#### APPENDIX C

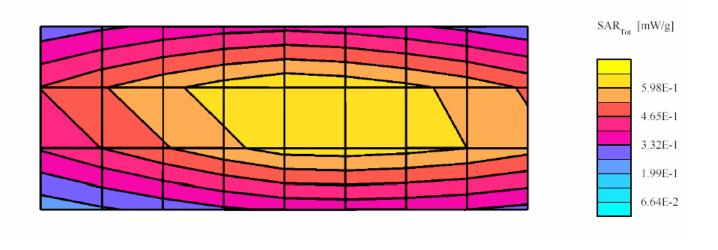
## **Dipole System Performance Check Results**

Dipole validation scans at the head from SPEAG are provided in APPENDIX D. The CGISS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the CGISS EME system performance validation are provided in this appendix.

## SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/15/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040515-01

TX Freq: 300 MHz


Sim Tissue Temp: 21.0 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift)
SAR target at 1W is 1.83 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.85 mW/g (1g avg). Percent from target (including drift) is + 4.65 %
SAR calculated at 1W is 1.92 mW/g (10g avg). Percent from target (including drift) is + 4.72 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma$  = 0.89 mho/m  $\epsilon$  = 56.7  $\rho$  = 1.00 g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.09 mW/g  $\pm$  0.01 dB, SAR (1g): 0.710 mW/g  $\pm$  0.00 dB, SAR (10g): 0.478 mW/g  $\pm$  0.00 dB, (Worst-case extrapolation) Penetration depth: 13.1 (11.6, 15.1) [mm]

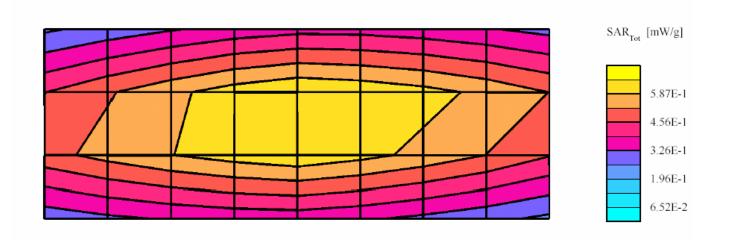
Power drift: -0.01 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/16/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040516-01

TX Freq: 300 MHz


Sim Tissue Temp: 20.6 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift)
SAR target at 1W is 1.83 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.84 mW/g (1g avg). Percent from target (including drift) is + 4.41 %
SAR calculated at 1W is 1.91 mW/g (10g avg). Percent from target (including drift) is + 4.26 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma$  = 0.89 mho/m  $\epsilon$  = 56.2  $\rho$  = 1.00 g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.09 mW/g  $\pm$  0.01 dB, SAR (1g): 0.710 mW/g  $\pm$  0.02 dB, SAR (10g): 0.477 mW/g  $\pm$  0.03 dB, (Worst-case extrapolation) Penetration depth: 13.1 (11.6, 15.2) [mm]

Power drift: 0.00 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/17/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040517-01

TX Freq: 300 MHz

Sim Tissue Temp: 20.6 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift)
SAR target at 1W is 1.83 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.71 mW/g (1g avg). Percent from target (including drift) is - 0.29 %
SAR calculated at 1W is 1.82 mW/g (10g avg). Percent from target (including drift) is - 0.33 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma$  = 0.89 mho/m  $\epsilon$  = 56.9  $\rho$  = 1.00 g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.04 mW/g ± 0.02 dB, SAR (1g): 0.678 mW/g ± 0.02 dB, SAR (10g): 0.456 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 13.2 (11.7, 15.2) [mm]

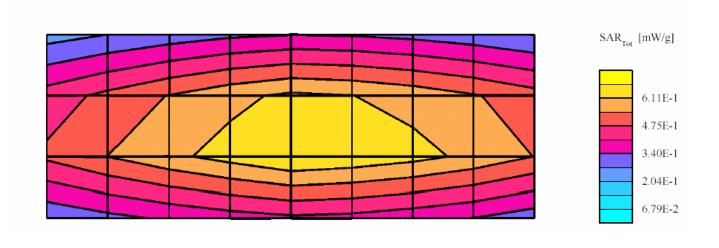
Power drift: 0.00 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/18/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040518-01

TX Freq: 300 MHz


Sim Tissue Temp: 20.7 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift)
SAR target at 1W is 1.83 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.88 mW/g (1g avg). Percent from target (including drift) is +5.83 %
SAR calculated at 1W is 1.94 mW/g (10g avg). Percent from target (including drift) is +5.82 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma$  = 0.89 mho/m  $\rho$  = 57.0  $\rho$  = 1.00 g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.10 mW/g ± 0.01 dB, SAR (1g): 0.718 mW/g ± 0.02 dB, SAR (10g): 0.483 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 13.2 (11.6, 15.2) [mm]

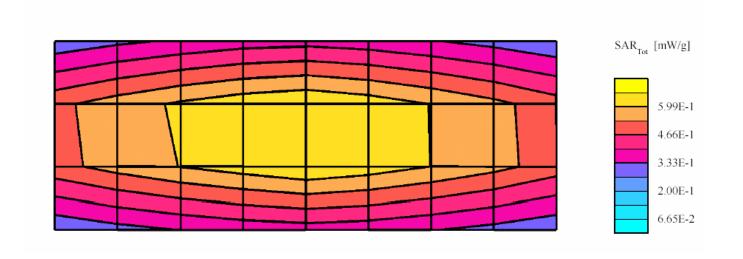
Power drift: -0.01 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/19/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040519-01

