Test Report # AIR-AP1562I-x-K9 AIR-AP1562D-x-K9 (x=A,B,D,N,T,Z) Cisco Aironet 802.11ac Dual Band Outdoor Access Points FCC ID: LDK102104 IC: 2461B-102104 #### 2400-2483.5 MHz Against the following Specifications: CFR47 Part 15.247 RSS-247 RSS-Gen AS/NZS 4268 LP0002 G.S.R 45 (E) #### **Cisco Systems** 170 West Tasman Drive San Jose, CA 95134 Author: Jose Aguirre Tested By: Approved By: Jim Nicholson Title: Technical Leader, Engineering Revision: 4 This report replaces any previously entered test report under EDCS – **11345023.** This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Page No: 1 of 126 This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. | SECTION 1: OVERVIEW | 4 | |---|--------| | SECTION 2: ASSESSMENT INFORMATION | 5 | | 2.1 General | 5 | | 2.2 Date of testing | | | 2.3 Report Issue Date | | | 2.4 TESTING FACILITIES | | | 2.5 EQUIPMENT ASSESSED (EUT) | 7 | | 2.6 EUT DESCRIPTION | | | SECTION 3: RESULT SUMMARY | 10 | | 3.1 RESULTS SUMMARY TABLE | 10 | | SECTION 4: SAMPLE DETAILS | 12 | | 4.1 Sample Details | 12 | | 4.2 System Details | 12 | | 4.3 Mode of Operation Details | 12 | | APPENDIX A: EMISSION TEST RESULTS | 13 | | CONDUCTED TEST SETUP DIAGRAM | 13 | | TARGET MAXIMUM CHANNEL POWER | 13 | | Antenna Gain: 7 dBi | | | Antenna Gain: 9 dBi | | | A.1 6DB BANDWIDTH | | | A.2 99% AND 26DB BANDWIDTH | | | A.3 MAXIMUM CONDUCTED OUTPUT POWER | | | Antenna Gain: 7 dBi | | | Antenna Gain: 9 dBi | | | A.4 POWER SPECTRAL DENSITY | | | A.5 CONDUCTED SPURIOUS EMISSIONS | | | Conducted Bandedge (Restricted Band) | | | Antenna Gain: 7 dBi | | | Antenna Gain: 9 dBi | | | Antenna Gain: 7 dBi | | | Antenna Gain: 9 dBi | | | CONDUCTED BANDEDGE (NON-RESTRICTED BAND) | | | APPENDIX B: EMISSION TEST RESULTS | 90 | | RADIATED EMISSION SETUP DIAGRAM-BELOW 1G | 90 | | B.1 RADIATED SPURIOUS EMISSIONS | 91 | | B.2 RECEIVER SPURIOUS EMISSIONS | 112 | | B.3 RADIATED EMISSIONS 30MHZ TO 1GHZ | 115 | | B.4 AC CONDUCTED EMISSIONS | 118 | | APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TI | EST122 | | | | | APPENDIX E: ABBREVIATION KEY | AND DEFINITIONS125 | , | |------------------------------|--------------------|---| Page No: 3 of 126 #### **Section 1: Overview** The samples were assessed against the tests under the requirements of the following specifications: #### **Emission** CFR47 Part 15.247 RSS247 Issue 1: May 2015 RSS-Gen Issue 4: Nov 2014 Measurements were made in accordance with - ANSI C63.10:2013 - FCC KDB 662911 D01 v02r01 - KDB 558074 D01 Meas Guidance v03r05 #### **Section 2: Assessment Information** #### 2.1 General This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc: With regard to this assessment, the following points should be noted: - a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances. - b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only. - c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP). - d) All testing was performed under the following environmental conditions: Temperature 15°C to 35°C (54°F to 95°F) Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3") Humidity 10% to 75*% *[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%. e) All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%) #### **Units of Measurement** The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV] As an example, the basic calculation for all measurements is as follows: Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:- Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss.. Note: to convert the results from dBuV/m to uV/m use the following formula:- Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m #### Measurement Uncertainty Values | voltage and power measurements | ± 2 dB | |-----------------------------------|------------| | conducted EIRP measurements | ± 1.4 dB | | radiated measurements | ± 3.2 dB | | frequency measurements | ± 2.4 10-7 | | temperature measurements | ± 0.54° | | humidity measurements | ± 2.3% | | DC and low frequency measurements | ± 2.5% | Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. Radiated emissions (expanded uncertainty, confidence interval 95%) | 30 MHz - 300 MHz | +/- 3.8 dB | |--------------------|------------| | 300 MHz - 1000 MHz | +/- 4.3 dB | | 1 GHz - 10 GHz | +/- 4.0 dB | | 10 GHz - 18GHz | +/- 8.2 dB | | 18GHz - 26.5GHz | +/- 4.1 dB | | 26.5GHz - 40GHz | +/- 3.9 dB | Conducted emissions (expanded uncertainty, confidence interval 95%) A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line. This report must not be reproduced except in full, without written approval of Cisco Systems. #### 2.2 Date of testing 25-April-16 - 08-Aug-16 #### 2.3 Report Issue Date 15-August-2016 Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled. #### 2.4 Testing facilities This assessment was performed by: #### **Testing Laboratory** Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA #### **Registration Numbers for Industry Canada** | Cisco System Site | Address | Site Identifier | |-------------------------|----------------------------|--------------------| | Building P, 10m Chamber | 125 West Tasman Dr | Company #: 2461N-2 | | | San Jose, CA 95134 | | | Building P, 5m Chamber | 125 West Tasman Dr | Company #: 2461N-1 | | | San Jose, CA 95134 | | | Building I, 5m Chamber | 285 W. Tasman Drive | Company #: 2461M-1 | | | San Jose, California 95134 | | #### **Test Engineers** Jose Aguirre 2.5 Equipment Assessed (EUT) AIR-AP1562I-A-K9 Page No: 7 of 126 #### 2.6 EUT Description The Cisco Aironet 802.11ac Dual Band Access Points support the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Data is recorded at the lowest supported data rate for each mode. This report covers operation on channel 1-11. ``` 802.11n/ac - Legacy CCK, One Antenna, 1 to 11 Mbps 802.11n/ac - Legacy CCK, Two Antennas, 1 to 11 Mbps 802.11n/ac - Legacy CCK, Three Antennas, 1 to 11 Mbps 802.11n/ac - Non HT20, One Antenna, 6 to 54 Mbps 802.11n/ac - Non HT20, Two Antennas, 6 to 54 Mbps 802.11n/ac - Non HT20, Three Antennas, 6 to 54 Mbps 802.11n/ac - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps 802.11n/ac - Non HT20 Beam Forming, Three Antennas, 6 to 54 Mbps 802.11n/ac - HT/VHT20, One Antenna, M0 to M7 802.11n/ac - HT/VHT20, Two Antennas, M0 to M7 802.11n/ac - HT/VHT20, Two Antennas, M8 to M15 802.11n/ac - HT/VHT20, Three Antennas, M0 to M7 802.11n/ac - HT/VHT20, Three Antennas, M8 to M15 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7 802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M0 to M7 802.11n/ac - HT/VHT20 Beam Forming, Three Antennas, M8 to M15 802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7 802.11n/ac - HT/VHT20 STBC, Three Antennas, M0 to M7 802.11n/ac - Non HT40 Duplicate, One Antenna, 6 to 54 Mbps 802.11n/ac - Non HT40 Duplicate, Two Antennas, 6 to 54 Mbps 802.11n/ac - Non HT40 Duplicate, Three Antennas, 6 to 54 Mbps 802.11n/ac - HT/VHT40, One Antenna, M0 to M7 802.11n/ac - HT/VHT40, Two Antennas, M0 to M7 802.11n/ac - HT/VHT40, Two Antennas, M8 to M15 802.11n/ac - HT/VHT40, Three Antennas, M0 to M7 802.11n/ac - HT/VHT40, Three Antennas, M8 to M15 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7 802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15 802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M0 to M7 802.11n/ac - HT/VHT40 Beam Forming, Three Antennas, M8 to M15 802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7 802.11n/ac - HT/VHT40 STBC, Three Antennas, M0 to M7 ``` Page No: 8 of 126 The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas. | Frequency | | Part Number | Antenna Type | Antenna Gain (de | Bi) | |-----------|----------------------|---------------|-------------------------------|------------------|-----| | 2.4 | GHz | Internal (*) | Omni | 7 | | | | 0 11 - | Internal (**) | Directional (Cross Polarized) | 9 | | (*)
Internal antenna for AIR-AP1562I-x-K9 (**) Internal antenna for AIR-AP1562D-x-K9 ## **Section 3: Result Summary** ## 3.1 Results Summary Table # Conducted emissions | Basic Standard | Technical Requirements / Details | Result | |--|--|--------| | FCC 15.247
RSS-247
LP0002:3.10.1(6.2.1) | 6dB Bandwidth: Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz. | Pass | | FCC 15.247
RSS-247 | 99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower | Pass | | | frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. | | | FCC 15.247
RSS-247
LP0002:3.10.1(2.3) | Output Power: 15.247 The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. RSS-247 For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W. | Pass | | FCC 15.247
RSS-247
LP0002:3.10.1(6.2.2) | Power Spectral Density: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. | Pass | | FCC 15.247
RSS-247
LP0002:3.10.1(5)/2.8 | Conducted Spurious Emissions / Band-Edge: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required | Pass | | FCC 15.247
RSS-247
FCC 15.205
RSS-Gen | Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9. | Pass | Radiated Emissions (General requirements) | Basic Standard | Technical Requirements / Details | Result | |---|--|--------| | FCC 15.209
RSS-Gen
LP0002:3.10.1(5)/2.8 | TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section. Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) and RSS-Gen 8.10 must also comply with the radiated emission limits specified in FCC 15.209 (a) and RSS-Gen 8.9. | Pass | | RSS-Gen
LP0002:3.10.1(5)2.8 | RX Spurious Emissions: RSS-Gen 8.9 Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. RSS-Gen 8.10 Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. | Pass | | FCC 15.207
RSS-Gen
LP0002:2.3 | AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries. | Pass | ^{*} MPE calculation is recorded in a separate report ## **Section 4: Sample Details** Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. #### 4.1 Sample Details | Sample
No. | Equipment Details | Manufacturer | Hardware
Rev. | Firmware
Rev. | Software
Rev. | Serial
Number | |---------------|-------------------|---------------|------------------|------------------|------------------|------------------| | S01 | AIR-AP1562I-A-K9 | Cisco Systems | P2 | 9.1.8.1 | 9.0.5.5-W8964 | RFDP2BML009 | | S02* | AIR-PWRADPT-RGD1 | Meanwell | A0 | NA | NA | EB3F71752 | ^(*) S02 is support equipment Power supply for EUT S01 #### 4.2 System Details | System # | Description | Samples | |----------|------------------|---------| | 1 | AIR-AP1562I-A-K9 | S01 | | 2 | AIR-PWRADPT-RGD1 | S02 | #### 4.3 Mode of Operation Details | Mode# | Description | Comments | | |-------|-------------------------|---|--| | 1 | Continuous Transmitting | Continuous Transmitting ≥98% duty cycle | | Measurements were made in accordance with - ANSI C63.10:2013 - FCC KDB 662911 D01 v02r01 - KDB 558074 D01 Meas Guidance v03r05 Page No: 12 of 126 ## **Appendix A: Emission Test Results** ## Conducted Test Setup Diagram # **Target Maximum Channel Power** The following table details the maximum supported Total Channel Power for all operating modes. #### Antenna Gain: 7 dBi | | Maximum Channel Power (dBm EIRP) | | | |-------------------------------------|----------------------------------|-----------|------| | | Fre | quency (M | Hz) | | Operating Mode | 2412 | 2437 | 2462 | | Legacy CCK, 1 to 11 Mbps | 35 | 36 | 34 | | Non HT20, 6 to 54 Mbps | 31 | 36 | 25 | | Non HT20 Beam Forming, 6 to 54 Mbps | 30 36 24 | | 24 | | HT/VHT20, M0 to M15 | 30 36 25 | | 25 | | HT/VHT20 Beam Forming, M0 to M15 | 30 36 26 | | | | HT/VHT20 STBC, M0 to M7 | 30 36 25 | | 25 | | | 2437 2442 2452 | | 2452 | | Non HT40, 6 to 54 Mbps | 35 | 25 | 36 | | HT/VHT40, M0 to M15 | 36 26 36 | | | | HT/VHT40 Beam Forming, M0 to M15 | 36 27 36 | | 36 | | HT/VHT40 STBC, M0 to M7 | 35 26 36 | | | ## Antenna Gain: 9 dBi | | | Maximum Channel Power (dBm EIRP) | | | |-------------------------------------|------|----------------------------------|----|--| | | Fre | Frequency (MHz) | | | | Operating Mode | 2412 | 2412 2437 2462 | | | | Legacy CCK, 1 to 11 Mbps | 36 | 36 | 34 | | | Non HT20, 6 to 54 Mbps | 29 | 29 35 26 | | | | Non HT20 Beam Forming, 6 to 54 Mbps | 29 | 36 25 | | | | HT/VHT20, M0 to M15 | 30 | 35 26 | | | | HT/VHT20 Beam Forming, M0 to M15 | 30 | 36 25 | | | | HT/VHT20 STBC, M0 to M7 | 30 | 30 35 25 | | | | | 2437 | 2437 2442 2452 | | | | Non HT40, 6 to 54 Mbps | 36 | 36 24 36 | | | | HT/VHT40, M0 to M15 | 36 | 36 27 36 | | | | HT/VHT40 Beam Forming, M0 to M15 | 36 | 36 27 36 | | | | HT/VHT40 STBC, M0 to M7 | 36 | 27 | 36 | | ## A.1 6dB Bandwidth **15.247 / RSS-247 / LP0002:3.10.1(6.2.1)** Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6dB bandwidth shall be at least 500 kHz. #### **Test Procedure** **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 #### **6 BW** Test Procedure - 1. Set the radio in the continuous transmitting
mode. - 2. Allow the trace to stabilize. - 3. Setting the x-dB bandwidth mode to -6dB within the measurement set up function. - 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement. - 5. Capture graphs and record pertinent measurement data. **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 section 11.8.2 Option 2 #### **6 BW** Test parameters X dB BW = 6dB (using the OBW function of the spectrum analyzer) Span = Large enough to capture the entire EBW RBW = 100 KHz VBW ≥ 3 x RBW Sweep = Auto couple Detector = Peak or where practical sample shall be used Trace = Max. Hold | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | | EUT | S01 | \checkmark | | | 1 | Support | S02 | | \checkmark | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 15 of 126 | Frequency (MHz) | Mode | Data Rate
(Mbps) | 6dB BW
(MHz) | Limit
(kHz) | Margin
(MHz) | | | |-----------------|------------------------|---------------------|-----------------|----------------|-----------------|--|--| | | CCK, 1 to 11 Mbps | 11 | 10.5 | >500 | 10.0 | | | | 2412 | Non HT20, 6 to 54 Mbps | 6 | 16.4 | >500 | 15.9 | | | | | HT/VHT20, M0 to M15 | m0 | 17.6 | >500 | 17.1 | | | | | | | | | | | | | 0.400 | Non HT40, 6 to 54 Mbps | 6 | 35.7 | >500 | 35.2 | | | | 2422 | HT/VHT40, M0 to M15 | m0 | 35.5 | >500 | 35.0 | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 6 | 35.5 | >500 | 35.0 | | | | | HT/VHT40, M0 to M15 | m0 | 35.4 | >500 | 34.9 | | | | 2437 | CCK, 1 to 11 Mbps | 11 | 9.6 | >500 | 9.1 | | | | | Non HT20, 6 to 54 Mbps | 6 | 16.4 | >500 | 15.9 | | | | | HT/VHT20, M0 to M15 | m0 | 17.4 | >500 | 16.9 | | | | | | | | | | | | | 0.450 | Non HT40, 6 to 54 Mbps | 6 | 35.8 | >500 | 35.3 | | | | 2452 | HT/VHT40, M0 to M15 | m0 | 35.7 | >500 | 35.2 | | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 11 | 10.1 | >500 | 9.6 | | | | 2462 | Non HT20, 6 to 54 Mbps | 6 | 16.4 | >500 | 15.9 | | | | | HT/VHT20, M0 to M15 | m0 | 17.4 | >500 | 16.9 | | | #### 6dB Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps ## 6dB Bandwidth, 2412 MHz, Non HT20, 6 to 54 Mbps Page No: 17 of 126 ## 6dB Bandwidth, 2412 MHz, HT/VHT20, M0 to M15 #### 6dB Bandwidth, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 18 of 126 #### 6dB Bandwidth, 2422 MHz, HT/VHT40, M0 to M15 ## 6dB Bandwidth, 2437 MHz, Non HT40, 6 to 54 Mbps Page No: 19 of 126 #### 6dB Bandwidth, 2437 MHz, HT/VHT40, M0 to M15 ## 6dB Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps Page No: 20 of 126 ## 6dB Bandwidth, 2437 MHz, Non HT20, 6 to 54 Mbps #### 6dB Bandwidth, 2437 MHz, HT/VHT20, M0 to M15 Page No: 21 of 126 #### 6dB Bandwidth, 2452 MHz, Non HT40, 6 to 54 Mbps #### 6dB Bandwidth, 2452 MHz, HT/VHT40, M0 to M15 Page No: 22 of 126 #### 6dB Bandwidth, 2462 MHz, CCK, 1 to 11 Mbps ## 6dB Bandwidth, 2462 MHz, Non HT20, 6 to 54 Mbps Page No: 23 of 126 ## 6dB Bandwidth, 2462 MHz, HT/VHT20, M0 to M15 ## A.2 99% and 26dB Bandwidth The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission. #### **Test Procedure** #### **Ref.** ANSI C63.10: 2013 #### 26 BW & 99% BW Test Procedure - 1. Set the radio in the continuous transmitting mode. - 2. Allow the trace to stabilize. - 3. Setting the x-dB bandwidth mode to -26dB & OBW to 99% within the measurement set up function. - 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement. - 5. Capture graphs and record pertinent measurement data. #### **Ref.** ANSI C63.10: 2013 section 6.9.3 #### 26 BW & 99% BW Test parameters X dB BW = -26dB (using the OBW function of the spectrum analyzer) OBW = 99% Span = 1.5 to 5 times the OBW $\overrightarrow{RBW} = 1\%$ to 5% of the OBW VBW ≥ 3 x RBW Sweep = Auto couple Detector = Peak or where practical sample shall be used Trace = Max. Hold | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | | EUT | S01 | \searrow | | | 1 | Support | S02 | | \triangleright | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 25 of 126 | Frequency
