

TEST REPORT

Test Report No.: 1-9101/19-01-05

Testing Laboratory

CTC advanced GmbH

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Test Laboratory:

The testing laboratory (FCC part 15 D) is accredited according to DIN EN ISO/IEC 17025 (2018) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-04 / -05

Applicant

Yamaha Corporation

10-1 Nakazawa-cho Naka-ku 430-8650 Hamamatsu Japan

Japan

Contact: / e-mail: / Phone: /

Manufacturer

RTX A/S

Stroemmen 6 9400, Noerresundby Denmark

Test Standard/s

FCC Part 15, subpart D: 2016 Isochronous UPCS Device 1920 – 1930 MHz

Industry Canada RSS-213, Issue 3: 2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)

2015

Test Item

Kind of product: Microphone system, Access point

Product name: RM-WAP-8, RM-WAP-16 HVIN: RM-WAP-8, RM-WAP-16 PMN: RM-WAP-8, RM-WAP-16

FVIN: -/-HMN: -/-

FCC ID: A6RRMWAP8, A6RRMWAP16 IC: 740B-RMWAP8, 740B-RMWAP16

S/N serial number: Radiated: /

Conducted: /

HW hardware status: V3
SW software status: V0013
Frequency [MHz]: 1920 -1930

Type of Modulation: $\pi/2$ -DBPSK, $\pi/8$ -D8PSK

Number of channels: 5 RF Channels, 5x12 = 60 TDMA Duplex Channels

Antenna: Two / four integrated antennas
Power Supply: 48V DC, Power over Ethernet (POE)

Temperature Range: -20°C to 50°C

Test Report authorised:

Test performed:

2020-11-17 Lenjoint, Marco

Lab Manager RC

2020-11-17 Wolf, Joachim

Head of Department EPNS

2020-11-17 Page 1 of 72

1 Table of contents

1	Table	of contents	. 2
2	Gener	ral information	. 4
	2.1	Notes and disclaimer	Δ
	2.2	Application details	
3	Tast s	standard/s:	1
4		Environment	
5	Sumn	nary of Measurement Results	. 6
6	Test S	Set-up	. 7
	6.1	Frequency Measurements	7
	6.2	Timing Measurements	
	6.3	Conducted Emission Test	
	6.4	Radiated Emission Test	
	6.5	Power Line Conducted Emissions Test	
	6.6	Monitoring Tests	
	6.7	Radiated Output Power Test	
	_	·	
7	Detail	ed Test Results	12
	7.1	Power Line Conducted Emissions	12
	7.2	Digital Modulation Techniques	
	7.3	Labeling Requirements	15
	7.4	Antenna Requirements	
	7.5	Channel Frequencies	
	7.6	Automatic Discontinuation of Transmission	
	7.7	Peak Power Output	
	7.8	Emission Bandwidth B	
	7.9	Power Spectral Density	
	7.10	In-Band Unwanted Emissions, Conducted	
	7.11	Out-of-Band Emissions, Conducted	
	7.12	Carrier Frequency Stability	
	7.13	Frame Repetition Stability	
	7.14	Frame Period and Jitter	
	7.15	Monitoring Threshold, Least Interfered Channel	
	7.16	Threshold Monitoring Bandwidth	
	7.10	Reaction Time and Monitoring Interval	
	7.17 7.18	Time and Spectrum Window Access Procedure	
	7.10	Acknowledgments and Transmission duration	
	7.19	Dual Access Criteria Check	
	7.21	Alternative monitoring interval	
	7.22 7.23	Spurious Emissions (Radiated)	
		·	
8	Test e	equipment and ancillaries used for tests	66
9	Obser	rvations	67
		Photographs of the Test Set-up	
		External Photographs of the EUT	
Anr	nex C:	Internal Photographs of the EUT	67
Anr	nex D:	Document History	68
Anr	nex E:	Further Information	69
		Safety exposure levels	

Annex G	: Accreditation	Certificate	. 71
---------	-----------------	-------------	------

2020-11-17 Page 3 of 72

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

RM-WAP-16 was supplied for testing. As declared by the customer RM-WAP-8 has no differences in PCB, mechanics and firmware. The only difference is the number of supported audio channels, means less supported number of microphones at RM-WAP-8 and therefore some parts are not mounted on PCB, e.g. only one DECT module instead of two.

These hardware differences have no impact on the radio performance of the access point.

2.2 Application details

Date of receipt of order: 2020-07-07
Date of receipt of test item: 2020-08-31
Start of test: 2020-09-03
End of test: 2020-11-11

Person(s) present during the test:

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2016-06	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 3	2015-03	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)
ANSI C63.17	2013-08	American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communication Services (UPCS) Devices

2020-11-17 Page 4 of 72

ANSI C63.4 2014-06 American National Standard for Methods of Measurement of

Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4 Test Environment

Temperature: + 24 °C during room temperature tests

+ 50 °C during high temperature test - 20 °C during low temperature test

Relative humidity content: 38 %

Air pressure: not relevant for this kind of testing

2020-11-17 Page 5 of 72

5 **Summary of Measurement Results**

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	5.4	Complies
	15.207(a)	RSS_GEN 7.2	-
		RSS_GEN 8.8	
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time			
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	N/A
Reaction time and monitoring interval	15.323(c)(1);(5);	4.3.4	Complies
	(7)		
Access criteria test interval	15.323(c)(4);(6)	4.3.4	Complies
Access criteria functional test	15.323(c)(4);(6)	4.3.4	Complies
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	N/A ¹
Dual access criteria	15.323(c)(10)	4.3.4	N/A ¹
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions Only applicable for EUT that can initiate a communication	N/A	6.8	Complies

2020-11-17 Page 6 of 72

¹Only applicable for EUT that can initiate a communication link
²The client declares that the tested equipment does not implement this provision
³The tested equipment has integrated antennas only
⁴Only requirement FCC 15.109 for unintentional radiators was tested radiated

6 Test Set-up

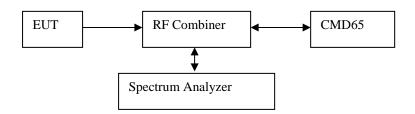
6.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

6.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

6.3 Conducted Emission Test

Test Set-up 3:

This setup is used for all conducted emission tests.