TX Freq: 300 MHz


Sim Tissue Temp: 20.0 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift)
SAR target at 1W is 1.83 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.90 mW/g (1g avg). Percent from target (including drift) is + 6.67 %
SAR calculated at 1W is 1.95 mW/g (10g avg). Percent from target (including drift) is + 6.64 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma$  = 0.90 mho/m  $\epsilon$  = 57.1  $\rho$  = 1.00 g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.11 mW/g ± 0.01 dB, SAR (1g): 0.727 mW/g ± 0.01 dB, SAR (10g): 0.489 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 13.2 (11.6, 15.2) [mm]

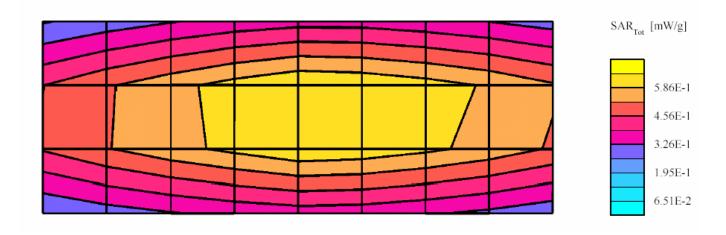
Power drift: 0.01 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/20/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040520-01

TX Freq: 300 MHz


Sim Tissue Temp: 20.0 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.72 mW/g (1g avg, including drift) SAR target at 1W is 1.83 mW/g (10g avg, including drift) SAR calculated at 1W is 2.85 mW/g (1g avg). Percent from target (including drift) is +4.80% SAR calculated at 1W is 1.92 mW/g (10g avg). Percent from target (including drift) is +4.94%

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma = 0.90$  mho/m  $\epsilon = 56.9$   $\rho = 1.00$  g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.09 mW/g  $\pm 0.01$  dB, SAR (1g): 0.711 mW/g  $\pm 0.02$  dB, SAR (10g): 0.479 mW/g  $\pm 0.02$  dB, (Worst-case extrapolation) Penetration depth: 13.2 (11.6, 15.2) [mm]

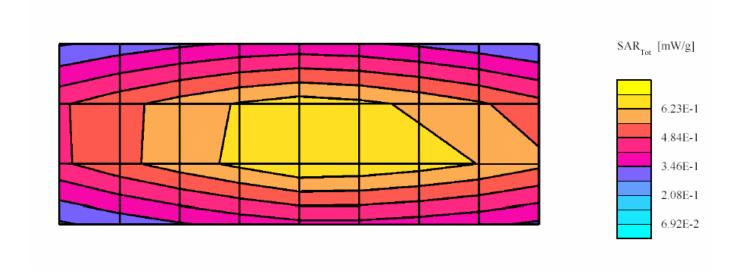
Power drift: -0.01 dB



# SPEAG 300 MHz Dipole; Model D300V2, SN 1001; Test Date: 5/21/04 Motorola CGISS EME Lab

Run #: Sys Perf-R1-040521-04

TX Freq: 300 MHz


Sim Tissue Temp: 20.8 (Celsius)

Start Power; 250mW

SAR target at 1W is 2.81 mW/g (1g avg, including drift)
SAR target at 1W is 1.88 mW/g (10g avg, including drift)
SAR calculated at 1W is 2.97 mW/g (1g avg). Percent from target (including drift) is + 5.62 %
SAR calculated at 1W is 1.99 mW/g (10g avg). Percent from target (including drift) is + 5.74 %

Flat Phantom; Device Probe: ET3DV6 - SN1547(Cal Date 09-23-2003); Probe Cal Date: 19/09/03ConvF(7.50,7.50,7.50); Crest factor: 1.0; IEEE Head 300MHz:  $\sigma = 0.87$ mho/m  $\varepsilon = 46.3$   $\rho = 1.00$  g/cm3; DAE3: SN374 DAE Cal Date: 03/23/2004 Cubes (2): Peak: 1.14 mW/g  $\pm$  0.04 dB, SAR (1g): 0.742 mW/g  $\pm$  0.01 dB, SAR (10g): 0.497 mW/g  $\pm$  0.01 dB, (Worst-case extrapolation) Penetration depth: 12.9 (11.4, 14.8) [mm]

