

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2500058

FCC RF Test Report

Report No.: JYTSZ-R12-2500058

Applicant: ITEL MOBILE LIMITED

Address of Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: A6610L

Trade Mark: itel

FCC ID: 2AJMN-A6610L

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 10 Jan., 2025

Date of Test: 11 Jan., to 18 Feb., 2025

Date of Report Issued: 19 Feb., 2025

Test Result: PASS

Project by: Date: 19 Feb., 2025

Reviewed by: 7 2025 Date: 19 Feb., 2025

Approved by: Date: 19 Feb., 2025

Manager

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	19 Feb., 2025	Original

2 Contents

		Page
Cover	Page	1
1 V	/ersion	2
2 C	Contents	3
	Seneral Information	
3.1	Client Information	
3.2	General Description of E.U.T.	
3.3	Test Mode and Test Environment	
3.4	Description of Test Auxiliary Equipment	
3.5	Measurement Uncertainty	
3.6	Additions to, Deviations, or Exclusions from the Method	
3.7	Laboratory Facility	
3.8	Laboratory Location	6
3.9	Test Instruments List	6
4 N	Neasurement Setup and Procedure	8
4.1	Test Channel	
4.2	Test Setup	
4.3	Test Procedure	
5 T	est Results	11
5.1	Summary	
_	5.1.1 Clause and Data Summary	
_	5.1.2 Test Limit	
5.2	Antenna requirement	
5.3	AC Power Line Conducted Emission	
5.4	Emissions in Restricted Frequency Bands	
5.5	Emissions in Non-restricted Frequency Bands	

3 General Information

3.1 Client Information

Applicant:	ITEL MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	ITEL MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

3.2 General Descrip	
Product Name:	Mobile Phone
Model No.:	A6610L
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	1.37 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.85V, 5000mAh
AC Adapter:	Model: U100ISB
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
Remark:	

- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 3.85Vdc, Extreme: Low 3.50Vdc, High 4.40Vdc
Test Engineer:	Li Huang(Conducted measurement)
rest Engineer.	Real Chen(Radiated measurement)

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.0 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.4 dB
Radiated Emission (30MHz ~ 200MHz) (3m SAC)	±4.6 dB
Radiated Emission (200MHz ~ 1000MHz) (3m SAC)	±5.8 dB
Radiated Emission (1GHz ~ 18GHz) (3m FAR)	5.15 dB
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.30 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

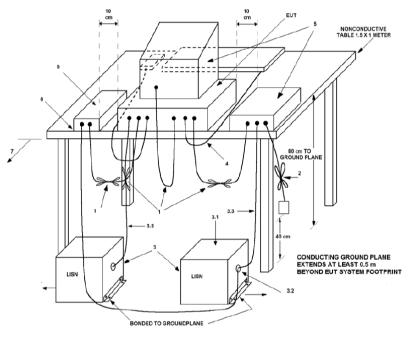
Radiated Emission(3m SAC):							
Test Equipment	Manufacturer Model No.		Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2026		
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	01-03-2025	01-02-2026		
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	01-03-2025	01-02-2026		
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	12-16-2024	12-15-2025		
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	12-16-2024	12-15-2025		
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-17-2024 01-15-2024	01-16-2025 01-14-2026		
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A			
Test Software	Tonscend	TS+	Version: 3.0.0.1				

Radiated Emission(3m FAR):						
Test Equipment	Manufacturer	Model No. Manage No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-01-2024	06-30-2025	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-01-2024	06-30-2027	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	06-16-2024	06-15-2025	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	12-25-2024	12-24-2025	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	12-25-2024	12-24-2025	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	12-25-2024	12-24-2025	
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	04-24-2024	04-23-2025	
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	04-24-2024	04-23-2025	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	12-16-2024	12-15-2025	
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	12-16-2024	12-15-2025	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-16-2024	12-15-2025	
Spectrum Analyzer	KEYSIGHT	N9020B	WXJ081-1	06-11-2024	06-10-2025	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	07-30-2024	07-29-2025	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	07-30-2024	07-29-2025	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	07-30-2024	07-29-2025	
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A		
Test Software	Tonscend	TS+		Version: 5.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	06-11-2024	06-10-2025	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	12-17-2024	12-16-2025	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	12-17-2024	12-16-2025	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	01-15-2025	01-14-2026	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	AUDIX	E3	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	09-10-2024	09-09-2025	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	12-17-2024	12-16-2025	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-10-2024	09-09-2025	
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