(MHz) | Mode | Data Rate
(Mbps) | 26dB BW
(MHz) | 99% BW
(MHz) | | | |--------------------|------------------------|---------------------|------------------|-----------------|--|--| | | CCK, 1 to 11 Mbps | 11 | 17.2 | 13.770 | | | | 2412 | Non HT20, 6 to 54 Mbps | 6 | 22.4 | 18.014 | | | | | HT/VHT20, M0 to M15 | m0 | 22.7 | 18.355 | | | | | | | | | | | | 2422 | Non HT40, 6 to 54 Mbps | 6 | 44.2 | 36.853 | | | | 2422 | HT/VHT40, M0 to M15 | m0 | 44.2 | 36.638 | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 6 | 75.8 | 37.887 | | | | | HT/VHT40, M0 to M15 | m0 | 43.6 | 36.530 | | | | 2437 | CCK, 1 to 11 Mbps | 11 | 17.1 | 13.633 | | | | | Non HT20, 6 to 54 Mbps | 6 | 22.2 | 17.955 | | | | | HT/VHT20, M0 to M15 | m0 | 22.6 | 18.221 | | | | | | | | | | | | 2452 | Non HT40, 6 to 54 Mbps | 6 | 74.3 | 38.956 | | | | 2452 | HT/VHT40, M0 to M15 | m0 | 44.5 | 36.763 | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 11 | 17.1 | 13.652 | | | | 2462 | Non HT20, 6 to 54 Mbps | 6 | 22.1 | 17.922 | | | | | HT/VHT20, M0 to M15 | m0 | 22.7 | 18.236 | | | ## 26dB / 99% Bandwidth, 2412 MHz, CCK, 1 to 11 Mbps ## 26dB / 99% Bandwidth, 2412 MHz, Non HT20, 6 to 54 Mbps Page No: 27 of 126 #### 26dB / 99% Bandwidth, 2412 MHz, HT/VHT20, M0 to M15 ## 26dB / 99% Bandwidth, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 28 of 126 #### 26dB / 99% Bandwidth, 2422 MHz, HT/VHT40, M0 to M15 ## 26dB / 99% Bandwidth, 2437 MHz, Non HT40, 6 to 54 Mbps Page No: 29 of 126 #### 26dB / 99% Bandwidth, 2437 MHz, HT/VHT40, M0 to M15 #### 26dB / 99% Bandwidth, 2437 MHz, CCK, 1 to 11 Mbps Page No: 30 of 126 ## 26dB / 99% Bandwidth, 2437 MHz, Non HT20, 6 to 54 Mbps ## 26dB / 99% Bandwidth, 2437 MHz, HT/VHT20, M0 to M15 Page No: 31 of 126 #### 26dB / 99% Bandwidth, 2452 MHz, Non HT40, 6 to 54 Mbps #### 26dB / 99% Bandwidth, 2452 MHz, HT/VHT40, M0 to M15 Page No: 32 of 126 ## 26dB / 99% Bandwidth, 2462 MHz, CCK, 1 to 11 Mbps ## 26dB / 99% Bandwidth, 2462 MHz, Non HT20, 6 to 54 Mbps Page No: 33 of 126 ## 26dB / 99% Bandwidth, 2462 MHz, HT/VHT20, M0 to M15 ## **A.3 Maximum Conducted Output Power** **15.247 / RSS-247 section 5.4 / LP0002:3.10.1(2.3)** The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode. The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below. See the Theory of Operation for details on the correlated gain for each mode. #### **Test Procedure** **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 #### **Maximum Conducted Output power** Test Procedure - 1. Set the radio in the continuous transmitting mode at full power - 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges. - 3. Capture graphs and record pertinent measurement data. Ref. 558074 D01 DTS Meas Guidance v03r05 section 9.2 Method AVGSA-1 ANSI C63.10: 2013 section 11.9.2 Method AVGSA-1 #### **Maximum Conducted Output power** Test parameters Span = >1.5 times the OBW RBW = 1MHz VBW ≥ 3 x RBW Sweep = Auto couple Detector = Sample, (RMS or where practical sample shall be used) Trace = Trace Average 100 The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3 for Guidance) | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | _ | EUT | S01 | ✓ | | | 1 | Support | S02 | | \searrow | | Tested By : | Date of testing: | |--------------------|-------------------------| |
Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 35 of 126 Antenna Gain: 7 dBi | Antenna Gain: 7 dBi | | | | | | | | | | | |---------------------|-------------------------------------|----------|----------------------------------|-------------------------|-------------------------|-------------------------|---------------------------------|--------------------------------------|------------------|-------------| | Frequency (MHz) | Mode | Tx Paths | Correlated Antenna
Gain (dBi) | Tx 1 Max Power
(dBm) | Tx 2 Max Power
(dBm) | Tx 3 Max Power
(dBm) | Total Tx Channel
Power (dBm) | Total Tx Channel
Power (dBm) EIRP | Limit (dBm) EIRP | Margin (dB) | | | CCK, 1 to 11 Mbps | 1 | 7 | 23.8 | | | 23.8 | 30.8 | 36 | 5.2 | | | CCK, 1 to 11 Mbps | 2 | 7 | 23.8 | 22.9 | | 26.4 | 33.4 | 36 | 2.6 | | | CCK, 1 to 11 Mbps | 3 | 7 | 23.8 | 22.9 | 22.5 | 27.9 | 34.9 | 36 | 1.1 | | | Non HT20, 6 to 54 Mbps | 1 | 7 | 21.7 | | | 21.7 | 28.7 | 36 | 7.3 | | | Non HT20, 6 to 54 Mbps | 2 | 7 | 19.7 | 19.2 | | 22.5 | 29.5 | 36 | 6.5 | | | Non HT20, 6 to 54 Mbps | 3 | 7 | 19.7 | 19.2 | 18.4 | 23.9 | 30.9 | 36 | 5.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 10 | 17.6 | 17.2 | | 20.4 | 30.4 | 36 | 5.6 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | 13 | 12.2 | 11.6 | 17.1 | 29.1 | 36 | 6.9 | | 2 | HT/VHT20, M0 to M7 | 1 | 7 | 21 | | | 21 | 28 | 36 | 8 | | 2412 | HT/VHT20, M0 to M7 | 2 | 7 | 19.9 | 19.4 | | 22.7 | 29.7 | 36 | 6.3 | | `` | HT/VHT20, M8 to M15 | 2 | 7 | 19.9 | 19.4 | | 22.7 | 29.7 | 36 | 6.3 | | | HT/VHT20, M0 to M7 | 3 | 7 | 17.8 | 17.4 | 16.8 | 22.1 | 29.1 | 36 | 6.9 | | | HT/VHT20, M8 to M15 | 3 | 7 | 17.8 | 17.4 | 16.8 | 22.1 | 29.1 | 36 | 6.9 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 10 | 16.2 | 15.3 | | 18.8 | 28.8 | 36 | 7.2 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | 19.9 | 19.4 | | 22.7 | 29.7 | 36 | 6.3 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 14.2 | 13.4 | 12.6 | 18.2 | 30.2 | 36 | 5.8 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 16.2 | 15.3 | 14.6 | 20.2 | 29.2 | 36 | 6.8 | | | HT/VHT20 STBC, M0 to M7 | 2 | 7 | 19.9 | 19.4 | | 22.7 | 29.7 | 36 | 6.3 | | | HT/VHT20 STBC, M0 to M7 | 3 | 7 | 17.8 | 17.4 | 16.8 | 22.1 | 29.1 | 36 | 6.9 | | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 7 | 17.6 | | | 17.6 | 24.6 | 36 | 11.4 | | | Non HT40, 6 to 54 Mbps | 2 | 7 | 14 | 14.1 | | 17.1 | 24.1 | 36 | 11.9 | | 2422 | Non HT40, 6 to 54 Mbps | 3 | 7 | 12 | 12.1 | 10.9 | 16.5 | 23.5 | 36 | 12.5 | | | HT/VHT40, M0 to M7 | 1 | 7 | 16.8 | | | 16.8 | 23.8 | 36 | 12.2 | | | HT/VHT40, M0 to M7 | 2 | 7 | 14.8 | 14.9 | | 17.9 | 24.9 | 36 | 11.1 | | | HT/VHT40, M8 to M15 | 2 | 7 | 14.8 | 14.9 | | 17.9 | 24.9 | 36 | 11.1 | | | HT/VHT40, M0 to M7 | 3 | 7 | 14.8 | 14.9 | 13.8 | 19.3 | 26.3 | 36 | 9.7 | | | HT/VHT40, M8 to M15 | 3 | 7 | 14.8 | 14.9 | 13.8 | 19.3 | 26.3 | 36 | 9.7 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 10 | 13.8 | 13.9 | | 16.9 | 26.9 | 36 | 9.1 | Page No: 36 of 126 | HT/VHT40 Beam Forming, M8 to M15 | 2 | 7 | 14.8 | 14.9 | | 17.9 | 24.9 | 36 | 11.1 | |----------------------------------|---|----|------|------|------|------|------|----|------| | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 8.8 | 8.9 | 7.9 | 13.3 | 25.3 | 36 | 10.7 | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | 11.9 | 12.1 | 10.9 | 16.4 | 25.4 | 36 | 10.6 | | HT/VHT40 STBC, M0 to M7 | 2 | 7 | 14.8 | 14.9 | | 17.9 | 24.9 | 36 | 11.1 | | HT/VHT40 STBC, M0 to M7 | 3 | 7 | 14.8 | 14.9 | 13.8 | 19.3 | 26.3 | 36 | 9.7 | | 2437 | Non HT40, 6 to 54 Mbps | 1 | 7 | 24.4 | | | 24.4 | 31.4 | 36 | 4.6 | |------|-------------------------------------|---|----|------|------|------|------|------|----|-----| | 2 | Non HT40, 6 to 54 Mbps | 2 | 7 | 24.4 | 25 | | 27.7 | 34.7 | 36 | 1.3 | | | Non HT40, 6 to 54 Mbps | 3 | 7 | 23.3 | 24.1 | 22.9 | 28.2 | 35.2 | 36 | 0.8 | | | HT/VHT40, M0 to M7 | 1 | 7 | 23.6 | | | 23.6 | 30.6 | 36 | 5.4 | | | HT/VHT40, M0 to M7 | 2 | 7 | 23.6 | 24.3 | | 27 | 34 | 36 | 2 | | | HT/VHT40, M8 to M15 | 2 | 7 | 23.6 | 24.3 | | 27 | 34 | 36 | 2 | | | HT/VHT40, M0 to M7 | 3 | 7 | 23.6 | 24.3 | 23.2 | 28.5 | 35.5 | 36 | 0.5 | | | HT/VHT40, M8 to M15 | 3 | 7 | 23.6 | 24.3 | 23.2 | 28.5 | 35.5 | 36 | 0.5 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 10 | 22.4 | 23.1 | | 25.8 | 35.8 | 36 | 0.2 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 7 | 23.6 | 24.3 | | 27 | 34 | 36 | 2 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 18.3 | 19.4 | 18.5 | 23.5 | 35.5 | 36 | 0.5 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | 21.5 | 22.1 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40 STBC, M0 to M7 | 2 | 7 | 23.6 | 24.3 | | 27 | 34 | 36 | 2 | | 2 | HT/VHT40 STBC, M0 to M7 | 3 | 7 | 23.6 | 24.3 | 23.2 | 28.5 | 35.5 | 36 | 0.5 | | 2437 | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 1 | 7 | 23.6 | | | 23.6 | 30.6 | 36 | 5.4 | | | CCK, 1 to 11 Mbps | 2 | 7 | 23.6 | 24.4 | | 27 | 34 | 36 | 2 | | | CCK, 1 to 11 Mbps | 3 | 7 | 23.6 | 24.4 | 23.1 | 28.5 | 35.5 | 36 | 0.5 | | | Non HT20, 6 to 54 Mbps | 1 | 7 | 23.7 | | | 23.7 | 30.7 | 36 | 5.3 | | | Non HT20, 6 to 54 Mbps | 2 | 7 | 23.7 | 24.5 | | 27.1 | 34.1 | 36 | 1.9 | | | Non HT20, 6 to 54 Mbps | 3 | 7 | 23.7 | 24.5 | 23.2 | 28.6 | 35.6 | 36 | 0.4 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 10 | 22.5 | 23.2 | | 25.9 | 35.9 | 36 | 0.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | 18.5 | 19.6 | 18.4 | 23.6 | 35.6 | 36 | 0.4 | | | HT/VHT20, M0 to M7 | 1 | 7 | 23.9 | | | 23.9 | 30.9 | 36 | 5.1 | | | HT/VHT20, M0 to M7 | 2 | 7 | 23.9 | 24.6 | | 27.3 | 34.3 | 36 | 1.7 | | | HT/VHT20, M8 to M15 | 2 | 7 | 23.9 | 24.6 | | 27.3 | 34.3 | 36 | 1.7 | | | HT/VHT20, M0 to M7 | 3 | 7 | 23.9 | 24.6 | 23.3 | 28.7 | 35.7 | 36 | 0.3 | | | HT/VHT20, M8 to M15 | 2 | 7 | 23.9 | 24.6 | 23.3 | 27.3 | 34.3 | 36 | | Page No: 37 of 126 | F
N | HT/VHT20 Beam Forming, M0 to M7 | 2 | | | | | | | | 0.3 | |----------|--|---|----|------|------|------|------|------|----|------| | Λ | ITA/IITOO Daara Faran'aa Morta | | 10 | 21.6 | 22.3 | | 25 | 35 | 36 | 1 | | ۱ I ۱ | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | 23.9 | 24.6 | | 27.3 | 34.3 | 36 | 1.7 | | <u> </u> | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 18.6 | 19.7 | 18.5 | 23.7 | 35.7 | 36 | 0.3 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 21.6 | 22.3 | 21.2 | 26.5 | 35.5 | 36 | 0.5 | | F | HT/VHT20 STBC, M0 to M7 | 2 | 7 | 23.9 | 24.6 | | 27.3 | 34.3 | 36 | 1.7 | | F | HT/VHT20 STBC, M0 to M7 | 3 | 7 | 23.9 | 24.6 | 23.3 | 28.7 | 35.7 | 36 | 0.3 | | | | | | | | | | | | | | ١ | Non HT40, 6 to 54 Mbps | 1 | 7 | 24.1 | | | 24.1 | 31.1 | 36 | 4.9 | | ١ | Non HT40, 6 to 54 Mbps | 2 | 7 | 24.1 | 25.4 | | 27.8 | 34.8 | 36 | 1.2 | | N | Non HT40, 6 to 54 Mbps | 3 | 7 | 23.1 | 24.4 | 23.5 | 28.5 | 35.5 | 36 | 0.5 | | F | HT/VHT40, M0 to M7 | 1 | 7 | 23.1 | | | 23.1 | 30.1 | 36 | 5.9 | | H | HT/VHT40, M0 to M7 | 2 | 7 | 23.1 | 24.6 | | 26.9 | 33.9 | 36 | 2.1 | | H | HT/VHT40, M8 to M15 | 2 | 7 | 23.1 | 24.6 | | 26.9 | 33.9 | 36 | 2.1 | |) H | HT/VHT40, M0 to M7 | 3 | 7 | 23.1 | 24.6 | 23.6 | 28.6 | 35.6 | 36 | 0.4 | | 2452 | HT/VHT40, M8 to M15 | 3 | 7 | 23.1 | 24.6 | 23.6 | 28.6 | 35.6 | 36 | 0.4 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 10 | 21.9 | 23.4 | | 25.7 | 35.7 | 36 | 0.3 | | | HT/VHT40 Beam Forming, M8 to
M15 | 2 | 7 | 23.1 | 24.6 | | 26.9 | 33.9 | 36 | 2.1 | | F | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 18.3 | 19.8 | 18.9 | 23.8 | 35.8 | 36 | 0.2 | | | HT/VHT40 Beam Forming, M8 to
M15 | 3 | 9 | 20.9 | 22.4 | 21.5 | 26.4 | 35.4 | 36 | 0.6 | | F | HT/VHT40 STBC, M0 to M7 | 2 | 7 | 23.1 | 24.6 | | 26.9 | 33.9 | 36 | 2.1 | | F | HT/VHT40 STBC, M0 to M7 | 3 | 7 | 23.1 | 24.6 | 23.6 | 28.6 | 35.6 | 36 | 0.4 | | | | | | | | | | | | | | C | CCK, 1 to 11 Mbps | 1 | 7 | 22.9 | | | 22.9 | 29.9 | 36 | 6.1 | | C | CCK, 1 to 11 Mbps | 2 | 7 | 22.9 | 23.8 | | 26.4 | 33.4 | 36 | 2.6 | | C | CCK, 1 to 11 Mbps | 3 | 7 | 21.8 | 22.8 | 22.4 | 27.1 | 34.1 | 36 | 1.9 | | ١ | Non HT20, 6 to 54 Mbps | 1 | 7 | 18.3 | | | 18.3 | 25.3 | 36 | 10.7 | | ١ | Non HT20, 6 to 54 Mbps | 2 | 7 | 14.1 | 15.1 | | 17.6 | 24.6 | 36 | 11.4 | | 62 | Non HT20, 6 to 54 Mbps | 3 | 7 | 12.1 | 13.1 | 12.9 | 17.5 | 24.5 | 36 | 11.5 | | Λ | Non HT20 Beam Forming, 6 to 54
Mbps | 2 | 10 | 10.2 | 11.2 | | 13.7 | 23.7 | 36 | 12.3 | | Λ | Non HT20 Beam Forming, 6 to 54
Mbps | 3 | 12 | 6 | 7.2 | 6.9 | 11.5 | 23.5 | 36 | 12.5 | | F | HT/VHT20, M0 to M7 | 1 | 7 | 18.4 | | | 18.4 | 25.4 | 36 | 10.6 | | F | HT/VHT20, M0 to M7 | 2 | 7 | 12.3 | 13.3 | | 15.8 | 22.8 | 36 | 13.2 | | H | HT/VHT20, M8 to M15 | 2 | 7 | 12.3 | 13.3 | | 15.8 | 22.8 | 36 | 13.2 | Page No: 38 of 126 | HT/VHT20, M0 to M7 | 3 | 7 | 12.3 | 13.3 | 13 | 17.7 | 24.7 | 36 | 11.3 | |----------------------------------|---|----|------|------|------|------|------|----|------| | HT/VHT20, M8 to M15 | 3 | 7 | 12.3 | 13.3 | 13 | 17.7 | 24.7 | 36 | 11.3 | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 10 | 12.3 | 13.3 | | 15.8 | 25.8 | 36 | 10.2 | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | 12.3 | 13.3 | | 15.8 | 22.8 | 36 | 13.2 | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 6.2 | 7.4 | 7 | 11.7 | 23.7 | 36 | 12.3 | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 10.3 | 11.4 | 10.9 | 15.7 | 24.7 | 36 | 11.3 | | HT/VHT20 STBC, M0 to M7 | 2 | 7 | 12.3 | 13.3 | | 15.8 | 22.8 | 36 | 13.2 | | HT/VHT20 STBC, M0 to M7 | 3 | 7 | 12.3 | 13.3 | 13 | 17.7 | 24.7 | 36 | 11.3 | Page No: 39 of 126 Peak Output Power, 2437 MHz, Non HT20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Antenna Gain: 9 dBi | Antenna Gain: 9 dBi | | | | | | | | | | | | |---------------------|-------------------------------------|----------|----------------------------------|----------------------|----------------------|----------------------|---------------------------------|--------------------------------------|------------------|-------------|--| | Frequency (MHz) | Mode | Tx Paths | Correlated Antenna Gain
(dBi) | Tx 1 Max Power (dBm) | Tx 2 Max
Power (dBm) | Tx 3 Max Power (dBm) | Total Tx Channel Power
(dBm) | Total Tx Channel Power
