1.1. D835V2 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étatonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Acres of the CCIC-HTW (Auden) Certificate No: D835V2-4d238_Feb18 | bject | D835V2 - SN:4d23 | 38 | | |--|--|--|--| | alibration procedure(s) | QA CAL-05.v9
Calibration process | dure for dipole validation kits abov | e 700 MHz | | Calibration date: | February 19, 2018 | В | | | The measurements and the unce | cted in the closed laborator | onal standards, which realize the physical unit
robability are given on the following pages and
by facility: environment temperature $(22 \pm 3)^{\circ}$ C | | | Calibration Equipment used (M& | TE critical for calibration) | a mark No. | Scheduled Calibration | | Primary Standards | ID# | Cal Date (Certificate No.) | Apr-18 | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Apr-18 | | Reference 20 dB Attenuator | | 07-Apr-17 (No. 217-06069) | Dec-18 | | Reference 20 dB Attenuator
Type-N mismatch combination | SN: 5047.2 / 06327 | co Dec 47 (No. EV3-7349 Dec17) | Dec-10 | | Type-N mismatch combination
Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Type-N mismatch combination | SN: 7349
SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | 2727.033 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 7349
SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) | Oct-18 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards
Power meter EPM-442A | SN: 7349
SN: 601
ID #
SN: GB37480704 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards
Power meter EPM-442A
Power sensor HP 8481A | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 7349
SN: 601
ID II
SN: GB37480704
SN: US37292783
SN: MY41092317 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 7349
SN: 601
ID II
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Scheduled Check In house check: Oct-18 Signature | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 7349
SN: 601
ID II
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Scheduled Check In house check: Oct-18 Signature | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349
SN: 601
ID II
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function | Scheduled Check In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 7349
SN: 601
ID II
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function | Oct-18 Scheduled Check In house check: Oct-18 Signature | Certificate No: D835V2-4d238_Feb18 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Accreditation No.: SCS 0108 C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d238_Feb18 Page 2 of 8 #### **Measurement Conditions** | SY system configuration, as far as not
DASY Version | DASY5 | V52.10.0 | |--|------------------------|-------------| | xtrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | oom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters** e following parameters and calculations were applied. | Temperature | Permittivity | Conductivity | |-------------|--------------|--| | 22.0 °C | 41.5 | 0.90 mho/m | | | 41.2 ± 6 % | 0.92 mho/m ± 6 % | | | appe | 0.222 | | | Temperature | 22.0 °C 41.5
(22.0 ± 0.2) °C 41.2 ± 6 % | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | | | 9.51 W/kg ± 17.0 % (k=2) | | SAR for nominal Head TSL parameters | normalized to 1W | 3.31 ting = 1.13 | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |--|--------------------|--------------------------| | SAR averaged over 10 cms (10 g) of riess 102 | 250 mW input power | 1.56 W/kg | | SAR measured | | 0 45 W/hm - 10 5 % /k=2\ | | SAR for nominal Head TSL parameters | normalized to 1W | 6.15 W/kg ± 16.5 % (k=2) | **Body TSL parameters** e following parameters and calculations were applied. | 00.000 | ee o | 0.97 mho/m | |---------------|---------------------------|--------------------------| | 22.0 °C | 55.2 | 0.97 mno/m | | 2.0 ± 0.2) °C | 55.0 ± 6 % | 0.99 mho/m ± 6 % | | | | | | | 2.0 ± 0.2) °C
< 0.5 °C | 2.0 ± 0.2) °C 55.0 ± 6 % | ## SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | 1.00 | 250 mW input power | 2.45 W/kg | | SAR measured | | 9.64 W/kg ± 17.0 % (k=2) | | SAR for nominal Body TSL parameters | normalized to 1W | 0.01 11119 | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR averaged over 10 cm (10 g) states | 250 mW input power | 1.60 W/kg | | SAR measured | | 6.32 W/kg ± 16.5 % (k=2) | | SAR for nominal Body TSL parameters | normalized to 1W | Didt mig - | Certificate No: D835V2-4d238_Feb18 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 4.0 jΩ | | |--------------------------------------|-----------------|--| | mpedance, transformed to reed point | - 27.8 dB | | | Return Loss | - 27.0 00 | | ### Antenna Parameters with Body TSL | e de tradación | 47,6 Ω - 6.0 Ω | |--------------------------------------|-----------------| | Impedance, transformed to feed point | 92 S dB | | Return Loss | - 23.6 dB | ### General Antenna Parameters and Design | - 15 to (one discotion) | 1.391 ns | |----------------------------------|----------| | Electrical Delay (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Table de abound but | SPEAG | | |---------------------|---------------|--| | Manufactured by | June 02, 2017 | | | Manufactured on | June 02, 2017 | | Certificate No: D835V2-4d238_Feb18 ### DASY5 Validation Report for Head TSL Date: 19.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d238 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.44 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.12 dBW/kg Certificate No: D835V2-4d238_Feb18 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d238_Feb18 Page 6 of 8 ### DASY5 Validation Report for Body TSL Date: 19.