Max hold                                                                                                                    |
| Sweep            | Auto couple                                                                                                                 |

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5</b> ℃ | Relative Humidity | 58% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.3. CARRIER HOPPING CHANNEL SEPARATION

#### LIMITS

| CFR 47 FCC Part15 (15.247),  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
|------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Section                      | Test Item                          | Limit                                                                                                                                                                                                                                                                                                                                                                                                                              | Frequency Range<br>(MHz) |
| CFR 47 FCC<br>15.247 (a) (1) | Carrier<br>Frequency<br>Separation | Frequency hopping systems shall have<br>hopping channel carrier frequencies<br>separated by a minimum of 25 kHz or the<br>20 dB bandwidth of the hopping channel,<br>whichever is greater.<br>Alternatively, frequency hopping systems<br>operating in the 2400-2483.5 MHz band<br>may have hopping channel carrier<br>frequencies that are separated by 25 kHz<br>or two-thirds of the 20 dB<br>bandwidth of the hopping channel. | 2400-2483.5              |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

| Center Frequency | The center frequency of the channel under test                                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Span             | wide enough to capture the peaks of two adjacent channels                                                                                        |
| Detector         | Peak                                                                                                                                             |
|                  | Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel. |
| VBW              | ≥RBW                                                                                                                                             |
| Trace            | Max hold                                                                                                                                         |
| Sweep time       | Auto couple                                                                                                                                      |

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5℃</b> | Relative Humidity | 58% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

TRF No.: 04-E001-0B

Global Testing, Great Quality.

### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.4. NUMBER OF HOPPING FREQUENCY

#### <u>LIMITS</u>

| CFR 47 FCC Part15 (15.247), Subpart C |                                |                              |
|---------------------------------------|--------------------------------|------------------------------|
| Section                               | Test Item                      | Limit                        |
| CFR 47 15.247 (a) (1) III             | Number of Hopping<br>Frequency | at least 15 hopping channels |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

| Detector   | Peak                                                                                                                                                                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RBW        | To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.                                                                                                |
| VBW        | ≥RBW                                                                                                                                                                                                                                          |
| Span       | The frequency band of operation. Depending on the number of channels<br>the device supports, it may be necessary to divide the frequency range of<br>operation across multiple spans, to allow the individual channels to be<br>clearly seen. |
| Trace      | Max hold                                                                                                                                                                                                                                      |
| Sweep time | Auto couple                                                                                                                                                                                                                                   |

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5</b> ℃ | Relative Humidity | 58% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.5. TIME OF OCCUPANCY (DWELL TIME)

#### <u>LIMITS</u>

| CFR 47 FCC Part15 (15.247), Subpart C |                                      |                                                                                                                                                                                    |  |
|---------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Section Test Item Limit               |                                      |                                                                                                                                                                                    |  |
| CFR 47 15.247 (a) (1) III             | Time of<br>Occupancy (Dwell<br>Time) | The average time of occupancy on any<br>channel shall not be greater than 0.4 seconds<br>within a period of 0.4 seconds, multiplied by<br>the number of hopping channels employed. |  |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

| Center Frequency | The center frequency of the channel under test                                                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detector         | Peak                                                                                                                                                                                                                                                                                                                                       |
| RBW              | 1 MHz                                                                                                                                                                                                                                                                                                                                      |
| VBW              | ≥RBW                                                                                                                                                                                                                                                                                                                                       |
| Span             | Zero span, centered on a hopping channel                                                                                                                                                                                                                                                                                                   |
| Trace            | Max hold                                                                                                                                                                                                                                                                                                                                   |
| Sweep time       | As necessary to capture the entire dwell time per hopping channel; where<br>possible use a video trigger and trigger delay so that the transmitted signal<br>starts a little to the right of the start of the plot. The trigger level might need<br>slight adjustment to prevent triggering when the system hops on an<br>adjacent channel |

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width \* (1600/2) \* 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width \* (1600/4) \* 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width \* (1600/6) \* 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width \* (1600/2) \* 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width \* (1600/4) \* 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width \* (1600/6) \* 8 / (channel number)

#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>23.5℃</b> | Relative Humidity | 58% |
|---------------------|--------------|-------------------|-----|
| Atmosphere Pressure | 101kPa       |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

#### <u>LIMITS</u>

| CFR 47 FCC Part15 (15.247), Subpart C |                                |                                                                                                                               |  |
|---------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Section Test Item Limit               |                                |                                                                                                                               |  |
| CFR 47 FCC §15.247 (d)                | Conducted<br>Spurious Emission | at least 20 dB below that in the 100 kHz<br>bandwidth within the band that contains the<br>highest level of the desired power |  |

#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

| Center Frequency | The center frequency of the channel under test |
|------------------|------------------------------------------------|
| Detector         | Peak                                           |
| RBW              | 100 kHz                                        |
| VBW              | ≥3 × RBW                                       |
| Span             | 1.5 x DTS bandwidth                            |
| Trace            | Max hold                                       |
| Sweep time       | Auto couple.                                   |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

|                    | Set the center frequency and span to encompass frequency range to be measured |
|--------------------|-------------------------------------------------------------------------------|
| Detector           | Peak                                                                          |
| RBW                | 100 kHz                                                                       |
| VBW                | ≥3 × RBW                                                                      |
| measurement points | ≥span/RBW                                                                     |
| Trace              | Max hold                                                                      |
| Sweep time         | Auto couple.                                                                  |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

#### TEST SETUP



#### **TEST ENVIRONMENT**

| Temperature         | <b>23.5</b> ℃ | Relative Humidity | 58% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

#### TEST RESULTS

Please refer to section "Test Data" - Appendix A

## 8. RADIATED TEST RESULTS

### LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

| Emissions radiated outside of the specified frequency bands above 30 MHz |                                       |                                  |          |
|--------------------------------------------------------------------------|---------------------------------------|----------------------------------|----------|
| Frequency Range<br>(MHz)                                                 | Field Strength Limit<br>(uV/m) at 3 m | Field Strer<br>(dBuV/m<br>Quasi- | ) at 3 m |
| 30 - 88                                                                  | 100                                   | 40                               |          |
| 88 - 216                                                                 | 150                                   | 43.5                             |          |
| 216 - 960                                                                | 200                                   | 46                               |          |
| Above 960                                                                | 500                                   | 54                               |          |
| Above 1000                                                               | 500                                   | Peak                             | Average  |
|                                                                          |                                       | 74                               | 54       |

| FCC Emissions radiated outside of the specified frequency bands below 30 MHz                    |              |     |
|-------------------------------------------------------------------------------------------------|--------------|-----|
| Frequency (MHz)         Field strength (microvolts/meter)         Measurement distance (meters) |              |     |
| 0.009-0.490                                                                                     | 2400/F(kHz)  | 300 |
| 0.490-1.705                                                                                     | 24000/F(kHz) | 30  |
| 1.705-30.0                                                                                      | 30           | 30  |

FCC Restricted bands of operation refer to FCC §15.205 (a):

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note: <sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. <sup>2</sup>Above 38.6c

TRF No.: 04-E001-0B

#### TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

| RBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
|-------|------------------------------------------------------------------|
| VBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
| Sweep | Auto                                                             |

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of  $377\Omega$ . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

#### Below 1 GHz and above 30 MHz

| RBW      | 120 kHz  |
|----------|----------|
| VBW      | 300 kHz  |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

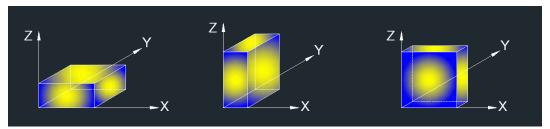
Above 1 GHz

| RBW      | 1 MHz                          |
|----------|--------------------------------|
|          | PEAK: 3 MHz<br>AVG: see note 6 |
| Sweep    | Auto                           |
| Detector | Peak                           |
| Trace    | Max hold                       |

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

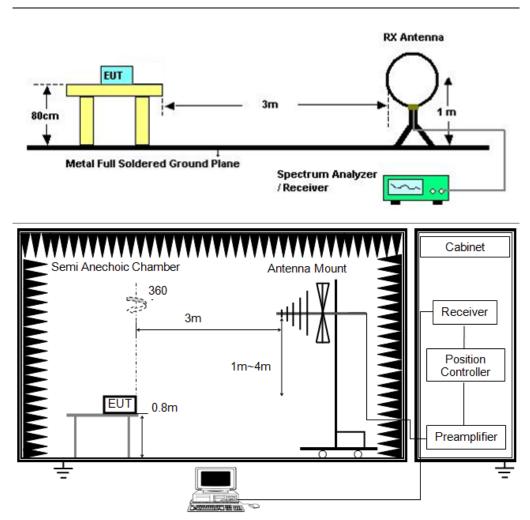
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