(dBm) EIRP | Limit (dBm) EIRP | Margin (dB) | | | | CCK, 1 to 11 Mbps | 1 | 9 | 23.8 | | | 23.8 | 32.8 | 36 | 3.2 | | | | CCK, 1 to 11 Mbps | 2 | 9 | 23.8 | 22.9 | | 26.4 | 35.4 | 36 | 0.6 | | | | CCK, 1 to 11 Mbps | 3 | 9 | 22.7 | 21.9 | 21.4 | 26.8 | 35.8 | 36 | 0.2 | | | | Non HT20, 6 to 54 Mbps | 1 | 9 | 19.7 | | | 19.7 | 28.7 | 36 | 7.3 | | | | Non HT20, 6 to 54 Mbps | 2 | 9 | 17.6 | 17.2 | | 20.4 | 29.4 | 36 | 6.6 | | | | Non HT20, 6 to 54 Mbps | 3 | 9 | 14 | 13.3 | 12.5 | 18.1 | 27.1 | 36 | 8.9 | | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | 17.6 | 17.2 | | 20.4 | 29.4 | 36 | 6.6 | | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | 13 | 12.2 | 11.6 | 17.1 | 29.1 | 36 | 6.9 | | | 01 | HT/VHT20, M0 to M7 | 1 | 9 | 19.9 | | | 19.9 | 28.9 | 36 | 7.1 | | | 2412 | HT/VHT20, M0 to M7 | 2 | 9 | 17.8 | 17.4 | | 20.6 | 29.6 | 36 | 6.4 | | | | HT/VHT20, M8 to M15 | 2 | 9 | 17.8 | 17.4 | | 20.6 | 29.6 | 36 | 6.4 | | | | HT/VHT20, M0 to M7 | 3 | 9 | 16.2 | 15.3 | 14.6 | 20.2 | 29.2 | 36 | 6.8 | | | | HT/VHT20, M8 to M15 | 3 | 9 | 16.2 | 15.3 | 14.6 | 20.2 | 29.2 | 36 | 6.8 | | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | 17.8 | 17.4 | | 20.6 | 29.6 | 36 | 6.4 | | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | 17.8 | 17.4 | | 20.6 | 29.6 | 36 | 6.4 | | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 14.2 | 13.4 | 12.6 | 18.2 | 30.2 | 36 | 5.8 | | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 16.2 | 15.3 | 14.6 | 20.2 | 29.2 | 36 | 6.8 | | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | 17.8 | 17.4 | | 20.6 | 29.6 | 36 | 6.4 | | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | 16.2 | 15.3 | 14.6 | 20.2 | 29.2 | 36 | 6.8 | | | | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 9 | 14.9 | | | 14.9 | 23.9 | 36 | 12.1 | | | | Non HT40, 6 to 54 Mbps | 2 | 9 | 12 | 12.1 | | 15.1 | 24.1 | 36 | 11.9 | | | | Non HT40, 6 to 54 Mbps | 3 | 9 | 11 | 11.1 | 10 | 15.5 | 24.5 | 36 | 11.5 | | | 2422 | HT/VHT40, M0 to M7 | 1 | 9 | 14.8 | | | 14.8 | 23.8 | 36 | 12.2 | | | 24 | HT/VHT40, M0 to M7 | 2 | 9 | 14.8 | 14.9 | | 17.9 | 26.9 | 36 | 9.1 | | | | HT/VHT40, M8 to M15 | 2 | 9 | 14.8 | 14.9 | | 17.9 | 26.9 | 36 | 9.1 | | | | HT/VHT40, M0 to M7 | 3 | 9 | 11.9 | 12.1 | 10.9 | 16.4 | 25.4 | 36 | 10.6 | | | | HT/VHT40, M8 to M15 | 3 | 9 | 11.9 | 12.1 | 10.9 | 16.4 | 25.4 | 36 | 10.6 | | Page No: 41 of 126 | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | 14.8 | 14.9 | | 17.9 | 26.9 | 36 | 9.1 | |----------------------------------|---|----|------|------|------|------|------|----|------| | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | 14.8 | 14.9 | | 17.9 | 26.9 | 36 | 9.1 | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 8.8 | 8.9 | 7.9 | 13.3 | 25.3 | 36 | 10.7 | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | 11.9 | 12.1 | 10.9 | 16.4 | 25.4 | 36 | 10.6 | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | 14.8 | 14.9 | | 17.9 | 26.9 | 36 | 9.1 | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | 11.9 | 12.1 | 10.9 | 16.4 | 25.4 | 36 | 10.6 | | 2437 | Non HT40, 6 to 54 Mbps | 1 | 9 | 24.4 | | | 24.4 | 33.4 | 36 | 2.6 | |------|-------------------------------------|---|----|------|------|------|------|------|----|-----| | 2 | Non HT40, 6 to 54 Mbps | 2 | 9 | 23.3 | 24.1 | | 26.7 | 35.7 | 36 | 0.3 | | | Non HT40, 6 to 54 Mbps | 3 | 9 | 21.5 | 22 | 21.2 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40, M0 to M7 | 1 | 9 | 23.6 | | | 23.6 | 32.6 | 36 | 3.4 | | | HT/VHT40, M0 to M7 | 2 | 9 | 23.6 | 24.3 | | 27 | 36 | 36 | 0 | | | HT/VHT40, M8 to M15 | 2 | 9 | 23.6 | 24.3 | | 27 | 36 | 36 | 0 | | | HT/VHT40, M0 to M7 | 3 | 9 | 21.5 | 22.1 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40, M8 to M15 | 3 | 9 | 21.5 | 22.1 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | 23.6 | 24.3 | | 27 | 36 | 36 | 0 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | 23.6 | 24.3 | | 27 | 36 | 36 | 0 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 18.3 | 19.4 | 18.5 | 23.5 | 35.5 | 36 | 0.5 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | 21.5 | 22.1 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | 23.6 | 24.3 | | 27 | 36 | 36 | 0 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | 21.5 | 22.1 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | 2437 | | | | | | | | | | | | 24 | CCK, 1 to 11 Mbps | 1 | 9 | 23.6 | | | 23.6 | 32.6 | 36 | 3.4 | | | CCK, 1 to 11 Mbps | 2 | 9 | 22.5 | 23.4 | | 26 | 35 | 36 | 1 | | | CCK, 1 to 11 Mbps | 3 | 9 | 21.5 | 22.4 | 21.3 | 26.5 | 35.5 | 36 | 0.5 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | 23.7 | | | 23.7 | 32.7 | 36 | 3.3 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | 22.5 | 23.2 | | 25.9 | 34.9 | 36 | 1.1 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | 21.5 | 22.2 | 21.1 | 26.4 | 35.4 | 36 | 0.6 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | 22.5 | 23.2 | | 25.9 | 34.9 | 36 | 1.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | 18.5 | 19.6 | 18.4 | 23.6 | 35.6 | 36 | 0.4 | | | HT/VHT20, M0 to M7 | 1 | 9 | 23.9 | | | 23.9 | 32.9 | 36 | 3.1 | | | HT/VHT20, M0 to M7 | 2 | 9 | 22.6 | 23.4 | | 26 | 35 | 36 | 1 | | | HT/VHT20, M8 to M15 | 2 | 9 | 22.6 | 23.4 | | 26 | 35 | 36 | 1 | Page No: 42 of 126 | | HT/VHT20, M0 to M7 | 3 | 9 | 21.6 | 22.3 | 21.2 | 26.5 | 35.5 | 36 | 0.5 | |------|-------------------------------------|---|----|------|------|------|------|------|----|------| | | HT/VHT20, M8 to M15 | 3 | 9 | 21.6 | 22.3 | 21.2 | 26.5 | 35.5 | 36 | 0.5 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | 22.6 | 23.4 | | 26 | 35 | 36 | 1 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | 22.6 | 23.4 | | 26 | 35 | 36 | 1 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 18.6 | 19.7 | 18.5 | 23.7 | 35.7 | 36 | 0.3 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 21.6 | 22.3 | 21.2 | 26.5 | 35.5 | 36 | 0.5 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | 22.6 | 23.4 | | 26 | 35 | 36 | 1 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | 21.6 | 22.3 | 21.2 | 26.5 | 35.5 | 36 | 0.5 | | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 9 | 24.1 | | | 24.1 | 33.1 | 36 | 2.9 | | | Non HT40, 6 to 54 Mbps | 2 | 9 | 23.1 | 24.4 | | 26.8 | 35.8 | 36 | 0.2 | | | Non HT40, 6 to 54 Mbps | 3 | 9 | 21.2 | 22.6 | 21.7 | 26.6 | 35.6 | 36 | 0.4 | | | HT/VHT40, M0 to M7 | 1 | 9 | 23.1 | | | 23.1 | 32.1 | 36 | 3.9 | | | HT/VHT40, M0 to M7 | 2 | 9 | 23.1 | 24.6 | | 26.9 | 35.9 | 36 | 0.1 | | | HT/VHT40, M8 to M15 | 2 | 9 | 23.1 | 24.6 | | 26.9 | 35.9 | 36 | 0.1 | | 01 | HT/VHT40, M0 to M7 | 3 | 9 | 20.9 | 22.4 | 21.5 | 26.4 | 35.4 | 36 | 0.6 | | 2452 | HT/VHT40, M8 to M15 | 3 | 9 | 20.9 | 22.4 | 21.5 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | 23.1 | 24.6 | | 26.9 | 35.9 | 36 | 0.1 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | 23.1 | 24.6 | | 26.9 | 35.9 | 36 | 0.1 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | 18.3 | 19.8 | 18.9 | 23.8 | 35.8 | 36 | 0.2 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | 20.9 | 22.4 | 21.5 | 26.4 | 35.4 | 36 | 0.6 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | 23.1 | 24.6 | | 26.9 | 35.9 | 36 | 0.1 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | 20.9 | 22.4 | 21.5 | 26.4 | 35.4 | 36 | 0.6 | | | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 1 | 9 | 22.9 | | | 22.9 | 31.9 | 36 | 4.1 | | | CCK, 1 to 11 Mbps | 2 | 9 | 21.8 | 22.8 | | 25.3 | 34.3 | 36 | 1.7 | | | CCK, 1 to 11 Mbps | 3 | 9 | 20 | 21 | 20.7 | 25.4 | 34.4 | 36 | 1.6 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | 17.2 | | | 17.2 | 26.2 | 36 | 9.8 | | OI. | Non HT20, 6 to 54 Mbps | 2 | 9 | 12.1 | 13.1 | | 15.6 | 24.6 | 36 | 11.4 | | 2462 | Non HT20, 6 to 54 Mbps | 3 | 9 | 9.2 | 10.1 | 9.9 | 14.5 | 23.5 | 36 | 12.5 | | ., | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | 12.1 | 13.1 | | 15.6 | 24.6 | 36 | 11.4 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | 6 | 7.2 | 6.9 | 11.5 | 23.5 | 36 | 12.5 | | | HT/VHT20, M0 to M7 | 1 | 9 | 17.3 | | | 17.3 | 26.3 | 36 | 9.7 | | | HT/VHT20, M0 to M7 | 2 | 9 | 12.3 | 13.3 | | 15.8 | 24.8 | 36 | 11.2 | Page No: 43 of 126 | HT/VHT20, M8 to M15 | 2 | 9 | 12.3 | 13.3 | | 15.8 | 24.8 | 36 | 11.2 | |----------------------------------|---|----|------|------|------|------|------|----|------| | HT/VHT20, M0 to M7 | 3 | 9 | 10.3 | 11.4 | 10.9 | 15.7 | 24.7 | 36 | 11.3 | | HT/VHT20, M8 to M15 | 3 | 9 | 10.3 | 11.4 | 10.9 | 15.7 | 24.7 | 36 | 11.3 | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | 12.3 | 13.3 | | 15.8 | 24.8 | 36 | 11.2 | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | 12.3 | 13.3 | | 15.8 | 24.8 | 36 | 11.2 | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | 6.2 | 7.4 | 7 | 11.7 | 23.7 | 36 | 12.3 | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | 10.3 | 11.4 | 10.9 | 15.7 | 24.7 | 36 | 11.3 | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | 12.3 | 13.3 | | 15.8 | 24.8 | 36 | 11.2 | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | 10.3 | 11.4 | 10.9 | 15.7 | 24.7 | 36 | 11.3 | ## Peak Output Power, 2437 MHz, HT/VHT40, M0 to M7 Antenna A Antenna B ## A.4 Power Spectral Density **15.247 / RSS-247 / LP0002:3.10.1(6.2.2)** For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### **Test Procedure** **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 #### **Power Spectral Density** Test Procedure - 1. Set the radio in the continuous transmitting mode at full power - 2. Configure Spectrum analyzer as per test parameters below and Peak search marker - 3. Capture graphs and record pertinent measurement data. Ref. 558074 D01 DTS Meas Guidance v03r05 section 10.2 Peak PSD ANSI C63.10: 2013 section 11.10.2 Peak PSD #### **Power Spectral Density** Test parameters Span = >1.5 times the OBW $RBW = 3 kHz \le RBW \le 100 kHz$. VBW ≥ 3 x RBW Sweep = Auto couple Detector = RMS or where practical sample shall be used Trace = Trace Average 100 The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. With this technique, spectrum measurements are performed at each output of the device, and
the quantity 10 log(4) (or 6dB) is added to the worst case spectrum value before comparing to the emission limit. (See ANSI C63.10 section 14.3.2.3) | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | 4 | EUT | S01 | \checkmark | | | 7 | Support | S02 | | ✓ | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 46 of 126 | Frequency
(MHz) | Mode | Data
Rate
(Mbps) | PSD /
Antenna
(dBm/3kHz) | Total PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | Margin
(dB) | |--------------------|------------------------|------------------------|--------------------------------|-------------------------|---------------------|----------------| | | CCK, 1 to 11 Mbps | 11 | 0.1 | 0.1 | 8.0 | 7.9 | | 2412 | Non HT20, 6 to 54 Mbps | 6 | -6.3 | -6.3 | 8.0 | 14.3 | | | HT/VHT20, M0 to M15 | m0 | -5.8 | -5.8 | 8.0 | 13.8 | | | | | | | | | | 2422 | Non HT40, 6 to 54 Mbps | 6 | -12.4 | -12.4 | 8.0 | 20.4 | | 2422 | HT/VHT40, M0 to M15 | m0 | -12.2 | -12.2 | 8.0 | 20.2 | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 6 | -6.8 | -6.8 | 8.0 | 14.8 | | | HT/VHT40, M0 to M15 | m0 | -5.8 | -5.8 | 8.0 | 13.8 | | 2437 | CCK, 1 to 11 Mbps | 11 | 0.1 | 0.1 | 8.0 | 7.9 | | | Non HT20, 6 to 54 Mbps | 6 | -4.3 | -4.3 | 8.0 | 12.3 | | | HT/VHT20, M0 to M15 | m0 | -3.8 | -3.8 | 8.0 | 11.8 | | | | | | | | | | 2452 | Non HT40, 6 to 54 Mbps | 6 | -5.4 | -5.4 | 8.0 | 13.4 | | 2452 | HT/VHT40, M0 to M15 | m0 | -6.1 | -6.1 | 8.0 | 14.1 | | | | | | | | | | | CCK, 1 to 11 Mbps | 11 | -0.7 | -0.7 | 8.0 | 8.7 | | 2462 | Non HT20, 6 to 54 Mbps | 6 | -8.3 | -8.3 | 8.0 | 16.3 | | | HT/VHT20, M0 to M15 | m0 | -9.0 | -9.0 | 8.0 | 17.0 | ## Power Spectral Density, 2412 MHz, Non HT20, 6 to 54 Mbps ## Power Spectral Density, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 49 of 126 ### Power Spectral Density, 2422 MHz, HT/VHT40, M0 to M15 ## Power Spectral Density, 2437 MHz, Non HT40, 6 to 54 Mbps Page No: 50 of 126 ### Power Spectral Density, 2437 MHz, HT/VHT40, M0 to M15 ### Power Spectral Density, 2437 MHz, CCK, 1 to 11 Mbps ## Power Spectral Density, 2437 MHz, Non HT20, 6 to 54 Mbps ## Power Spectral Density, 2437 MHz, HT/VHT20, M0 to M15 ## Power Spectral Density, 2452 MHz, HT/VHT40, M0 to M15 ## Power Spectral Density, 2462 MHz, Non HT20, 6 to 54 Mbps Page No: 54 of 126 ## **A.5 Conducted Spurious Emissions** **15.205 / 15.209 / LP0002** - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). **RSS-Gen 8.9:** Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 and Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission. **RSS-Gen 8.10** (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen; and (c) Unwanted emissions that do not fall within the restricted frequency bands of Table 6 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. Use formula below to substitute conducted measurements in place of radiated measurements $E[dB\mu V/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77$, where E = field strength and <math>d = 3 meter - 1) Average Plot, Limit= -41.25 dBm eirp - 2) Peak plot, Limit = -21.25 dBm eirp #### **Test Procedure** **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 #### **Conducted Spurious Emissions** Test Procedure - 1. Connect the antenna port(s) to the spectrum analyzer input. - 2. Place the radio in continuous transmit mode - 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer). - 4. Use the peak marker function to determine the maximum spurs amplitude level. - 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. (see ANSI C63.10 2013 section 14.3.2.2) - 6. Capture graphs and record pertinent measurement data. **Ref**. 558074 D01 DTS Meas Guidance v03r05 section 11.1b, 11.2-3, 12.2.4 & 12.2.5.3 ANSI C63.10: 2013 section 11.10.3 & 11.12.2.4 & 11.12.2.5.3 #### **Conducted Spurious Emissions** Test parameters Span = 30 MHz-26 GHz RBW = 100 kHz. VBW ≥ 3 x RBW Sweep = Auto couple Detector = Peak Trace = Max Hold KDB: 558074 D01 DTS Meas Guidance v03r05 section 12.2.2 © add the max antenna gain + ground reflection factor (4.7 dB for frequencies between 30 MHz and 1000 MHz, and 0 dB for frequencies > 1000 MHz). Page No: 56 of 126 | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | | EUT | S01 | ✓ | | | 1 | Support | S02 | | ✓ | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Conducted Spurs Average Upper, All Antennas Conducted Spurs Peak Upper, All Antennas ## Conducted Spurious Emission results below represent the worst case for all antenna gain | Frequency (MHz) | Mode | Tx Paths | Correlated Antenna
Gain (dBi) | Tx 1 Spur Power
(dBm) | Tx 2 Spur Power
(dBm) | Tx 3 Spur Power
(dBm) | Total Conducted Spur (dBm) | Limit (dBm) | Margin (dB) | |-----------------|-------------------------------------|----------|----------------------------------|--------------------------|--------------------------|--------------------------|----------------------------|-------------|-------------| | | CCK, 1 to 11 Mbps | 1 | 9 | -73.6 | | | -64.6 | -41.25 | 23.4 | | | CCK, 1 to 11 Mbps | 2 | 9 | -73.6 | -73.2 | | -61.4 | -41.25 | 20.1 | | | CCK, 1 to 11 Mbps | 3 | 9 | -71.3 | -73.6 | -77.4 | -59.7 | -41.25 | 18.4 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -73.5 | | | -64.5 | -41.25 | 23.3 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -73.7 | -73.7 | -73.5 | -59.9 | -41.25 | 18.6 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -73.3 | -73.3 | -73.2 | -56.5 | -41.25 | 15.2 | | 2 | HT/VHT20, M0 to M7 | 1 | 9 | -73.5 | | | -64.5 | -41.25 | 23.3 | | 2412 | HT/VHT20, M0 to M7 | 2 | 9 | -73.5 | -73.7 | | -61.6 | -41.25 | 20.3 | | (1 | HT/VHT20, M8 to M15 | 2 | 9 | -73.5 | -73.7 | | -61.6 | -41.25 | 20.3 | | | HT/VHT20, M0 to M7 | 3 | 9 | -73.8 | -71.2 | -73.4 | -58.9 | -41.25 | 17.6 | | | HT/VHT20, M8 to M15 | 3 | 9 | -73.8 | -71.2 | -73.4 | -58.9 | -41.25 | 17.6 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -73.5 | -73.7 | | -61.6 | -41.25 | 20.3 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -73.5 | -73.7 | | -61.6 | -41.25 | 20.3 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -73.6 | -73.7 | -73.5 | -56.8 | -41.25 | 15.6 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -73.8 | -71.2 | -73.4 | -58.9 | -41.25 | 17.6 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -73.5 | -73.7 | | -61.6 | -41.25 | 20.3 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -73.8 | -71.2 | -73.4 | -58.9 | -41.25 | 17.6 | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 9 | -73.7 | | | -64.7 | -41.25 | 23.5 | | | Non HT40, 6 to 54 Mbps | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | Non HT40, 6 to 54 Mbps | 3 | 9 | -73.9 | -73.5 | -73.8 | -60.0 | -41.25 | 18.7 | | | HT/VHT40, M0 to M7 | 1 | 9 | -73.8 | | | -64.8 | -41.25 | 23.6 | | | HT/VHT40, M0 to M7 | 2 | 9 | -73.8 | -73.5 | | -61.6 | -41.25 | 20.4 | | | HT/VHT40, M8 to M15 | 2 | 9 | -73.8 | -73.5 | | -61.6 | -41.25 | 20.4 | | 2422 | HT/VHT40, M0 to M7 | 3 | 9 | -78.2 | -73.5 | -73.4 | -60.8 | -41.25 | 19.5 | | 24 | HT/VHT40, M8 to M15 | 3 | 9 | -78.2 | -73.5 | -73.4 | -60.8 | -41.25 | 19.5 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -73.8 | -73.5 | | -61.6 | -41.25 | 20.4 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -73.8 | -73.5 | | -61.6 | -41.25 | 20.4 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -73.4 | -72.8 | -73.0 | -56.3 | -41.25 | 15.0 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -78.2 | -73.5 | -73.4 | -60.8 | -41.25 | 19.5 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -73.8 | -73.5 | | -61.6 | -41.25 | 20.4 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -78.2 | -73.5 | -73.4 | -60.8 | -41.25 | 19.5 | Page No: 59 of 126 | | Non HT40, 6 to 54 Mbps | 1 | 9 | -71.5 | | | -62.5 | -41.25 | 21.3 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|------| | | Non HT40, 6 to 54 Mbps | 2 | 9 | -73.2 | -73.4 | | -61.3 | -41.25 | 20.0 | | | Non HT40, 6 to 54 Mbps | 3 | 9 | -73.6 | -73.0 | -71.6 | -58.9 | -41.25 | 17.6 | | | HT/VHT40, M0 to M7 | 1 | 9 | -73.8 | | | -64.8 | -41.25 | 23.6 | | | HT/VHT40, M0 to M7 | 2 | 9 | -73.8 | -73.4 | | -61.6 | -41.25 | 20.3 | | | HT/VHT40, M8 to M15 | 2 | 9 | -73.8 | -73.4 | | -61.6 | -41.25 | 20.3 | | | HT/VHT40, M0 to M7 | 3 | 9 | -73.6 | -73.5 | -76.3 | -60.5 | -41.25 | 19.3 | | | HT/VHT40, M8 to M15 | 3 | 9 | -73.6 | -73.5 | -76.3 | -60.5 | -41.25 | 19.3 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -73.8 | -73.4 | | -61.6 | -41.25 | 20.3 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -73.8 | -73.4 | | -61.6 | -41.25 | 20.3 | | |
HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -71.7 | -71.4 | -71.5 | -54.8 | -41.25 | 13.5 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -73.6 | -73.5 | -76.3 | -60.5 | -41.25 | 19.3 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -73.8 | -73.4 | | -61.6 | -41.25 | 20.3 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -73.6 | -73.5 | -76.3 | -60.5 | -41.25 | 19.3 | | | CCK, 1 to 11 Mbps | 1 | 9 | -73.6 | | | -64.6 | -41.25 | 23.4 | | | CCK, 1 to 11 Mbps | 2 | 9 | -73.8 | -73.1 | | -61.4 | -41.25 | 20.2 | | 2437 | CCK, 1 to 11 Mbps | 3 | 9 | -76.2 | -73.6 | -71.6 | -59.6 | -41.25 | 18.4 | | 2 | Non HT20, 6 to 54 Mbps | 1 | 9 | -73.0 | | | -64.0 | -41.25 | 22.8 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -73.6 | -73.1 | | -61.3 | -41.25 | 20.1 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -76.4 | -76.3 | -73.7 | -61.5 | -41.25 | 20.3 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -73.6 | -73.1 | | -61.3 | -41.25 | 20.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -73.5 | -73.5 | -73.3 | -56.7 | -41.25 | 15.4 | | | HT/VHT20, M0 to M7 | 1 | 9 | -73.4 | | | -64.4 | -41.25 | 23.2 | | | HT/VHT20, M0 to M7 | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | HT/VHT20, M8 to M15 | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | HT/VHT20, M0 to M7 | 3 | 9 | -73.2 | -73.5 | -73.4 | -59.6 | -41.25 | 18.3 | | | HT/VHT20, M8 to M15 | 3 | 9 | -73.2 | -73.5 | -73.4 | -59.6 | -41.25 | 18.3 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -73.6 | -71.4 | -73.5 | -55.9 | -41.25 | 14.7 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -73.2 | -73.5 | -73.4 | -59.6 | -41.25 | 18.3 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -73.2 | -73.5 | | -61.3 | -41.25 | 20.1 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -73.2 | -73.5 | -73.4 | -59.6 | -41.25 | 18.3 | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 9 | -68.2 | | | -59.2 | -41.25 | 18.0 | | | Non HT40, 6 to 54 Mbps | 2 | 9 | -69.7 | -71.5 | | -58.5 | -41.25 | 17.2 | | 01 | Non HT40, 6 to 54 Mbps | 3 | 9 | -71.0 | -73.5 | -72.7 | -58.5 | -41.25 | 17.3 | | 2452 | HT/VHT40, M0 to M7 | 1 | 9 | -70.0 | | | -61.0 | -41.25 | 19.8 | | 2 | HT/VHT40, M0 to M7 | 2 | 9 | -70.0 | -73.1 | | -59.3 | -41.25 | 18.0 | | | HT/VHT40, M8 to M15 | 2 | 9 | -70.0 | -73.1 | | -59.3 | -41.25 | 18.0 | | | HT/VHT40, M0 to M7 | 3 | 9 | -71.0 | -73.7 | -73.1 | -58.7 | -41.25 | 17.4 | Page No: 60 of 126 | | HT/VHT40, M8 to M15 | 3 | 9 | -71.0 | -73.7 | -73.1 | -58.7 | -41.25 | 17.4 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|------| | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -70.0 | -73.1 | | -59.3 | -41.25 | 18.0 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -70.0 | -73.1 | | -59.3 | -41.25 | 18.0 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -73.9 | -71.5 | -73.5 | -56.1 | -41.25 | 14.8 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -71.0 | -73.7 | -73.1 | -58.7 | -41.25 | 17.4 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -70.0 | -73.1 | | -59.3 | -41.25 | 18.0 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -71.0 | -73.7 | -73.1 | -58.7 | -41.25 | 17.4 | | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 1 | 9 | -73.6 | | | -64.6 | -41.25 | 23.4 | | | CCK, 1 to 11 Mbps | 2 | 9 | -73.8 | -76.2 | | -62.8 | -41.25 | 21.6 | | | CCK, 1 to 11 Mbps | 3 | 9 | -73.9 | -73.8 | -73.0 | -59.8 | -41.25 | 18.5 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -73.3 | | | -64.3 | -41.25 | 23.1 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -73.6 | -71.7 | | -60.5 | -41.25 | 19.3 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -73.3 | -73.7 | -73.3 | -59.7 | -41.25 | 18.4 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -73.6 | -71.7 | | -60.5 | -41.25 | 19.3 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -73.3 | -71.7 | -73.2 | -55.9 | -41.25 | 14.6 | | | HT/VHT20, M0 to M7 | 1 | 9 | -77.4 | | | -68.4 | -41.25 | 27.2 | | 2462 | HT/VHT20, M0 to M7 | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | HT/VHT20, M8 to M15 | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | HT/VHT20, M0 to M7 | 3 | 9 | -73.5 | -77.7 | -73.8 | -60.9 | -41.25 | 19.6 | | | HT/VHT20, M8 to M15 | 3 | 9 | -73.5 | -77.7 | -73.8 | -60.9 | -41.25 | 19.6 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -73.6 | -73.5 | -73.4 | -56.7 | -41.25 | 15.5 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -73.5 | -77.7 | -73.8 | -60.9 | -41.25 | 19.6 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -73.5 | -73.4 | | -61.4 | -41.25 | 20.2 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -73.5 | -77.7 | -73.8 | -60.9 | -41.25 | 19.6 | | | | | | | | | | | | ## Conducted Spurs Average, 2437 MHz, HT/VHT40 Beam Forming, M0 to M7 #### Antenna A Antenna B Antenna C | Frequency (MHz) | Mode | Tx Paths | Correlated Antenna
Gain (dBi) | Tx 1 Spur Power
(dBm) | Tx 2 Spur Power
(dBm) | Tx 3 Spur Power
(dBm) | Total Conducted Spur (dBm) | Limit (dBm) | Margin (dB) | |-----------------|-------------------------------------|----------|----------------------------------|--------------------------|--------------------------|--------------------------|----------------------------|-------------|-------------| | | CCK, 1 to 11 Mbps | 1 | 9 | -60.6 | | | -51.6 | -21.25 | 30.4 | | | CCK, 1 to 11 Mbps | 2 | 9 | -60.6 | -59.7 | | -48.1 | -21.25 | 26.9 | | | CCK, 1 to 11 Mbps | 3 | 9 | -53.8 | -53.8 | -61.4 | -41.4 | -21.25 | 20.2 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -61.7 | | | -52.7 | -21.25 | 31.5 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -60.4 | -52.9 | | -43.2 | -21.25 | 21.9 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -60.9 | -61.5 | -60.9 | -47.3 | -21.25 | 26.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -60.4 | -52.9 | | -43.2 | -21.25 | 21.9 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -53.6 | -60.1 | -61.4 | -40.2 | -21.25 | 18.9 | | 2 | HT/VHT20, M0 to M7 | 1 | 9 | -59.7 | | | -50.7 | -21.25 | 29.5 | | 2412 | HT/VHT20, M0 to M7 | 2 | 9 | -61.2 | -53.7 | | -44.0 | -21.25 | 22.7 | | (4 | HT/VHT20, M8 to M15 | 2 | 9 | -61.2 | -53.7 | | -44.0 | -21.25 | 22.7 | | | HT/VHT20, M0 to M7 | 3 | 9 | -60.6 | -53.3 | -61.3 | -43.0 | -21.25 | 21.8 | | | HT/VHT20, M8 to M15 | 3 | 9 | -60.6 | -53.3 | -61.3 | -43.0 | -21.25 | 21.8 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -61.2 | -53.7 | | -44.0 | -21.25 | 22.7 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -61.2 | -53.7 | | -44.0 | -21.25 | 22.7 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -61.1 | -61.5 | -62.9 | -45.0 | -21.25 | 23.7 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -60.6 | -53.3 | -61.3 | -43.0 | -21.25 | 21.8 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -61.2 | -53.7 | | -44.0 | -21.25 | 22.7 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -60.6 | -53.3 | -61.3 | -43.0 | -21.25 | 21.8 | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 9 | -62.2 | | | -53.2 | -21.25 | 32.0 | | | Non HT40, 6 to 54 Mbps | 2 | 9 | -61.3 | -61.8 | | -49.5 | -21.25 | 28.3 | | | Non HT40, 6 to 54 Mbps | 3 | 9 | -53.5 | -53.6 | -53.1 | -39.6 | -21.25 | 18.4 | | | HT/VHT40, M0 to M7 | 1 | 9 | -54.0 | | | -45.0 | -21.25 | 23.8 | | | HT/VHT40, M0 to M7 | 2 | 9 | -54.0 | -61.3 | | -44.3 | -21.25 | 23.0 | | | HT/VHT40, M8 to M15 | 2 | 9 | -54.0 | -61.3 | | -44.3 | -21.25 | 23.0 | | 2422 | HT/VHT40, M0 to M7 | 3 | 9 | -60.5 | -61.4 | -62.1 | -47.5 | -21.25 | 26.3 | | 24 | HT/VHT40, M8 to M15 | 3 | 9 | -60.5 | -61.4 | -62.1 | -47.5 | -21.25 | 26.3 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -54.0 | -61.3 | | -44.3 | -21.25 | 23.0 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -54.0 | -61.3 | | -44.3 | -21.25 | 23.0 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -53.7 | -61.1 | -63.1 | -40.6 | -21.25 | 19.3 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -60.5 | -61.4 | -62.1 | -47.5 | -21.25 | 26.3 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -54.0 | -61.3 | | -44.3 | -21.25 | 23.0 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -60.5 | -61.4 | -62.1 | -47.5 | -21.25 | 26.3 | Page No: 63 of 126 | Non HT40, 6 to 54 Mbps | | | | | | | | | | |
--|----------|-------------------------------------|---|----|-------|-------|-------|-------|--------|------| | Non HT40, 6 to 54 Mbps HT/NHT40, M0 to M7 HT 9 | | Non HT40, 6 to 54 Mbps | 1 | 9 | -59.5 | | | -50.5 | -21.25 | 29.3 | | ### HT/VHT40, M0 to M7 | | Non HT40, 6 to 54 Mbps | 2 | | | | | | -21.25 | | | HT/VHT40, M0 to M7 | | Non HT40, 6 to 54 Mbps | 3 | | -60.2 | -59.8 | -62.0 | -46.8 | | | | ### HT/WHT40, M8 to M15 | | HT/VHT40, M0 to M7 | 1 | 9 | -59.3 | | | -50.3 | | 29.1 | | HT/VHT40, M0 to M7 HT/VHT40, M0 to M75 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.1 HT/VHT40, MB to M15 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.6 HT/VHT40 Beam Forming, M0 to M7 2 9 -59.3 -63.4 -48.9 -21.25 27.6 HT/VHT40 Beam Forming, M8 to M15 2 9 -59.3 -63.4 -48.9 -21.25 27.6 HT/VHT40 Beam Forming, M8 to M15 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.1 HT/VHT40 SBam Forming, M8 to M15 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.1 HT/VHT40 STBC, M0 to M7 2 9 -59.3 -63.4 -48.9 -21.25 27.6 HT/VHT40 STBC, M0 to M7 2 9 -59.3 -63.4 -48.9 -21.25 27.6 HT/VHT40 STBC, M0 to M7 2 9 -69.3 -62.7 -62.4 -48.4 -21.25 27.1 CCK, 1 to 11 Mbps 1 9 -62.1 -53.1 -21.25 31.9 CCK, 1 to 11 Mbps 2 9 -63.9 -62.8 -53.1 -21.25 31.9 CCK, 1 to 11 Mbps 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.0 Non HT20, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 29.5 Non HT20, 6 to 54 Mbps 3 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 27.8 HT/VHT20, M0 to M7 1 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.2 -62.1 -49.0 | | HT/VHT40, M0 to M7 | 2 | 9 | -59.3 | -63.4 | | -48.9 | -21.25 | 27.6 | | HT/VHT40, M8 to M15 HT/VHT40 Beam Forming, M0 to M7 2 9 5-59.3 63.4 4-8.9 2-12.5 27.6 HT/VHT40 Beam Forming, M8 to M15 2 9 5-59.3 63.4 -48.9 2-12.5 27.6 HT/VHT40 Beam Forming, M8 to M15 2 9 5-59.3 63.4 -48.9 2-12.5 27.6 HT/VHT40 Beam Forming, M8 to M15 3 9 6-1.5 62.7 62.4 -48.4 2-12.5 27.6 HT/VHT40 STBC, M0 to M7 2 9 5-59.3 63.4 -48.9 2-12.5 27.6 HT/VHT40 STBC, M0 to M7 2 9 5-59.3 63.4 -48.9 2-12.5 27.6 HT/VHT40 STBC, M0 to M7 2 9 5-59.3 63.4 -48.9 2-12.5 27.1 HT/VHT40 STBC, M0 to M7 2 9 5-63.9 63.4 -48.4 2-12.5 27.1 CCK, 1 to 11 Mbps 1 9 6-2.1 -53.1 2-12.5 31.9 CCK, 1 to 11 Mbps 2 9 6-63.9 6-2.8 -51.3 2-12.5 31.9 CCK, 1 to 11 Mbps 3 9 6-1.5 6-2.7 6-2.4 -8.4 2-12.5 27.0 Non HT20, 6 to 54 Mbps 3 9 6-1.5 6-3.2 6-2.0 -8.2 2-12.5 32.0 Non HT20, 6 to 54 Mbps 3 9 6-1.5 6-3.2 6-3.0 6-2.0 -48.2 2-12.5 27.0 Non HT20, 6 to 54 Mbps 3 9 6-1.5 6-3.2 6-1.0 48.0 2-12.5 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 6-1.5 6-3.2 6-1.0 48.0 2-12.5 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 6-1.5 6-3.2 6-1.0 48.0 2-12.5 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 5-3.3 6-2.2 6-3.2 6-3.0 2-40.4 2-12.5 19.1 HT/VHT20, M0 to M7 1 9 6-0.0 -51.0 4-3.0 2-12.5 29.5 Non HT20, M8 to M15 2 9 6-0.2 6-2.1 -49.0 2-12.5 27.8 HT/VHT20, M8 to M15 3 9 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 6-0.2 6-2.1 -49.0 2-12.5 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 6-0.2 6-2.1 -49.0 2-12.5 27.8 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 6-0.2 6-2.1 -49.0 2-12.5 27.8 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/VHT20 Beam Forming, M0 to M7 3 19 6-1.3 6-1.6 6-0.7 4-7.4 2-12.5 26.2 HT/ | | HT/VHT40, M8 to M15 | 2 | 9 | -59.3 | -63.4 | | -48.9 | -21.25 | 27.6 | | HT/VHT40 Beam Forming, M0 to M7 2 9 -59.3 63.4 -48.9 -21.25 27.6 HT/VHT40 Beam Forming, M8 to M15 2 9 -59.3 63.4 -48.9 21.25 27.6 HT/VHT40 Beam Forming, M8 to M15 2 9 -59.3 63.4 -48.9 21.25 27.6 HT/VHT40 Beam Forming, M8 to M15 3 9 -61.5 62.7 -62.4 48.4 21.25 27.1 HT/VHT40 STBC, M0 to M7 2 9 -59.3 63.4 -48.9 21.25 27.6 HT/VHT40 STBC, M0 to M7 3 9 -61.5 62.7 -62.4 48.4 21.25 27.1 CCK, 1 to 11 Mbps 1 9 -62.1 -53.1 21.25 31.9 CCK, 1 to 11 Mbps 2 9 -63.9 62.8 -51.3 21.25 30.1 CCK, 1 to 11 Mbps 3 9 -61.2 63.0 -62.0 48.2 21.25 27.0 Non HT20, 6 to 54 Mbps 1 9 -62.2 -53.1 21.25 32.0 Non HT20, 6 to 54 Mbps 2 9 -63.5 -63.2 -61.0 48.0 -21.25 28.8 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -62.4 63.1 -50.7 21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 48.0 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -62.4 63.1 -50.7 21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 48.0 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -62.4 63.1 -50.7 21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 48.0 -21.25 29.5 HT/VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.5 HT/VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.5 HT/VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.5 HT/VHT20, M0 to M7 1 9 -60.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 1 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 28.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 28.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 28.8 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 | | HT/VHT40, M0 to M7 | 3 | 9 | -61.5 | -62.7 | -62.4 | -48.4 | -21.25 | 27.1 | | HT/VHT40 Beam Forming, M8 to M15 HT/VHT40 Beam Forming, M8 to M15 2 9 -59.3 -63.4 -62.6 -40.5 -21.25 19.3 | | HT/VHT40, M8 to M15 | 3 | 9 | -61.5 | -62.7 | -62.4 | -48.4 | -21.25 | 27.1 | | HT/VHT40 Beam Forming, M0 to M7 3 | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -59.3 | -63.4 | | -48.9 | -21.25 | 27.6 | | HT//HT40 Beam Forming, M8 to M15 | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -59.3 | -63.4 | | -48.9 | -21.25 | 27.6 | | HT/VHT40 STBC, M0 to M7 2 9 -59.3 -63.4 -48.9 -21.25 27.6 HT/VHT40 STBC, M0 to M7 3 9 -61.5 -62.7 -62.4 -48.4 -21.25 27.1 CCK, 1 to 11 Mbps 1 9 -62.8 -53.1 -21.25 30.1 CCK, 1 to 11 Mbps 2 9 -63.9 -62.8 -51.3 -21.25 30.1 CCK, 1 to 11 Mbps 3 9 -61.2 -63.0 -62.0 -48.2 -21.25 30.1 Non HT20, 6 to 54 Mbps 1 9 -62.2 -53.2 -21.25 32.0 Non HT20, 6 to 54 Mbps 2 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 26.8 Non HT20 Beam Forming, 6 to 54 Mbps 3 19 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 29.5 HT/VHT20, M0 to M7 1 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3