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d238 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.24 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.70 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.21 W/kg 0 dB = 3.21 W/kg = 5.07 dBW/kg ### Impedance Measurement Plot for Body TSL # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-835 | | | | | | | | |-------------|----------------------------|------------|----------------|-----------------|-----------|-------|--| | Date of | Poturo Jose (dP) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | | measurement | Return-loss (dB) Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | | 2018/2/19 | -27.8 | | 50.8 | | -4.0 | | | | 2019/2/3 | -27.1 | -2.52% | 49.9 | 0.9 | -3.6 | 0.4 | | | Body-835 | | | | | | | | |-------------|------------------|---------------------------|----------------|-------|-----------------|-------|--| | Date of | Return-loss (dB) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | | measurement | Return-1055 (ub) | eturn-loss (dB) Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | 2018/2/19 | -23.6 | | 47.6 | | -6.0 | | | | 2019/2/3 | -24.2 | 2.54% | 47.1 | 0.5 | -6.2 | 0.2 | | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5ohm of prior calibration. Therefore the verification result should support extended calibration. #### 1.2. D1900V2 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CCIC-HTW (Auden) Certificate No: D1900V2-5d226 Feb18 | Object | D1900V2 - SN:5 | 5d226 | | |---|--|--|---| | Calibration procedure(s) | QA CAL-05.v9
Calibration process | edure for dipole validation kits ab | ove 700 MHz | | Calibration date: | February 22, 20 | 18 | | | The measurements and the unce | ertainties with confidence p | tional standards, which realize the physical up
probability are given on the following pages a
any facility: environment temperature (22 ± 3) | nd are part of the certificate. | | Calibration Equipment used (M& | | reservation of the control co | | | Primary Standards Power meter NRP | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | FOWER SERSOR INTE-231 | SN: 5058 (20k) | 04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528) | Apr-18 | | Reference 20 dB Attenuator | | | Apr-18 | | Reference 20 dB Attenuator
Type-N mismatch combination | | [[] [] [] [[] [] [] [] [] [] | 0.0000000000000000000000000000000000000 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Type-N mismatch combination
Reference Probe EX3DV4 | | [[] [] [] [[] [] [] [] [] [] | | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17) | Apr-18
Dec-18 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards
Power meter EPM-442A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17) | Apr-18
Dec-18
Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16) | Apr-18
Dec-18
Oct-18
Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16) | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
15-Jun-15 (in house check Oct-16) | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16) | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585
Name | 07-Apr-17 (No. 217-02529)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17)
Check Date (in house)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
07-Oct-15 (in house check Oct-16)
15-Jun-15 (in house check Oct-16) | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585 | 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7348_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585
Name
Michael Weber | 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US37390585
Name | 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function | Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | Certificate No: D1900V2-5d226_Feb18 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d226_Feb18 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | apasei | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.71 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d226_Feb18 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2 Ω + 6.0 įΩ | |--------------------------------------|-----------------| | Return Loss | | | | - 24.0 dB | ### Antenna Parameters with Body TSL | Impedance transformed to food and a | | | |--------------------------------------|-----------------------------|--| | Impedance, transformed to feed point | $47.9 \Omega + 7.5 J\Omega$ | | | Return Loss | - 22.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | | |-----------------|----------------|--|--| | Manufactured on | 700-1000000 | | | | | April 16, 2015 | | | ### **DASY5 Validation Report for Head TSL** Date: 22.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d226 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.6 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d226_Feb18 Page 6 of 8 ### DASY5 Validation Report for Body TSL Date: 22.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d226 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.8 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.16 W/kg Maximum value of SAR (measured) = 14.3 W/kg Certificate No: D1900V2-5d226_Feb18 ## Impedance Measurement Plot for Body TSL # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-1900 | | | | | | | | | |-------------|------------------------|------------|----------------|-------|-----------------|-------|--|--| | Date of | Return-loss (dB) Delta | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | | | measurement | | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | | 2018/2/22 | -24.0 | | 52.2 | | 6.0 | | | | | 2019/2/20 | -24.5 | 2.08% | 52.6 | 0.4 | 6.5 | 0.5 | | | | Body-1900 | | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------|--| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | | measurement | Return-1055 (db) | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | 2018/2/22 | -22.0 | | 47.9 | | 7.5 | | | | 2019/2/20 | -22.3 | 1.36% | 47.3 | 0.6 | 7.1 | 0.4 | | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.