Power drift: -0.00 dB



## SYSTEM VALIDATION

| Date:                                      | 12/16/2003            | Frequency (      | MHz):    | 30           | 0           |             |
|--------------------------------------------|-----------------------|------------------|----------|--------------|-------------|-------------|
| Lab Location:                              | CGISS                 | Mixture Typ      |          | 300-IEE      |             |             |
| Robot System:                              | CGISS-1               | Ambient Te       | mp.(°C): | 22           | .8          |             |
| Probe Serial #:                            | 1384                  | Tissue Temp      | p.(°C):  | 20           | .9          |             |
| DAE Serial #:                              | DAE3V1 SN3            | 53               | _        |              |             |             |
|                                            |                       |                  |          |              |             |             |
| Tissue Characteristic                      |                       |                  |          |              |             |             |
| Permitivity:                               | 47.2                  | Phantom Ty       |          | 8060200      |             |             |
| Conductivity:                              | 0.84                  | Distance (m      | m): -    | 15 (tissue/d | lipole cnt) |             |
| Reference Source:                          | Dipole                | (Dipole)         |          |              |             |             |
| Reference SN:                              | 1001                  | (Bipole)         |          |              |             |             |
|                                            | ****                  | <del></del>      |          |              |             |             |
| Power to Dipole:                           | <b>25</b> 0 <b>mW</b> |                  |          |              |             |             |
| Power Output (radio)                       | ): mW                 |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
| Target SAR Value:<br>(normalized to 1.0 W) | 3                     | 3.00  mW/g,      | 2.00     | mW/g (10ք    | g avg.)     |             |
| (normalized to 1.0 w)                      |                       |                  |          |              |             |             |
| Measured SAR Valu                          | e: 0.                 | 700 mW/g,        | 0.469    | mW/g (10g    | g avg.)     |             |
| Power Drift:                               | _                     | 0.01 dB          |          |              | 5 (6.)      |             |
|                                            | _                     |                  |          |              |             |             |
| Measured SAR Valu                          | _                     | 2.81 mW/g,       | 1.88     | mW/g (10g    | g avg.)     |             |
| (normalized to 1.0 W, inclu                | ding drift)           |                  |          |              |             |             |
| Percent Difference Fr                      | rom Target (MUS       | ST he within Svs | tem Unc  | ertainty).   | 6.45        | % (1g ave)  |
| Toront Billorence I                        | iom ranger (ivie).    | or oc widin sys  | tom one  |              |             | % (10g ave) |
|                                            |                       |                  |          | -            |             | ,,,,,,,     |
| Test performed by:                         |                       | C. Miller        |          | Initial:     | (CM)        |             |
|                                            |                       |                  | _        | -            |             |             |
|                                            |                       |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
| *                                          |                       |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
|                                            |                       |                  |          |              |             |             |
|                                            |                       | *                |          |              |             |             |
|                                            |                       | ĸ.               |          |              |             |             |
|                                            |                       |                  |          |              |             |             |

Sys. Valid. Form: 021024

Motorola Internal Use Only

## SPEAG Dipole 300MHz. Test Date:12/16/03

Run #:Val-D300V2 sn1001-R1-031216-01 Phantom #: 80602002B/S2

Model #: D300V2 SN: 1001 Robot: CGISS-1 Tester: C. Miller

TX Freq: 300 MHz Sim Tissue Temp: 20.9 (Celsius)

Start Power; 250mW

DAE3: 363V1 DAE Cal Date: 05/13/2003

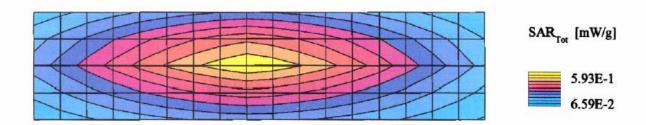
- Comments-

IEEE Table 7-1 Target at 1W is 3.0 (1g)

SAR calculated for 1g is 2.81 mW/g, Percent from target (including drift) for 1g is -6.45 % SAR calculated for 10g is 1.88 mW/g, Percent from target (including drift) for 10g is -5.98 %

Flat Phantom; Device

Probe: ET3DV6 - SN1384(Cal Date 05-15-2003);Probe Cal Date: 15/05/03ConvF(7.80,7.80,7.80); Crest


factor: 1.0; IEEE Head 300MHz:  $\sigma = 0.84$  mho/m  $\varepsilon_r = 47.2$   $\rho = 1.00$  g/cm<sup>3</sup>

Cubes (2): Peak: 1.08 mW/g  $\pm$  0.02 dB, SAR (1g): 0.700 mW/g  $\pm$  0.02 dB, SAR (10g): 0.469 mW/g  $\pm$  0.03

dB, (Worst-case extrapolation)

Penetration depth: 13.2 (11.5, 15.3) [mm]

Powerdrift: -0.01 dB



Motorola CGISS EME Lab

## SYSTEM PERFORMANCE CHECK TARGET SAR

| Date:                        | <b>12/16/2</b> 003 | Frequency                    | (MHz):                | 3           | <b>3</b> 00   |
|------------------------------|--------------------|------------------------------|-----------------------|-------------|---------------|
| Lab Location:                | CGISS              | Mixture T                    | ype:                  | <b>3</b> 00 | Bod <b>y</b>  |
| Robot System:                | CGISS-1            | Ambient T                    | cmp.(°C):             | 2           | <b>.2.</b> 8  |
| Probe Serial #:              | 1384               | Tissuc Ter                   | .( <sup>°</sup> C): ՝ | 2           | .0. <b>7</b>  |
| DAE Serial #:                | DAE3V2 SN          | 363                          |                       |             |               |
| Tissue Characteristics       | ı                  |                              |                       |             |               |
| Permitivity:                 | <b>5</b> 6.8       | Phantom T                    | ype/SN:               | 80602       | 002A/\$1      |
| Conductivity:                | 0.89               | Distance (1                  |                       | 15 (tissue  | e/dipole cnt) |
| Reference Source:            | Dipole             | (Dipole)                     |                       |             |               |
| Reference SN:                | 1001               |                              |                       |             |               |
| Power to Dipole:             | 250 mW             |                              |                       |             |               |
| Measured SAR Value           | : (                | 0. <b>67</b> 8 <b>mW/g</b> , | 0.457                 | mW/g (1     | 0g avg.)      |
| Power Drift:                 |                    | <u>-0.01</u> dB              |                       |             |               |
| New Target/Measured          | I                  |                              |                       |             |               |
| SAR Value:                   |                    | 2.72 mW/g,                   | 1.83                  | mW/g (1     | 0g avg.]      |
| (normalized to 1.0 W, includ | ing drift)         |                              |                       |             |               |
|                              |                    |                              |                       |             |               |
| Test performed by:           |                    | C. Miller                    |                       | Initial:    | CUI           |