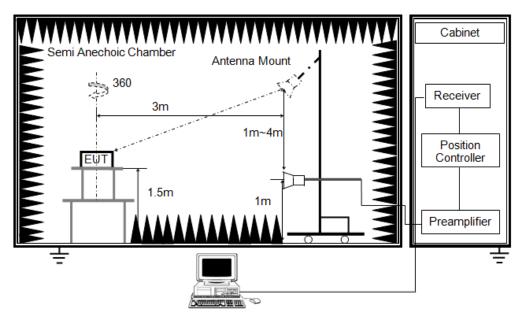

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


#### X axis, Y axis, Z axis positions:



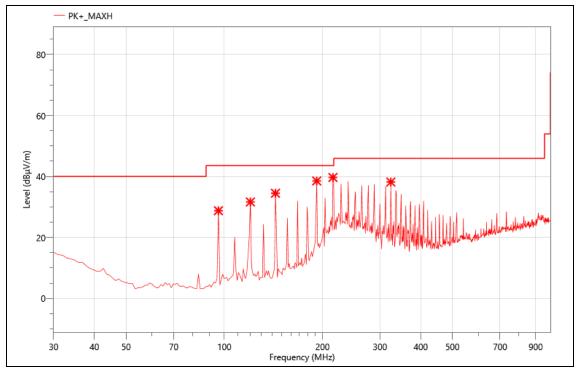

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

#### TEST SETUP



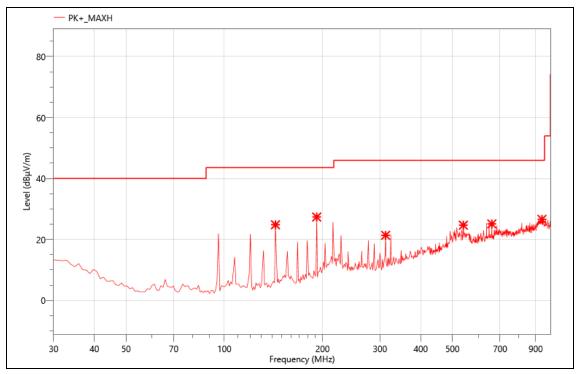



#### TEST ENVIRONMENT

| Temperature         | <b>24.6</b> ℃ | Relative Humidity | 53% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 101kPa        |                   |     |

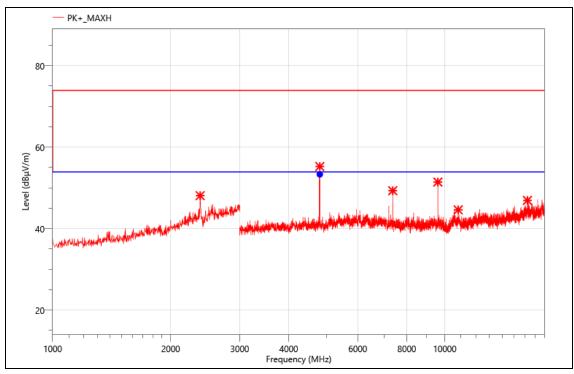
#### TEST RESULTS

| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |


### 8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION



## Critical\_Freqs

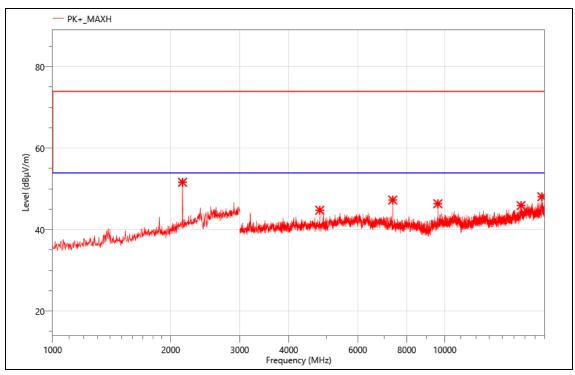

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m)     | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-----------------------|-------------------|----------------|------|------|
| 1   | 95.960         | 53.27             | -24.49        | 9 28.78 43.50 14.72 F |                   | PK+            | Н    |      |
| 2   | 120.210        | 56.24             | -24.59        | 31.65                 | 43.50             | 11.85          | PK+  | Н    |
| 3   | 143.490        | 58.03             | -23.52 34.51  |                       | 43.50             | 8.99           | PK+  | Н    |
| 4   | 191.990        | 61.11             | -22.57        | 38.54                 | 43.50             | 4.96           | PK+  | Н    |
| 5   | 215.270        | 60.69             | -21           | 39.69                 | 43.50             | 3.81           | PK+  | Н    |
| 6   | 323.910        | 55.89             | -17.69        | 38.20                 | 46.00             | 7.80           | PK+  | Н    |

| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



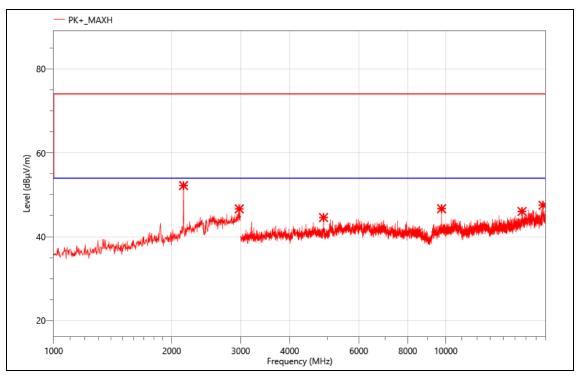
| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 143.490        | 48.35             | -23.52        | 24.83             | 43.50             | 18.67          | PK+  | V    |
| 2   | 191.990        | 49.94             | -22.57        | 27.37             | 43.50             | 16.13          | PK+  | V    |
| 3   | 312.270        | 39.70             | -18.34        | 21.36             | 46.00             | 24.64          | PK+  | V    |
| 4   | 540.220        | 34.94             | -10.25        | 24.69             | 46.00             | 21.31          | PK+  | V    |
| 5   | 660.500        | 33.39             | -8.29         | 25.10             | 46.00             | 20.90          | PK+  | V    |
| 6   | 940.830        | 29.83             | -3.21         | 26.62             | 46.00             | 19.38          | PK+  | V    |

| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



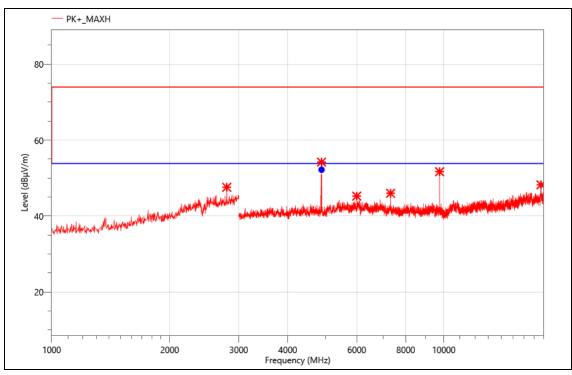

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2378.000       | 56.61             | -8.52         | 48.09             | 74.00             | 25.91          | PK+  | Н    |
| 2   | 4800.000       | 66.57             | -11.32        | 55.25             | 74.00             | 18.75          | PK+  | Н    |
| 3   | 7366.500       | 57.48             | -8.18         | 49.30             | 74.00             | 24.70          | PK+  | Н    |
| 4   | 9601.500       | 58.35             | -6.92         | 51.43             | 74.00             | 22.57          | PK+  | Н    |
| 5   | 10818.000      | 49.74             | -5.13         | 44.61             | 74.00             | 29.39          | PK+  | Н    |
| 6   | 16248.000      | 47.44             | -0.52         | 46.92             | 74.00             | 27.08          | PK+  | Н    |

## Final\_Result


| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. | Verdict |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|---------|
| 1   | 4800.246       | 64.65             | -11.33        | 53.32             | 53.90             | 0.58           | AVG  | Η    | PASS    |

| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



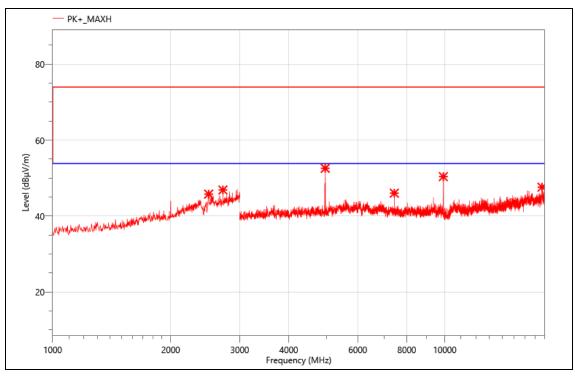

| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2144.000       | 60.69             | -9.05         | 51.64             | 74.00             | 22.36          | PK+  | V    |
| 2   | 4800.000       | 56.09             | -11.32        | 44.77             | 74.00             | 29.23          | PK+  | V    |
| 3   | 7368.000       | 55.46             | -8.2          | 47.26             | 74.00             | 26.74          | PK+  | V    |
| 4   | 9601.500       | 53.27             | -6.92         | 46.35             | 74.00             | 27.65          | PK+  | V    |
| 5   | 15652.500      | 47.96             | -2.05         | 45.91             | 74.00             | 28.09          | PK+  | V    |
| 6   | 17682.000      | 47.79             | 0.28          | 48.07             | 74.00             | 25.93          | PK+  | V    |

| Mode:  | 3-DH5-2441        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



