

FCC RF EXPOSURE REPORT

FCC ID: TE7AX10V1

Project No. : 1905C079A

Equipment: AX1500 Wi-Fi 6 Router

Brand Name : tp-link

Test Model: Archer AX10, Archer AX1500

Series Model : N/A

Applicant: TP-Link Technologies Co., Ltd.

Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and

Technology Park, Shennan Rd, Nanshan, Shenzhen, China

Manufacturer : TP-Link Technologies Co., Ltd.

Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and

Technology Park, Shennan Rd, Nanshan, Shenzhen, China

Date of Receipt : Nov. 28, 2019

Date of Test : Nov. 29, 2019 ~ Jan. 16, 2020

Issued Date : Jan. 20, 2020

Report Version : R00

Test Sample : Engineering Sample No.: DG2020010657

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Welly Zhou

Approved by: Ethan Ma

Iac-MRA ACCRI

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jan. 20, 2020

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

Table for Filed Antenna:

For 2.4GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-LINK®	3101502558	Dipole	Weld	3.82
2	TP-LINK®	3101502557	Dipole	Weld	3.82

Note: This EUT supports CDD, and all antennas have the same gain,

Directional gain = G_{ANT} +Array Gain, where Array Gain is as follows:

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array Gain =10 log (N_{ANT}/ N_{SS}) dB =3.82+10log(2/1)dBi=6.83.

Then, the power density limit is 8-(6.83-6) = 7.17.

For power measurements, Array Gain = 0 dB ($N_{ANT} \le 4$), so the Directional gain=3.82.

For 5GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)	Note
1	TP-LINK°	3101502560	Dipole	I-PEX	4.37	UNII-1
2	TP-LINK°	3101502559	Dipole	I-PEX	4.37	UNII-1
1	TP-LINK°	3101502560	Dipole	I-PEX	5.80	UNII-3
2	TP-LINK°	3101502559	Dipole	I-PEX	5.80	UNII-3

Note: This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain, where Array Gain is as follows:

1. For UNII-1 Non-Beamforming function,

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array Gain =10 log (N_{ANT}/ N_{SS}) dB =4.37+10log(2/1)dBi=7.38.

Then, the power spectral density limit is 17-(7.38-6)=15.62.

For power measurements, Array Gain = 0 dB ($N_{ANT} \le 4$), so the Directional gain=4.37.

For UNII-3 Non-Beamforming function,

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array Gain =10 log (N_{ANT}/ N_{SS}) dB =5.80+10log(2/1)dBi=8.81.

Then, the power spectral density limit is 30-(8.81-6)=27.19.

For power measurements, Array Gain = 0 dB (N_{ANT} ≤ 4), so the Directional gain=5.80.

2. For UNII-1 Beamforming function, Beamforming Gain: 3.00 dB.

So Directional gain = 4.37+3.00=7.37. Then, output power limit is 30-(7.37-6)=28.63, the power density limit is 17-(7.37-6)=15.63.

For UNII-3 Beamforming function, Beamforming Gain: 3.00 dB.

So Directional gain = 5.80+3.00=8.80. Then, output power limit is 30-(8.80-6)=27.20, the power density limit is 30-(8.80-6)=27.20

2. TEST RESULTS

Tune up tolerance(dBm)				
2.4GHz	5GHz			
±0.5	±0.5			

For 2.4GHz:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.82	2.4099	23.16	207.0141	0.09930	1	Complies

For 5GHz Non-Beamforming (UNII-1):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
4.37	2.7353	26.42	438.5307	0.23875	1	Complies

For 5GHz Non-Beamforming (UNII-3):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
5.80	3.8019	26.38	434.5102	0.32881	1	Complies

For 5GHz With Beamforming (UNII-1):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
7.37	5.4576	26.25	421.6965	0.45809	1	Complies

For 5GHz With Beamforming (UNII-3):

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.80	7.5858	26.34	430.5266	0.65006	1	Complies

For the max simultaneous transmission MPE:

Power Density (S) (mW/cm ²)	Power Density (S) (mW/cm ²)	Total	Limit of Power Density (S)	Test Result
2.4GHz	5GHz		(mW/cm ²)	
0.09930	0.65006	0.74936	1	Complies

Note: The calculated distance is 20 cm.

Output power including tune up tolerance.

End of Test Report