#### 12/16/03

## SPEAG Dipole 300MHz. Test Date:12/16/03

Run #: Val-D300V2 sn1001-R1-031216-02 Phantom #: 80602002A/S1

Model #: D300V2 SN: 1001 Robot: CGISS-1 Tester: C. Miller

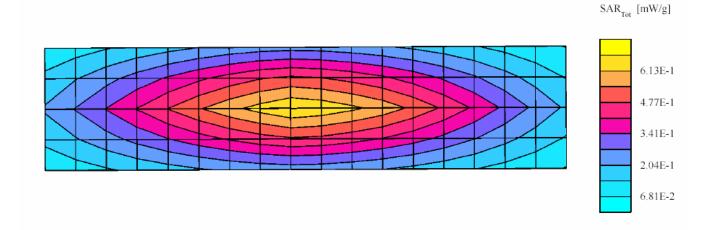
TX Freq: 300 MHz Sim Tissue Temp: 20.7 (Celsius)

Start Power; 250mW

DAE3: 363V1 DAE Cal Date: 05/13/2003

- Comments-

SAR calculated for 1g is 2.72 mW/g, Percent from target (including drift) for 1g is -0.06 % SAR calculated for 10g is 1.83 mW/g, Percent from target (including drift) for 10g is 0.12 %


Flat Phantom; Device

Probe: ET3DV6 - SN1384(Cal Date 05-15-2003); Probe Cal Date: 15/05/03ConvF(7.90,7.90,7.90); Crest factor: 1.0; FCC Body 300 MHz:  $\sigma = 0.89$  mho/m  $\epsilon_r = 56.8$   $\rho = 1.00$  g/cm<sup>3</sup>

Cubes (2): Peak: 1.04  $\,$  mW/g  $\pm$  0.00 dB, SAR (1g): 0.678  $\,$  mW/g  $\pm$  0.02 dB, SAR (10g): 0.457  $\,$  mW/g  $\pm$  0.02 dB, (Worst-case extrapolation)

Penetration depth: 13.3 (11.6, 15.4) [mm]

Powerdrift: -0.01 dB



Motorola CGISS EME Lab

## APPENDIX D

## **Probe/Dipole Calibration Certificates**

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Motorola CGISS

| Object(s)                                                                                                                                                                     | ET3DV6 - SN:1547                                                                                      |                                                                                                                                                                                                                                             |                                                                                                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Calibration procedure(s)                                                                                                                                                      | QA CAL-01.v2 Calibration procedure for dosimetric E-field probes                                      |                                                                                                                                                                                                                                             |                                                                                                  |  |  |  |
| Calibration date:                                                                                                                                                             | September 19                                                                                          | , 2003                                                                                                                                                                                                                                      |                                                                                                  |  |  |  |
| Condition of the calibrated item                                                                                                                                              | In Tolerance (                                                                                        | according to the specific calibration                                                                                                                                                                                                       | n document)                                                                                      |  |  |  |
| 7025 international standard.                                                                                                                                                  |                                                                                                       | used in the calibration procedures and conformity of                                                                                                                                                                                        |                                                                                                  |  |  |  |
| Calibration Equipment used (M&TE                                                                                                                                              | critical for calibration)                                                                             |                                                                                                                                                                                                                                             |                                                                                                  |  |  |  |
| Model Type                                                                                                                                                                    | ID#                                                                                                   | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                   | Scheduled Calibration                                                                            |  |  |  |
| Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E | GB41293874<br>MY41495277<br>SN; 5086 (20b)<br>SN; 6295803<br>MY41092180<br>US3642U01700<br>US37390585 | 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (Agilent, No. 24BR1033101) | Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: Aug-05 In house check: Oct 03 |  |  |  |
|                                                                                                                                                                               | Name                                                                                                  | Function                                                                                                                                                                                                                                    | Signature                                                                                        |  |  |  |
| Salibrated by:                                                                                                                                                                | Katja Pokovic                                                                                         | Laboratory Director                                                                                                                                                                                                                         | Marillet                                                                                         |  |  |  |
| Approved by:                                                                                                                                                                  | Fin Bomholf                                                                                           | R&D Director                                                                                                                                                                                                                                | Fr Breedolf:                                                                                     |  |  |  |
|                                                                                                                                                                               |                                                                                                       |                                                                                                                                                                                                                                             | Date issued: September 20, 200                                                                   |  |  |  |
|                                                                                                                                                                               |                                                                                                       |                                                                                                                                                                                                                                             | C 17025 International Standard) for                                                              |  |  |  |