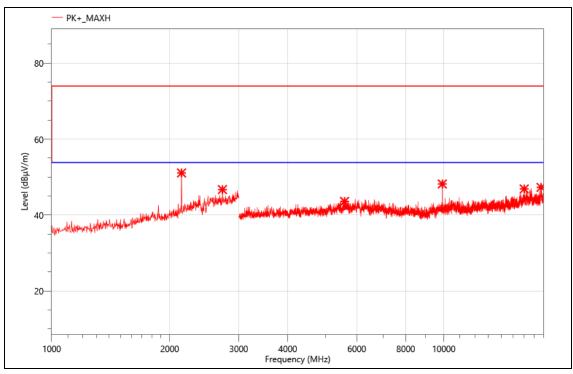
| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2144.000       | 61.23             | -9.05         | 52.18             | 74.00             | 21.82          | PK+  | V    |
| 2   | 2974.000       | 53.71             | -7.09         | 46.62             | 74.00             | 27.38          | PK+  | V    |
| 3   | 4878.000       | 55.70             | -11.14        | 44.56             | 74.00             | 29.44          | PK+  | V    |
| 4   | 9757.500       | 53.49             | -6.83         | 46.66             | 74.00             | 27.34          | PK+  | V    |
| 5   | 15648.000      | 48.01             | -2.01         | 46.00             | 74.00             | 28.00          | PK+  | V    |
| 6   | 17694.000      | 47.29             | 0.21          | 47.50             | 74.00             | 26.50          | PK+  | V    |

| Mode:  | 3-DH5-2441        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2796.000       | 55.99             | -8.41         | 47.58             | 74.00             | 26.42          | PK+  | Н    |
| 2   | 4878.000       | 65.34             | -11.14        | 54.20             | 74.00             | 19.80          | PK+  | Н    |
| 3   | 5998.500       | 54.13             | -8.88         | 45.25             | 74.00             | 28.75          | PK+  | Н    |
| 4   | 7317.000       | 53.77             | -7.78         | 45.99             | 74.00             | 28.01          | PK+  | Н    |
| 5   | 9757.500       | 58.52             | -6.83         | 51.69             | 74.00             | 22.31          | PK+  | Н    |
| 6   | 17700.000      | 48.05             | 0.18          | 48.23             | 74.00             | 25.77          | PK+  | Н    |

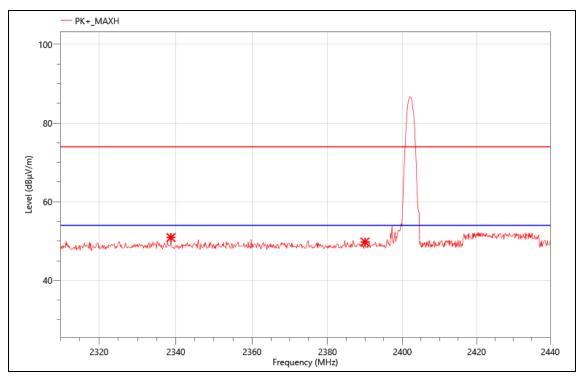
## Final\_Result


| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. | Verdict |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|---------|
| 1   | 4878.000       | 63.34             | -11.14        | 52.20             | 53.90             | 1.70           | AVG  | Н    | PASS    |

| Mode:  | 3-DH5-2480        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2500.000       | 54.18             | -8.41         | 45.77             | 74.00             | 28.23          | PK+  | Н    |
| 2   | 2718.000       | 55.35             | -8.48         | 46.87             | 74.00             | 27.13          | PK+  | Н    |
| 3   | 4956.000       | 63.94             | -11.37        | 52.57             | 74.00             | 21.43          | PK+  | Н    |
| 4   | 7434.000       | 53.92             | -7.9          | 46.02             | 74.00             | 27.98          | PK+  | Н    |
| 5   | 9915.000       | 56.75             | -6.36         | 50.39             | 74.00             | 23.61          | PK+  | Н    |
| 6   | 17698.500      | 47.42             | 0.19          | 47.61             | 74.00             | 26.39          | PK+  | Н    |


| Mode:  | 3-DH5-2480        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |

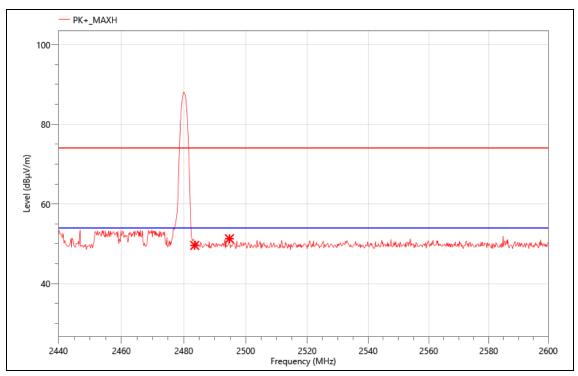


| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2144.000       | 60.13             | -9.05         | 51.08             | 74.00             | 22.92          | PK+  | V    |
| 2   | 2726.000       | 55.19             | -8.49         | 46.70             | 74.00             | 27.30          | PK+  | V    |
| 3   | 5584.500       | 52.78             | -9.18         | 43.60             | 74.00             | 30.40          | PK+  | V    |
| 4   | 9913.500       | 54.55             | -6.37         | 48.18             | 74.00             | 25.82          | PK+  | V    |
| 5   | 16033.500      | 48.75             | -1.88         | 46.87             | 74.00             | 27.13          | PK+  | V    |
| 6   | 17701.500      | 47.15             | 0.14          | 47.29             | 74.00             | 26.71          | PK+  | V    |


For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

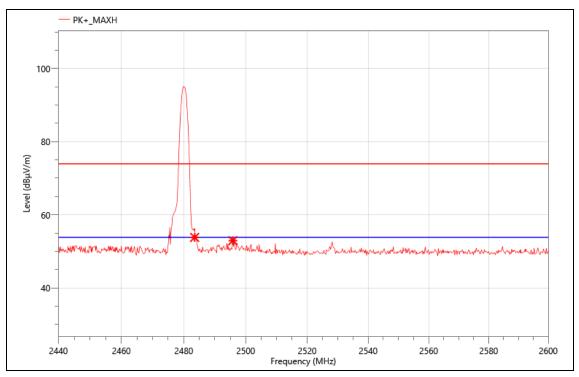
| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2338.730       | 28.27             | 22.64         | 50.91             | 74.00             | 23.09          | PK+  | V    |
| 2   | 2390.000       | 27.04             | 22.72         | 49.76             | 74.00             | 24.24          | PK+  | V    |

| Mode:  | 3-DH5-2402        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |




| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2380.460       | 29.67             | 22.54         | 52.21             | 74.00             | 21.79          | PK+  | Н    |
| 2   | 2390.000       | 29.17             | 22.72         | 51.89             | 74.00             | 22.11          | PK+  | Н    |

| Mode:  | 3-DH5-2480        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2483.500       | 26.42             | 23.15         | 49.57             | 74.00             | 24.43          | PK+  | V    |
| 2   | 2494.720       | 28.14             | 23.12         | 51.26             | 74.00             | 22.74          | PK+  | V    |

| Mode:  | 3-DH5-2480        |
|--------|-------------------|
| Power: | Battery 3.7V      |
| TE:    | Berny             |
| Date   | 2024/12/17        |
| T/A/P  | 24.6°C/53%/101Kpa |



| No. | Freq.<br>(MHz) | Reading<br>(dBµV) | Corr.<br>(dB) | Meas.<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Det. | Pol. |
|-----|----------------|-------------------|---------------|-------------------|-------------------|----------------|------|------|
| 1   | 2483.500       | 30.66             | 23.15         | 53.81             | 74.00             | 20.19          | PK+  | Н    |
| 2   | 2495.840       | 29.80             | 23.12         | 52.92             | 74.00             | 21.08          | PK+  | Н    |

## 9. ANTENNA REQUIREMENT

#### REQUIREMENT

#### Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### DESCRIPTION

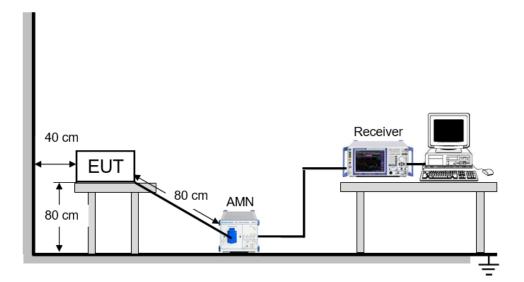
Pass

## **10. AC POWER LINE CONDUCTED EMISSION**

### LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

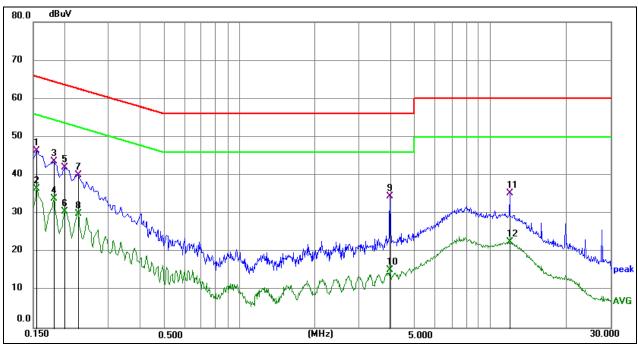
| FREQUENCY (MHz) | Quasi-peak | Average   |
|-----------------|------------|-----------|
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * |
| 0.50 -5.0       | 56.00      | 46.00     |
| 5.0 -30.0       | 60.00      | 50.00     |


#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

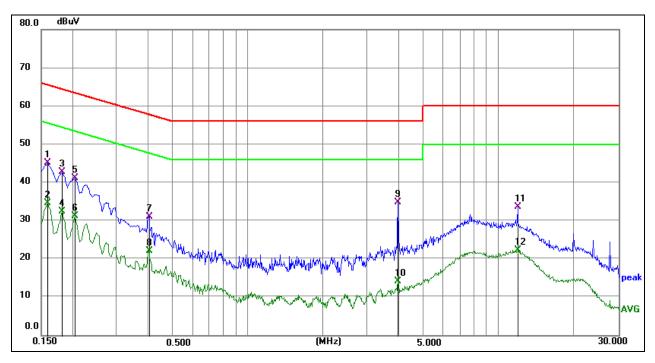
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