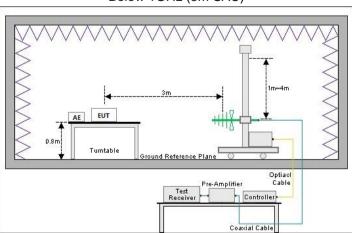
4 Measurement Setup and Procedure


4.1 Test Channel

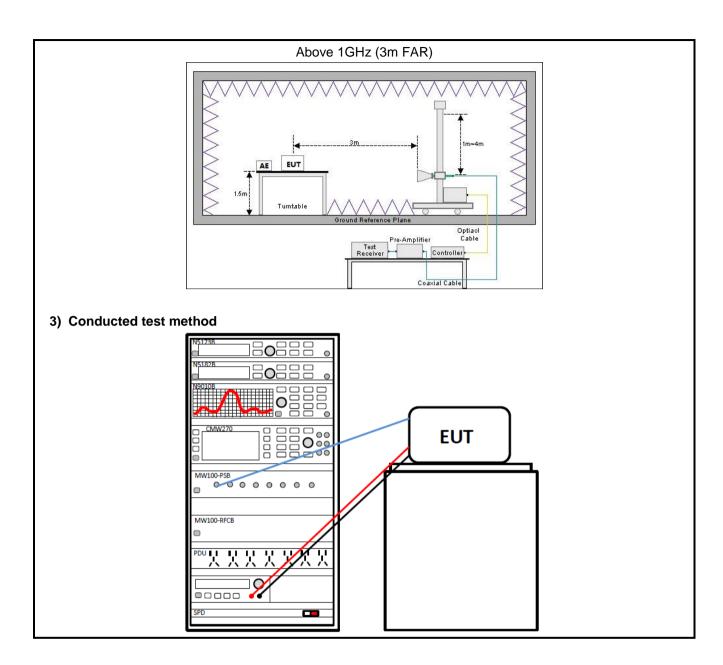
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:

Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.