## DASY - Parameters of Probe: ET3DV6 SN:1547

| Sensitivity | in | Free  | Space |  |
|-------------|----|-------|-------|--|
| Comorcivicy |    | 1 100 | CPUCC |  |

#### Diode Compression

| NormX | 1.39 μV/(V/m) <sup>2</sup>         | DCP X | 90 | mV |
|-------|------------------------------------|-------|----|----|
| NormY | <b>1.24</b> μV/(V/m) <sup>2</sup>  | DCP Y | 90 | mV |
| NormZ | 1. <b>24</b> μV/(V/m) <sup>2</sup> | DCP Z | 90 | mV |

## Sensitivity in Tissue Simulating Liquid

| Head                                                    | 900 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\varepsilon_r = 41.5 \pm 5\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma = 0.97 \pm 5\%$ mho/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Charles Charles Charles Contract Contract Contract Con- | man table in the control of the cont | Proceedings in the Company of the Co | A STATE OF THE PROPERTY OF THE |

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X 6.3 ± 9.5% (k=2) Boundary effect:

ConvF Y 6.3 ± 9.5% (k=2) Alpha 0.45 ConvF Z 6.3 ± 9.5% (k=2) Depth 2.41

Head 1800 MHz  $\epsilon_r$  = 40.0 ± 5%  $\sigma$  = 1.40 ± 5% mho/m

Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

 ConvF X
 5.2 ±9.5% (k=2)
 Boundary effect:

 ConvF Y
 5.2 ±9.5% (k=2)
 Alpha
 0.50

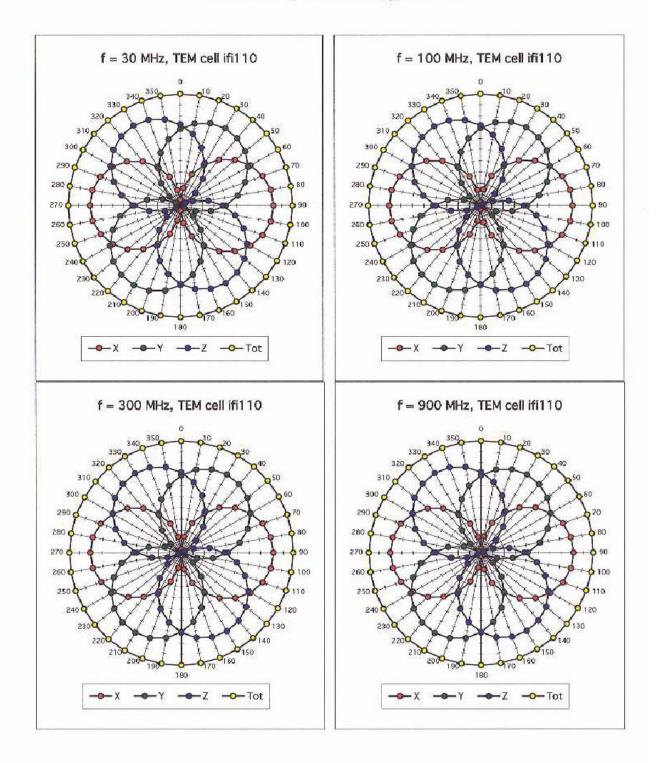
 ConvF Z
 5.2 ±9.5% (k=2)
 Depth
 2.61

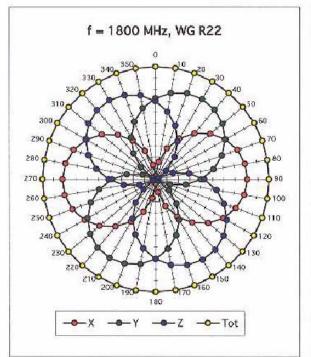
## Boundary Effect

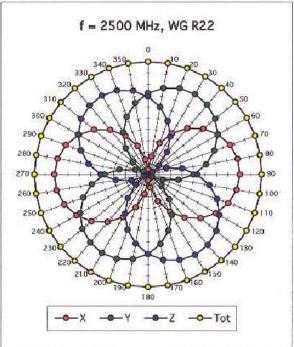
Head 900 MHz Typical SAR gradient: 5 % per mm

| Probe Tip to          | Boundary                     | 1 mm | 2 mm |
|-----------------------|------------------------------|------|------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 10.9 | 6.3  |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.3  | 0.5  |

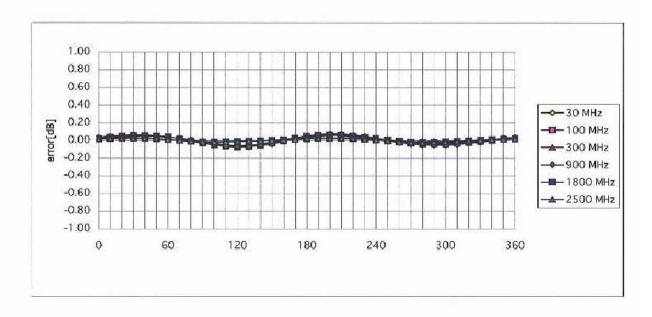
Head 1800 MHz Typical SAR gradient: 10 % per mm


| Probe Tip to          | Boundary                     | 1 mm | 2 mm |
|-----------------------|------------------------------|------|------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 13.6 | 9.2  |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.2  | 0.2  |