#### TEST SETUP



#### TEST ENVIRONMENT

| Temperature         | <b>24.9</b> ℃ | Relative Humidity | 57% |
|---------------------|---------------|-------------------|-----|
| Atmosphere Pressure | 100kPa        |                   |     |






| Phase: L1 |  |  |
|-----------|--|--|

Mode: 3-DH5 2402MHz

| No. | Frequency | Reading | Correct | Result | Limit  | Margin        | Remark |
|-----|-----------|---------|---------|--------|--------|---------------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | ( <b>dB</b> ) |        |
| 1   | 0.1545    | 36.73   | 9.71    | 46.44  | 65.75  | -19.31        | QP     |
| 2   | 0.1545    | 26.64   | 9.71    | 36.35  | 55.75  | -19.40        | AVG    |
| 3   | 0.1815    | 33.80   | 9.71    | 43.51  | 64.42  | -20.91        | QP     |
| 4   | 0.1815    | 24.21   | 9.71    | 33.92  | 54.42  | -20.50        | AVG    |
| 5   | 0.1995    | 32.18   | 9.71    | 41.89  | 63.63  | -21.74        | QP     |
| 6   | 0.1995    | 20.67   | 9.71    | 30.38  | 53.63  | -23.25        | AVG    |
| 7   | 0.2265    | 30.31   | 9.72    | 40.03  | 62.58  | -22.55        | QP     |
| 8   | 0.2265    | 20.17   | 9.72    | 29.89  | 52.58  | -22.69        | AVG    |
| 9   | 3.9705    | 24.62   | 9.85    | 34.47  | 56.00  | -21.53        | QP     |
| 10  | 3.9705    | 5.39    | 9.85    | 15.24  | 46.00  | -30.76        | AVG    |
| 11  | 11.8950   | 25.19   | 9.95    | 35.14  | 60.00  | -24.86        | QP     |
| 12  | 11.8950   | 12.57   | 9.95    | 22.52  | 50.00  | -27.48        | AVG    |



| Phase: N | Mode: 3-DH5 2402MHz |
|----------|---------------------|
|          |                     |

| No. | Frequency | Reading | Correct       | Result | Limit  | Margin        | Remark |
|-----|-----------|---------|---------------|--------|--------|---------------|--------|
|     | (MHz)     | (dBuV)  | ( <b>dB</b> ) | (dBuV) | (dBuV) | ( <b>dB</b> ) |        |
| 1   | 0.1590    | 35.23   | 9.89          | 45.12  | 65.52  | -20.40        | QP     |
| 2   | 0.1590    | 24.73   | 9.89          | 34.62  | 55.52  | -20.90        | AVG    |
| 3   | 0.1815    | 32.92   | 9.85          | 42.77  | 64.42  | -21.65        | QP     |
| 4   | 0.1815    | 22.60   | 9.85          | 32.45  | 54.42  | -21.97        | AVG    |
| 5   | 0.2040    | 31.36   | 9.81          | 41.17  | 63.45  | -22.28        | QP     |
| 6   | 0.2040    | 21.44   | 9.81          | 31.25  | 53.45  | -22.20        | AVG    |
| 7   | 0.4020    | 21.25   | 9.75          | 31.00  | 57.81  | -26.81        | QP     |
| 8   | 0.4020    | 12.44   | 9.75          | 22.19  | 47.81  | -25.62        | AVG    |
| 9   | 3.9795    | 24.90   | 9.85          | 34.75  | 56.00  | -21.25        | QP     |
| 10  | 3.9795    | 4.28    | 9.85          | 14.13  | 46.00  | -31.87        | AVG    |
| 11  | 11.9265   | 23.60   | 9.97          | 33.57  | 60.00  | -26.43        | QP     |
| 12  | 11.9265   | 12.29   | 9.97          | 22.26  | 50.00  | -27.74        | AVG    |

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

## 11. TEST DATA - Appendix A

## **Maximum Conducted Output Power**

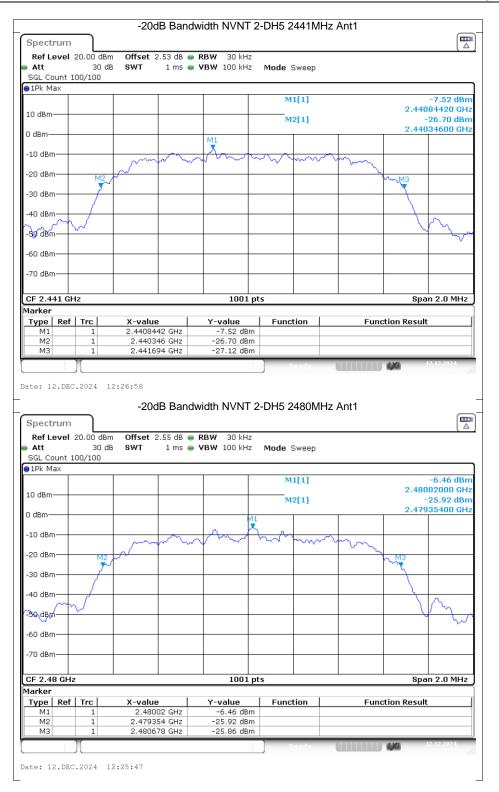
| Condition | Mode  | Frequency<br>(MHz) | Antenna | Conducted Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-------|--------------------|---------|--------------------------|----------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | -0.64                    | 21             | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | -1.07                    | 21             | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | -1.79                    | 21             | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | 0.19                     | 21             | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | -0.16                    | 21             | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | -0.91                    | 21             | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | 0.62                     | 21             | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 0.24                     | 21             | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | -0.47                    | 21             | Pass    |

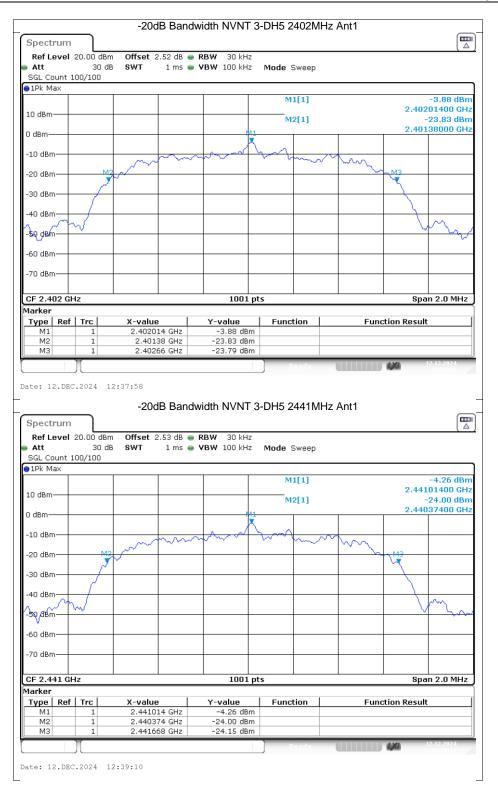
|                                                                                                                                                                                                                        |                       |                | Test G                  | raphs          |   |        |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------------|----------------|---|--------|-------------------------|
|                                                                                                                                                                                                                        | _                     | Power          | NVNT 1-DH               | 15 2402MHz Ant |   |        | <u> </u>                |
| Spectrum                                                                                                                                                                                                               |                       |                |                         |                |   |        |                         |
| Ref Level 20.0<br>Att                                                                                                                                                                                                  | 00 dBm Of<br>30 dB SV | fset 2.52 dB 🖷 |                         | Mode Sweep     |   |        |                         |
| SGL Count 100/                                                                                                                                                                                                         |                       | VI 10.1 MS     | YOW 10 MH2              | Mode Sweep     |   |        |                         |
| ●1Pk Max                                                                                                                                                                                                               |                       |                |                         |                |   |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         | M1[1]          |   | 2,4018 | -0.64 dBm<br>340000 GHz |
| 10 dBm                                                                                                                                                                                                                 |                       |                |                         |                | + | +      |                         |
|                                                                                                                                                                                                                        |                       |                | M1                      |                |   |        |                         |
| 0 dBm                                                                                                                                                                                                                  |                       |                |                         |                |   |        |                         |
| -10 dBm                                                                                                                                                                                                                |                       |                |                         |                |   |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         |                |   |        |                         |
| -20 dBm                                                                                                                                                                                                                |                       |                |                         |                | - |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         |                |   |        |                         |
| -30 dBm                                                                                                                                                                                                                |                       |                |                         |                |   |        |                         |
| -40 dBm                                                                                                                                                                                                                |                       |                |                         |                |   |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         |                |   |        |                         |
| -50 dBm                                                                                                                                                                                                                |                       |                |                         |                | + |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         |                |   |        |                         |
| -60 dBm                                                                                                                                                                                                                |                       |                |                         |                |   |        |                         |
| -70 dBm                                                                                                                                                                                                                |                       |                |                         |                |   |        |                         |
|                                                                                                                                                                                                                        |                       |                |                         |                |   |        |                         |
| CF 2.402 GHz                                                                                                                                                                                                           |                       |                | 10001                   | nts            |   | Snar   | 10.0 MHz                |
| ate: 12.DEC.20                                                                                                                                                                                                         | 24 12:15:             | 27             |                         | Ready          |   | 4,261  |                         |
| ate: 12.DEC.20                                                                                                                                                                                                         | 24 12:15:             |                | NVNT 1-DF               | I5 2441MHz Ant |   | ayaa   | 12:15:27                |
| ate: 12.DEC.20                                                                                                                                                                                                         | 24 12:15:<br>]        |                | NVNT 1-DH               | 15 2441MHz Ant |   | 6,64   |                         |
| Spectrum<br>Ref Level 20.0                                                                                                                                                                                             | DO dBm Of             | Power          | RBW 3 MHz               | :              |   | 6,454  |                         |
| Spectrum<br>Ref Level 20.0                                                                                                                                                                                             | 00 dBm Of<br>30 dB SV | Power          |                         | :              |   | 6,454  | (IIII)                  |
| Spectrum<br>Ref Level 20.0                                                                                                                                                                                             | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz               | :              |   | . 626  |                         |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100/                                                                                                                                                                    | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz               | :              |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100/                                                                                                                                                                    | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz               | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100/<br>1Pk Max<br>10 dBm                                                                                                                                               | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100/<br>1Pk Max                                                                                                                                                         | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz               | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100/<br>1Pk Max<br>10 dBm-<br>0 dBm-                                                                                                                                    | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100/<br>1Pk Max<br>10 dBm                                                                                                                                               | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100/<br>1Pk Max<br>10 dBm-<br>0 dBm-                                                                                                                                    | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>SGL Count 100/<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                       | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum Ref Level 20.1 SGL Count 100/ IPk Max O dBm -10 dBm -10 dBm                                                                                                                                                   | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                      | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum<br>Ref Level 20.1<br>SGL Count 100/<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm                                                                                                                       | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                      | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | (∆<br>-1.07 dBn         |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           JIPk Max           10 dBm           -0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                  | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | ( △                     |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                      | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | ( △                     |
| Spectrum Ref Level 20.1 Att SGL Count 100/ DIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm                                                                                                               | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | ( △                     |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           JIPk Max           10 dBm           -0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm                  | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   |        | ( △                     |
| Spectrum           Ref Level 20.1           Att           SGL Count 100/           IPk Max           10 dBm           -0 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   | 2.4408 | -1.07 dBn<br>375000 GH: |
| Spectrum Ref Level 20.1 Att SGL Count 100/ DIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm                                                                                                               | 00 dBm Of<br>30 dB SV | Power          | RBW 3 MHz<br>VBW 10 MHz | Mode Sweep     |   | 2.4408 | -1.07 dBm<br>375000 GH2 |