2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.3 Test Procedure

4.3 Test Procedure	
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
Conducted test method	the test, save the test results, and export the test data. 1. The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix – BLE 1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix – BLE 1M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix – BLE 1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BLE 1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items			Limit						
		Frequency		Limit (d	ΒμV)				
		(MHz)	Quasi	-Peak	Average				
AC Power Line Conducted		0.15 - 0.5	66 to 5	6 Note 1	56 to 46 Note 1				
Emission		0.5 – 5	56	6	46				
Ellisoion		5 – 30	60	_	50				
		Note 1: The limit level in dBµV Note 2: The more stringent limit			n of frequency.				
Conducted Output Power		systems using digital me 5725-5850 MHz bands		he 902-928 f	MHz, 2400-2483.5 MH	lz,			
6dB Emission Bandwidth	The	e minimum 6 dB bandwid	Ith shall be at	least 500 kl	Hz.				
99% Occupied Bandwidth	N/A	1							
Power Spectral Density	inte	digitally modulated systemical radiator to the aread during any time interva	itenna shall n	ot be greate	r than 8 dBm in any 3				
Band-edge Emission Conduction Spurious	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply								
Emission	this limi whi	paragraph shall be 30 c ts specified in §15.209(a	se of RMS av (b)(3) of this s IB instead of 2 I) is not requinands, as defir	veraging ove section, the a 20 dB. Atten red. In additi ned in §15.20	mplies with the conduration at time interval, as attenuation required uuation below the geneon, radiated emission 05(a), must also comp	cted nder eral			
Emission	this limi whi	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission life.	se of RMS av (b)(3) of this s IB instead of 2 1) is not requir ands, as defir mits specified Limit (dE	veraging ove section, the a 20 dB. Atten red. In additi ned in §15.209 d in §15.209	mplies with the conduration at time interval, as attenuation required uuation below the geneon, radiated emission 05(a), must also comp	cted nder eral			
Emission	this limi whi	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission limited (MHz)	se of RMS av (b)(3) of this s (B) instead of 2 (a) is not required (ands, as defired (b) think (dE) (c) 3m	veraging oversection, the approximate appr	mplies with the conduration ratime interval, as attenuation required usuation below the general conference on, radiated emission 05(a), must also complete (a) (see §15.205(c)).	cted nder eral			
	this limi whi	s paragraph shall be 30 cts specified in §15.209(a ch fall in the restricted be the radiated emission limits (MHz) 30 – 88	se of RMS av (b)(3) of this s (B) instead of 2 (b) is not require (ands, as defire (mits specified) Limit (dE) (@ 3m) (40.0)	veraging oversection, the approximate and appr	mplies with the conduration ratime interval, as attenuation required usuation below the general conference on, radiated emission 05(a), must also comparts (a) (see §15.205(c)). Detector Quasi-peak	cted nder eral			
Emissions in Restricted	this limi whi	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission line frequency (MHz) 30 – 88 88 – 216	se of RMS av (b)(3) of this s (B) instead of 2 (b) is not require (ands, as defire (mits specified) Limit (dE) (@ 3m) 40.0 43.5	veraging oversection, the approximate and appr	mplies with the conduration required use the unation required use the unation below the general configuration below the general configuration and the unation below the general configuration (a), must also compared (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral			
	this limi whi	s paragraph shall be 30 cts specified in §15.209(a ch fall in the restricted be the radiated emission line. Frequency (MHz) 30 – 88 88 – 216 216 – 960	se of RMS av (b)(3) of this s (B) instead of 2 (b) is not require (ands, as defire (mits specified) Limit (dE) (@ 3m) (40.0) (43.5) (46.0)	veraging oversection, the approximate and appr	mplies with the condur a time interval, as attenuation required u uation below the geneon, radiated emission 05(a), must also comp(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak	cted nder eral			
Emissions in Restricted Frequency Bands	this limi whit with	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission line) Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	se of RMS av (b)(3) of this s IB instead of 2 i) is not requir ands, as defir mits specified Limit (dE @ 3m 40.0 43.5 46.0 54.0	veraging oversection, the approximate and appr	mplies with the conduration required use the unation required use the unation below the general configuration below the general configuration and the unation below the general configuration (a), must also compared (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral			
Emissions in Restricted Frequency Bands Emissions in Non-restricted	this limi whit with	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission line. Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more stringent limit a	se of RMS av (b)(3) of this s IB instead of 2 i) is not requir ands, as defir mits specified Limit (dE @ 3m 40.0 43.5 46.0 54.0	veraging oversection, the approximate and appr	mplies with the condur a time interval, as attenuation required u uation below the generon, radiated emission 05(a), must also comp(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral			
Emissions in Restricted Frequency Bands	this limi whit with	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission line) Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	se of RMS av (b)(3) of this s IB instead of 2 i) is not requir ands, as defir mits specified Limit (dE @ 3m 40.0 43.5 46.0 54.0	veraging oversection, the approximate and appr	mplies with the condur a time interval, as attenuation required u uation below the generon, radiated emission 05(a), must also comp(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral			
Emissions in Restricted Frequency Bands Emissions in Non-restricted	this limi whit with	s paragraph shall be 30 cts specified in §15.209(ach fall in the restricted be the radiated emission line. Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more stringent limit a	se of RMS av (b)(3) of this s IB instead of 2 i) is not requir ands, as defir mits specified Limit (dE @ 3m 40.0 43.5 46.0 54.0 oplies at transition	veraging oversection, the approximate and approximate and approximate and approximate and approximate	mplies with the conduration required use the undion required use the undion below the general conference on, radiated emission 05(a), must also comparts (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral			

Report No.: JYTSZ-R12-2500058

5.2 Antenna requirement

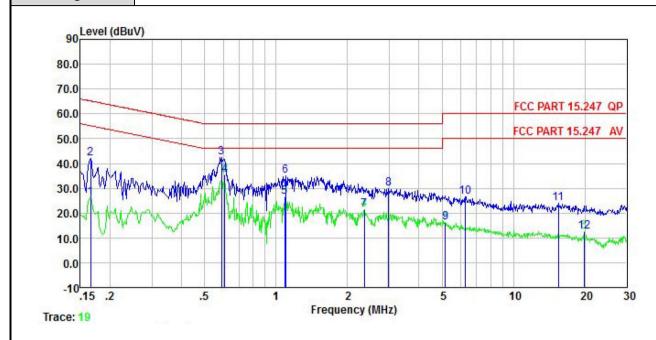
Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