#### Sensor Offset

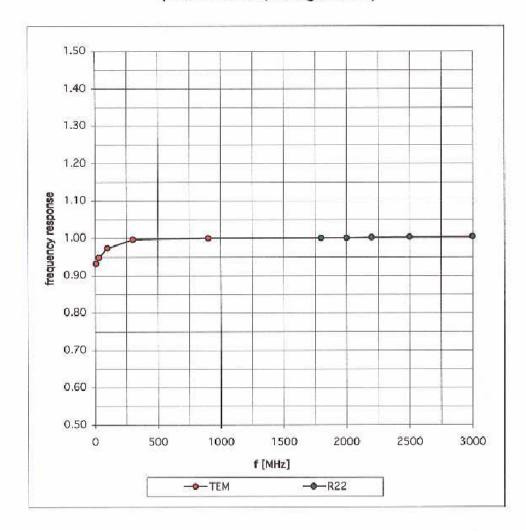

Probe Tip to Sensor Center 2.7 mm

Optical Surface Detection 1.4 ± 0.2 mm


## Receiving Pattern ( $\phi$ ), $\theta = 0^{\circ}$

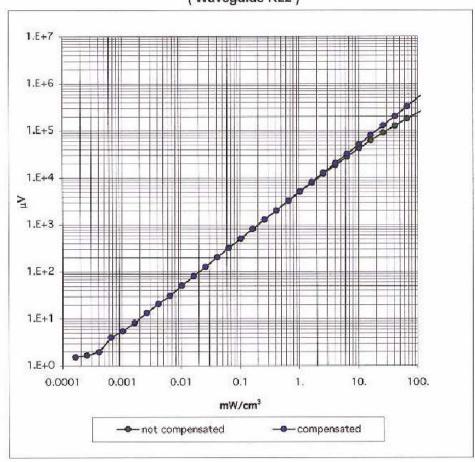


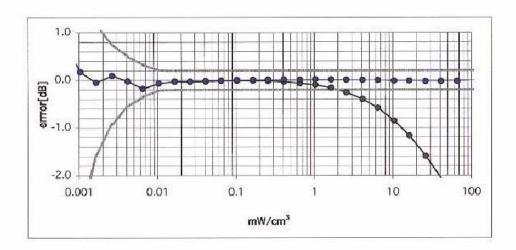





Isotropy Error ( $\phi$ ),  $\theta = 0^{\circ}$ 

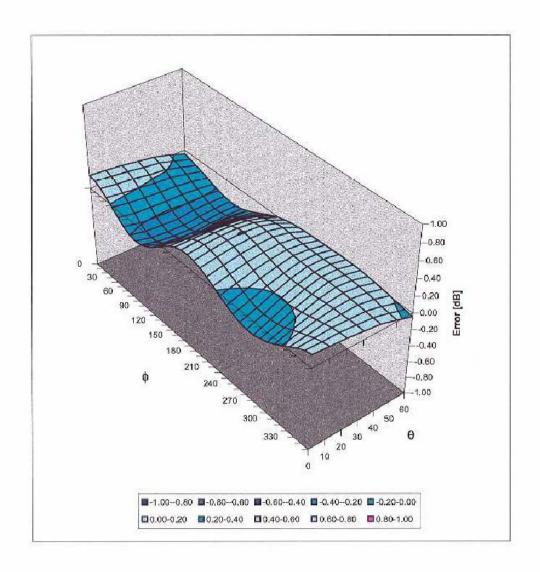



## Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)



## Dynamic Range f(SARhead)


(Waveguide R22)





## Deviation from Isotropy in HSL

Error  $(\theta,\phi)$ , f = 900 MHz



Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

## **Additional Conversion Factors**

for Dosimetric E-Field Probe

| Type:                   | ET3DV6             |
|-------------------------|--------------------|
| Serial Number:          | 1547               |
| Place of Assessment:    | Zurich             |
| Date of Assessment:     | September 23, 2003 |
| Probe Calibration Date: | September 19, 2003 |

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

ET3DV6R-SN:1547

Page 1 of 3

September 23, 2003

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

## Dosimetric E-Field Probe ET3DV6 SN:1547

Conversion factor (± standard deviation)

| 150 MHz  | ConvF | $7.8 \pm 8\%$ | $\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue) |
|----------|-------|---------------|-----------------------------------------------------------------|
| 236 MHz  | ConvF | $7.7 \pm 8\%$ | $\epsilon_r = 59.8$ $\sigma = 0.87 \text{ mho/m}$ (body tissue) |
| 300 MHz  | ConvF | 7.5 ± 8%      | $\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue) |
| 350 MHz  | ConvF | $7.5\pm8\%$   | $\epsilon_r = 57.7$ $\sigma = 0.93 \text{ mho/m}$ (body tissue) |
| 450 MHz  | ConvF | $7.2 \pm 8\%$ | $\epsilon_r = 56.7$ $\sigma = 0.94 \text{ mho/m}$ (body tissue) |
| 784 MHz  | ConvF | $6.3\pm8\%$   | $\epsilon_r = 55.4$ $\alpha = 0.97 \text{ mho/m}$ (body tissue) |
| 1450 MHz | ConvF | 5.2 ± 8%      | $\epsilon_r = 54.0$ $\sigma = 1.30 \text{ mho/m}$ (body tissue) |