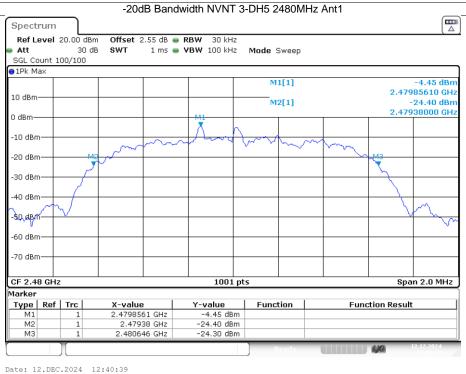


| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |           |                                                |                     |      |       |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-----------|------------------------------------------------|---------------------|------|-------|-------------------------|
| Ref Level 2<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00 dBm<br>30 dB  |        |           | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | )    |       | ( Δ                     |
| SGL Count 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00/100             |        |           |                                                |                     |      |       |                         |
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        | 1         |                                                | M1[1]               |      |       | -0.16 dBn               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                | MILI                |      | 2.440 | 929000 GH               |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |        |           |                                                |                     |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           | MI                                             |                     |      |       |                         |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |        |           |                                                |                     |      |       |                         |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        | 1         |                                                |                     |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                |                     |      |       |                         |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  |        | -         |                                                |                     |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                |                     |      |       |                         |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        | -         |                                                |                     |      |       |                         |
| 40 d0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |        |           |                                                |                     |      |       |                         |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        |           |                                                |                     |      |       |                         |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        |           |                                                |                     |      | _     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                |                     |      |       |                         |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        |           |                                                |                     |      |       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                |                     |      |       |                         |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |        |           |                                                |                     |      |       | -                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |           |                                                |                     |      |       |                         |
| CF 2.441 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z                  |        | ·         | 10001                                          | pts                 | ·    | Spa   | n 10.0 MHz              |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |        |           |                                                | 15 2480MHz /        | Ant1 |       |                         |
| Spectrum<br>Ref Level 2<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz                                      |                     | -    |       |                         |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz                                      |                     | -    |       |                         |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz                                      |                     | -    |       |                         |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz                                      | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1(<br>91Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz                                      | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1(<br>91Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1(<br>DIPk Max<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1(<br>1Pk Max<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1(<br>1Pk Max<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum Ref Level 2 Att SGL Count 1( 1Pk Max I0 dBm O | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn<br>849000 GH: |
| Spectrum Ref Level 2 Att SGL Count 1( 1Pk Max I0 dBm O | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum           Ref Level 2           Att           SGL Count 10           IPK Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum           Ref Level 2           Att           SGL Count 10           IPK Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum           Ref Level 2           Att           SGL Count 10           IPK Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum           Ref Level 2           Att           SGL Count 10           IPK Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep          | -    | 2.479 | -0.91 dBn               |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW 3 MHz<br>VBW 10 MHz                        | Mode Sweep<br>M1[1] | -    |       | -0.91 dBn               |
| ate: 12.DEC       Spectrum       Ref Level 2       Att       SGL Count 1(       1Pk Max       10 dBm       10 dBm       -10 dBm       -20 dBm       -30 dBm       -50 dBm       -60 dBm       -70 dBm       -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00 dBm<br>30 dB | Offset | 2.55 dB 👄 | RBW         3 MHz           VBW         10 MHz | Mode Sweep<br>M1[1] | -    |       | -0.91 dBn<br>849000 GH: |



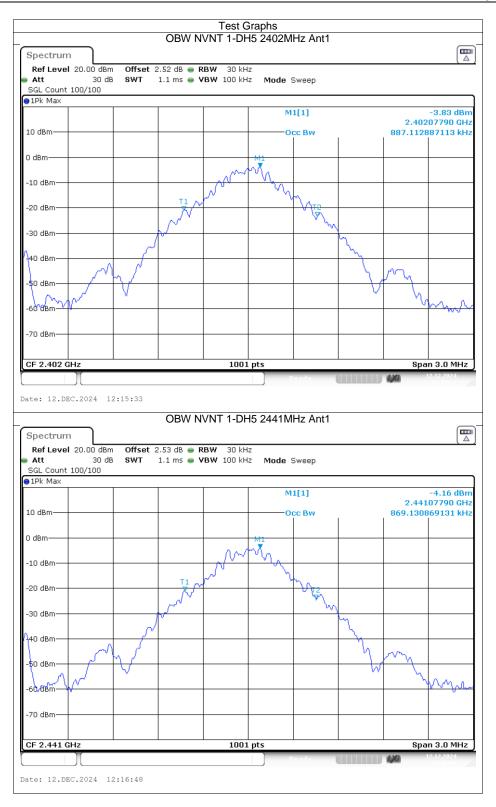


| Spectrum                         |                             |                         |            |     |                           |
|----------------------------------|-----------------------------|-------------------------|------------|-----|---------------------------|
| Ref Level 20.00 dBm<br>Att 30 dB | Offset 2.55 dB  SWT 10.1 ms | RBW 3 MHz<br>VBW 10 MHz | Mada Cuson |     |                           |
| SGL Count 100/100                | 3WI 10.1 ms 🖶               | YBW IU MH2              | Mode Sweep |     |                           |
| 1Pk Max                          |                             |                         |            |     |                           |
|                                  |                             |                         | M1[1]      | 2.4 | -0.47 dBn<br>79981000 GH: |
| 10 dBm                           |                             |                         |            |     |                           |
| 0 dBm                            |                             | MI                      |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -10 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -20 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -30 dBm                          |                             |                         |            |     |                           |
| -40 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -50 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -60 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| -70 dBm                          |                             |                         |            |     |                           |
|                                  |                             |                         |            |     |                           |
| CF 2.48 GHz                      |                             | 10001                   | pts        | S   | pan 10.0 MHz              |
|                                  |                             |                         | Ready      | 4/4 | 12:40:27                  |


#### Condition Mode Frequency (MHz) Limit -20 dB Bandwidth (MHz) Antenna -20 dB Bandwidth (MHz) Verdict NVNT 2402 1-DH5 Ant1 0.95 N/A N/A NVNT 1-DH5 2441 Ant1 0.95 N/A N/A NVNT 1-DH5 2480 0.95 N/A N/A Ant1 NVNT 2-DH5 2402 Ant1 1.28 N/A N/A 2-DH5 2441 N/A N/A NVNT Ant1 1.35 NVNT 2-DH5 2480 1.32 N/A N/A Ant1 NVNT 3-DH5 2402 Ant1 1.28 N/A N/A N/A NVNT 2441 1.29 3-DH5 Ant1 N/A NVNT 3-DH5 2480 Ant1 1.27 N/A N/A