9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -60.2 -62.1 -49.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -62.1 -49.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -60.2 -60.1 -40.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -60.2 -60.0 -40.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -60.2 -60.0 -40.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -60.2 -60.0 -50.1 -21.25 28.8 Non HT40, 6 to 54 Mbps 3 9 -60.2 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60 | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -62.3 | -53.5 | -62.6 | -40.5 | -21.25 | 19.3 | | HT/VHT40 STBC, M0 to M7 CCK, 1 to 11 Mbps 1 9 -62.153.1 -21.25 31.9 CCK, 1 to 11 Mbps 2 9 -63.9 -63.8 -51.3 -21.25 30.1 CCK, 1 to 11 Mbps 3 9 -61.2 -63.0 -62.0 -48.2 -21.25 30.1 Non HT20, 6 to 54 Mbps 1 9 -62.2 - 53.2 -21.25 32.0 Non HT20, 6 to 54 Mbps 2 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 19 -61.5 -63.2 -61.0 -48.0 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -61.0 -40.0 -21.25 29.5 Non HT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -63.5 -61.0 -50.1 -21.25 27.8 HT/VHT20, M0 to M7 1 9 -62.6 -62.1 -49.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.4 -49.1 | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -61.5 | -62.7 | -62.4 | -48.4 | -21.25 | 27.1 | | CCK, 1 to 11 Mbps 14 Mbps CCK, 1 to 11 14 Mbps CCK, 1 to 14 Hbps CCK, 1 to 14 | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -59.3 | -63.4 | | -48.9 | -21.25 | 27.6 | | CCK, 1 to 11 Mbps CCK, 1 to 11 Mbps CCK, 1 to 11 Mbps 3 9 661.2 663.0 662.0 48.2 21.25 27.0 Non HT20, 6 to 54 Mbps 1 9 662.2 5 53.2 21.25 22.0 Non HT20, 6 to 54 Mbps 2 9 62.4 63.1 563.2 61.0 48.0 21.25 28.5 Non HT20, 6 to 54 Mbps 3 9 61.5 63.2 61.0 48.0 21.25 28.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 62.4 63.1 50.7 21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 9 62.4 63.1 50.7 21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 53.3 62.2 63.2 40.4 21.25 19.1 HT/VHT20, M0 to M7 1 9 60.0 5 51.0 21.25 29.8 HT/VHT20, M0 to M7 2 9 60.0 6 51.0 49.0 21.25 27.8 HT/VHT20, M0 to M7 3 9 61.3 61.6 60.7 47.4 21.25 26.2 HT/VHT20, M8 to M15 3 9 61.3 61.6 60.7 47.4 21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 60.2 62.1 49.0 21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 2 9 60.2 62.1 49.0 21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 61.3 61.6 60.7 47.4 21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 3 12 61.2 63.4 60.2 40.0 21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 61.2 63.4 60.2 40.0 21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 61.2 63.4 60.2 40.0 21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 61.3 61.6 60.7 47.4 21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 62.6 62.6 62.1 49.0 21.25 27.8 HT/VHT40, M0 to M7 4 9 62.6 6 60.7 47.4 21.25 26.2 Non HT40, 6 to 54 Mbps 3 9 63.5 61.0 53.6 21.25 27.4 HT/VHT40, M0 to M7 4 9 62.6 6 60.7 47.4 21.25 26.2 HT/VHT40, M0 to M7 4 9 62.6 6 60.7 47.4 21.25 26.2 HT/VHT40, M0 to M7 4 9 62.6 6 60.7 47.4 21.25 26.2 HT/VHT40, M0 to M7 4 9 62.6 6 60.7 47.4 21.25 26.2 BASA NON HT40, 6 to 54 Mbps 3 9 63.5 66.0 60.7 47.4 21.25 26.2 BASA NON HT40, M0 to M7 4 9 63.5 66.0 60.7 47.4 21.25 27.4 HT/VHT40, M0 to M7 4 9 63.5 66.0 60.7 47.4 21.25 27.4 HT/VHT40, M0 to M7 4 9 63.5 66.0 60.7 47.4 21.25 27.4 HT/VHT40, M0 to M7 4 9 63.5 66.0 60.7 47.4 21.25 27.4 HT/VHT40, M0 to M7 4 9 63.5 66.0 60.4 49.1 21.25 27.9 HT/VHT40, M1 to M15 3 9 63.9 66.8 66.0 66.4 49.1 21.25 27.9 | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -61.5 | -62.7 | -62.4 | -48.4 | -21.25 | 27.1 | | CCK, 1 to 11 Mbps 3 9 -61.2 -63.0 -62.0 -48.2 -21.25 27.0 Non HT20, 6 to 54 Mbps 1 9 -62.2 -53.2 -21.25 32.0 Non HT20, 6 to 54 Mbps 2 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 26.8 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 29.5 Non HT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.5 Non HT7VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -63.3 -64.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 4 9 -63.5 -61.0 -49.0 -21.25 27.8 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.8 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.8 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.8 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 1 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 4 1 9 -63.5 -61.0 -50.1 | | CCK, 1 to 11 Mbps | 1 | 9 | -62.1 | | | -53.1 | -21.25 | 31.9 | | Non HT20, 6 to 54 Mbps | _ | CCK, 1 to 11 Mbps | 2 | 9 | -63.9 | -62.8 | | -51.3 | -21.25 | 30.1 | | Non HT20, 6 to 54 Mbps | 43 | CCK, 1 to 11 Mbps | 3 | 9 | -61.2 | -63.0 | -62.0 | -48.2 | -21.25 | 27.0 | | Non HT20, 6 to 54 Mbps 3 9 -61.5 -63.2 -61.0 -48.0 -21.25 26.8 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 19.1 HT/VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT40, 6 to 54 Mbps 1 9 -62.6 -62.1 -49.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 Non HT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M0 to M7 3 9 -63.5 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M0 to M7 3 9 -63.5 -62.6 -62.4 -49.1 -21.25 2 | 7 | Non HT20, 6 to 54 Mbps | 1 | 9 | -62.2 | | | -53.2 | -21.25 | 32.0 | | Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -62.4 -63.1 -50.7 -21.25 29.5 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 19.1 HT/VHT20, M0 to M7 1 9 -60.0 -51.0 -21.25 29.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -62.6 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC,
M0 to M7 3 9 -62.6 -62.3 -61.9 -48.6 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -49.5 -21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 27.9 HT/VHT40, M0 to M7 3 9 -63.5 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 | | Non HT20, 6 to 54 Mbps | 2 | 9 | -62.4 | -63.1 | | -50.7 | -21.25 | 29.5 | | Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -53.3 -62.2 -63.2 -40.4 -21.25 19.1 HT/VHT20, M0 to M7 | | Non HT20, 6 to 54 Mbps | 3 | 9 | -61.5 | -63.2 | -61.0 | -48.0 | -21.25 | 26.8 | | HT/VHT20, M0 to M7 1 9 -60.0 -2-1.25 29.8 HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 18.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 Non HT40, 6 to 54 Mbps 1 9 -62.6 -62.1 -49.0 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -53.6 -21.25 32.4 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -62.4 | -63.1 | | -50.7 | -21.25 | 29.5 | | HT/VHT20, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -62.6 -60.7 -47.4 -21.25 26.2 HT/VHT40, M0 to M7 1 9 -62.6 -62.3 -61.9 -48.6 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -53.3 | -62.2 | -63.2 | -40.4 | -21.25 | 19.1 | | HT/VHT20, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 18.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 Non HT40, 6 to 54 Mbps 1 9 -62.6 -62.1 -49.0 -21.25 27.8 Non HT40, 6 to 54 Mbps 3 9 -63.1 -62.3 -61.0 -49.5 -21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | HT/VHT20, M0 to M7 | 1 | 9 | -60.0 | | | -51.0 | -21.25 | 29.8 | | HT/VHT20, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 Beam Forming, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M8 to M15 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.2 -53.4 -60.2 -40.0 -21.25 18.8 HT/VHT20 Beam Forming, M8 to M15 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -62.6 -60.7 -47.4 -21.25 26.2 Non HT40, 6 to 54 Mbps 1 9 -62.6 -60.7 -47.4 -21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.1 -62.3 -61.9 -48.6 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -54.5 -21.25 33.3 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -63.9 -63.6 -62 | | HT/VHT20, M0 to M7 | 2 | 9 | -60.2 | -62.1 | | -49.0 | -21.25 | 27.8 | | HT/VHT20, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 STBC, M0 to M7 HT/VHT40, G to 54 Mbps HT/VHT40, G to 54 Mbps HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 | | HT/VHT20, M8 to M15 | 2 | 9 | -60.2 | -62.1 | | -49.0 | -21.25 | 27.8 | | HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 STBC, M0 to M7 HT/VHT40, 6 to 54 Mbps HT/VHT40, 6 to 54 Mbps HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 | | HT/VHT20, M0 to M7 | 3 | 9 | -61.3 | -61.6 | -60.7 | -47.4 | -21.25 | 26.2 | | HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 STBC, M0 to M7 HT/VHT40, 6 to 54 Mbps HT/VHT40, 6 to 54 Mbps HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40, M8 to M15 HT/VHT40, M0 to M7 M8 to M15 | | HT/VHT20, M8 to M15 | 3 | 9 | -61.3 | -61.6 | -60.7 | -47.4 | -21.25 | 26.2 | | HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 STBC, M0 to M7 HT/VHT40, 6 to 54 Mbps HT/VHT40, 6 to 54 Mbps HT/VHT40, 6 to 54 Mbps HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -60.2 | -62.1 | | -49.0 | -21.25 | 27.8 | | HT/VHT20 Beam Forming, M8 to M15 HT/VHT20 STBC, M0 to M7 2 9 -60.2 -62.1 -49.0 -21.25 27.8 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 Non HT40, 6 to 54 Mbps 1 9 -62.6 -53.6 -21.25 32.4 Non HT40, 6 to 54 Mbps 2 9 -62.2 -61.0 -49.5 -21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.1 -62.3 -61.9 -48.6 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -54.5 -21.25 33.3 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M8 to M15 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -60.2 | -62.1 | | -49.0 | -21.25 | 27.8 | | HT/VHT20 STBC, M0 to M7 A | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -61.2 | -53.4 | -60.2 | -40.0 | -21.25 | 18.8 | | HT/VHT20 STBC, M0 to M7 3 9 -61.3 -61.6 -60.7 -47.4 -21.25 26.2 | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -61.3 | -61.6 | -60.7 | -47.4 | -21.25 | 26.2 | | Non HT40, 6 to 54 Mbps | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -60.2 | -62.1 | | -49.0 | -21.25 | 27.8 | | Non HT40, 6 to 54 Mbps 2 9 -62.2 -61.0 -49.5 -21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.1 -62.3 -61.9 -48.6 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -54.5 -21.25 33.3 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M8 to M15 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -61.3 | -61.6 | -60.7 | -47.4 | -21.25 | 26.2 | | Non HT40, 6 to 54 Mbps 2 9 -62.2 -61.0 -49.5
-21.25 28.3 Non HT40, 6 to 54 Mbps 3 9 -63.1 -62.3 -61.9 -48.6 -21.25 27.4 HT/VHT40, M0 to M7 1 9 -63.5 -61.0 -54.5 -21.25 33.3 HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M8 to M15 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | | | | | | | | | | | Non HT40, 6 to 54 Mbps HT/VHT40, M0 to M7 M15 HT/VHT40, M0 to M7 HT/VHT40, M0 to M15 | | Non HT40, 6 to 54 Mbps | 1 | 9 | -62.6 | | | -53.6 | -21.25 | 32.4 | | HT/VHT40, M0 to M7 1 9 -63.5 | | Non HT40, 6 to 54 Mbps | 2 | 9 | -62.2 | -61.0 | | -49.5 | -21.25 | 28.3 | | HT/VHT40, M0 to M7 1 9 -63.5 | | | _ | 9 | | | -61.9 | -48.6 | -21.25 | | | HT/VHT40, M0 to M7 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M8 to M15 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | <u> </u> | · | H | | | | | | | | | HT/VHT40, M8 to M15 2 9 -63.5 -61.0 -50.1 -21.25 28.8 HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | 452 | HT/VHT40, M0 to M7 | 2 | 9 | -63.5 | -61.0 | | -50.1 | -21.25 | 28.8 | | HT/VHT40, M0 to M7 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | 2 | HT/VHT40, M8 to M15 | 2 | 9 | | | | | | | | HT/VHT40, M8 to M15 3 9 -63.9 -62.6 -62.4 -49.1 -21.25 27.9 | | | - | | | | -62.4 | | | | | | | | 3 | 9 | | | -62.4 | -49.1 | | | | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | | -63.5 | -61.0 | | -50.1 | -21.25 | 28.8 | Page No: 64 of 126 | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -63.5 | -61.0 | | -50.1 | -21.25 | 28.8 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|------| | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -53.5 | -51.9 | -61.1 | -37.3 | -21.25 | 16.1 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -63.9 | -62.6 | -62.4 | -49.1 | -21.25 | 27.9 | | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -63.5 | -61.0 | | -50.1 | -21.25 | 28.8 | | | HT/VHT40 STBC, M0 to M7 | 3 | 9 | -63.9 | -62.6 | -62.4 | -49.1 | -21.25 | 27.9 | | | | | | | | | | | | | | CCK, 1 to 11 Mbps | 1 | 9 | -61.4 | | | -52.4 | -21.25 | 31.2 | | | CCK, 1 to 11 Mbps | 2 | 9 | -63.2 | -62.6 | | -50.9 | -21.25 | 29.6 | | | CCK, 1 to 11 Mbps | 3 | 9 | -63.1 | -62.3 | -62.9 | -49.0 | -21.25 | 27.7 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -62.5 | | | -53.5 | -21.25 | 32.3 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -53.6 | -62.7 | | -44.1 | -21.25 | 22.8 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -60.8 | -53.9 | -53.6 | -41.3 | -21.25 | 20.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -53.6 | -62.7 | | -44.1 | -21.25 | 22.8 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -53.6 | -62.1 | -61.5 | -40.4 | -21.25 | 19.2 | | QI. | HT/VHT20, M0 to M7 | 1 | 9 | -62.3 | | | -53.3 | -21.25 | 32.1 | | 2462 | HT/VHT20, M0 to M7 | 2 | 9 | -62.6 | -62.4 | | -50.5 | -21.25 | 29.2 | | 0 | HT/VHT20, M8 to M15 | 2 | 9 | -62.6 | -62.4 | | -50.5 | -21.25 | 29.2 | | | HT/VHT20, M0 to M7 | 3 | 9 | -53.9 | -61.2 | -62.7 | -43.7 | -21.25 | 22.5 | | | HT/VHT20, M8 to M15 | 3 | 9 | -53.9 | -61.2 | -62.7 | -43.7 | -21.25 | 22.5 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -62.6 | -62.4 | | -50.5 | -21.25 | 29.2 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -62.6 | -62.4 | | -50.5 | -21.25 | 29.2 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -53.6 | -60.1 | -54.0 | -38.3 | -21.25 | 17.1 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -53.9 | -61.2 | -62.7 | -43.7 | -21.25 | 22.5 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -62.6 | -62.4 | | -50.5 | -21.25 | 29.2 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -53.9 | -61.2 | -62.7 | -43.7 | -21.25 | 22.5 | ## Conducted Spurs Peak, 2452 MHz, HT/VHT40 Beam Forming, M0 to M7 #### Antenna A Antenna B Antenna C ## A.6 Conducted Bandedge 15.205 / 15.247 / RSS-Gen / RSS-247 / LP0002:3.10.1(5) & 2.8 In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), and RSS-Gen 8.10 must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9. #### **Test Procedure** **Ref.** KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10: 2013 #### **Conducted Band edge** **Test Procedure** - 1. Connect the antenna port(s) to the spectrum analyzer input. - 2. Place the radio in continuous transmit mode. Use the procedures in KDB 558074 D01 DTS Meas Guidance v03r05 to substitute conducted measurements in place of radiated measurements. - 3. Configure Spectrum analyzer as per test parameters below below (be sure to enter all losses between the transmitter output and the spectrum analyzer). - 4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.. - 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded. - 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands - 7. Capture graphs and record pertinent measurement data. | Conducted Bandedge | Conducted Bandedge | |---|--| | Test parameters non-restricted Band | Test parameters restricted Band | | KDB 558074 D01 v03r05 section 11.1b, 11.2-3, also see | KDB 558074 D01 v03r05 section 12.2.4 & 12.2.5.3 also | | ANSI C63.10: 2013 section 11.10.3 | see ANSI C63.10: 2013 section 11.12.4 & 11.12.5.3 | | RBW = 100 kHz | RBW = 1 MHz | | VBW ≥ 3 x RBW | VBW ≥ 3 x RBW for Peak, 100Hz for Average | | Sweep = Auto couple | Sweep = Auto couple | | Detector = Peak | Detector = Peak | | Trace = Max Hold. | Trace = Max Hold. | | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | _ | EUT | S01 | S | | | 1 | Support | S02 | | S | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment ## Conducted Bandedge (Restricted Band) Antenna Gain: 7 dBi | Frequency (MHz) Tx Paths Correlated Antenna Gain (dBi) Tx 1 Bandedge Level (dBm) Tx 2 Bandedge Level (dBm) Tx 3 Bandedge Level (dBm) | Total Tx Bandedge
Level (dBm) | | | | | | |--|----------------------------------|-------------|-------------|--|--|--| | Frequency Programme Progra | Total Tx Bar
Level (dBm) | Limit (dBm) | Margin (dB) | | | | | CCK, 1 to 11 Mbps 1 7 -55.2 | -48.2 | -41.25 | 7.0 | | | | | CCK, 1 to 11 Mbps 2 7 -55.2 -55.1 | -45.1 | -41.25 | 3.9 | | | | | CCK, 1 to 11 Mbps 3 7 -55.2 -55.1 -57.1 | -43.9 | -41.25 | 2.7 | | | | | Non HT20, 6 to 54 Mbps 1 7 -49.8 | -42.8 | -41.25 | 1.6 | | | | | Non HT20, 6 to 54 Mbps 2 7 -52.7 -53.7 | -43.2 | -41.25 | 1.9 | | | | | Non HT20, 6 to 54 Mbps 3 7 -52.7 -53.7 -55.4 | -42.0 | -41.25 | 0.8 | | | | | Non HT20 Beam Forming, 6 to 54 Mbps 2 10 -55.1 -56.0 | -42.5 | -41.25 | 1.3 | | | | | Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -61.5 -63.2 -65.9 | -46.4 | -41.25 | 5.2 | | |