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

## Dosimetric E-Field Probe ET3DV6 SN:1547

Conversion factor (± standard deviation)

| 150 MHz | ConvF | 8.7 ± 8 %   | $\epsilon_r = 52.3$ $\alpha = 0.76 \text{ mho/m}$ (head tissue)         |
|---------|-------|-------------|-------------------------------------------------------------------------|
| 236 MHz | ConvF | 7.9 ± 8 %   | $\epsilon_r = 48.3$ $\alpha = 0.82 \text{ mho/m}$ (head tissue)         |
| 300 MHz | ConvF | $7.5\pm8\%$ | $\epsilon_r$ = 45.3 $\sigma$ = 0.87 mho/m (head tissue)                 |
| 350 MHz | ConvF | $7.5\pm8\%$ | $\epsilon_r$ = 44.7<br>$\sigma$ = 0.87 mho/m<br>(head tissue)           |
| 400 MHz | ConvF | 7.2 ± 8%    | $\epsilon_r$ = 44.4<br>$\sigma$ = 0.87 mho/m<br>(head tissue - CENELEC) |
| 450 MHz | ConvF | 7.2 ±8%     | $\epsilon_r$ = 43.5<br>$\sigma$ = 0.87 mho/m<br>(head tissue)           |
| 784 MHz | ConvF | 6.5 ± 8%    | $\epsilon_r$ = 41.8<br>$\sigma$ = 0.90 mho/m<br>(head tissue)           |

## Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00. Fax +41 1 245 97 79

## Calibration Certificate

300 MHz System Validation Dipole

| Type:                 | D300V2             |
|-----------------------|--------------------|
| Serial Number:        | 1001               |
| Place of Calibration: | Zurich             |
| Date of Calibration:  | September 11, 2002 |
| Calibration Interval: | 24 months          |

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

#### 1. Measurement Conditions

The measurements were performed in the flat phantom filled with head simulating liquid of the following electrical parameters at 300 MHz:

Relative Dielectricity 45.8  $\pm 5\%$ Conductivity 0.93 mho/m  $\pm 5\%$ 

The DASY System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 8.5 at 300 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 400 mW  $\pm$  3 %. The results are normalized to 1W input power.

#### 2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm<sup>3</sup> (1 g) of tissue: 2.83 mW/g (Advanced Extrapolation)

averaged over 10 cm<sup>3</sup> (10 g) of tissue: 1.89 mW/g (Advanced Extrapolation)

Advanced extrapolation has been applied to the measured SAR values to compensate for the probe boundary effect (see DASY User Manual for details).

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

#### 3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.737 ns (one direction)

Transmission factor:

0.995

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 300 MHz:

 $Re{Z} = 56.9 \Omega$ 

 $Im \{Z\} = -5.9 \Omega$ 

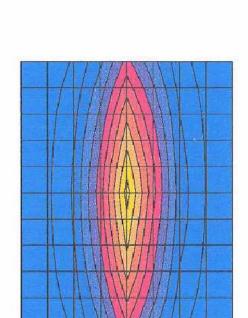
Return Loss at 300 MHz

-21.6 dB

### 4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

#### 5. Design


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

#### Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Validation Dipole D300V2 SN:1001, d = 15 mm

Frequency: 300 MHz; Antenna Input Power: 400 [mW], Flat Phantom (shell thickness = 6mm) Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe: E73DV6 - SN1807; ConvF(8.50,8.50), Crest factor: 1.0; Head 300 MHz;  $\sigma = 0.93$  mhc/m s, = 45.8  $\rho = 1.00$  g/cm<sup>3</sup> Cubes (2): Peak: 1.74 mW/g ± 0.02 dB, SAR (1g): 1.13 mW/g ± 0.02 dB, SAR (10g): 0.755 mW/g ± 0.01 dB, (Advanced extrapolation) Penetration depth: 12.9 (11.6, 14.6) [mm]



1.08E+0

9.60E-I

8,40E-1

7.20E-1

6.00E-I

4,80E-1

3.60E-1

1.20E+0

SAR<sub>Tot</sub> [mW/g]

Schmid & Partner Engineering AG, Zurich, Switzerland

1.20E-1

2.40E-1

# Validation Dipole D300V2 SN:1001, d = 15 mm

Frequency: 300 MHz, Antenna Input Power: 400 [mW], Flat Phantom (shell thickness = 6mm) Grid Spacing. Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe. ET3DV6 - SN1507; ConvF(8.50,8.50,8.50); Crest factor: 1.0; Head 300 MHz.  $\sigma$  = 0.93 mho/m s, = 45.8  $\rho$  = 1.00 g/cm<sup>3</sup> Cubes (2): Peak: 1.89 mW/g ± 0.02 dB, SAR (1g): 1.19 mW/g ± 0.02 dB, SAR (10g): 0.779 mW/g ± 0.01 dB, (Worst-case extrapolation) Penetration depth: 12.3 (10.7, 14.4) [mm]

1.08E+0

9.60E-1

8.40E-1

7,20E-1

4.80E-1

6.00E-1

3.60E-1

2.40E-1

1.20E-1

1,20E+0

SAR<sub>Tor</sub> [mW/g]

Schmid & Partner Engineering AG, Zunich, Switzerland

# APPENDIX E

## Illustration of Body-Worn Accessories

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: ABZ99FT3039. The sample that was used in the following photos represents the product used to obtain the results presented herein and was used in this section to demonstrate the different body-worn accessories.