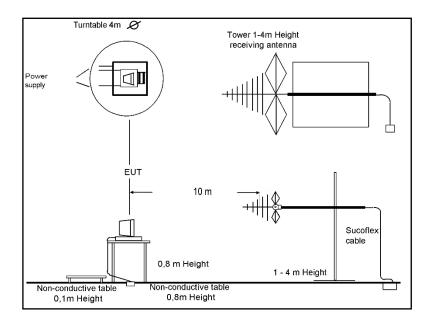
The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

2020-11-17 Page 7 of 72

6.4 Radiated Emission Test

30 MHz - 1GHz:

Test Set-up 4:


- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

2020-11-17 Page 8 of 72

1GHz - 10 GHz:

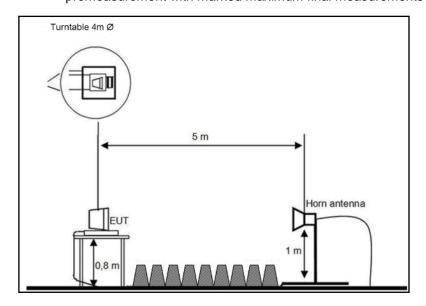
Test Set-up 5:

- The Equipment was setup to simulate a typical usage like described in the user manual / or described by manufacturer.
- If the EUT is a tabletop system, a no conducting table with 0,8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is: (see ANSI C 63.4)

< 18 GHz = 3 m

18-26 GHz = 1.5 m

26-40 GHz = 0.75 m

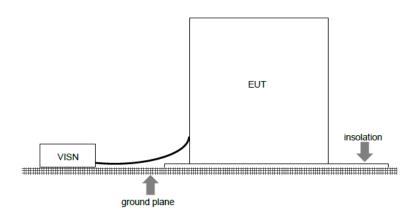

• The EUT was set into operation.

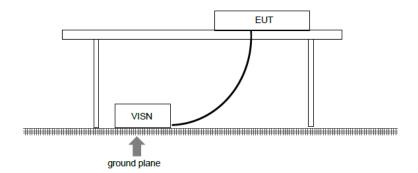
Premeasurement

- The turntable rotates continuous from 0° to 360°
- The antenna is polarized vertical and horizontal.
- In accordance to the antenna beam and the size of the EUT the antenna height changes in 30 cm steps, start at 1 meter. If it is not possible to tilt the emissions will be checked with a manually tilted antenna from top side.
- The analyzer scans quickly to find the maximum emissions of the EUT

Final measurement

- The final measurement will be performed with minimum the six highest peaks (depends on emissions and number of measured points below 1 GHz)
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with AV (Average / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

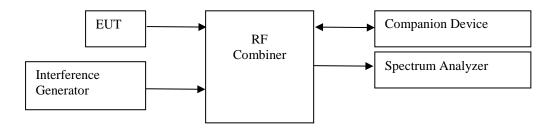

2020-11-17 Page 9 of 72



6.5 Power Line Conducted Emissions Test

Test Set-up 6:

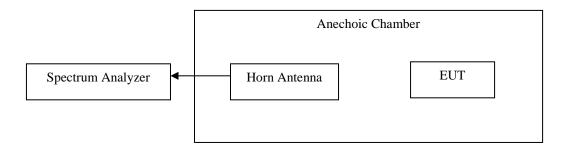
According to EMC basic standard ANSI C 63.4



2020-11-17 Page 10 of 72

6.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

6.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

2020-11-17 Page 11 of 72

7 Detailed Test Results

7.1 Power Line Conducted Emissions

Measurement Procedure:

ANSI C63.4-2014 using $50\mu H/50$ ohms LISN.

Test Result: Pass

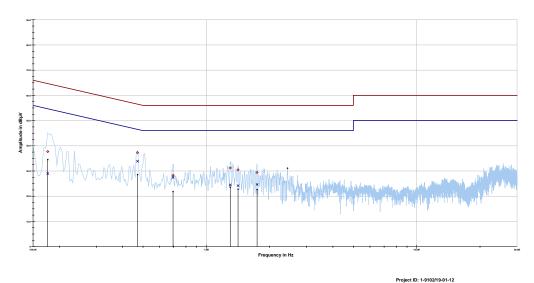
Measurement Data: See attached plots and tables

Requirement: FCC 15.107 (a), FCC 15.207 (a)