 | HT/VHT20, M0 to M7 1 7 -49.9 | -42.9 | -41.25 | 1.7 | | | | | HT/VHT20, M0 to M7 2 7 -51.8 -51.4 | -41.6 | -41.25 | 0.3 | | | | | HT/VHT20, M8 to M15 2 7 -51.8 -51.4 | -41.6 | -41.25 | 0.3 | | | | | HT/VHT20, M0 to M7 3 7 -54.9 -54.3 -57.1 | -43.5 | -41.25 | 2.3 | | | | | HT/VHT20, M8 to M15 3 7 -54.9 -54.3 -57.1 | -43.5 | -41.25 | 2.3 | | | | | HT/VHT20 Beam Forming, M0 to M7 2 10 -60.0 -57.1 | -45.3 | -41.25 | 4.1 | | | | | HT/VHT20 Beam Forming, M8 to M15 2 7 -51.8 -51.4 | -41.6 | -41.25 | 0.3 | | | | | HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 | -44.5 | -41.25 | 3.3 | | | | | HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 | -45.2 | -41.25 | 4.0 | | | | | HT/VHT20 STBC, M0 to M7 2 7 -51.8 -51.4 | -41.6 | -41.25 | 0.3 | | | | | HT/VHT20 STBC, M0 to M7 3 7 -54.9 -54.3 -57.1 | -43.5 | -41.25 | 2.3 | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps 1 7 -49.9 | -42.9 | -41.25 | 1.7 | | | | | Non HT40, 6 to 54 Mbps 2 7 -60.9 -56.5 | -48.2 | -41.25 | 6.9 | | | | | Non HT40, 6 to 54 Mbps 3 7 -61.7 -60.8 -61.2 | -49.4 | -41.25 | 8.2 | | | | | HT/VHT40, M0 to M7 1 7 -59.7 | -52.7 | -41.25 | 11.5 | | | | | HT/VHT40, M0 to M7 2 7 -61.7 -58.0 | -49.5 | -41.25 | 8.2 | | | | | HT/VHT40, M8 to M15 2 7 -61.7 -58.0 | -49.5 | -41.25 | 8.2 | | | | | HT/VHT40, M0 to M7 3 7 -61.7 -58.0 -59.3 HT/VHT40, M8 to M15 3 7 -61.7 -58.0 -59.3 | -47.6 | -41.25 | 6.4 | | | | | HT/VHT40, M8 to M15 3 7 -61.7 -58.0 -59.3 | -47.6 | -41.25 | 6.4 | | | | | HT/VHT40 Beam Forming, M0 to M7 2 10 -61.8 -60.7 | -48.2 | -41.25 | 7.0 | | | | | HT/VHT40 Beam Forming, M8 to M15 2 7 -61.7 -58.0 | -49.5 | -41.25 | 8.2 | | | | | HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 | -49.2 | -41.25 | 7.9 | | | | | HT/VHT40 Beam Forming, M8 to M15 3 9 -65.5 -62.5 -64.5 | -50.2 | -41.25 | 9.0 | | | | | HT/VHT40 STBC, M0 to M7 2 7 -61.7 -58.0 | -49.5 | -41.25 | 8.2 | | | | | HT/VHT40 STBC, M0 to M7 3 7 -61.7 -58.0 -59.3 | -47.6 | -41.25 | 6.4 | | | | Page No: 69 of 126 | 2462 | CCK, 1 to 11 Mbps | 1 | 7 | -53.4 | | | -46.4 | -41.25 | 5.2 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|-----| | | CCK, 1 to 11 Mbps | 2 | 7 | -53.4 | -50.3 | | -41.6 | -41.25 | 0.3 | | | CCK, 1 to 11 Mbps | 3 | 7 | -54.7 | -53.5 | -51.6 | -41.3 | -41.25 | 0.1 | | | Non HT20, 6 to 54 Mbps | 1 | 7 | -51.0 | | | -44.0 | -41.25 | 2.8 | | | Non HT20, 6 to 54 Mbps | 2 | 7 | -56.9 | -56.9 | | -46.9 | -41.25 | 5.6 | | | Non HT20, 6 to 54 Mbps | 3 | 7 | -61.3 | -60.9 | -58.2 | -48.1 | -41.25 | 6.9 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 10 | -62.6 | -62.4 | | -49.5 | -41.25 | 8.2 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -67.3 | -67.1 | -67.6 | -50.6 | -41.25 | 9.3 | | | HT/VHT20, M0 to M7 | 1 | 7 | -49.5 | | | -42.5 | -41.25 | 1.3 | | | HT/VHT20, M0 to M7 | 2 | 7 | -60.0 | -59.8 | | -49.9 | -41.25 | 8.6 | | | HT/VHT20, M8 to M15 | 2 | 7 | -60.0 | -59.8 | | -49.9 | -41.25 | 8.6 | | | HT/VHT20, M0 to M7 | 3 | 7 | -60.0 | -59.8 | -55.8 | -46.3 | -41.25 | 5.0 | | | HT/VHT20, M8 to M15 | 3 | 7 | -60.0 | -59.8 | -55.8 | -46.3 | -41.25 | 5.0 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 10 | -60.0 | -59.8 | | -46.9 | -41.25 | 5.6 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | -60.0 | -59.8 | | -49.9 | -41.25 | 8.6 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -66.9 | -66.5 | -67.1 | -50.1 | -41.25 | 8.8 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -62.4 | -62.0 | -59.9 | -47.5 | -41.25 | 6.3 | | | HT/VHT20 STBC, M0 to M7 | 2 | 7 | -60.0 | -59.8 | | -49.9 | -41.25 | 8.6 | | | HT/VHT20 STBC, M0 to M7 | 3 | 7 | -60.0 | -59.8 | -55.8 | -46.3 | -41.25 | 5.0 | ## Conducted Bandedge Average, 2412 MHz, HT/VHT20, M0 to M7 Antenna A Antenna B ## Conducted Bandedge Average, 2462 MHz, CCK, 1 to 11 Mbps # Antenna A Antenna B Antenna C Center Freq 2.864500000 GHz Ref Offset 0.5 dB Ref 10.00 dBm Antenna Gain: 9 dBi | CCK, 1 to 11 Mbps | | Antenna Gain: 9 dbi | | | | | | | | 1 | |--|-----------------|-------------------------------------|----------|----------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|-------------|-------------| | CCK, 1 to 11 Mbps 14 L25 CCR, 1 to 11 Mbps CCK, 1 to 11 Mbps CCK, 1 to 14 L25 CCR, 1 to 11 Mbps CCK, 1 to 11 Mbps CCK, 1 to 14 L25 CCR, 1 to 11 Mbps CCK, 1 to 14 L25 CCR, 1 to 11 Mbps CCK, 1 to 11 Mbps CCK, 1 to 11 Mbps CCK, 1 to 14 L25 CCR, 1 to 11 Mbps CCK, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, 1 to 11 Mbps CCCR, 1 to 14 L25 CCR, | Frequency (MHz) | Mode | Tx Paths | Correlated
Antenna Gain (dBi) | Tx 1 Bandedge
Level (dBm) | Tx 2 Bandedge
Level (dBm) | Tx 3 Bandedge
Level (dBm) | Total Tx Bandedge
Level (dBm) | Limit (dBm) | Margin (dB) | | CCK, 1 to 11 Mbps 3 9 -55.8 -56.0 -58.1 -42.7 -41.25 1.5 Non HT20, 6 to 54 Mbps 1 9 -55.7 - 43.7 -41.25 2.5 Non HT20, 6 to 54 Mbps 3 9 -55.1 -56.0 -43.5 -41.25 2.3 Non HT20, 6 to 54 Mbps 3 9 -61.2 -62.4 -62.8 -48.3 -41.25 7.1 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -55.1 -56.0 -43.5 -41.25 2.3 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -61.5 -63.2 -65.9 -46.4 -41.25 5.2 HT/HT20, M0 to M7 1 9 -51.8 - 42.8 -41.25 1.6 HT/HT20, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/HT20, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/HT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/HT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/HT20 Beam Forming, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 HT/HT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/HT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/HT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/HT20 STBC, M0 to M7 3 19 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/HT20 STBC, M0 to M7 3 19 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 Non HT40, 6 to 54 Mbps 1 9 -59.5 -50.5 -41.25 9.0 Non HT40, 6 to 54 Mbps 3 1 9 -61.7 -60.8 -45.2 -41.25 9.0 Non HT40, M0 to M7 1 1 9 -61.7 -60.8 -45.2 -41.25 9.0 HT/HT40, M0 to M7 1 1 9 -61.7 -58.0 -47.5 -41.25 9.0 HT/HT40, M0 to M7 1 1 9 -61.7 -58.0 -47.5 -41.25 9.0 HT/HT40, M0 to M7 1 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40, M0 to M7 1 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40, M0 to M7 1 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/HT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 | | CCK, 1 to 11 Mbps | 1 | 9 | -55.2 | | | -46.2 | -41.25 | 5.0 | | Non HT20, 6 to 54 Mbps Non HT20, 6 to 54 Mbps 2 9 -55.1 -56.0 -43.5 -41.25 2.3 Non HT20, 6 to 54 Mbps 3 9 -61.2 -62.4 -62.8 -48.3 -41.25 7.1 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -61.5 -63.2 -65.9 -46.4 -41.25 5.2 HT/VHT20, M0 to M7 1 9 -51.8 -42.6 -41.25 1.3 HT/VHT20, M0 to M7 1 9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 3.3 HT/VHT20 STBC, M0 to M7 3 9 -54.9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8
-45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, Beam Forming, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 3 9 -66.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 9 -66.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 9 -66.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 9 -66.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -66.6 -66.9 -49.2 -41.25 7.9 | | CCK, 1 to 11 Mbps | 2 | 9 | -55.2 | -55.1 | | -43.1 | -41.25 | 1.9 | | Non HT20, 6 to 54 Mbps | | CCK, 1 to 11 Mbps | 3 | 9 | -55.8 | -56.0 | -58.1 | -42.7 | -41.25 | 1.5 | | Non HT20, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps Non HT20, M0 to M7 HT40, No | | Non HT20, 6 to 54 Mbps | 1 | 9 | -52.7 | | | -43.7 | -41.25 | 2.5 | | Non HT20 Beam Forming, 6 to 54 Mbps HT/VHT20, M0 to M7 1 9 -51.8 -42.8 -42.8 -41.25 1.6 HT/VHT20, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 9 -59.5 -50.0 -57.1 -60.8 -45.2 -41.25 4.0 Non HT40, 6 to 54 Mbps 1 9 -59.5 -50.5 -41.25 9.3 Non HT40, 6 to 54 Mbps 3 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.7 -60.8 -49.2 -41.25 6.2 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | Non HT20, 6 to 54 Mbps | 2 | 9 | -55.1 | -56.0 | | -43.5 | -41.25 | 2.3 | | Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -61.5 -63.2 -65.9 -46.4 -41.25 5.2 HT/VHT20, M0 to M7 1 9 -51.8 -42.8 -41.25 1.6 HT/VHT20, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 1.3 HT/VHT20 STBC, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 Non HT40, 6 to 54 Mbps 1 9 -59.5 -50.5 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 | | Non HT20, 6 to 54 Mbps | 3 | 9 | -61.2 | -62.4 | -62.8 | -48.3 | -41.25 | 7.1 | | HT/VHT20, M0 to M7 1 9 -51.8 -42.8 -41.25 1.6 HT/VHT20, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 3.3 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 3.3 HT/VHT20 STBC, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT40, 6 to 54 Mbps 1 9 -59.5 -50.5 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.7 -60.8 -49.2 -41.25 7.4 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/V | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -55.1 | -56.0 | | -43.5 | -41.25 | 2.3 | | HT/VHT20, M0 to M7 | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -61.5 | -63.2 | -65.9 | -46.4 | -41.25 | 5.2 | | HT/VHT20, M8 to M15 HT/VHT20, M0 to M7 HT/VHT20, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 STBC, M0 to M7 HT/VHT20 STBC, M0 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40 Beam Forming, M0 to M7 HT/VHT40 Beam Forming, M8 to M15 M9 to M7 | 01 | HT/VHT20, M0 to M7 | 1 | 9 | -51.8 | | | -42.8 | -41.25 | 1.6 | | HT/VHT20, M8 to M15 HT/VHT20, M0 to M7 HT/VHT20, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 STBC, M0 to M7 HT/VHT20 STBC, M0 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT20, M10 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40 Beam Forming, M0 to M7 HT/VHT40 Beam Forming, M8 to M15 M9 to M7 | 412 | HT/VHT20, M0 to M7 | 2 | 9 | -54.9 | -54.3 | | -42.6 | -41.25 | 1.3 | | HT/VHT20, M8 to M15 HT/VHT20 Beam Forming, M0 to M7 HT/VHT20 Beam Forming, M8 to M15 STBC, M0 to M7 HT/VHT20, M0 to M7 HT/VHT20, M0 to M7 HT/VHT40, HT/VHT40 Beam Forming, HT/WHT40 Beam Formi | 2 | HT/VHT20, M8 to M15 | 2 | 9 | -54.9 | -54.3 | | -42.6 | -41.25 | 1.3 | | HT/VHT20 Beam Forming, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M8 to M15 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 Beam Forming, M0 to M7 3 12 -61.1 -60.7 -62.3 -44.5 -41.25 3.3 HT/VHT20 Beam Forming, M8 to M15 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 HT/VHT20 STBC, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 2 9 -54.9 -54.3 -42.6 -41.25 1.3 HT/VHT20 STBC, M0 to M7 3 9 -60.0 -57.1 -60.8 -45.2 -41.25 4.0 Non HT40, 6 to 54 Mbps 1 9 -59.5 -50.5 -41.25 9.3 Non HT40, 6 to 54 Mbps 2 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.8 -61.9 -63.9 -48.7 -41.25 7.4 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 | | HT/VHT20, M0 to M7 | 3 | 9 | -60.0 | -57.1 | -60.8 | -45.2 | -41.25 | 4.0 | | HT/VHT20 Beam Forming, M8 to M15 | | HT/VHT20, M8 to M15 | 3 | 9 | -60.0 | -57.1 | -60.8 | -45.2 | -41.25 | 4.0 | | HT/VHT20 Beam Forming, M8 to M15 | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -54.9 | -54.3 | | -42.6 | -41.25 | 1.3 | | HT/VHT20 Beam Forming, M8 to M15 | | | 2 | 9 | -54.9 | -54.3 | | -42.6 | -41.25 | 1.3 | | HT/VHT20 STBC, M0 to M7 HT/VHT20 STBC, M0 to M7 Box 1 | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -61.1 | -60.7 | -62.3 | -44.5 | -41.25 | 3.3 | | Non HT40, 6 to 54 Mbps | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -60.0 | -57.1 | -60.8 | -45.2 | -41.25 | 4.0 | | Non HT40, 6 to 54 Mbps 1 9 -59.5 | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -54.9 | -54.3 | | -42.6 | -41.25 | 1.3 | | Non HT40, 6 to 54 Mbps 2 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.8 -61.9 -63.9 -48.7 -41.25 7.4 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M8
to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | | 3 | 9 | | -57.1 | -60.8 | -45.2 | -41.25 | 4.0 | | Non HT40, 6 to 54 Mbps 2 9 -61.7 -60.8 -49.2 -41.25 8.0 Non HT40, 6 to 54 Mbps 3 9 -61.8 -61.9 -63.9 -48.7 -41.25 7.4 HT/VHT40, M0 to M7 1 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | | | • | | | | | | | | Non HT40, 6 to 54 Mbps 3 9 -61.8 -61.9 -63.9 -48.7 -41.25 7.4 HT/VHT40, M0 to M7 1 9 -61.7 -52.7 -41.25 11.5 HT/VHT40, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | Non HT40, 6 to 54 Mbps | 1 | 9 | -59.5 | | | -50.5 | -41.25 | 9.3 | | HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40 Beam Forming, M0 to M7 HT/VHT40 Beam Forming, M8 to M15 | | Non HT40, 6 to 54 Mbps | 2 | 9 | -61.7 | -60.8 | | -49.2 | -41.25 | 8.0 | | HT/VHT40, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | Non HT40, 6 to 54 Mbps | 3 | 9 | -61.8 | -61.9 | -63.9 | -48.7 | -41.25 | 7.4 | | HT/VHT40, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | HT/VHT40, M0 to M7 | 1 | 9 | -61.7 | | | -52.7 | -41.25 | 11.5 | | HT/VHT40, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40, M8 to M15 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | HT/VHT40, M0 to M7 | 2 | 9 | -61.7 | -58.0 | | -47.5 | -41.25 | 6.2 | | HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | HT/VHT40, M8 to M15 | 2 | 9 | -61.7 | -58.0 | | -47.5 | -41.25 | 6.2 | | HT/VHT40 Beam Forming, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | 22 | HT/VHT40, M0 to M7 | 3 | 9 | -65.5 | -62.5 | -64.5 | -50.2 | -41.25 | 9.0 | | HT/VHT40 Beam Forming, M8 to M15 2 9 -61.7 -58.0 -47.5 -41.25 6.2 HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | 24. | HT/VHT40, M8 to M15 | 3 | 9 | -65.5 | -62.5 | -64.5 | -50.2 | -41.25 | 9.0 | | HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 9 | -61.7 | -58.0 | | -47.5 | -41.25 | 6.2 | | HT/VHT40 Beam Forming, M0 to M7 3 12 -66.8 -64.6 -66.9 -49.2 -41.25 7.9 | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 9 | -61.7 | -58.0 | | -47.5 | -41.25 | 6.2 | | | | | 3 | 12 | -66.8 | -64.6 | -66.9 | -49.2 | -41.25 | 7.9 | | 0 0 000 000 000 000 | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -65.5 | -62.5 | -64.5 | -50.2 | -41.25 | 9.0 | | HT/VHT40 STBC, M0 to M7 2 9 -61.7 -58.0 -47.5 -41.25 6.2 | | | | | | | | | _ | | | HT/VHT40 STBC, M0 to M7 3 9 -65.5 -62.5 -64.5 -50.2 -41.25 9.0 | | HT/VHT40 STBC, M0 to M7 | 2 | 9 | -61.7 | -58.0 | | -47.5 | -41.25 | 6.2 | Page No: 73 of 126 | | CCK, 1 to 11 Mbps | 1 | 9 | -53.4 | | | -44.4 | -41.25 | 3.2 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|-----| | | CCK, 1 to 11 Mbps | 2 | 9 | -54.7 | -53.5 | | -42.0 | -41.25 | 8.0 | | | CCK, 1 to 11 Mbps | 3 | 9 | -56.6 | -56.2 | -55.3 | -42.2 | -41.25 | 1.0 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -53.1 | | | -44.1 | -41.25 | 2.9 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -61.3 | -60.9 | | -49.1 | -41.25 | 7.8 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -63.4 | -63.3 | -62.4 | -49.2 | -41.25 | 8.0 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -61.3 | -60.9 | | -49.1 | -41.25 | 7.8 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -67.3 | -67.1 | -67.6 | -50.6 | -41.25 | 9.3 | | OI. | HT/VHT20, M0 to M7 | 1 | 9 | -51.5 | | | -42.5 | -41.25 | 1.3 | | 2462 | HT/VHT20, M0 to M7 | 2 | 9 | -60.0 | -59.8 | | -47.9 | -41.25 | 6.6 | | 2 | HT/VHT20, M8 to M15 | 2 | 9 | -60.0 | -59.8 | | -47.9 | -41.25 | 6.6 | | | HT/VHT20, M0 to M7 | 3 | 9 | -62.4 | -62.0 | -59.9 | -47.5 | -41.25 | 6.3 | | | HT/VHT20, M8 to M15 | 3 | 9 | -62.4 | -62.0 | -59.9 | -47.5 | -41.25 | 6.3 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -60.0 | -59.8 | | -47.9 | -41.25 | 6.6 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -60.0 | -59.8 | | -47.9 | -41.25 | 6.6 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -66.9 | -66.5 | -67.1 | -50.1 | -41.25 | 8.8 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -62.4 | -62.0 | -59.9 | -47.5 | -41.25 | 6.3 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -60.0 | -59.8 | | -47.9 | -41.25 | 6.6 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -62.4 | -62.0 | -59.9 | -47.5 | -41.25 | 6.3 | ### Conducted Bandedge Average, 2412 MHz, HT/VHT20, M0 to M7 Antenna A Antenna B ### Conducted Bandedge Average, 2462 MHz, CCK, 1 to 11 Mbps Antenna A Antenna B Antenna Gain: 7 dBi | Frequency (MHz) | Mode | Tx Paths | Correlated
Antenna Gain (dBi) | Tx 1 Bandedge
Level (dBm) | Tx 2 Bandedge
Level (dBm) | Tx 3 Bandedge
Level (dBm) | Total Tx Bandedge
