

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com April 12, 2002

TIMCO ENGINEERING INC.

P O BOX 370 849 N.W. STATE ROAD 45 NEWBERRY, FLORIDA USA 32669

Subject: FCC Certification Authorization Application under FCC PART

15, Subpart C, Sec. 15.231(a) - Momentarily Operation at

433.92 MHz.

Product: PT21 Postal Tag

Model No.: PT21 FCC ID: PQGPT21

Dear Sir/Madam

As appointed agent for Lyngsoe Industries Ltd., we would like to submit the application to the Federal Communications Commission for certification of the above product. Please review all necessary files uploaded to FCC OET site for detailed information.

If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

31040/SH

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com April 12, 2002

Lyngsoe Industries Ltd. 5570 Kennedy Road, Unit B Mississauga, Ontario Canada, L4Z 2A9

Attn.: Don Ferguson

Subject: FCC Certification Application Testing under FCC PART 15,

Subpart C, Sec. 15.231(a) - Momentarily Operation at 433.92

MHz.

Product: PT21 Postal Tag

Model No.: PT21 FCC ID: PQGPT21

Dear Mr. Ferguson,

The product sample, as provided by you, has been tested and found to comply with FCC PART 15, Subpart C, Sec. 15.231(a) - Momentarily Operation at 433.92 MHz.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

ENGINEERING TEST REPORT

PT21 Postal Tag Model No.: PT21

FCC ID: PQGPT21

Applicant: Lyngsoe Industries Ltd.

5570 Kennedy Road, Unit B Mississauga, Ontario Canada, LAZ 2A9

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC)
PART 15, SUBPART C
Sec. 15.231(a) - Momentarily Operation at 433.92 MHz

UltraTech's File No.: LYT-003FTX

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: April 12, 2002

Report Prepared by: Tri M. Luu, P.Eng. Tested by: Hung Trinh, RFI Technician

Issued Date: April 12, 2002 Test Dates: Mar. 22-25, 2002

• The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

 This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Telephone (905) 829-1570 Facsimile (905) 829-8050
Website: www.ultrat4ech-labs.com Email: vic@ultratech-labs.com

TABLE OF CONTENTS

EXHIBIT	1.	SUBMITTAL CHECK LIST	4
EXHIBIT	1.	INTRODUCTION	5
1.1.	SCOPE	3	5
1.2.	RELAT	ED SUBMITAL(S)/GRANT(S)	5
1.3.	NORM	IATIVE REFERENCES	5
EXHIBIT	2.	PERFORMANCE ASSESSMENT	6
2.1.	CLIEN'	T INFORMATION	6
		MENT UNDER TEST (EUT) INFORMATION	
		TECHNICAL SPECIFICATIONS	
2.4.	LIST O	F EUT'S PORTS	7
2.5.	ANCIL	LARY EQUIPMENT	7
2.6.	GENE	RAL TEST SETUP	7
EXHIBIT	3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	8
3.1.	CLIMA	TE TEST CONDITIONS	8
		TIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST S	
EXHIBIT	· 4.	SUMMARY OF TEST RESULTS	9
4.1.	LOCA'	TION OF TESTS	9
		CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
		ICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
EXHIBIT		MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	
		Procedures	
		PROCEDURES	
		JREMENT UNCERTAINTIES	
		ITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:	
		MHZ TRANSMITTER - PROVISIONS OF FCC 15.231(A) FOR PERIODIC OPERATION	
5.5.1		ngineering Analysisngineering Analysis	
		MHZ TRANSMITTER - RADIATED EMISSIONS @ 3 METERS, FCC CFR 47, PARA. 15.231(A), 15.209 &	
15.205			
5.6.1	l. L	imits	13
5.6.2	2. M	lethod of Measurements	14
5.6.3	3. T	est Equipment List	14
5.6.4	4. P	hotograph of Test Setuphotograph of Test Setup	14
5.6.5	$5.$ T_{c}	est Data	15
5.7.		MHZ TRANSMITTER - 20 DB BANDWIDTH @ FCC CFR 47, PARA. 15.231(C)	
5.7.1	l. L	imits	17
5.7.2		lethod of Measurements	
5.7.3		est Equipment List	
5.7.4		lots	
5.7.5	5. To	est Data	.17
EXHIBIT	6.	MEASUREMENT UNCERTAINTY	18
6.1.	RADIA	TED EMISSION MEASUREMENT UNCERTAINTY	18