2020-11-17 Page 12 of 72

Phase Line

Measurement


Phase line

Premeasurement

Average limit class B

Quasi peak limit class B

X Average level

Phase line tbl

Project ID: 1-9102/19-01-12

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	đВ	dΒμV	dΒμV	đВ	dΒμV
0.176119	37.70	26.97	64.667	28.97	26.28	55.254
0.470888	37.27	19.23	56.498	33.86	12.97	46.832
0.694762	28.28	27.72	56.000	27.41	18.59	46.000
1.299225	31.20	24.80	56.000	24.45	21.55	46.000
1.414894	30.46	25.54	56.000	24.17	21.83	46.000
1.743244	29.40	26.60	56.000	24.65	21.35	46.000

Project ID - 1-9102/19-01-12

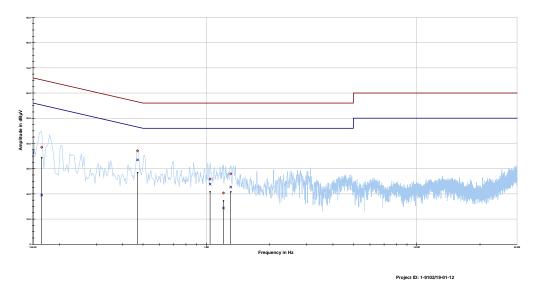
EUT - RM-WAP-16

Serial Number - Z6J000063

Operating mode - DECT idle + traffic at ETH (~400 Mbit/s)

2020-11-17 Page 13 of 72

Neutral Line


Measurement

Premeasurement

Average limit class B

Quasi peak limit class B

Average level

Neutral line tbl

Project ID: 1-9102/19-01-12

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dВ	dΒμV
0.150000	42.58	23.42	66.000	36.33	19.67	56.000
0.164925	38.48	26.73	65.212	19.51	36.06	55.574
0.470888	37.07	19.43	56.498	33.46	13.37	46.832
1.041769	25.90	30.10	56.000	23.84	22.16	46.000
1.205944	20.36	35.64	56.000	14.38	31.62	46.000
1.306688	27.94	28.06	56.000	22.69	23.31	46.000

Project ID - 1-9102/19-01-12

EUT - RM-WAP-16

Serial Number - Z6J000063

Operating mode - DECT idle + traffic at ETH (~400 Mbit/s)

2020-11-17 Page 14 of 72

7.2 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

7.3 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

2020-11-17 Page 15 of 72

7. 4	. /	Ant	enn	a R	eq	uir	em	ent	ts

Does the EUT have detachable antenna(s)?	□Yes	⊠ No
If detachable, is the antenna connector(s) non-standard?	□Yes	□No

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

7.5 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.301

Within 1920-1930 MHz band for isochronous devices.

2020-11-17 Page 16 of 72

7.6 Automatic Discontinuation of Transmission

Does the EUT transmit contro	⊠Yes	□ No	
Type of EUT:	☐ Initiating device	⊠ Respond	ling device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	А	Pass
2	EUT switched Off	N/A	N/A
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	В	Pass
6	Companion device switched Off	В	Pass

- A Connection breakdown, Cease of all transmissions
- B Connection breakdown, EUT transmits control and signaling information
- C Connection breakdown, companion device transmits control and signaling information
- N/A Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

2020-11-17 Page 17 of 72

7.7 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) DBPSK	Maximum Radiated Output Power (dBm) DBPSK	Maximum Antenna Gain (dBi) DBPSK
4	1921.536	19.8	19.0	-0.8
2	1924.992	19.7	18.9	-0.8
0	1928.448	19.8	18.8	-1.0

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm) D8PSK
4	1921.536	19.5
2	1924.992	19.4
0	1928.448	19.3

For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

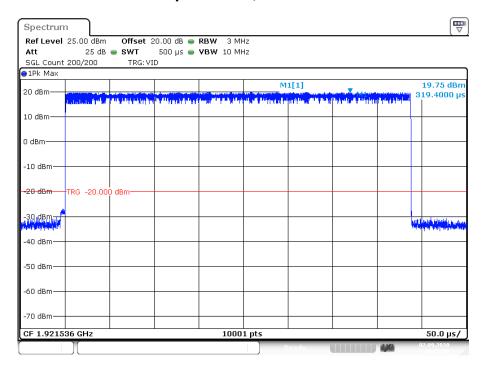
Limit:

Conducted: 100 µW X SQRT(B) where B is the measured Emission Bandwidth in Hz

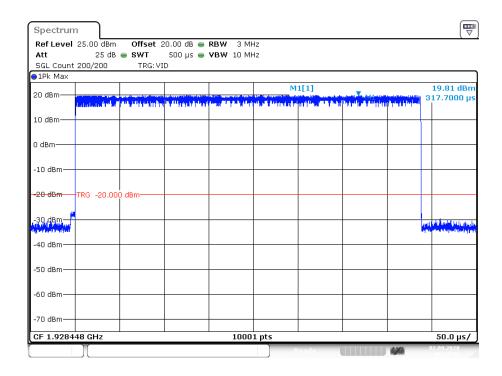
FCC 15.319(c)(e): 21.2 dBm (131 mW) RSS-213, Issue 2: 21.2 dBm (131 mW)

The antenna gain is below 3 dBi.