## -20dB Bandwidth

|                                                                                                                                                                                                                                                                                                                                                                                                  | -20dB Band                                                      | Test Grap<br>width NVNT 1-                                                                             | DH5 2402MI                   | Hz Ant1 |                              |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|---------|------------------------------|--------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |                                                                                                        |                              |         |                              |                                      |
| Ref Level 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                              | n Offset 2.52 dB 👄                                              | RBW 30 kHz                                                                                             |                              |         |                              | (2                                   |
| Att 30 d                                                                                                                                                                                                                                                                                                                                                                                         | B SWT 1 ms 👄                                                    | <b>VBW</b> 100 kHz                                                                                     | Mode Sweep                   |         |                              |                                      |
| SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                                                        |                              |         |                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                        | M1[1]                        |         | -3.                          | 94 dBr                               |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         | 2.401998                     |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                        | M2[1]                        |         | -23.<br>2.401552             | 81 dBr<br>MA GH                      |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                                                        | <u>^</u>                     |         |                              |                                      |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                                                        | · v~                         |         |                              |                                      |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                          | M2 Dom                                                          | ~                                                                                                      | - m                          | A M3    |                              |                                      |
| 20 0011                                                                                                                                                                                                                                                                                                                                                                                          | ~~~~~                                                           |                                                                                                        |                              | - We    |                              |                                      |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                                                        |                              | ~       | m -                          |                                      |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         |                              |                                      |
| $\sim$                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         | 4                            | ~                                    |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         | 5                            | 7                                    |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         |                              |                                      |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                                                        |                              |         |                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                        |                              |         |                              |                                      |
| CF 2.402 GHz                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 1001 pts                                                                                               | 5                            |         | Span 2.                      | 0 MHz                                |
| larker                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                        |                              |         |                              |                                      |
| Type Ref Trc                                                                                                                                                                                                                                                                                                                                                                                     | X-value                                                         | Y-value                                                                                                | Function                     | Fur     | iction Result                |                                      |
| M1 1<br>M2 1                                                                                                                                                                                                                                                                                                                                                                                     | 2.401998 GHz<br>2.401552 GHz                                    | -3.94 dBm<br>-23.81 dBm                                                                                |                              |         |                              |                                      |
| M3 1                                                                                                                                                                                                                                                                                                                                                                                             | 2.402504 GHz                                                    | -23.67 dBm                                                                                             |                              |         |                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                  | 2.402304 GH2                                                    | -23.67 UBm                                                                                             |                              |         |                              |                                      |
| te: 12.DEC.2024 1                                                                                                                                                                                                                                                                                                                                                                                | 2:15:39                                                         | width NVNT 1-                                                                                          | ) Postv<br>DH5 2441MI        | Hz Ant1 | 4 <b>4</b> 44 12.12          | 2024                                 |
| spectrum                                                                                                                                                                                                                                                                                                                                                                                         | 2:15:39                                                         |                                                                                                        | ) Ready<br>DH5 2441MI        | Hz Ant1 | 12.12                        | 2024                                 |
| Spectrum<br>Ref Level 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                  | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          |                              | Hz Ant1 | 12.12                        | 2024                                 |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d                                                                                                                                                                                                                                                                                                                                                      | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | DH5 2441MI<br>Mode Sweep     | Hz Ant1 | 12.12                        | 2024                                 |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100                                                                                                                                                                                                                                                                                                                                 | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          |                              | Hz Ant1 | 12.12                        |                                      |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100                                                                                                                                                                                                                                                                                                                                 | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          |                              | Hz Ant1 |                              | 23 dBi                               |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>)1Pk Max                                                                                                                                                                                                                                                                                                                     | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996                     | 23 dBi<br>00 GH                      |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                            | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep                   | Hz Ant1 | 2.440996                     | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum<br>Ref Level 20.00 dBr<br>Att 30 d<br>SGL Count 100/100<br>91Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                           | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           11Pk Max           10 dBm                                                                                                                                                                                                                                                                        | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum           Ref Level 20.00 dBr           Att         30 d           SGL Count 100/100           01Pk Max           10 dBm           10 dBm                                                                                                                                                                                                                                               | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum           Ref Level 20.00 dBr           Att         30 d           SGL Count 100/100           11PK Max           L0 dBm           10 dBm           10 dBm           20 dBm                                                                                                                                                                                                             | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum Ref Level 20.00 dBr Att 30 d SGL Count 100/100 11PK Max 10 dBm 10 dBm 20 dBm 20 dBm                                                                                                                                                                                                                                                                                                     | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBr<br>600 GH<br>86 dBr           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           01Pk Max           10 dBm           10 dBm           20 dBm           30 dBm                                                                                                                                                                                                                     | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum  Ref Level 20.00 dBr Att 30 d SGL Count 100/100  PPK Max  10 dBm  20 dBm  20 dBm  40 dBm  40 dBm                                                                                                                                                                                                                                                                                        | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBr<br>600 GH<br>86 dBr           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1Pk Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm           40 dBm                                                                                                                                                                                    | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBr<br>600 GH<br>86 dBr           |
| Spectrum<br>Ref Level 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                  | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBr<br>500 GH<br>86 dBr           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPK Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm           50 dBm           60 dBm                                                                                                                                                                   | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          | Hz Ant1 | 2.440996<br>-23.4            | 23 dBr<br>600 GH<br>86 dBr           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           10 HK Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm           40 dBm           60 dBm                                                                                                                                                                 | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]          |         | 2.440996<br>-23.4            | 23 dBi<br>500 GH<br>86 dBi           |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1PK Max           10 dBm                                                                                                                                                                                                                                                                         | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •                     | width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]<br>M2[1] |         | 2.440996<br>-23.4            | 23 dBr<br>000 GH<br>86 dBr<br>000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPFK Max           10 dBm           0 dBm           10 dBm           20 dBm           30 dBm           40 dBm           50 dBm           40 dBm           70 dBm           60 dBm           70 dBm           70 dBm           CF 2.441 GHz           Tarker                                      | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •<br>B SWT 1 ms •<br> | width NVNT 1-<br>RBW 30 kHz<br>VBW 100 kHz<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1<br>M1 | Mode Sweep<br>M1[1]<br>M2[1] |         | 2.440996<br>-23.<br>2.440552 | 23 dBr<br>000 GH<br>86 dBr<br>000 GH |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           IPK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -70 dBm           CF 2.441 GHz           Tarker           Type         Ref   Trc                                                  | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •<br>B SWT 1 ms •<br> | Width NVNT 1-<br>RBW 30 kHz<br>VBW 100 kHz                                                             | Mode Sweep<br>M1[1]<br>M2[1] |         | 2.440996<br>-23.<br>2.440552 | ( 2<br>23 dBr<br>600 GH              |
| Spectrum         Ref Level 20.00 dBr           Att         30 d           SGL Count 100/100         10/100           1Pk Max         0           10 dBm         0           -10 dBm                                                                                                                                                                                                              | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •<br>B SWT 1 ms •<br> | Width NVNT 1-<br>RBW 30 kHz<br>VBW 100 kHz<br>MI<br>MI<br>MI<br>MI<br>MI<br>MI<br>MI<br>MI<br>MI<br>MI | Mode Sweep<br>M1[1]<br>M2[1] |         | 2.440996<br>-23.<br>2.440552 | ( 2<br>23 dBr<br>600 GH              |
| Spectrum           Ref Level 20.00 dBr           Att 30 d           SGL Count 100/100           1PK Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm           50 dBm           60 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -71 dBm           -72 dBm           -70 dBm           -70 dBm | 2:15:39<br>-20dB Band<br>n Offset 2.53 dB •<br>B SWT 1 ms •<br> | Width NVNT 1-                                                                                          | Mode Sweep<br>M1[1]<br>M2[1] |         | 2.440996<br>-23.<br>2.440552 |                                      |