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: LYT-003l April 12, 2

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7.	MEASUREMENT METHODS	19
7.1. GEN	NERAL TEST CONDITIONS	19
	Normal temperature and humidity	
	Normal power source	
7.1.3.	Operating Condition of Equipment under Test	19
72 RAD	DIATED EMISSIONS	20

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality
			Check (OK)
	Test Report	Exhibit 1: Submittal check lists	OK
		Exhibit 2: Introduction	
		• Exhibit 3: Performance Assessment	
		Exhibit 4: EUT Operation and	
		Configuration during Tests	
		• Exhibit 5: Summary of test Results	
		Exhibit 6: Measurement Data	
		• Exhibit 7: Measurement Uncertainty	
		Exhibit 8: Measurement Methods	
1	Test Report - Plots of	Plots # 1 to 2	OK
	Measurement Data		
2	Test Setup Photos Photos # 1 to 3		OK
3	External Photos of EUT	Photos # 1 to 2	OK
4	Internal Photos of EUT	Photos of 1 to 2	OK
5	Cover Letters	Letter from Ultratech for Certification	OK
		Request	
		 Letter from the Applicant to appoint 	OK
		Ultratech to act as an agent	
		• Letter from the Applicant to request for	OK
		Confidentiality Filing	
6	ID Label/Location Info	ID Label	OK
		 Location of ID Label 	OK
7	Block Diagrams	Block diagrams	OK
8	Schematic Diagrams	1 Schematic diagram	OK
9	Parts List/Tune Up Info	Parts List	OK
10	Operational Description	Operational Description	OK
11	RF Exposure Info	N/A	N/A
12	Users Manual	Users Manual	OK

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: LYT-003| April 12, 2

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.231(a)
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15
Purpose of Test:	To gain FCC Certification Authorization for Momentarily Operation at 433.92 MHz .
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Light-industry, CommercialIndustry

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts	2001	Code of Federal Regulations – Telecommunication
0-19		
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions
		from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of
EN 55022	1998	Information Technology Equipment
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods
FCC Public	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
Notice DA 00-		
705		
FCC Public	2000	Part 15 Unlicensed Modular Transmitter Approval
Notice DA 00-		
1407		

File #: LYT-0031

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:	
Name:	Lyngsoe Industries Ltd.
Address:	5570 Kennedy Road, Unit B
	Mississauga, Ontario
	Canada, L4Z 2A9
Contact Person:	Don Ferguson
	Phone #: 905 501 1533
	Fax #: 905 501 1538
	Email Address: dfe@lyngsoe-industries.com

MANUFACTURER:	
Name:	Lyngsoe Industries Ltd.
Address:	5570 Kennedy Road, Unit B
	Mississauga, Ontario
	Canada, L4Z 2A9
Contact Person:	Don Ferguson
	Phone #: 905 501 1533
	Fax #: 905 501 1538
	Email Address: dfe@lyngsoe-industries.com

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	Lyngsoe Industries Ltd.	
Product Name	PT21 Postal Tag	
Model Name or Number	PT21	
Serial Number	Pre-production sample	
Type of Equipment	Low Power Transmitter (RFID Transponder)	
Input Power Supply Type	3 Volt battery	
Primary User Functions of	This 433 MHz PT21 Tag is used in a RFID Transponder Identification	
EUT:	System. The purpose of a data capture or identification that uses a	
	Transponder as an identification token is:	
	To automatically identify animate and inaminate objects having	
	attached a Transponder with an unique identifier.	
	To ensure that information is available in a format that can be	
	readily accepted by a computer.	
	To minimize the possibility of errors in the identification process.	
Composite Devices:	Lyngsoe Exciter, Model E9, FCC ID: PQGE95	

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER @ 433.92 MHz		
Intended Operating Environment: Commercial, light industry & heavy industry		
RF Output Power Rating:	0.0	
Operating Frequency Range:	433.92 MHz	
Duty Cycle:	27.28% maximum	
Transmission Duration	4.9 second maximum	
20 dB Bandwidth:	40.3 kHz	
Modulation Type:	Pulse modulation with recognition coding	
Emission Designation:	40K3PON	
Oscillator Frequency:	433.92 MHz	
CPU Clock: 3.58 MHz		
Antenna Connector Type:	Integral antenna (part of on the printed circuit board)	
	housed inside a plastic enclosure.	