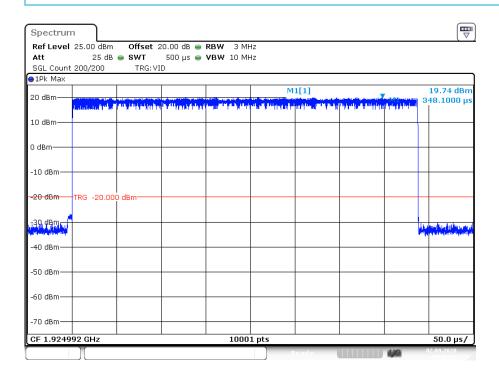
Requirements: FCC 15.319(c)(e). RSS-213, Issue 2


Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

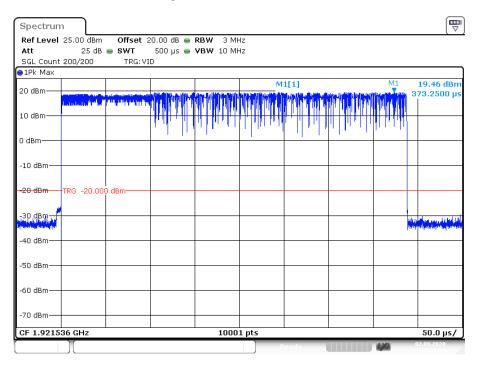

2020-11-17 Page 18 of 72

Conducted Peak Output Power, DBPSK

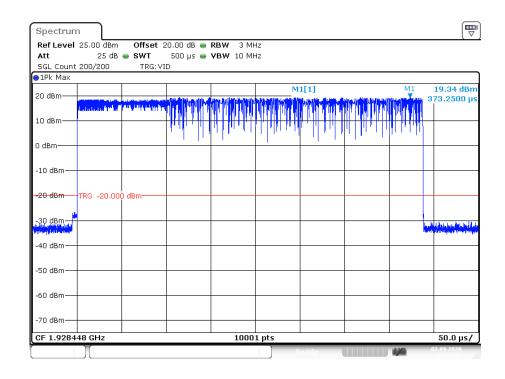

Lower Channel

Upper Channel

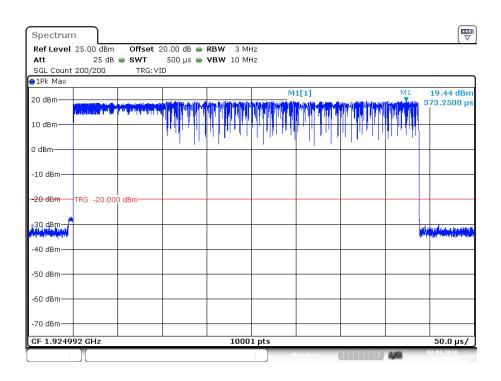
2020-11-17 Page 19 of 72



Middle Channel

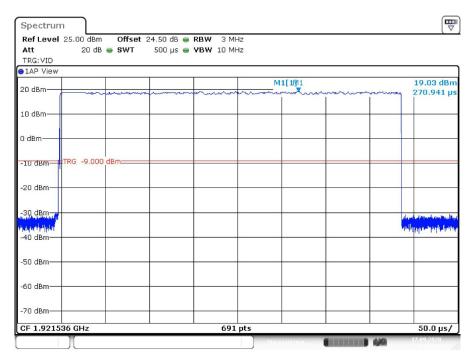

2020-11-17 Page 20 of 72

Conducted Peak Output Power, D8PSK

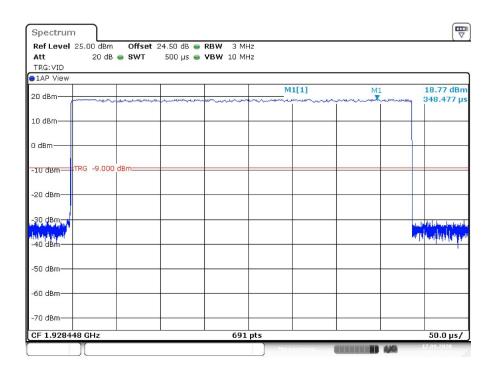

Lower Channel

Upper Channel

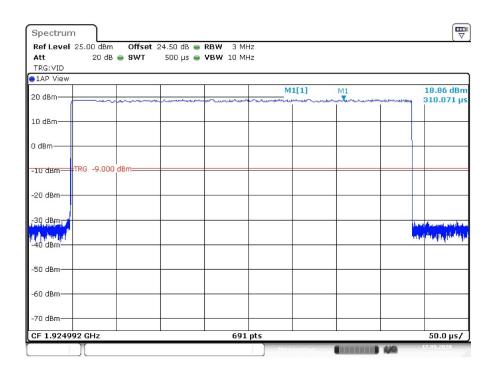
2020-11-17 Page 21 of 72



Middle Channel


2020-11-17 Page 22 of 72

Radiated Peak Output Power DBPSK


Lower Channel

Upper Channel

2020-11-17 Page 23 of 72

Middle Channel

2020-11-17 Page 24 of 72

7.8 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

Channel No. DBPSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1683
0	1928.448	1682

Channel No. D8PSK	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1686
0	1928.448	1684

Channel No.	Frequency	99% Bandwidth B
DBPSK	(MHz)	(kHz)
2	1924.992	1446

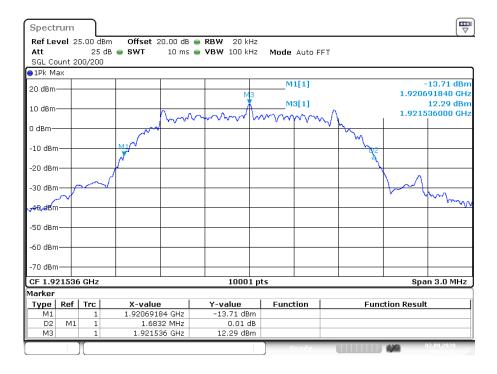
Channel No.	Frequency	99% Bandwidth B
D8PSK	(MHz)	(kHz)
2	1924.992	1431

Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

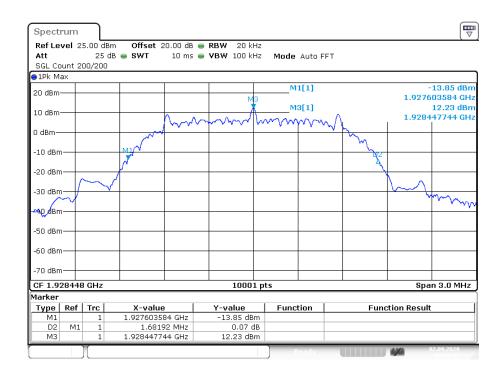
Requirement: FCC 15.323(a)

The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

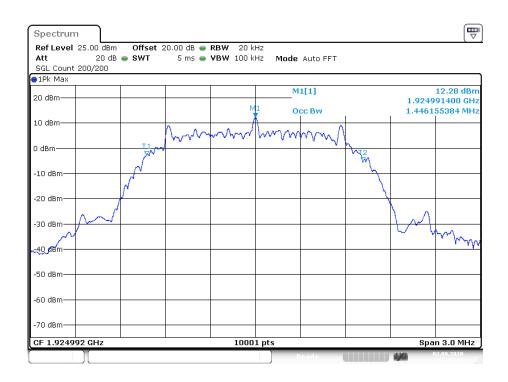
Requirement: RSS-213 Issue 2, clause 6.4


The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

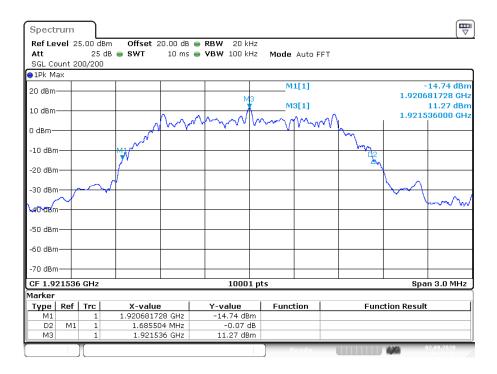

2020-11-17 Page 25 of 72

Modulation: DBPSK

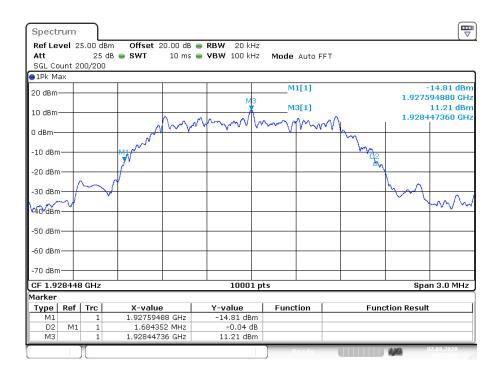

26 dB Emission Bandwidth B, Lower Channel

26 dB Emission Bandwidth B, Upper Channel

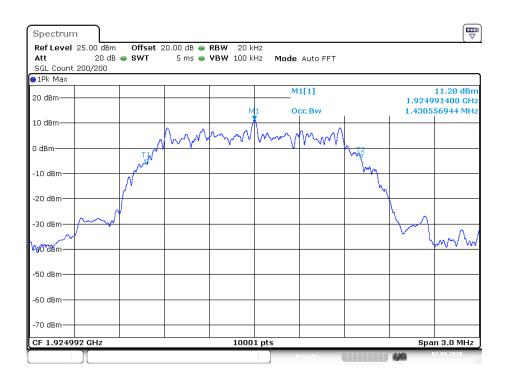
2020-11-17 Page 26 of 72



99 % Emission Bandwidth B, Middle Channel


2020-11-17 Page 27 of 72

Modulation: D8PSK


26 dB Emission Bandwidth B, Lower Channel

26 dB Emission Bandwidth B, Upper Channel

2020-11-17 Page 28 of 72

99 % Emission Bandwidth B, Middle Channel

2020-11-17 Page 29 of 72

7.9 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No. DBPSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.536000	-1.75
0	1928.447744	-1.87

Channel No. D8PSK	Frequency (MHz)	Power Spectral Density (dBm/3kHz)
4	1921.536000	-2.72
0	1928.447360	-2.88

Averaged over 100 sweeps.

Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW/3kHz (4.77 dBm) when averaged over at least 100 sweeps.

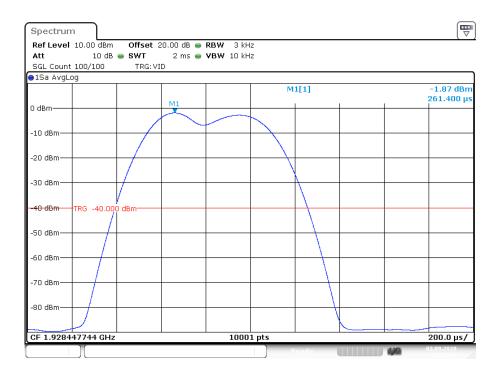
2020-11-17 Page 30 of 72

Power Spectral Density, DBPSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps