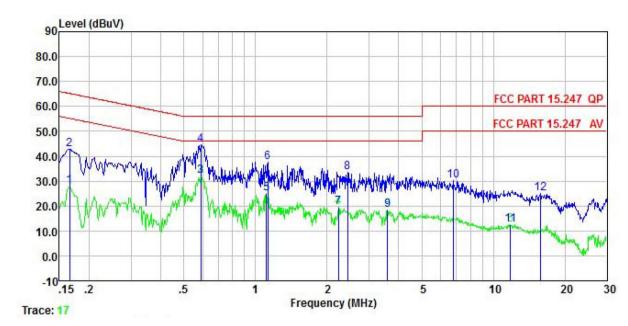
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.37 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	Mobile Phone	Product model:	A6610L
Test by:	Alan Chen	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Aux Factor		Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	dB	<u>dB</u>	dB	dBu₹	dBu∀	<u>dB</u>	
1 2 3 4 5 6 7 8	0.166	16.69	-0.27		9.88	0.01	26.31			Average
2	0.166	32.25	-0.27	0.00	9.88	0.01	41.87		-23.29	
3	0.589	32.84	-0.20	0.00	9.88	0.02	42.54	56.00	-13.46	QP
4	0.608	25.51	-0.20	0.00	9.88	0.02	35.21	46.00	-10.79	Average
5	1.088	17.00	-0.29	0.00	9.88	0.07	26.66			Average
6	1.100	25.26	-0.29	0.00	9.88	0.07	34.92		-21.08	
7	2.358	11.54	-0.20		9.88	0.15	21.37			Average
8	2.978	20.06	-0.20	0.00	9.89	0.07	29.82		-26.18	- 500 CO
9	5.166	6.63	-0.24	0.00	9.89	0.09	16.37			Äverage
10	6.252	16.99	-0.28		9.90	0.09	26.70		-33.30	
11	15.470	14.32	-0.31	0.00	9.93	0.15	24.09		-35.91	
12	19.845	2.90	-0.40	0.00	9.96	0.15	12.61			Average

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

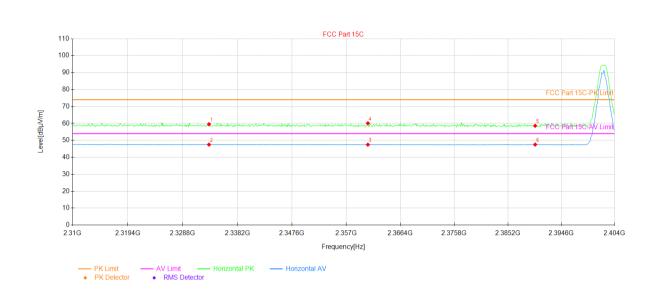
Product name:	Mobile Phone	Product model:	A6610L
Test by:	Alan Chen	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Aux Factor		Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>ab</u>	<u>d</u> B		dBu∇	dBu∇	<u>dB</u>	
1	0.166	18.27	-0.20	0.00	9.88	0.01	27.96	55.16	-27.20	Average
2	0.166	33.09	-0.20	0.00	9.88	0.01	42.78	65.16	-22.38	QP
3	0.589	22.32	-0.30	0.00	9.88	0.02	31.92	46.00	-14.08	Average
4	0.589	34.86	-0.30	0.00	9.88	0.02	44.46	56.00	-11.54	QP
1 2 3 4 5 6 7 8	1.111	15.42	-0.30	0.00	9.88	0.07	25.07	46.00	-20.93	Average
6	1.129	27.87	-0.30	0.00	9.88	0.08	37.53	56.00	-18.47	QP
7	2.237	9.77	-0.32	0.00	9.88	0.17	19.50	46.00	-26.50	Average
8	2.435	24.01	-0.33	0.00	9.88	0.14	33.70	56.00	-22.30	QP
9	3.584	8.98	-0.38	0.00	9.89	0.08	18.57	46.00	-27.43	Average
10	6.769	20.49	-0.40	0.00	9.90	0.10	30.09		-29.91	
11	11.807	3.02	-0.40	0.00	9.92	0.10	12.64			Average
12	15.718	15.32	-0.40	0.00	9.93	0.15	25.00		-35.00	