2.4. LIST OF EUT'S PORTS

None

2.5. ANCILLARY EQUIPMENT

None

2.6. GENERAL TEST SETUP

The PT21 Transmitter tag was tested as a standalone device. Please refer to Photo of Test Setup in Annex 2.

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	3 Volt battery

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was set to transmit continuously by means of special
	setting of jumpers on the printed circuit board for testing purpose
	only.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of
	normal intended use as an integral antenna equipment.

Transmitter Test Signals:	
Frequencies:	433. 92 MHz

File #: LYT-0031

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Aug. 08, 2001.

April 12, 2

File #: LYT-0031

File #: LYT-0031

April 12, 2

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	COMPLIANCE (YES/NO)	
15.203	Antenna Requirement	Yes	
15.231(a)	Provisions of FCC 15.231	Yes	
15.231(a) & (b)	Transmitter Radiated Emissions - Fundamental, Harmonic and Spurious	Yes	
15.231(c)	20 dB Bandwidth	Yes	
15.107, 15.109	AC Power Conducted Emissions & Radiated Emissions for Receiver and Digital Circuit Portions	Not applicable for battery operated device.	

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report, ANSI C63-4:1992 and FCC Public Notice @ DA 00-705 (March 30, 2000) – Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C64-3:1992, FCC 15.209 and CISPR 16-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: LYT-003l April 12, 2

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

5.5. 433.92 MHZ TRANSMITTER - PROVISIONS OF FCC 15.231(A) FOR PERIODIC OPERATION

5.5.1. Engineering Analysis

FCC PROVISSIONS	ANALYSIS ON COMPLIANCE
Permitted Type of Devices (alarm systems, door opener,	Remote switches
remote switches etc)	
Prohibited Type of Devices (radio control of toys)	Not radio control toys
Prohibited Transmission Type (voice, video or data	Recognition codes to identify other particular
continuous transmission)	component as part of the system
A Manually Operated Transmitter (shall employ with the switch that automatically deactivate the transmitter within 5	The transmitter will send 40 pulses after an automatic activation. The transmission will be
seconds of being released)	automatically deactivated after a maximum duration
	of 4.9 seconds. Please refer to the attached
	Technical Description.
Periodic Transmissions: at regular predetermined intervals are	This device is not a periodic transmitter with regular
not permitted. However, polling or supervision transmissions	predetermined intervals.
to determine system integrity of transmitter used in security or	
safety applications are allowed if the periodic rate of	
transmission does not exceed one transmission of not more	
than one second duration per hour for the transmitter	
Internal Radiators which are not employed for radio control	
purposes during emergencies involving fire, security, and	
safety of life, when activated to signal an alarm, may operate	
during the pendency of the alarm condition.	

File #: LYT-003l April 12, 2

5.6. 433.92 MHZ TRANSMITTER - RADIATED EMISSIONS @ 3 METERS, FCC CFR 47, PARA. 15.231(A), 15.209 & 15.205

5.6.1. Limits

The RF radiated emissions measured at 3 Meter distance shall not exceed the field strength below:

Fundamental	Average Field Strength Limits (N /m)		
Frequency (MHz)	Fundamental	Harmonic/Spurious	
260 - 470 MHz	3750 - 12,500	375 - 1250	

LIMIT @ 433.92 MHz = 80.8 dBuV/m at 3 meters
HARMONIC/SPURIOUS LIMIT (outside restricted bands) = 60.8 dBuV/m

All other emissions inside restricted bands specified in @ 15.205(a) shall not exceed the general radiated emission limits specified in @ 15.209(a)

Remarks:

- Applies to harmonics/spurious emissions that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209.
- @ FCC CFR 47, Para. 15.237(c) The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in @15.35 for limiting peak emissions apply.

FCC CFR 47, Part 15, Subpart C, Para. 15.205(a) - Restricted Frequency Bands

	ure re, suspure e, r uru reiz	oe (u) restricted riequent	J
MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2
25.5 - 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4
37.5 - 38.25	960 - 1240	3600 - 4400	22.01 - 23.12
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0
108 - 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8
123 - 138	1660 - 1710	7250 - 7750	36.43 - 36.5
149.9 - 150.05	149.9 - 150.05 1718.8 - 1722.2		Above 38.6
156.7 - 156.9	2200 - 2300	9000 - 9200	

File #: LYT-0031 April 12, 2 PT21 Postal Tag, Model PT21 FCC ID: PQGPT21

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a)

-- Field Strength Limits within Restricted Frequency Bands --

FREQUENCY	FIELD STRENGTH LIMITS	DISTANCE
(MHz)	(microvolts/m)	(Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.6.2. Method of Measurements

Refer to Exhibit 8, Sec. 7.2 of this test report & ANSI C63-4:1992

Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.