Pulse power [dBm]	-1.75
Pulse power [mW]	0.67

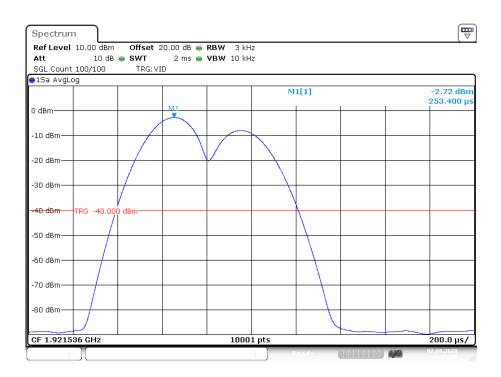
2020-11-17 Page 31 of 72

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps

Pulse power [dBm]	-1.87
Pulse power [mW]	0.65

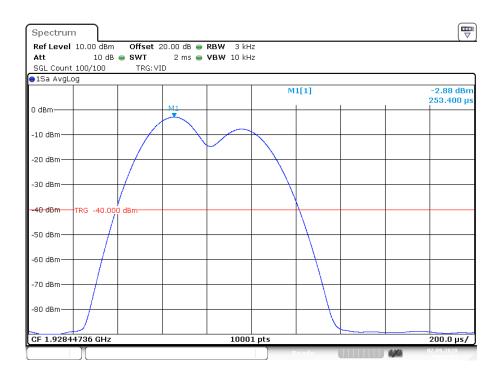

2020-11-17 Page 32 of 72

Power Spectral Density, D8PSK

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps


Pulse power [dBm]	-2.72
Pulse power [mW]	0.53

2020-11-17 Page 33 of 72

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps

Pulse power [dBm]	-2.88
Pulse power [mW]	0.52

2020-11-17 Page 34 of 72

7.10 In-Band Unwanted Emissions, Conducted

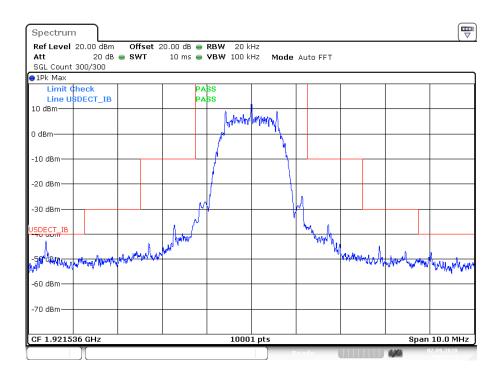
Measurement Procedure:

ANSI C63.17, clause 6.1.6.1.

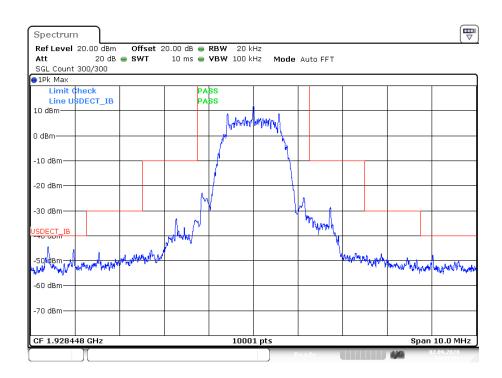
Test Results: Pass

Measurement Data:

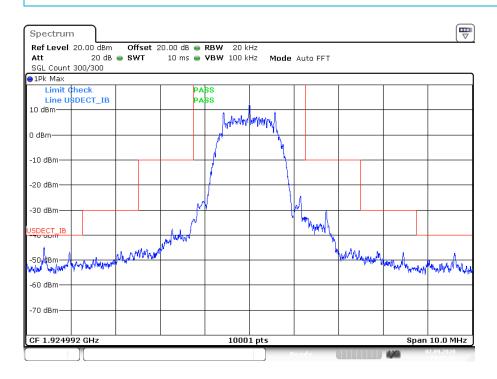
See plots.


Requirement: FCC 15.323(d)

B < f2 \leq 2B: less than or equal to 30 dB below max. permitted peak power level 2B < f2 \leq 3B: less than or equal to 50 dB below max. permitted peak power level 3B < f2 \leq UPCS Band Edge: less than or equal to 60 dB below max. permitted peak power level