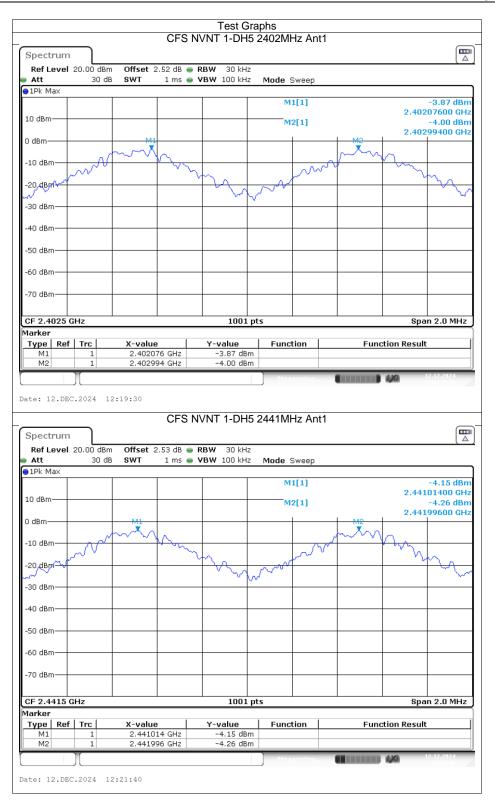



# **Occupied Channel Bandwidth**

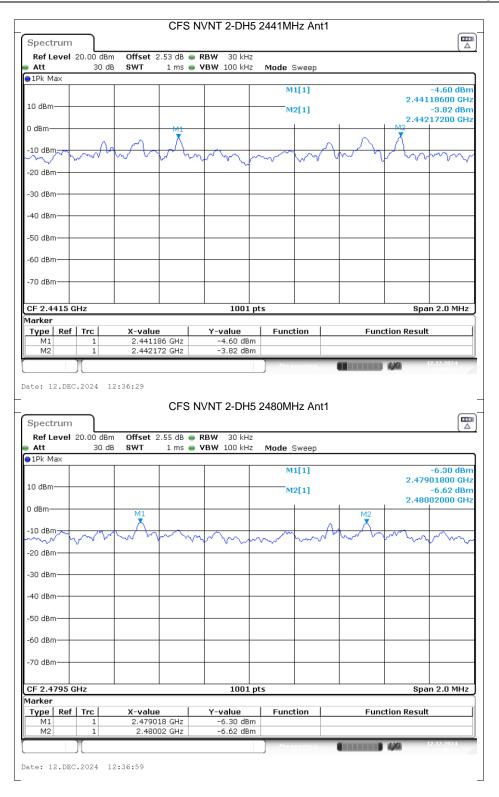
| Condition | Mode  | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|-------|-----------------|---------|---------------|
| NVNT      | 1-DH5 | 2402            | Ant1    | 0.887         |
| NVNT      | 1-DH5 | 2441            | Ant1    | 0.869         |
| NVNT      | 1-DH5 | 2480            | Ant1    | 0.86          |
| NVNT      | 2-DH5 | 2402            | Ant1    | 1.181         |
| NVNT      | 2-DH5 | 2441            | Ant1    | 1.199         |
| NVNT      | 2-DH5 | 2480            | Ant1    | 1.175         |
| NVNT      | 3-DH5 | 2402            | Ant1    | 1.178         |
| NVNT      | 3-DH5 | 2441            | Ant1    | 1.193         |
| NVNT      | 3-DH5 | 2480            | Ant1    | 1.19          |



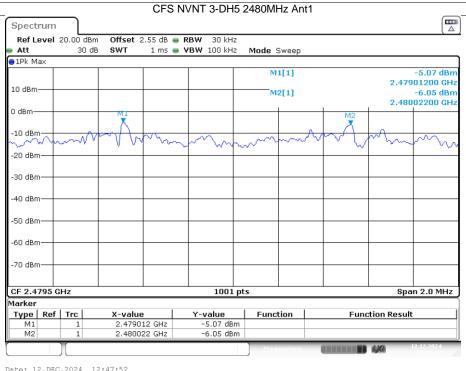







# **Carrier Frequencies Separation**


| Condition | Mode  | Antenna | Hopping Freq1 (MHz) | Hopping Freq2 (MHz) | HFS (MHz) | Limit (MHz) | Verdict |
|-----------|-------|---------|---------------------|---------------------|-----------|-------------|---------|
| NVNT      | 1-DH5 | Ant1    | 2402.076            | 2402.994            | 0.918     | 0.633       | Pass    |
| NVNT      | 1-DH5 | Ant1    | 2441.014            | 2441.996            | 0.982     | 0.633       | Pass    |
| NVNT      | 1-DH5 | Ant1    | 2478.996            | 2479.858            | 0.862     | 0.633       | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2401.86             | 2402.854            | 0.994     | 0.853       | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2441.186            | 2442.172            | 0.986     | 0.9         | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2479.018            | 2480.02             | 1.002     | 0.88        | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2401.866            | 2402.868            | 1.002     | 0.853       | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2440.964            | 2442.01             | 1.046     | 0.86        | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2479.012            | 2480.022            | 1.01      | 0.847       | Pass    |







|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | CFS N                   | VNT 3-DH5                 | 5 2402MHz                    | z Ant1               |      |             |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|---------------------------|------------------------------|----------------------|------|-------------|---------------------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                         |                           |                              |                      |      |             |                                                   |
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.52 dB 😑 I             |                           |                              |                      |      |             | ( = )                                             |
| Att 30 c 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ib SWT                                  | 1 ms 😑 '                | <b>VBW</b> 100 kHz        | Mode Sw                      | /еер                 |      |             |                                                   |
| The Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           | M1[                          | 1]                   |      |             | -4.18 dBm                                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                         |                           |                              |                      |      | 2.401       | .86600 GHz                                        |
| 10 dbiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                         |                           | M2[                          | 1]                   |      | 2,402       | -4.35 dBm<br>86800 GHz                            |
| 0 dBm M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       |                         |                           |                              | M2                   |      |             |                                                   |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sum$                                  | ~~ ^                    |                           |                              | A                    |      | <u>~~</u>   |                                                   |
| ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.m                                     | 1 mm                    | p                         | $\sim$                       | ~~ v                 | - m  | * m         | $\sim \sim$                                       |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                           |                              |                      |      |             |                                                   |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
| -50 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                         |                           |                              |                      |      |             |                                                   |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                         |                           |                              |                      |      |             |                                                   |
| -70 0811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                         |                           |                              |                      |      |             |                                                   |
| CF 2.4025 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                         | 1001                      | ots                          |                      |      | Spa         | n 2.0 MHz                                         |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                         |                           |                              |                      |      |             |                                                   |
| Type Ref Trc<br>M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.40186                                 |                         | Y-value<br>-4.18 dBm      | Functio                      | on                   | Func | tion Result | : <u> </u>                                        |
| M1 1<br>M2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.40180                                 |                         | -4.35 dBm                 |                              |                      |      |             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                           | Measu                        | uting                |      | 4,40        | 12.12.2024                                        |
| Date: 12.DEC.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12:42:18                                |                         |                           |                              |                      |      |             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                           |                              |                      |      |             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 050 1                   |                           |                              |                      |      |             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | CFS N                   | VNT 3-DH5                 | 5 2441MHz                    | z Ant1               |      |             |                                                   |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                         |                           | 5 2441MH                     | z Ant1               |      |             |                                                   |
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.53 dB 👄 I             | RBW 30 kHz                |                              | -                    |      |             |                                                   |
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.53 dB 👄 I             |                           | 5 2441MH;<br>Mode Sw         | -                    |      |             |                                                   |
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.53 dB 👄 I             | RBW 30 kHz                |                              | veep                 |      | 2.440       | ( △ )<br>-9.02 dBm                                |
| Ref Level 20.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 |      | 2.440       |                                                   |
| Ref Level         20.00 dB           Att         30 d           10 dBm         10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 2.53 dB 👄 I             | RBW 30 kHz                | Mode Sw                      | veep                 |      |             | (                                                 |
| Att 30 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level         20.00 dB           Att         30 d           10 dBm         10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           1Pk Max           10 dBm           0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level         20.00 dB           Att         30 d           10 dBm         0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           1Pk Max           10 dBm           0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           ID dBm         0 dBm           -10 dBm         -20 dBm           -30 dBm         -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 d           IPk Max           10 dBm           -10 dBm           -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           ID dBm         0 dBm           -10 dBm         -20 dBm           -30 dBm         -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           10 dBm         -10 dBm           -10 dBm         -20 dBm           -30 dBm         -30 dBm           -50 dBm         -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           10 dBm         0 dBm           -10 dBm         -20 dBm           -30 dBm         -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           10 dBm         -10 dBm           -10 dBm         -20 dBm           -30 dBm         -30 dBm           -50 dBm         -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           10 dBm         0           0 dBm         0           -10 dBm         0           -20 dBm         0           -30 dBm         0           -50 dBm         0           -60 dBm         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode S⊮<br>M1[               | veep                 | M2   |             | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 dB           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.4415 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B SWT                                   | 2.53 dB 👄 I             | RBW 30 kHz                | Mode Sw<br>M1[<br>           | veep                 | M2   | 2.442       | (∆)<br>-9.02 dBm<br>I96400 GHz<br>-5.72 dBm       |
| Ref Level 20.00 dB           Att         30 cd           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.4415 GHz           Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 2.53 dB • 1<br>1 ms • 1 | RBW 30 kHz<br>VBW 100 kHz | Mode Sw<br>M1[<br>M2[        | /eep 1] 1]           |      | 2.442       | -9.02 dBm<br>196400 GHz<br>-5.72 dBm<br>01000 GHz |
| Ref Level 20.00 dB           Att         30 c           9 1Pk Max         10 dBm           10 dBm         -           -20 dBm         -           -30 dBm         -           -30 dBm         -           -30 dBm         -           -70 dBm <td>B SWT</td> <td>2.53 dB • 1<br/>1 ms • 1</td> <td>RBW 30 kHz<br/>YBW 100 kHz</td> <td>Mode Sw<br/>M1[<br/>M2[</td> <td>/eep 1] 1]</td> <td></td> <td>2.442</td> <td>-9.02 dBm<br/>196400 GHz<br/>-5.72 dBm<br/>01000 GHz</td>                                                                | B SWT                                   | 2.53 dB • 1<br>1 ms • 1 | RBW 30 kHz<br>YBW 100 kHz | Mode Sw<br>M1[<br>M2[        | /eep 1] 1]           |      | 2.442       | -9.02 dBm<br>196400 GHz<br>-5.72 dBm<br>01000 GHz |
| Ref Level 20.00 dB           Att         30 cd           IPk Max         30 cd           10 dBm         -           0 dBm         -           -10 dBm         -           -20 dBm         -           -30 dBm         -           -40 dBm         -           -50 dBm         -           -70 dBm                                                                                                                                                                                                                                                                                                     | M1<br>X-value<br>2.44090                | 2.53 dB • 1<br>1 ms • 1 | RBW 30 kHz<br>VBW 100 kHz | Mode Sw<br>M1[<br>M2[<br>M2] | veep<br>1]<br>1]<br> | Func | 2.442       | -9.02 dBm<br>196400 GHz<br>-5.72 dBm<br>01000 GHz |
| Ref Level 20.00 dB           Att         30 c           9 1Pk Max         10 dBm           10 dBm         -           -20 dBm         -           -30 dBm         -           -30 dBm         -           -30 dBm         -           -70 dBm <td>M1<br/>X-value<br/>2.44090</td> <td>2.53 dB • 1<br/>1 ms • 1</td> <td>RBW 30 kHz<br/>YBW 100 kHz</td> <td>Mode Sw<br/>M1[<br/>M2[<br/>M2]</td> <td>veep<br/>1]<br/>1]<br/></td> <td></td> <td>2.442</td> <td>-9.02 dBm<br/>196400 GHz<br/>-5.72 dBm<br/>01000 GHz</td>                      | M1<br>X-value<br>2.44090                | 2.53 dB • 1<br>1 ms • 1 | RBW 30 kHz<br>YBW 100 kHz | Mode Sw<br>M1[<br>M2[<br>M2] | veep<br>1]<br>1]<br> |      | 2.442       | -9.02 dBm<br>196400 GHz<br>-5.72 dBm<br>01000 GHz |
| Ref Level 20.00 dB           Att         30 c           9 1Pk Max         10 dBm           10 dBm         -           -20 dBm         -           -30 dBm         -           -30 dBm         -           -30 dBm         -           -70 dBm <td>M1<br/>M1<br/>X-value<br/>2.4409<br/>2.4409</td> <td>2.53 dB • 1<br/>1 ms • 1</td> <td>RBW 30 kHz<br/>YBW 100 kHz</td> <td>Mode Sw<br/>M1[<br/>M2[<br/>M2]</td> <td>veep<br/>1]<br/>1]<br/></td> <td>Func</td> <td>2.442</td> <td>-9.02 dBm<br/>196400 GHz<br/>-5.72 dBm<br/>01000 GHz</td> | M1<br>M1<br>X-value<br>2.4409<br>2.4409 | 2.53 dB • 1<br>1 ms • 1 | RBW 30 kHz<br>YBW 100 kHz | Mode Sw<br>M1[<br>M2[<br>M2] | veep<br>1]<br>1]<br> | Func | 2.442       | -9.02 dBm<br>196400 GHz<br>-5.72 dBm<br>01000 GHz |