1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

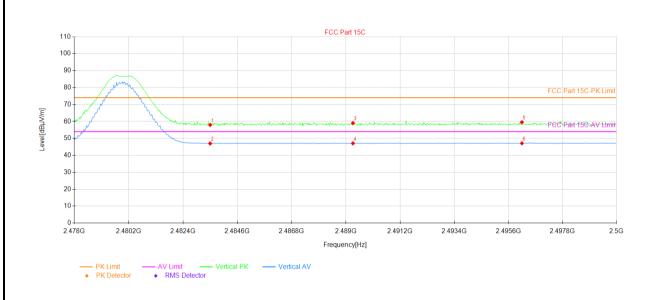
Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V		


Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2327.39	23.86	36.12	59.98	74.00	14.02	358	PK	PASS	Vertical
2	2327.39	11.60	36.12	47.72	54.00	6.28	142	AV	PASS	Vertical
3	2357.09	11.22	36.30	47.52	54.00	6.48	154	AV	PASS	Vertical
4	2357.09	23.72	36.30	60.02	74.00	13.98	216	PK	PASS	Vertical
5	2390.00	22.96	36.47	59.43	74.00	14.57	183	PK	PASS	Vertical
6	2390.00	11.01	36.47	47.48	54.00	6.52	86	AV	PASS	Vertical

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

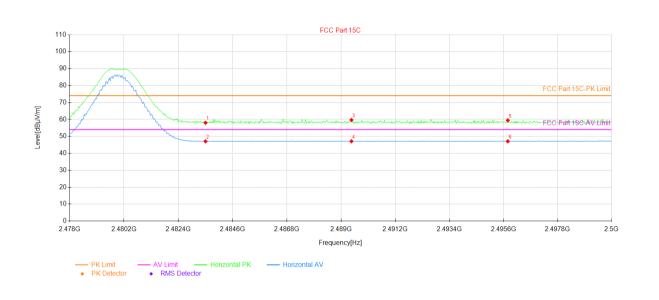
Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V		



Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2333.31	23.40	36.15	59.55	74.00	14.45	190	PK	PASS	Horizontal
2	2333.31	11.37	36.15	47.52	54.00	6.48	81	AV	PASS	Horizontal
3	2360.76	11.17	36.32	47.49	54.00	6.51	353	AV	PASS	Horizontal
4	2360.76	23.79	36.32	60.11	74.00	13.89	173	PK	PASS	Horizontal
5	2390.00	22.15	36.47	58.62	74.00	15.38	21	PK	PASS	Horizontal
6	2390.00	11.07	36.47	47.54	54.00	6.46	319	AV	PASS	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.85V		

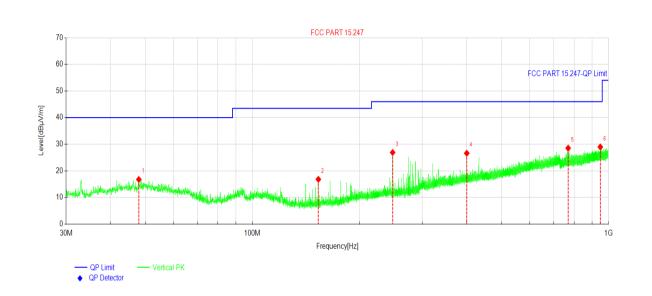


Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity	
1	2483.50	21.84	36.11	57.95	74.00	16.05	210	PK	PASS	Vertical	
2	2483.50	10.90	36.11	47.01	54.00	6.99	54	AV	PASS	Vertical	
3	2489.29	22.91	36.13	59.04	74.00	14.96	285	PK	PASS	Vertical	
4	2489.29	10.96	36.13	47.09	54.00	6.91	239	AV	PASS	Vertical	
5	2496.15	23.37	36.16	59.53	74.00	14.47	181	PK	PASS	Vertical	
6	2496.15	10.97	36.16	47.13	54.00	6.87	314	AV	PASS	Vertical	

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Real Chen	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.85V		