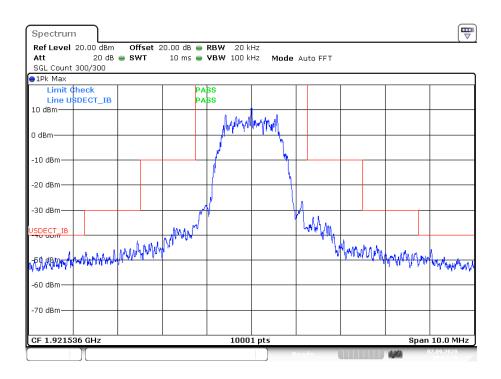

2020-11-17 Page 35 of 72

In-Band Unwanted Emissions, Conducted, DBPSK

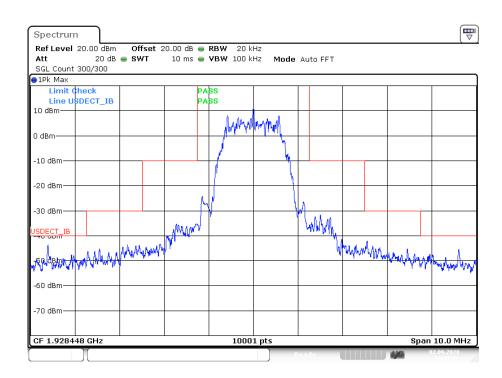

Lower Channel

Upper Channel

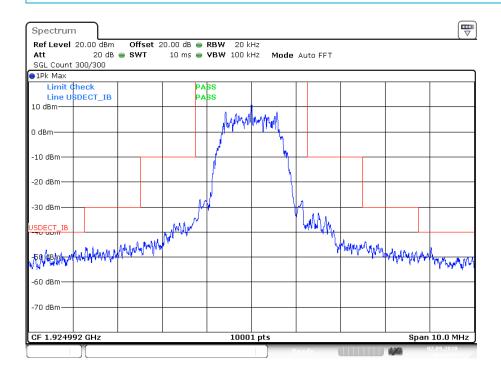
2020-11-17 Page 36 of 72



Middle Channel


2020-11-17 Page 37 of 72

In-Band Unwanted Emissions, Conducted, D8PSK


Lower Channel

Upper Channel

2020-11-17 Page 38 of 72

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

2020-11-17 Page 39 of 72

7.11 Out-of-Band Emissions, Conducted

Measurement Procedure:

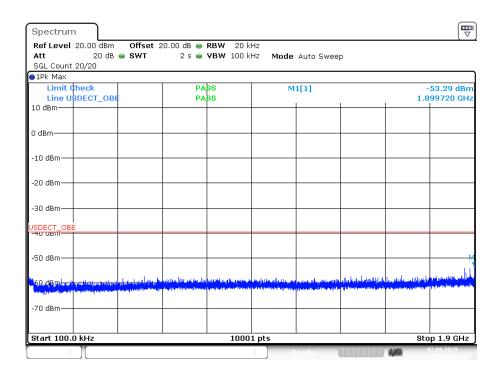
ANSI C63.17, clause 6.1.6.2.

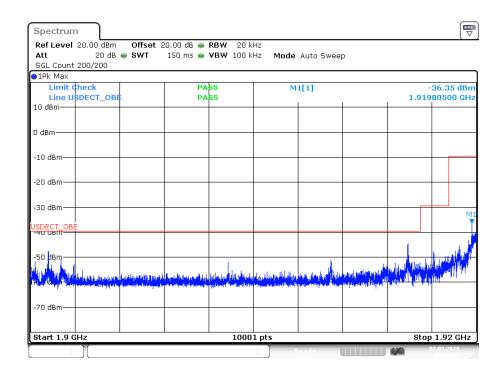
Test Results: Pass

Measurement Data:

See plots.

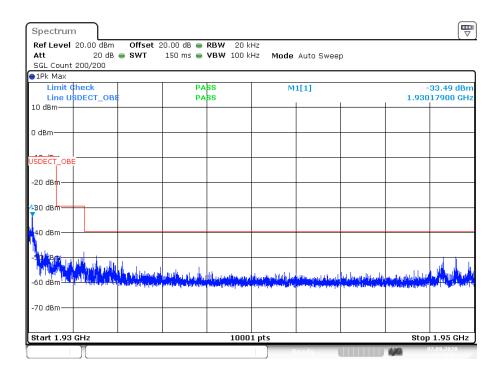
Requirement: FCC 15.323(d)

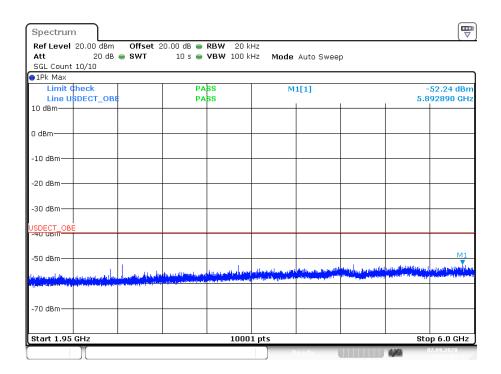

 $f \le 1.25$ MHz outside UPCS band: ≤ -9.5 dBm 1.25 MHz ≤ $f \le 2.5$ MHz outside UPCS band: ≤ -29.5 dBm $f \ge 2.5$ MHz outside UPCS band: ≤ -39.5 dBm


2020-11-17 Page 40 of 72

Out-of-Band Unwanted Emissions, Conducted, DBPSK

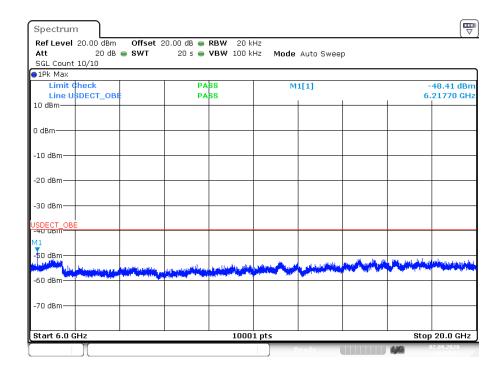
Upper and Lower Channel:





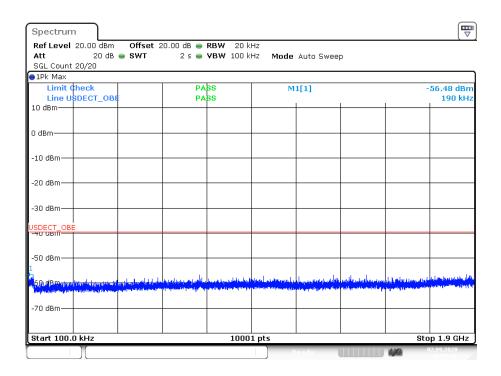
2020-11-17 Page 41 of 72

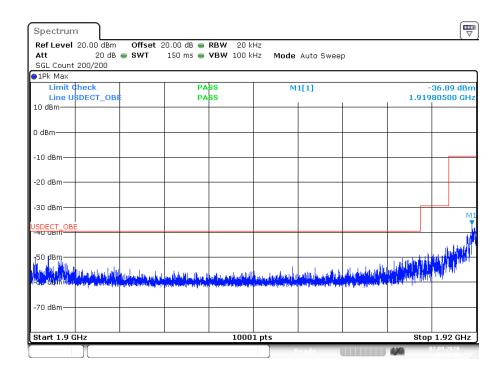
Out-of-Band Unwanted Emissions, Conducted, DBPSK