Date: 12.DEC.2024 12:47:52

## **Number of Hopping Channel**

| Condition | Mode  | Antenna | Hopping Number | Limit | Verdict |
|-----------|-------|---------|----------------|-------|---------|
| NVNT      | 1-DH5 | Ant1    | 79             | 15    | Pass    |
| NVNT      | 2-DH5 | Ant1    | 79             | 15    | Pass    |
| NVNT      | 3-DH5 | Ant1    | 79             | 15    | Pass    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 | Test G                                  |                                                                                             |                                                      | 14                                                                                                              |                                         |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-----------------|-----------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Н                             | opping N        | o. NVNT 1-                              | ·UH5 24(                                                                                    | J∠IVIHZ Ar                                           | 11.1                                                                                                            |                                         |                                      |
| Spectrum<br>Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | » Offent (                    | 2 E2 dB 👄       | RBW 100 kHz                             |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.00 dbi<br>30 d |                               |                 | VBW 300 kHz                             |                                                                                             | Sweep                                                |                                                                                                                 |                                         |                                      |
| ⊖1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         | м                                                                                           | 1[1]                                                 |                                                                                                                 | 2.40                                    | -1.57 dBr<br>19205 GH                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                               |                 |                                         | M                                                                                           | 2[1]                                                 |                                                                                                                 |                                         | -3.78 dBr                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 | 2.48                                    | 02435 GH                             |
| T TANAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NANANAN           | MAANAAAA                      | <b>1</b> 888888 | NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | IAAAAAAA                                                                                    | NAAAAAAAA                                            | ADDODBAA                                                                                                        | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | ia na n ${m x}$ -                    |
| -10 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WINN              | WWWW                          | NUNN            | MINNIN                                  | WWW                                                                                         | MAAAAAA                                              | MUUUU                                                                                                           | A DIVIVIT                               | WWW                                  |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1144011           | ALDAADA                       | ILLERGE         | , I A A A A A A A A A A A A A A A A A A | () I U U U U U U U U U U U U U U U U U U                                                    | RARLANAN                                             | a na ka n | 01818184                                | וזייוו                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         | 1 1.                                 |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         | પ                                    |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| 70.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| Start 2.4 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz                |                               |                 | 1001                                    | nts                                                                                         |                                                      |                                                                                                                 | Stop 2                                  | .4835 GHz                            |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112               |                               |                 | 1001                                    | pt3                                                                                         |                                                      |                                                                                                                 | 000 2.                                  | 1000 012                             |
| Type Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | X-value                       |                 | Y-value                                 | Func                                                                                        | tion                                                 | Fund                                                                                                            | tion Result                             |                                      |
| M1<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                 | 2.40192                       |                 | -1.57 dBn<br>-3.78 dBn                  |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                 |                               |                 |                                         | Mea                                                                                         | suring                                               |                                                                                                                 | 100                                     | 2.12.2024                            |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Н                             | opping N        | o. NVNT 2-                              | DH5 240                                                                                     | )2MHz Ar                                             | ıt1                                                                                                             |                                         |                                      |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.00 dBr<br>30 d |                               |                 | RBW 100 kHz<br>VBW 300 kHz              |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
| ⊖1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                               |                 |                                         | Mode                                                                                        | Sweep                                                |                                                                                                                 |                                         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 1                             |                 |                                         |                                                                                             |                                                      |                                                                                                                 |                                         |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         |                                                                                             | 5weep<br>1[1]                                        |                                                                                                                 | 2.40                                    | -8.12 dBr<br>14195 GH                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                               |                 |                                         | м                                                                                           |                                                      |                                                                                                                 |                                         | 14195 GH<br>-2.20 dBr                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                               |                 |                                         | M                                                                                           | 1[1]<br>2[1]                                         |                                                                                                                 | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| odem<br>MANNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NMM               | Mum                           | uww             | NANAMANA                                | M                                                                                           | 1[1]<br>2[1]                                         | mmm                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | www               | Mumm                          | uww             | MUMUMAA                                 | M                                                                                           | 1[1]<br>2[1]                                         | mm                                                                                                              | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VYMW.V            | WUUW                          | utuuu           | MMMMM                                   | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| 0 dBm<br>MMMM<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VWW               | MMMM                          | utvyyy          | MMMMA                                   | M                                                                                           | 1[1]<br>2[1]                                         | www.h                                                                                                           | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| 0 dBm<br>MMMM<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WWW.V             | Munn                          | uuuu            | MMMMAA                                  | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| 0 dBm<br>MMMM<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VYWWW             | Munn                          | uuuu            | MMMM                                    | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| 0 dBm<br>MM 400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WWWW              | Munn                          | WWW             | MMMMM                                   | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435 gH    |
| 0 dBm<br>MUUUUUU<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WWWW              | MUUUUU                        | WWW             |                                         | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435្ភ្លGH |
| 0 dBm<br>MM 400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WWWW<br>          |                               | WWW             |                                         | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435 gH    |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NWW               |                               | WWW             |                                         | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435 gH    |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-80 dBm<br>-40 dBm<br>-50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                               | WWW W           |                                         | M                                                                                           | 1[1]<br>2[1]                                         | www                                                                                                             | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435 gH    |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               | WWW             |                                         | м<br>м                                                                                      | 1[1]<br>2[1]                                         | www.                                                                                                            | 2.48                                    | 14195 GH<br>-2.20 dBr<br>02435 gH    |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.4 Gl<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz                |                               |                 | 1001                                    | м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м | 1[1]<br>2[1]<br>//////////////////////////////////// |                                                                                                                 | 2.48                                    | 14195 GH<br>-2.20 dB<br>02435,GH     |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm<br>-70 d | Hz<br>  Trc       | X-value                       |                 | 1001<br>Y-value                         | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                               | 1[1]<br>2[1]<br>//////////////////////////////////// |                                                                                                                 | 2.48                                    | 14195 GH<br>-2.20 dB<br>02435,GH     |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.4 Gl<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hz                |                               | 95 GHZ          | 1001                                    | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                    | 1[1]<br>2[1]<br>//////////////////////////////////// |                                                                                                                 | 2.48                                    | 14195 GH<br>-2.20 dB<br>02435,GH     |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.4 G<br>Marker<br>Type Ref<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hz<br>Trc<br>1    | X-value<br>2.40141            | 95 GHZ          | 1001<br>Y-value<br>-8.12 dBr            | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                    | 1[1]<br>2[1]<br>//////////////////////////////////// |                                                                                                                 | 2.48                                    | 14195 GH<br>-2.20 dB<br>02435,GH     |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm<br>-60 dBm<br>-70 d | Hz<br>1<br>1      | X-value<br>2.40141<br>2.48024 | 95 GHZ          | 1001<br>Y-value<br>-8.12 dBr            | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                    | 1[1]<br>2[1]<br>//////////////////////////////////// | Func                                                                                                            | 2.48                                    | 14195 GH<br>-2.20 dB<br>02435,GH     |