- For measurements from 9 KHz to 150 KHz, set RBW = 200 Hz, VBW ≥ RBW, SWEEP=AUTO.
- For measurements from 150 KHz to 30 MHz, set RBW = 10 KHz, VBW ≥ RBW, SWEEP=AUTO.
- For measurements from 30 MHz to 1 GHz, set RBW = 100 KHz, VBW ≥ RBW, SWEEP=AUTO.
- For measurement above 1 GHz, set RBW = 1 MHz, VBW = 1 MHz, SWEEP=AUTO.

If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

5.6.3. Test Equipment List

Test Instruments Manufactu		Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Peak Power Meter &	Hewlett	8900	2131A00124	0.1-18 GHz
Peak Power Sensor	Packard	8481A	2551A01965	50 Ohms Input
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz
	Packard			
Active Loop Antenna	EMCO	6507	8906-1167	1 kHz – 30 MHz
Log Periodic/Bow-Tie Antenna	EMCO	3143	1029	20 - 1000 MHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz

5.6.4. Photograph of Test Setup

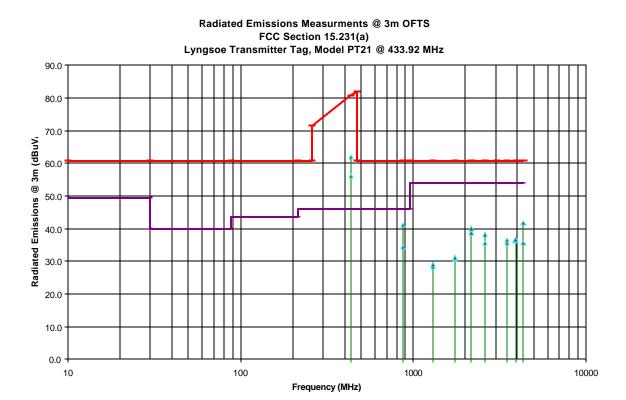
Please refer to Photos # 1 through #3 (tested at 3 meter distance) for Measurements data

File #: LYT-0031 April 12, 2

5.6.5. **Test Data**

The emissions were scanned from 10 MHz to 5 GHz and all emissions less 30 dB below the limits were recorded.

Notes:


- Transmitter was placed in three different orthogonal position for searching maximum field strength level.
- In the restricted band per FCC 15.205: Limit (2) per 15.209 is applied
- Outside the restricted band per FCC 15.205: Limit (1) per FCC 15.231(a) or Limit (2) per 15.209 whichever allows higher field strength emission, is applied.
- Duty Cycle = 27.28%
- Peak-to-Average factor = $20*\log (0.2728) = -11.28 \text{ dB}$ Please refer to Plot #1 in Annex 1 for detailed measurements.

* Emissions fall in FCC restricted bands @ 15.205.

	Peak	Avergae		Average (1)	Restricted (2)		
	E-FIELD	E-FIELD	ANTENNA	LIMIT	Band Limits	MARGIN	
FREQUENCY	@3m	@3m	PLANE	@3m	@3m		
(MHz)	(dBuV/m)	(dBuV/m)	(V/H)	(dBuV/m)	(dBuV/m)	(dB)	(Pass/Fail)
433.92	73.2	61.9	V	80.8	46.0	-18.9	PASS
433.92	67.3	56.0	Н	80.8	46.0	-24.8	PASS
867.84	52.4	41.1	V	60.8	46.0	-19.7	PASS
867.84	45.7	34.4	Н	60.8	46.0	-26.4	PASS
1301.76	39.6	28.3	V	60.8	54.0	-25.7	*PASS
1301.76	40.3	29.0	Н	60.8	54.0	-25.0	PASS
1735.68	41.9	30.6	V	60.8	54.0	-30.2	PASS
1735.68	42.4	31.1	Н	60.8	54.0	-29.7	PASS
2169.60	49.9	38.6	V	60.8	54.0	-22.2	PASS
2169.60	51.3	40.0	Н	60.8	54.0	-20.8	PASS
2603.52	46.8	35.5	V	60.8	54.0	-25.3	PASS
2603.52	49.5	38.2	Н	60.8	54.0	-22.6	PASS
3471.36	46.8	35.5	V	60.8	54.0	-25.3	PASS
3471.36	47.8	36.5	Н	60.8	54.0	-24.3	PASS
3905.28	47.6	36.3	V	60.8	54.0	-17.7	*PASS
3905.28	47.9	36.6	Н	60.8	54.0	-17.4	*PASS
4339.20	46.9	35.6	V	60.8	54.0	-18.4	*PASS
4339.20	53.0	41.7	Н	60.8	54.0	-12.3	*PASS