Level (dBm) | Limit (dBm) | Margin (dB) | |-----------------|-------------------------------------|----------|----------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|-------------|-------------| | | CCK, 1 to 11 Mbps | 1 | 7 | -37.0 | | | -30.0 | -21.25 | 8.8 | | | CCK, 1 to 11 Mbps | 2 | 7 | -37.0 | -39.6 | | -28.1 | -21.25 | 6.8 | | | CCK, 1 to 11 Mbps | 3 | 7 | -37.0 | -39.6 | -39.7 | -26.8 | -21.25 | 5.6 | | | Non HT20, 6 to 54 Mbps | 1 | 7 | -32.1 | | | -25.1 | -21.25 | 3.9 | | | Non HT20, 6 to 54 Mbps | 2 | 7 | -33.9 | -35.4 | | -24.6 | -21.25 | 3.3 | | | Non HT20, 6 to 54 Mbps | 3 | 7 | -33.9 | -35.4 | -33.4 | -22.4 | -21.25 | 1.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 10 | -36.1 | -33.2 | | -21.4 | -21.25 | 0.2 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -38.0 | -42.9 | -41.7 | -23.6 | -21.25 | 2.3 | | ~ | HT/VHT20, M0 to M7 | 1 | 7 | -29.7 | | | -22.7 | -21.25 | 1.5 | | 2412 | HT/VHT20, M0 to M7 | 2 | 7 | -34.4 | -36.5 | | -25.3 | -21.25 | 4.1 | | 2 | HT/VHT20, M8 to M15 | 2 | 7 | -34.4 | -36.5 | | -25.3 | -21.25 | 4.1 | | | HT/VHT20, M0 to M7 | 3 | 7 | -32.5 | -35.3 | -35.4 | -22.4 | -21.25 | 1.2 | | | HT/VHT20, M8 to M15 | 3 | 7 | -32.5 | -35.3 | -35.4 | -22.4 | -21.25 | 1.2 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 10 | -35.0 | -34.3 | | -21.6 | -21.25 | 0.4 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | -34.4 | -36.5 | | -25.3 | -21.25 | 4.1 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -37.8 | -36.4 | -41.2 | -21.3 | -21.25 | 0.0 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -35.0 | -34.3 | -37.8 | -21.7 | -21.25 | 0.4 | | | HT/VHT20 STBC, M0 to M7 | 2 | 7 | -34.4 | -36.5 | | -25.3 | -21.25 | 4.1 | | | HT/VHT20 STBC, M0 to M7 | 3 | 7 | -32.5 | -35.3 | -35.4 | -22.4 | -21.25 | 1.2 | | | | | | | | | | | | | | Non HT40, 6 to 54 Mbps | 1 | 7 | -29.1 | | | -22.1 | -21.25 | 0.9 | | | Non HT40, 6 to 54 Mbps | 2 | 7 | -36.0 | -29.9 | | -21.9 | -21.25 | 0.7 | | | Non HT40, 6 to 54 Mbps | 3 | 7 | -35.0 | -32.7 | -34.2 | -22.1 | -21.25 | 0.8 | | | HT/VHT40, M0 to M7 | 1 | 7 | -28.7 | | | -21.7 | -21.25 | 0.5 | | | HT/VHT40, M0 to M7 | 2 | 7 | -33.6 | -33.5 | | -23.5 | -21.25 | 2.3 | | | HT/VHT40, M8 to M15 | 2 | 7 | -33.6 | -33.5 | | -23.5 | -21.25 | 2.3 | | 22 | HT/VHT40, M0 to M7 | 3 | 7 | -33.6 | -33.5 | -32.9 | -21.6 | -21.25 | 0.3 | | 2422 | HT/VHT40, M8 to M15 | 3 | 7 | -33.6 | -33.5 | -32.9 | -21.6 | -21.25 | 0.3 | | | HT/VHT40 Beam Forming, M0 to M7 | 2 | 10 | -36.2 | -34.3 | | -22.1 | -21.25 | 0.9 | | | HT/VHT40 Beam Forming, M8 to M15 | 2 | 7 | -33.6 | -33.5 | | -23.5 | -21.25 | 2.3 | | | HT/VHT40 Beam Forming, M0 to M7 | 3 | 12 | -36.8 | -37.6 | -46.6 | -21.9 | -21.25 | 0.7 | | | HT/VHT40 Beam Forming, M8 to M15 | 3 | 9 | -36.0 | -33.5 | -38.0 | -21.7 | -21.25 | 0.4 | | | HT/VHT40 STBC, M0 to M7 | 2 | 7 | -33.6 | -33.5 | | -23.5 | -21.25 | 2.3 | | | HT/VHT40 STBC, M0 to M7 | 3 | 7 | -33.6 | -33.5 | -32.9 | -21.6 | -21.25 | 0.3 | Page No: 77 of 126 | | CCK, 1 to 11 Mbps | 1 | 7 | -37.7 | | | -30.7 | -21.25 | 9.5 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|-----| | | CCK, 1 to 11 Mbps | 2 | 7 | -37.7 | -39.6 | | -28.5 | -21.25 | 7.3 | | | CCK, 1 to 11 Mbps | 3 | 7 | -43.4 | -42.6 | -40.8 | -30.4 | -21.25 | 9.1 |
| | Non HT20, 6 to 54 Mbps | 1 | 7 | -28.9 | | | -21.9 | -21.25 | 0.7 | | | Non HT20, 6 to 54 Mbps | 2 | 7 | -31.2 | -32.0 | | -21.6 | -21.25 | 0.3 | | | Non HT20, 6 to 54 Mbps | 3 | 7 | -31.8 | -35.7 | -33.0 | -21.4 | -21.25 | 0.2 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 10 | -35.0 | -36.4 | | -22.6 | -21.25 | 1.4 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -40.7 | -39.5 | -38.6 | -22.7 | -21.25 | 1.5 | | 2 | HT/VHT20, M0 to M7 | 1 | 7 | -32.7 | | | -25.7 | -21.25 | 4.5 | | 2462 | HT/VHT20, M0 to M7 | 2 | 7 | -36.5 | -33.4 | | -24.7 | -21.25 | 3.4 | | (1 | HT/VHT20, M8 to M15 | 2 | 7 | -36.5 | -33.4 | | -24.7 | -21.25 | 3.4 | | | HT/VHT20, M0 to M7 | 3 | 7 | -36.5 | -33.4 | -31.4 | -21.5 | -21.25 | 0.3 | | | HT/VHT20, M8 to M15 | 3 | 7 | -36.5 | -33.4 | -31.4 | -21.5 | -21.25 | 0.3 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 10 | -36.5 | -33.4 | | -21.7 | -21.25 | 0.4 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 7 | -36.5 | -33.4 | | -24.7 | -21.25 | 3.4 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -39.7 | -38.1 | -37.6 | -21.6 | -21.25 | 0.4 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -34.1 | -37.5 | -37.9 | -22.4 | -21.25 | 1.1 | | | HT/VHT20 STBC, M0 to M7 | 2 | 7 | -36.5 | -33.4 | | -24.7 | -21.25 | 3.4 | | | HT/VHT20 STBC, M0 to M7 | 3 | 7 | -36.5 | -33.4 | -31.4 | -21.5 | -21.25 | 0.3 | ### Conducted Bandedge Peak, 2412 MHz, HT/VHT20 Beam Forming, M0 to M7 Antenna A Antenna B Antenna C ### Conducted Bandedge Peak, 2462 MHz, Non HT20, 6 to 54 Mbps #### Antenna A Antenna B Antenna C Antenna Gain: 9 dBi | CCK, 1 to 11 Mbps 2 9 -37.0 -39.6 -26.1 -2 CCK, 1 to 11 Mbps 3 9 -39.3 -39.6 -40.9 -26.1 -2 Non HT20, 6 to 54 Mbps 1 9 -33.9 -24.9 -2 Non HT20, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -24.9 -41.7 -23.6 -2 HT/VHT20, M0 to M7 1 9 -34.4 -25.4 -2 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 6.8 -21.25 4.8 -21.25 4.9 -21.25 1.2 -21.25 1.7 -21.25 1.2 -21.25 2.3 | |--|--| | CCK, 1 to 11 Mbps 2 9 -37.0 -39.6 -26.1 -2 CCK, 1 to 11 Mbps 3 9 -39.3 -39.6 -40.9 -26.1 -2 Non HT20, 6 to 54 Mbps 1 9 -33.9 -24.9 -2 Non HT20, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -24.9 -41.7 -23.6 -2 HT/VHT20, M0 to M7 1 9 -34.4 -25.4 -2 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 4.8
-21.25 4.9
-21.25 3.7
-21.25 1.2
-21.25 1.7
-21.25 1.2
-21.25 2.3 | | CCK, 1 to 11 Mbps 3 9 -39.3 -39.6 -40.9 -26.1 -2 Non HT20, 6 to 54 Mbps 1 9 -33.9 -24.9 -2 Non HT20, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -38.0 -42.9 -41.7 -23.6 -2 HT/VHT20, M0 to M7 1 9 -34.4 -25.4 -2 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 4.9
-21.25 3.7
-21.25 1.2
-21.25 1.7
-21.25 1.2
-21.25 2.3 | | Non HT20, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps Non HT20, M0 to M7 HT/VHT20, M0 to M7 HT/VHT20, M0 to M7 Non HT20, N | -21.25 3.7
-21.25 1.2
-21.25 1.7
-21.25 1.2
-21.25 2.3 | | Non HT20, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20, 6 to 54 Mbps 3 9 -38.8 -33.6 -41.7 -23.0 -2 Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -38.0 -42.9 -41.7 -23.6 -2 HT/VHT20, M0 to M7 1 9 -34.4 -25.4 -2 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 | -21.25 1.2
-21.25 1.7
-21.25 1.2
-21.25 2.3 | | Non HT20, 6 to 54 Mbps Non HT20 Beam Forming, 6 to 54 Mbps This is a second of the se | -21.25 1.7
-21.25 1.2
-21.25 2.3 | | Non HT20 Beam Forming, 6 to 54 Mbps 2 9 -36.1 -33.2 -22.4 -2 Non HT20 Beam Forming, 6 to 54 Mbps 3 12 -38.0 -42.9 -41.7 -23.6 -2 HT/VHT20, M0 to M7 1 9 -34.4 -25.4 -2 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 1.2
-21.25 2.3 | | Non HT20 Beam Forming, 6 to 54 Mbps HT/VHT20, M0 to M7 HT/VHT20, M0 to M7 HT/VHT20, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 2.3 | | No. or or other content | | | No. or or other content | | | HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 4.2 | | HT/VHT20, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 0.4 | | HTA//HT00 MO +- M7 | -21.25 0.4 | | HT/VHT20, M0 to M7 3 9 -35.0 -34.3 -37.8 -21.7 -2 | -21.25 0.4 | | HT/VHT20, M8 to M15 3 9 -35.0 -34.3 -37.8 -21.7 -2 | -21.25 0.4 | | HT/VHT20 Beam Forming, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 | -21.25 0.4 | | HT/VHT20 Beam Forming, M8 to M15 2 9 -32.5 -35.3 -21.7 -2 | -21.25 0.4 | | HT/VHT20 Beam Forming, M0 to M7 3 12 -37.8 -36.4 -41.2 -21.3 -2 | -21.25 0.0 | | HT/VHT20 Beam Forming, M8 to M15 3 9 -35.0 -34.3 -37.8 -21.7 -2 | -21.25 0.4 | | HT/VHT20 STBC, M0 to M7 2 9 -32.5 -35.3 -21.7 -2 | -21.25 0.4 | | HT/VHT20 STBC, M0 to M7 3 9 -35.0 -34.3 -37.8 -21.7 -2 | -21.25 0.4 | | | | | Non HT40, 6 to 54 Mbps 1 9 -33.8 -24.8 -2 | -21.25 3.6 | | Non HT40, 6 to 54 Mbps 2 9 -35.0 -32.7 -21.7 -2 | -21.25 0.4 | | Non HT40, 6 to 54 Mbps 3 9 -34.0 -34.6 -40.9 -21.8 -2 | -21.25 0.6 | | HT/VHT40, M0 to M7 1 9 -33.6 -24.6 -2 | -21.25 3.4 | | HT/VHT40, M0 to M7 2 9 -33.6 -33.5 -21.5 -2 | -21.25 0.3 | | HT/VHT40, M8 to M15 2 9 -33.6 -33.5 -21.5 -2 | -21.25 0.3 | | \[\begin{align*} \text{MT/VHT40, M0 to M7} \text{3} \[\text{9} \] -36.0 -33.5 -38.0 -21.7 -2 - | -21.25 0.4 | | HT/VHT40, M0 to M7 3 9 -36.0 -33.5 -38.0 -21.7 -22.7 HT/VHT40, M8 to M15 3 9 -36.0 -33.5 -38.0 -21.7 -22.7 | -21.25 0.4 | | HT/VHT40 Beam Forming, M0 to M7 2 9 -33.6 -33.5 -21.5 -2 | -21.25 0.3 | | HT/VHT40 Beam Forming, M8 to M15 2 9 -33.6 -33.5 -21.5 -2 | -21.25 0.3 | | HT/VHT40 Beam Forming, M0 to M7 3 12 -36.8 -37.6 -46.6 -21.9 -2 | -21.25 0.7 | | | -21.25 0.4 | | 3, 21, 11, 2 | -21.25 0.3 | | | | Page No: 81 of 126 | | CCK, 1 to 11 Mbps | 1 | 9 | -37.7 | | | -28.7 | -21.25 | 7.5 | |------|-------------------------------------|---|----|-------|-------|-------|-------|--------|------| | | CCK, 1 to 11 Mbps | 2 | 9 | -43.4 | -42.6 | | -31.0 | -21.25 | 9.7 | | | CCK, 1 to 11 Mbps | 3 | 9 | -46.5 | -45.7 | -43.9 | -31.5 | -21.25 | 10.2 | | | Non HT20, 6 to 54 Mbps | 1 | 9 | -30.6 | | | -21.6 | -21.25 | 0.4 | | | Non HT20, 6 to 54 Mbps | 2 | 9 | -31.8 | -35.7 | | -21.3 | -21.25 | 0.1 | | | Non HT20, 6 to 54 Mbps | 3 | 9 | -35.1 | -38.2 | -37.5 | -23.0 | -21.25 | 1.7 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 2 | 9 | -31.8 | -35.7 | | -21.3 | -21.25 | 0.1 | | | Non HT20 Beam Forming, 6 to 54 Mbps | 3 | 12 | -40.7 | -39.5 | -38.6 | -22.7 | -21.25 | 1.5 | | ~ | HT/VHT20, M0 to M7 | 1 | 9 | -30.6 | | | -21.6 | -21.25 | 0.4 | | 2462 | HT/VHT20, M0 to M7 | 2 | 9 | -36.5 | -33.4 | | -22.7 | -21.25 | 1.4 | | 2 | HT/VHT20, M8 to M15 | 2 | 9 | -36.5 | -33.4 | | -22.7 | -21.25 | 1.4 | | | HT/VHT20, M0 to M7 | 3 | 9 | -34.1 | -37.5 | -37.9 | -22.4 | -21.25 | 1.1 | | | HT/VHT20, M8 to M15 | 3 | 9 | -34.1 | -37.5 | -37.9 | -22.4 | -21.25 | 1.1 | | | HT/VHT20 Beam Forming, M0 to M7 | 2 | 9 | -36.5 | -33.4 | | -22.7 | -21.25 | 1.4 | | | HT/VHT20 Beam Forming, M8 to M15 | 2 | 9 | -36.5 | -33.4 | | -22.7 | -21.25 | 1.4 | | | HT/VHT20 Beam Forming, M0 to M7 | 3 | 12 | -39.7 | -38.1
| -37.6 | -21.6 | -21.25 | 0.4 | | | HT/VHT20 Beam Forming, M8 to M15 | 3 | 9 | -34.1 | -37.5 | -37.9 | -22.4 | -21.25 | 1.1 | | | HT/VHT20 STBC, M0 to M7 | 2 | 9 | -36.5 | -33.4 | | -22.7 | -21.25 | 1.4 | | | HT/VHT20 STBC, M0 to M7 | 3 | 9 | -34.1 | -37.5 | -37.9 | -22.4 | -21.25 | 1.1 | ### Conducted Bandedge Peak, 2412 MHz, HT/VHT20 Beam Forming, M0 to M7 #### Antenna A Antenna B Antenna C ### Conducted Bandedge Peak, 2462 MHz, Non HT20, 6 to 54 Mbps Antenna A Antenna B # **Conducted Bandedge (Non-Restricted Band)** | Frequency
(MHz) | Mode | Data
Rate
(Mbps) | Conducted
Bandedge
Delta
(dB) | Limit
(dBc) | Margin
(dB) | |--------------------|------------------------|------------------------|--|----------------|----------------| | | CCK, 1 to 11 Mbps | 11 | 54.5 | >30 | 24.5 | | 2412 | Non HT20, 6 to 54 Mbps | 6 | 40.6 | >30 | 10.6 | | | HT/VHT20, M0 to M15 | m0 | 39.4 | >30 | 9.4 | | | | | | | | | 2422 | Non HT40, 6 to 54 Mbps | 6 | 42.5 | >30 | 12.5 | | 2422 | HT/VHT40, M0 to M15 | m0 | 43.5 | >30 | 13.5 | Page No: 85 of 126 #### Conducted Bandedge Delta, 2412 MHz, CCK, 1 to 11 Mbps ### Conducted Bandedge Delta, 2412 MHz, Non HT20, 6 to 54 Mbps Page No: 86 of 126 #### Conducted Bandedge Delta, 2412 MHz, HT/VHT20, M0 to M15 ### Conducted Bandedge Delta, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 87 of 126 ### Conducted Bandedge Delta, 2422 MHz, HT/VHT40, M0 to M15 Title: Physical Test Arrangement Photograph This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device. ### **Appendix B: Emission Test Results** Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA ### Radiated Emission Setup Diagram-Below 1G # **Radiated Emission Setup Diagram-Above 1G** ### **B.1 Radiated Spurious Emissions** **15.205 / RSS-Gen / LP0002:3.10.1(5)/2.8** Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) and RSS-Gen 8.10, must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen 8.9. Ref. ANSI C63.10: 2013 section 4.1.4.2.2, 4.1.4.2.3, 6.6.4 & 11.12.2 Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode. Span: 1GHz – 26 GHz Reference Level: 80 dBuV Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 1MHz Video Bandwidth: 3 MHz for peak, 1 KHz for average Detector: Peak Terminate the access Point RF ports with 50 ohm loads. Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height) Save 2 plots: 1) Average plot, Limit= 54dBuV/m @3m 2) Peak plot, Limit = 74dBuV/m @3m Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz. | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | | EUT | S03 | ✓ | | | 2 | Support | S04 | | \checkmark | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 91 of 126 # **B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case** | | | | Spurious
Emission | | | |-----------|------------------------|-----------|----------------------|----------|--------| | Frequency | | Data Rate | Level | Limit | Margin | | (MHz) | Mode | (Mbps) | (dBuV/m) | (dBuV/m) | (MHz) | | 2412 | Non HT20, 6 to 54 Mbps | 1 | 50.4 | 54.0 | 3.6 | | 2412 | Non HT20, 6 to 54 Mbps | 6 | 50.1 | 54.0 | 3.9 | | 2412 | HT/VHT20, M0 to M23 | m0 | 49.9 | 54.0 | 4.1 | | 2422 | Non HT40, 6 to 54 Mbps | 6 | 50.4 | 54.0 | 3.6 | | 2422 | HT/VHT40, M0 to M23 | m0 | 50.4 | 54.0 | 3.6 | | 2437 | Non HT20, 6 to 54 Mbps | 1 | 50.4 | 54.0 | 3.6 | | 2437 | Non HT20, 6 to 54 Mbps | 6 | 50.2 | 54.0 | 3.8 | | 2437 | HT/VHT20, M0 to M23 | m0 | 50.0 | 54.0 | 4.0 | | 2442 | Non HT40, 6 to 54 Mbps | 6 | 50.4 | 54.0 | 3.6 | | 2442 | HT/VHT40, M0 to M23 | m0 | 50.3 | 54.0 | 3.7 | | 2452 | Non HT40, 6 to 54 Mbps | 6 | 50.1 | 54.0 | 3.9 | | 2452 | HT/VHT40, M0 to M23 | m0 | 50.3 | 54.0 | 3.7 | | 2462 | Non HT20, 6 to 54 Mbps | 1 | 50.5 | 54.0 | 3.5 | | 2462 | Non HT20, 6 to 54 Mbps | 6 | 50.1 | 54.0 | 3.9 | | 2462 | HT/VHT20, M0 to M23 | m0 | 50.6 | 54.0 | 3.4 | Page No: 92 of 126 ### Average Radiated Transmitter Spurs, 2412 MHz, Non HT20, 6 to 54 Mbps Page No: 93 of 126 ### Average Radiated Transmitter Spurs, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 94 of 126 ### Average Radiated Transmitter Spurs, 2437 MHz, CCK, 1 to 11 Mbps Page No: 95 of 126 ### Average Radiated Transmitter Spurs, 2437 MHz, HT/VHT20, M0 to M23 Page No: 96 of 126 ### Average Radiated Transmitter Spurs, 2442 MHz, HT/VHT40, M0 to M23 Page No: 97 of 126 ### Average Radiated Transmitter Spurs, 2452 MHz, HT/VHT40, M0 to M23 Page No: 98 of 126 ### Average Radiated Transmitter Spurs, 2462 MHz, Non HT20, 6 to 54 Mbps Page No: 99 of 126 # **B.1.P Transmitter Radiated Spurious Emissions-Peak Worst Case** | | | | Spurious
Emission | | | |-----------|------------------------|-----------|----------------------|----------|--------| | Frequency | <u>.</u> . | Data Rate | Level | Limit | Margin | | (MHz) | Mode | (Mbps) | (dBuV/m) | (dBuV/m) | (MHz) | | 2412 | Non HT20, 6 to 54 Mbps | 1 | 62.2 | 74.0 | 11.8 | | 2412 | Non HT20, 6 to 54 Mbps | 6 | 63.3 | 74.0 | 10.7 | | 2412 | HT/VHT20, M0 to M23 | m0 | 63.3 | 74.0 | 10.7 | | 2422 | Non HT40, 6 to 54 Mbps | 6 | 62.5 | 74.0 | 11.5 | | 2422 | HT/VHT40, M0 to M23 | m0 | 62.3 | 74.0 | 11.7 | | 2437 | Non HT20, 6 to 54 Mbps | 1 | 63.1 | 74.0 | 10.9 | | 2437 | Non HT20, 6 to 54 Mbps | 6 | 61.6 | 74.0 | 12.4 | | 2437 | HT/VHT20, M0 to M23 | m0 | 62.6 | 74.0 | 11.4 | | 2442 | Non HT40, 6 to 54 Mbps | 6 | 63.3 | 74.0 | 10.7 | | 2442 | HT/VHT40, M0 to M23 | m0 | 62.3 | 74.0 | 11.7 | | 2452 | Non HT40, 6 to 54 Mbps | 6 | 62.8 | 74.0 | 11.2 | | 2452 | HT/VHT40, M0 to M23 | m0 | 63.2 | 74.0 | 10.8 | | 2462 | Non HT20, 6 to 54 Mbps | 1 | 63.0 | 74.0 | 11.0 | | 2462 | Non HT20, 6 to 54 Mbps | 6 | 62.1 | 74.0 | 11.9 | | 2462 | HT/VHT20, M0 to M23 | m0 | 62.3 | 74.0 | 11.7 | Page No: 102 of 126 ### Peak Radiated Transmitter Spurs, 2412 MHz, Non HT20, 6 to 54 Mbps Page No: 103 of 126 ### Peak Radiated Transmitter Spurs, 2422 MHz, Non HT40, 6 to 54 Mbps Page No: 104 of 126 ### Peak Radiated Transmitter Spurs, 2437 MHz, CCK, 1 to 11 Mbps Page No: 105 of 126 ### Peak Radiated Transmitter Spurs, 2437 MHz, HT/VHT20, M0 to M23 Page No: 106 of 126 ### Peak Radiated Transmitter Spurs, 2442 MHz, HT/VHT40, M0 to M23 Page No: 107 of 126 ### Peak Radiated Transmitter Spurs, 2452 MHz, HT/VHT40, M0 to M23 Page No: 108 of 126 #### Peak Radiated Transmitter Spurs, 2462 MHz, Non HT20, 6 to 54 Mbps Page No: 109 of 126 ## **B.2 Receiver Spurious Emissions** **RSS-Gen** Receivers are required to comply with the limits of spurious emissions as set out in this section. Receiver emission measurements are to be performed as per the normative test method referenced in Section 3. Radiated emissions which fall in the restricted bands, as defined in RSS-Gen section 8.10, must also comply with the radiated emission limits specified in RSS-Gen section 8.9. For emissions at frequencies below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. At frequencies above 1 GHz, measurements shall be performed using a linear average detector with a minimum resolution bandwidth of 1 MHz. Ref. RSS-Gen section 8.9 & 8.10 ANSI C63.10: 2013 section 4.1.4.2.2, 4.1.4.2.3, 6.6.4 & 11.12.2 Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode. Span: 1GHz – 18 GHz Reference Level: 80 dBuV Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 1MHz Video Bandwidth: 3MHz for Peak, 1 kHz for average Detector: Peak Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals. Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height) Save plot: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak Plot (Vertical and Horizontal), Limit= 74dBuV/m @3m This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz. | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | 0 | EUT | S03 | \checkmark | | | 2 | Support | S04 | | \checkmark | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 112 of 126 ## **B.2.A Receiver Radiated Spurious Emissions (Average Measurements)** #### **B.2.A Receiver Radiated Spurious Emissions (Peak Measurements)** #### **B.3 Radiated Emissions 30MHz to 1GHz** **15.205 / 15.209 / RSS-Gen / LP0002:3.10.1(5)/2.8** Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)) and RSS-Gen section 8.9. Ref. ANSI C63.10: 2013 section 6.5 Using Vasona, configure the spectrum analyzer as shown