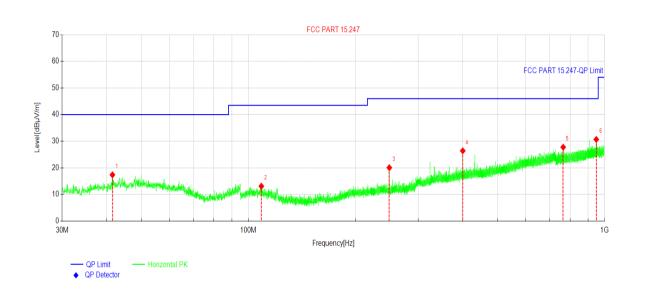
Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity	
1	2483.50	21.92	36.11	58.03	74.00	15.97	90	PK	PASS	Horizontal	
2	2483.50	10.99	36.11	47.10	54.00	6.90	346	AV	PASS	Horizontal	
3	2489.42	23.57	36.13	59.70	74.00	14.30	284	PK	PASS	Horizontal	
4	2489.42	11.00	36.13	47.13	54.00	6.87	204	AV	PASS	Horizontal	
5	2495.78	23.29	36.16	59.45	74.00	14.55	13	PK	PASS	Horizontal	
6	2495.78	10.95	36.16	47.11	54.00	6.89	90	AV	PASS	Horizontal	


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.85V		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	47.9944	29.20	-12.42	16.78	40.00	23.22	PK	Vertical		
2	153.2447	34.55	-17.72	16.83	43.50	26.67	PK	Vertical		
3	247.6789	40.55	-13.64	26.91	46.00	19.09	PK	Vertical		
4	399.9765	36.99	-10.36	26.63	46.00	19.37	PK	Vertical		
5	770.3410	32.50	-3.95	28.55	46.00	17.45	PK	Vertical		
6	948.2964	30.91	-1.92	28.99	46.00	17.01	PK	Vertical		

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	A6610L
Test By:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.85V		

Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	41.5436	30.29	-12.90	17.39	40.00	22.61	PK	Horizontal		
2	108.7679	27.57	-14.45	13.12	43.50	30.38	PK	Horizontal		
3	248.7944	33.70	-13.62	20.08	46.00	25.92	PK	Horizontal		
4	399.9765	36.77	-10.36	26.41	46.00	19.59	PK	Horizontal		
5	765.5878	31.73	-3.96	27.77	46.00	18.23	PK	Horizontal		
6	948.2479	32.60	-1.92	30.68	46.00	15.32	PK	Horizontal		

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Abovo 1CH-

ove 1GHz:			ETV/LE 4M DU	IV)			
			LE Tx (LE 1M PH	-			
			hannel: Lowest cl				
	<u> </u>	D	etector: Peak Valı		T		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4804.00	48.89	-8.00	40.89	74.00	33.11	Vertical	
4804.00	50.08	-8.00	42.08	74.00	31.92	Horizontal	
		Det	ector: Average Va	alue			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4804.00	40.49	-8.00	32.49	54.00	21.51	Vertical	
4804.00	40.13	-8.00	32.13	54.00	21.87	Horizontal	
		Test o	channel: Middle ch	nannel			
Detector: Peak Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4884.00	49.17	-7.45	41.72	74.00	32.28	Vertical	
4884.00	49.74	-7.45	42.29	74.00	31.71	Horizontal	
		Det	ector: Average Va	alue			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4884.00	40.87	-7.45	33.42	54.00	20.58	Vertical	
4884.00	40.37	-7.45	32.92	54.00	21.08	Horizontal	
			hannel: Highest c				
	1	D	etector: Peak Val	ue			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization	
4960.00	48.82	-7.08	41.74	74.00	32.26	Vertical	
4960.00	49.26	-7.08	42.18	74.00	31.82	Horizontal	
		Det	ector: Average Va	alue			
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization	

Remark:

(MHz)

4960.00

4960.00

Level = Reading + Factor.

(dBµV)

41.12

40.75

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

(dBµV/m)

34.04

33.67

(dBµV/m)

54.00

54.00

(dB)

19.96

20.33

-----End of report-----

(dB)

-7.08

-7.08

Project No.: JYTSZR2501048

Polarization

Vertical

Horizontal