ULTRATECH GROUP OF LABS

File #: LYT-0031

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: LYT-0031 April 12, 2

Accreditation: FCC & NVLAP (USA), ACA (Australia), VCCI (Japan), ITI (UK), ACC-LAB (Canada, Europe/APEC/Canada MRA)

Page 17 FCC ID: PQGPT21

5.7. 433.92 MHZ TRANSMITTER - 20 DB BANDWIDTH @ FCC CFR 47, PARA. 15.231(C)

5.7.1. Limits

The 20dB bandwidth of the emission shall be no more than 0.25% of the centre frequency for devices operating above 70MHz.

5.7.2. Method of Measurements

Refer to FCC 15.231(a)(c) & ANSI C63-4:1992

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63-4:1992, Sec. 13.1.6.2

5.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			

5.7.4. Plots

Please refer to Plot # 2 Annex 1 for Measurements data

5.7.5. Test Data

CHANNEL FREQUENCY 20 dB BANDWIDTH		MAXIMUM LIMIT	PASS/FAIL	
(MHz)	(kHz)	(kHz)		
433.92	40.3	1085	PASS	

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAI	NTY (<u>+</u> dB)
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivit	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

EXHIBIT 7. MEASUREMENT METHODS

7.1. GENERAL TEST CONDITIONS

The following test conditions shall be applied throughout the tests covered in this report.

7.1.1. Normal temperature and humidity

Normal temperature: +15°C to +35°C
 Relative Humidity: +20% to 75%

The actual values during tests shall be recorded in the test report.

7.1.2. Normal power source

7.1.2.1. Mains Voltage

The nominal test voltage of the equipment to be connected to mains shall be the nominal mains voltage which is the declared voltage or any of the declared voltages for which the equipment was designed.

The frequency of test power source corresponding to the AC mains shall be between 59 Hz and 61 Hz.

7.1.2.2. Battery Power Source.

For operation from battery power sources, the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

7.1.3. Operating Condition of Equipment under Test

- All tests were carried out while the equipment operated at the following frequencies:
 - The lowest operating frequency,
 - The middle operating frequency and
 - The highest operating frequency
- Modulation were applied using the Test Data sequence
- The transmitter was operated at the highest output power, or in the case the equipment able to operate at more than one power level, at the lowest and highest output powers

7.2. RADIATED EMISSIONS

For both conducted and radiated measurements, the spurious emissions were scanned from the lowest frequency generated by the EUT or 10 MHz whichever is lower to 10th harmonic of the highest frequency generated by the EUT.

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 - 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 - 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz 40 GHz).
 - 3. The test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:
 - RBW = 100 kHz for f < 1GHz and RBW = 1 MHz for $f \ge 1$ GHz
 - \triangleright VBW = RBW
 - ➤ Sweep = auto
 - Detector function = peak
 - Trace = max hold
 - Follows the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc.. A pre-amp and highpass filter are required for this test, in order to provide the measuring system with sufficient sensitivity.
 - > Allow the trace to stabilize.
 - The peak reading of the emission, after being corrected by the antenna correction factor, cable loss, preamp gain, etc... is the peak field strength which comply with the limit specified in Section 15.35(b)

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength

RA = Receiver/Analyzer Reading

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Example: If a receiver reading of 60.0 dBuV is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:

Field Level =
$$60 + 7.0 + 1.0 - 30 = 38.0 \text{ dBuV/m}$$
.
Field Level = $10^{(38/20)} = 79.43 \text{ uV/m}$.

Submit this test data

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: LYT-003l April 12, 2

- Now set the VBW to 10Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100ms, then the reading obtained may be further adjusted by a "duty cycle correction factor", derived from 10log(dwell time/100mS) in an effort to demonstrate compliance with the 15.209.
- Submit test data

Maximizing The Radiated Emissions:

- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step4: Move the antenna over its full allowable range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.
- Step5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.