below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode. Span: 30MHz – 1GHz Reference Level: 80 dBuV Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 100kHz Video Bandwidth: 300kHz Detector: Peak for Pre-scan, Quasi-Peak Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection. Terminate the access Point RF ports with 50 ohm loads. Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height) This report represents the worst case data for all supported operating modes and antennas. | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | 0 | EUT | S03 | \checkmark | | | 2 | Support | S04 | | ✓ | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See Appendix C for list of test equipment Page No: 115 of 126 #### **Test Results Table** | Frequency (MHz) | Raw
(dBuV) | Cable
Loss | | Level
(dBuV/m) | Measurement
Type | Pol | | Azt
(Deg) | Limit
(dBuV/m) | Margin
(dB) | Pass/
Fail | Comments | |-----------------|---------------|---------------|-------|-------------------|---------------------|-----|-----|--------------|-------------------|----------------|---------------|----------| | 34.24375 | 14.29 | 0.69 | 17.95 | 32.93 | Quasi Max | Η | 105 | 12 | 40.50 | -7.57 | Pass | | | 47.58125 | 24.03 | 0.80 | 8.83 | 33.66 | Quasi Max | Η | 113 | 36 | 40.50 | -6.84 | Pass | | | 212.48125 | 14.97 | 1.77 | 10.50 | 27.24 | Quasi Max | ٧ | 117 | 182 | 40.50 | -13.26 | Pass | | | 100.325 | 14.43 | 1.20 | 10.39 | 26.02 | Quasi Max | Η | 233 | 244 | 40.50 | -14.48 | Pass | | | 66.98125 | 25.03 | 1.00 | 8.26 | 34.29 | Quasi Max | Η | 113 | 292 | 40.50 | -6.21 | Pass | | | 76.68125 | 22.45 | 1.06 | 8.19 | 31.70 | Quasi Max | Н | 128 | 344 | 40.50 | -8.80 | Pass | | Title: Radiated Emissions Configuration Photograph #### **B.4 AC Conducted Emissions** **FCC 15.207 (a) & RSS-Gen 8.8 / LP0002:2.3** Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries. Measurement Procedure Accordance with ANSI C63.10:2013 section 6.2 Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode. Span: 150 KHz – 30 MHz Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 9 KHz Video Bandwidth: 30 KHz Detector: Quasi-Peak / Average | System
Number | Description | Samples | System under test | Support equipment | |------------------|-------------|---------|-------------------|-------------------| | 0 | EUT | S03 | \searrow | | | 2 | Support | S04 | | \checkmark | | Tested By : | Date of testing: | |--------------------|-------------------------| | Jose Aguirre | 25-April-16 - 08-Aug-16 | | Test Result : PASS | | See separate EMC test report for test data. #### **Test Results Table** | Frequency (MHz) | Raw
(dBuV) | | Factors (dB) | Level
(dBuV/m) | Measurement
Type | Line | Limit
(dBuV/m) | Margin
(dB) | Pass/
Fail | Comments | |-----------------|---------------|-------|--------------|-------------------|---------------------|---------|-------------------|----------------|---------------|----------| | .318 | 22.63 | 20.28 | 0.04 | 42.96 | Quasi Peak | Live | 59.76 | -16.80 | Pass | | | 3.446 | 14.92 | 19.99 | 0.05 | 34.95 | Quasi Peak | Live | 56.00 | -21.05 | Pass | | | 3.135 | 11.83 | 19.98 | 0.06 | 31.86 | Quasi Peak | Live | 56.00 | -24.14 | Pass | | | .195 | 27.83 | 20.78 | 0.05 | 48.66 | Quasi Peak | Live | 63.82 | -15.16 | Pass | | | 17.358 | 14.25 | 20.33 | 0.19 | 34.77 | Quasi Peak | Live | 60.00 | -25.23 | Pass | | | 3.350 | 15.24 | 19.98 | 0.05 | 35.27 | Quasi Peak | Live | 56.00 | -20.73 | Pass | | | .261 | 21.84 | 20.48 | 0.04 | 42.36 | Quasi Peak | Live | 61.40 | -19.04 | Pass | | | 3.446 | 11.71 | 19.99 | 0.05 | 31.75 | Quasi Peak | Neutral | 56.00 | -24.25 | Pass | | | .195 | 25.78 | 20.78 | 0.05 | 46.61 | Quasi Peak | Neutral | 63.82 | -17.21 | Pass | | | 3.350 | 11.97 | 19.98 | 0.05 | 32.01 | Quasi Peak | Neutral | 56.00 | -23.99 | Pass | | | 3.135 | 8.12 | 19.98 | 0.06 | 28.16 | Quasi Peak | Neutral | 56.00 | -27.84 | Pass | | | .261 | 20.21 | 20.48 | 0.04 | 40.73 | Quasi Peak | Neutral | 61.40 | -20.67 | Pass | | | 17.358 | 4.23 | 20.33 | 0.19 | 24.75 | Quasi Peak | Neutral | 60.00 | -35.25 | Pass | | | .318 | 20.63 | 20.28 | 0.04 | 40.95 | Quasi Peak | Neutral | 59.76 | -18.81 | Pass | | | .318 | 11.54 | 20.28 | 0.04 | 31.87 | Average | Live | 49.76 | -17.89 | Pass | | | 3.446 | 1.77 | 19.99 | 0.05 | 21.81 | Average | Live | 46.00 | -24.19 | Pass | | | 3.135 | 1.82 | 19.98 | 0.06 | 21.86 | Average | Live | 46.00 | -24.14 | Pass | | | .195 | 17.05 | 20.78 | 0.05 | 37.87 | Average | Live | 53.82 | -15.95 | Pass | | | 17.358 | 11.08 | 20.33 | 0.19 | 31.59 | Average | Live | 50.00 | -18.41 | Pass | | | 3.350 | 2.45 | 19.98 | 0.05 | 22.49 | Average | Live | 46.00 | -23.51 | Pass | | | .261 | 10.69 | 20.48 | 0.04 | 31.21 | Average | Live | 51.40 | -20.19 | Pass | | | 3.446 | -0.15 | 19.99 | 0.05 | 19.89 | Average | Neutral | 46.00 | -26.11 | Pass | | | .195 | 14.85 | 20.78 | 0.05 | 35.68 | Average | Neutral | 53.82 | -18.14 | Pass | | | 3.350 | 0.12 | 19.98 | 0.05 | 20.16 | Average | Neutral | 46.00 | -25.84 | Pass | | | 3.135 | -1.39 | 19.98 | 0.06 | 18.64 | Average | Neutral | 46.00 | -27.36 | Pass | | | .261 | 8.30 | 20.48 | 0.04 | 28.82 | Average | Neutral | 51.40 | -22.58 | Pass | | Page No: 119 of 126 | Frequency
(MHz) | Raw
(dBuV) | | Factors (dB) | Level
(dBuV/m) | Measurement
Type | _ | Limit
(dBuV/m) | Margin
(dB) | Pass/
Fail | Comments | |--------------------|---------------|-------|--------------|-------------------|---------------------|---------|-------------------|----------------|---------------|----------| | 17.358 | -0.50 | 20.33 | 0.19 | 20.02 | Average | Neutral | 50.00 | -29.98 | Pass | | | .318 | 9.08 | 20.28 | 0.04 | 29.41 | Average | Neutral | 49.76 | -20.35 | Pass | | Page No: 120 of 126 Title: Conducted Emissions Configuration Photograph # **Appendix C: List of Test Equipment Used to perform the test** | | Tes | st Equipment used for Radiated Emission | าร | | | |-----------|-----------------------|---|-------------|-----------|---------------| | Equip# | Manufacturer/ Model | Description | Last Cal | Next Cal | Test Item | | CIS051796 | TTA1800-30-HG | SMA 18 GHz Pre-Amplifier | 29-Sep-15 | 29-Sep-16 | B.1, B.2 | | | Miteq | | | | | | CIS035285 | 3117 | Double Ridged Waveguide Horn | 30-Sep-15 | 30-Sep-16 | B.1, B.2 | | | ETS-Lindgren | Antenna | | | | | CIS008447 | NSA 10m Chamber | NSA 10m Chamber | 14-Oct-15 | 14-Oct-16 | B.3 | | | Cisco | | | | | | CIS045096 | TH0118 | Mast Mount Preamplifier Array, | 4-Nov-15 | 4-Nov-16 | B.1, B.2 | | | Cisco | 1-18GHz | | | | | CIS030652 | JB1 | Combination Antenna, | 4-Dec-15 | 4-Dec-16 | B.3 | | | Sunol Sciences | 30MHz-2GHz | | | | | CIS041929 | iBTHP-5-DB9 | 5 inch Temp/RH/Press Sensor w/20ft | 22-Dec-15 | 22-Dec-16 | B.1, B.2, B.3 | | | Newport | cable | | | | | CIS043124 | Above 1GHz Site Cal | Above 1GHz Cispr Site Verification | 14-Jan-16 | 14-Jan-17 | B.1, B.2 | | | Cisco | | | | | | CIS047300 | N9038A | MXE EMI Receiver | 28-Jan-16 | 28-Jan-17 | B.1, B.2, B.3 | | | Agilent Technologies | 20Hz to 26.5 Ghz | | | | | CIS051642 | Sucoflex 106PA | RF N Type Cable 8.5m | 11-Feb-16 | 11-Feb-17 | B.1, B.2, B.3 | | | Huber+Suhner | | | | | | CIS030559 | UFB311A-1-0950-504504 | RF Coaxial Cable, to 18GHz, 95 in | 15-Feb-16 | 15-Feb-17 | B.1, B.2, B.3 | | | Micro-Coax | | | | | | CIS020975 | UFB311A-0-1344-520520 | RF Coaxial Cable, to 18GHz, 134.4 in | 17-Feb-16 | 17-Feb-17 | B.1, B.2, B.3 | | | Micro-Coax | | | | | | CIS051708 | UFB293C-2-0840-300504 | RF Coaxial SMA-N Type Cable | 28-Jun-16 | 28-Jun-17 | B.1, B.2, B.3 | | | Micro-Coax | | | | | | CIS044940 | ESU40 | EMI Test Receiver, | 2-Nov-15 | 2-Nov-16 | B.1, B.2 | | | Rohde & Schwarz | 20Hz-40GHz | | | | | CIS034075 | RSG 2000 | Reference Spectrum Generator, | Cal Not Req | uired | | | | Schaffner | 1-18GHz | | | | | CIS041979 | 1840 | 18-40GHz EMI Test Head/ | 02-Sep-16 | 02-Sep-17 | B.1, B.2 | | | Cisco | Verification Fixture | | | | | CIS044940 | ESU40 | EMI Test Receiver, | 2-Nov-15 | 2-Nov-16 | B.1, B.2, | | | Rohde & Schwarz | 20Hz-40GHz | | | | | CIS030652 | JB1 | Combination Antenna, | 4-Dec-15 | 4-Dec-16 | B.3 | | | Sunol Sciences | 30MHz-2GHz | | | | | CIS003003 | 83731B | Synthesized Signal Generator | 29-Jan-16 | 29-Jan-17 | B.1, B.2 | | | HP | - | | | | | CIS037236 | 50CB-015 | GPIB Control Box | | | B.1, B.2 | | | JFW | | | | | Page No: 122 of 126 | | Test Equipment used for AC Mains Conducted Emissions | | | | | | | | | |--------|--|---|---------------------|---------------------|-----------|--|--|--|--| | Equip# | Manufacturer/ Model | Description | Last Cal | Next Cal | Test Item | | | | | | 8510 | Fischer Custom Communications
FCC-450B-2.4-N | Instrumentation Limiter | 5/16/16 | 5/16/17 | B.4 | | | | | | 23802 | Fischer Custom Communications FCC-801-M2-50A | CDN, 2-LINE 50A | 1/12/16 | 1/12/17 | B.4 | | | | | | 45995
| Fischer Custom Communications
F-090527-1009-2 | Lisn Adapter | 6/17/16 | 6/17/17 | B.4 | | | | | | 49468 | Coleman
RG223 | BNC 25 ft Cable | 3/9/16 | 3/9/17 | B.4 | | | | | | 31918 | Midwest Microwave TRM-2048-MC-BNC-10 | 50 Ohm, 5W Terminator, Type BNC | 11/9/15 | 11/9/16 | B.4 | | | | | | 49531 | TTE
H785-150K-50-21378 | High Pass Filter | 5/3/16 | 5/3/17 | B.4 | | | | | | 45994 | Fischer Custom Communications
F-090527-1009-1 | Line Impedance Stabilization Network | 6/17/16 | 6/17/17 | B.4 | | | | | | 18963 | York
CNE V | Comparison Noise Emitter,
30 - 1000MHz | Cal Not
Required | Cal Not
Required | B.4 | | | | | | 45050 | Rohde & Schwarz
ESCI | EMI Test Receiver | 11/3/15 | 11/3/16 | B.4 | | | | | | 51721 | Teseq
CDN ST08A | Coupling Decoupling Network | 6/7/16 | 6/7/17 | B.4 | | | | | | 54231 | Newport
iBTHP-5-DB9 | 5 inch Temp/RH/Press Sensor w/20ft cable | 2/10/16 | 2/10/17 | B.4 | | | | | | | Tes | t Equipment used for RF Conducted | Tests | | | |-----------|----------------------|-----------------------------------|-----------|-----------|------------| | Equip# | Manufacturer/ Model | Description | Last Cal | Next Cal | Test Item | | CIS054666 | RA08-S1S1-18 | SMA 18" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054667 | RA08-S1S1-18 | SMA 18" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054668 | RA08-S1S1-18 | SMA 18" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054669 | RA08-S1S1-18 | SMA 18" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054686 | NI PXI-2796 | Plug-in switch module | 6-Oct-15 | 6-Oct-16 | A1 thru A7 | | | National Instruments | | | | | | CIS055166 | RFLT4WDC40GK | 4 Way Power Divider 40GHz | 23-Nov-15 | 23-Nov-16 | A1 thru A7 | | | RF Lambda | | | | | | CIS054662 | RFLT4WDC40GK | SMA 36" cable | 24-Sep-15 | 24-Sep-16 | A1 thru A7 | | | RF Lambda | | | | | | CIS054656 | BRC50705-02 | Band Reject Filter | 24-Sep-15 | 24-Sep-16 | A1 thru A7 | | | Micro-Tronics | | | | | | CIS054655 | BRC50704-02 | Notch Filter, | 24-Sep-15 | 24-Sep-16 | A1 thru A7 | | | Micro-Tronics | SB:5.470-5.725GHz, to 12GHz | | | | Page No: 123 of 126 | CIS054654 | BRC50703-02 | Notch Filter, | 24-Sep-15 | 24-Sep-16 | A1 thru A7 | |------------------------|-----------------------------|-------------------------------|------------------|-----------|------------| | | Micro-Tronics | SB:5.150-5.350GHz, to 11GHz | | | | | CIS054653 | BRM50702-02 | Notch Filter, | 24-Sep-15 | 24-Sep-16 | A1 thru A7 | | | Micro-Tronics | SB:2.400-2.500GHz, to 18GHz | | | | | CIS054678 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054677 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054676 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054675 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054674 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054673 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054672 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054671 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054670 | RA08-S1S1-12 | SMA 12" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054664 | GC12-8181-16 | SMA 16" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054663 | F120-S1S1-48 | SMA 48" Cable | 25-Sep-15 | 25-Sep-16 | A1 thru A7 | | | MegaPhase | | | | | | CIS054686 | NI PXI-2796 | Plug-in switch module | 6-Oct-15 | 6-Oct-16 | A1 thru A7 | | | National Instruments | | | | | | CIS042005 | BWS30W2+ | SMA 30dB Attenuator | 16-Oct-15 | 16-Oct-16 | A1 thru A7 | | | Mini-Circuits | | | | | | CIS041995 | BW-S6W2 | 6dB Attenuator | 16-Oct-15 | 16-Oct-16 | A1 thru A7 | | | Mini-Circuits | | | | | | CIS054695 | D3C2060 | Circulator | 20-Oct-15 | 20-Oct-16 | A1 thru A7 | | | Ditom | | | | | | CIS055146 | RA08-S1S1-12 | 12" SMA Cable | 17-Nov-15 | 17-Nov-16 | A1 thru A7 | | | Megaphase | | | | | | CIS050721 | N9030A | PXA Signal Analyzer | 30-Mar-16 | 30-Mar-17 | A1 thru A7 | | | Keysight | | | | | | CIS054303 | N5182B | MXG X-Series RF Vector Signal | 6-Apr-16 | 6-Apr-17 | A1 thru A7 | | | Keysight | Generator | | | | | CIS055358
CIS055099 | ZFSC-2-10G | Splitter | 11-Apr-16 | 11-Apr-17 | A1 thru A7 | | | Mini-Circuits | | · | • | | | | SMART2200RM2U
Tripp-Lite | Power Supply | Cal Not Required | | A1 thru A7 | | CIS055094 | PXI-1042 | Chassis | Cal Not Required | | A1 thru A7 | | | National Instruments | Chaolo | <u> </u> | | | Page No: 124 of 126 #### **Appendix E: Abbreviation Key and Definitions** The following table defines abbreviations used within this test report. | Abbreviation | Description | Abbreviation | Description | | |--------------|--|--------------|------------------------------------|--| | EMC | Electro Magnetic Compatibility | °F | Degrees Fahrenheit | | | EMI | Electro Magnetic Interference | °C | Degrees Celsius | | | EUT | Equipment Under Test | Temp | Temperature | | | ITE | Information Technology Equipment | S/N | Serial Number | | | TAP | Test Assessment Schedule | Qty | Quantity | | | ESD | Electro Static Discharge | emf | Electromotive force | | | EFT | Electric Fast Transient | RMS | Root mean square | | | EDCS | Engineering Document Control System | Qp | Quasi Peak | | | Config | Configuration | Av | Average | | | CIS# | Cisco Number (unique identification number for Cisco test equipment) | Pk | Peak | | | Cal | Calibration | kHz | Kilohertz (1x10 ³) | | | EN | European Norm | MHz | MegaHertz (1x10 ⁶) | | | IEC | International Electro technical Commission | GHz | Gigahertz (1x10 ⁹) | | | CISPR | International Special Committee on Radio Interference | Н | Horizontal | | | CDN | Coupling/Decoupling Network | V | Vertical | | | LISN | Line Impedance Stabilization Network | dB | decibel | | | PE | Protective Earth | V | Volt | | | GND | Ground | kV | Kilovolt (1x10 ³) | | | L1 | Line 1 | μV | Microvolt (1x10 ⁻⁶) | | | L2 | Line2 | Α | Amp | | | L3 | Line 3 | μА | Micro Amp (1x10 ⁻⁶) | | | DC | Direct Current | mS | Milli Second (1x10 ⁻³) | | | RAW | Uncorrected measurement value, as indicated by the measuring device | μS | Micro Second (1x10 ⁻⁶) | | | RF | Radio Frequency | μS | Micro Second (1x10 ⁻⁶) | | | SLCE | Signal Line Conducted Emissions | m | Meter | | | Meas dist | Measurement distance | Spec dist | Specification distance | | | N/A or NA | Not Applicable | SL | Signal Line (or Telecom Line) | | | Р | Power Line | L | Live Line | | | N | Neutral Line | R | Return | | | S | Supply | AC | Alternating Current | | Page No: 125 of 126 # **End** Page No: 126 of 126