Photo 1. Model HLN8255B Back View



Photo 2. Model HLN8255B Side View



Photo 3. Model HLN9701B Back View



Photo 4. Model HLN9701B Side View



Photo 5. Model HLN9701B Front View



Photo 6. Model RLN5383A Back View



Photo 7. Model RLN5383A Side View



Photo 8. Model RLN5383A Front View



Photo 9. Model RLN5385A Back View



Photo 10. Model RLN5385A Side View



Photo 11. Model RLN5385A Front View



Photo 12. Model RLN5644A Back View



Photo 13. Model RLN5644A Side View



Photo 14. Models HLN6602A, NTN5243A



Photo 15. Model RLN5497A Back view



Photo 16. Model RLN5497A Side view



Photo 17. Model RLN5497A Front view



Photo 17. Model RLN5498A Back view



Photo 18. Model RLN5498A Side view



Photo 19. Model RLN5498A Front view

# Appendix F Accessories and options test status and separation distances

The following table summarizes the test status and separation distance provided by each of the applicable accessories:

| Comm. Coss Model          | Tostad 9     | Separation distance<br>between device and | Comments                                                   |
|---------------------------|--------------|-------------------------------------------|------------------------------------------------------------|
| Carry Case Model HLN6602A | Tested ? Yes | phantom surface. (mm)<br>10-24            | Comments<br>NA                                             |
| ILIN0002A                 | res          | 10-24                                     | '                                                          |
| NTN5243A                  | Yes          | NA                                        | Tested with carry case<br>RLN5383A                         |
| HLN8255B                  | Yes          | 34-54                                     | NA                                                         |
| HLN9701B                  | Yes          | 40-57                                     | NA                                                         |
| RLN5383A                  | Yes          | 50-77                                     | NA                                                         |
| RLN5385A                  | Yes          | 53-70                                     | NA                                                         |
| RLN5644A                  | Yes          | 35-56                                     | NA                                                         |
| RLN5497A                  | Yes          | 62-96                                     | NA                                                         |
| RLN5498A                  | Yes          | 42-60                                     | Na                                                         |
| RLN5496A                  | No           | 62-96                                     | Similar to RLN5497A                                        |
| RLN5384A                  | No           | 53-70                                     | Similar to RLN5385A                                        |
| RLN4570A                  | No           | 10-24                                     | Similar to HLN6602A                                        |
| HLN9985B                  | No           | NA                                        | Water proof bag. Product not functional in this carry case |

| Audio Acc. |          | Separation distance<br>between device and |                      |
|------------|----------|-------------------------------------------|----------------------|
| Model      | Tested ? | phantom surface. (mm)                     | Comments             |
| HMN9030A   | Yes      | NA                                        | NA                   |
| HMN9754D   | Yes      | NA                                        | NA                   |
| HMN9013A   | Yes      | NA                                        | NA                   |
| HLN9133A   | Yes      | NA                                        | Tested w/ PMLN4443A  |
| RMN4016A   | Yes      | NA                                        | NA                   |
| RLN5238A   | Yes      | NA                                        | NA                   |
| HMN9021A   | Yes      | NA                                        | NA                   |
| BDN6647F   | Yes      | NA                                        | NA                   |
| BDN6648C   | Yes      | NA                                        | NA                   |
| RMN5015A   | Yes      | NA                                        | NA                   |
| RKN4090A   | Yes      | NA                                        | tested with RMN5015A |
| RLN5411A   | Yes      | NA                                        | NA                   |
| PMMN4008A  | Yes      | NA                                        | NA                   |
| PMLN4443A  | Yes      | NA                                        | NA                   |
| PMLN4445A  | Yes      | NA                                        | NA                   |
| PMLN4294C  | Yes      | NA                                        | NA                   |

| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | Tested w/ BDN6706B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | Tested w/ RMN4051B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | Receive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Yes | NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes | NA  | Receive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Yes | NA  | Receive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Yes | NA  | Receive only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| No  | NA  | Similar to HMN9727B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Similar to BDN6706B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Similar to 0180358B38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No  | NA  | Similar to HMN9754D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Similar to HMN9754D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Similar to HMN9754D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Similar to HMN9021A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No  | NA  | Ear holder only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |     | Extreme noise kit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No  | NA  | Mechanical piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |     | Low noise kit. Mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No  | NA  | piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No  | NA  | Foam piece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Yes | Yes         NA           No         NA |

| Additional  |          | Separation distance between device and |                              |
|-------------|----------|----------------------------------------|------------------------------|
| attachments | Tested ? | phantom surface. (mm)                  | Comments                     |
|             |          |                                        | Tested with standard antenna |
| 5886627Z01  | Yes      | NA                                     | model HAD9338AR              |