2020-11-17 Page 42 of 72

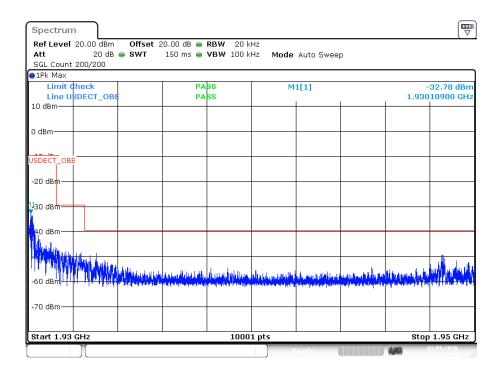
Out-of-Band Unwanted Emissions, Conducted, DBPSK

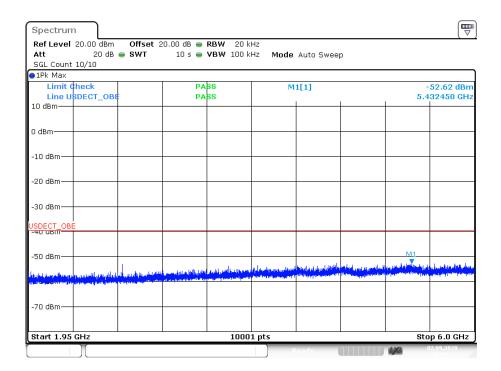

The BS spurious out-of-band transmission level is below the indicated limit.


2020-11-17 Page 43 of 72

Out-of-Band Unwanted Emissions, Conducted, D8PSK

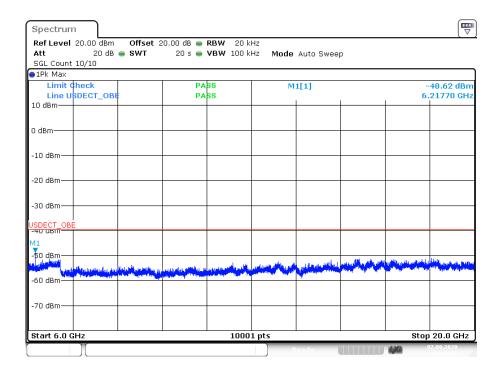
Upper and Lower Channel:





2020-11-17 Page 44 of 72

Out-of-Band Unwanted Emissions, Conducted, D8PSK



2020-11-17 Page 45 of 72

Out-of-Band Unwanted Emissions, Conducted, D8PSK

The BS spurious out-of-band transmission level is below the indicated limit.

2020-11-17 Page 46 of 72

7.12 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Requirement: FCC 15.323(f)

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.983962	-5.41	-8.48	1.365	

Deviation ppm = ((Max.Diff. – Mean.Diff.) / Mean Carrier Freq.) x 10⁶ Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
115 V AC	1924.985	Ref.	Ref.	
100 V AC	1924.985	0.0	0.0	±10
130 V AC	1924.985	0.0	0.0	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10⁶

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20°C	1924.985	Ref.	Ref.	
T = -20°C	1924.995	+3.0	1.5	±10
T = +50°C	1924.986	+1.0	0.5	

Deviation ppm = ((Mean - Measured frequency) / Mean) x 10⁶

2020-11-17 Page 47 of 72

7.13 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency (MHz)	Mean (Hz)	Standard Deviation (ppm)	Frame Repetition Stability (ppm)
1924.992	100.0000018526	0.013	0.038

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

7.14 Frame Period and Jitter

Measurement Procedure:

ANSI C63.17, clause 6.2.3.

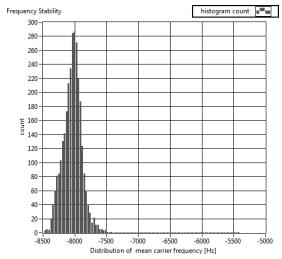
Test Results: Pass

Measurement Data:

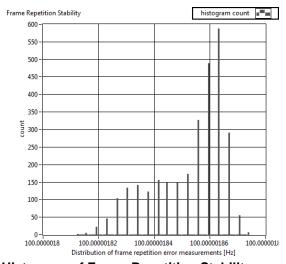
The Frame Repetition Stability is measured with the CMD65

Carrier Frequency (MHz)	Frame Period (ms)	Max Jitter (µs)	3xStandard Deviation of Jitter (µs)
1924.992	10.000	-0.012	0.002

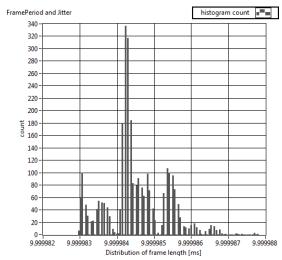
Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. $3xSt.Dev.Jitter 3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) x 10^6$


Limit:

Frame Period	20 or 10 ms
Max Jitter	25 μs
3 times St.Dev. of Jitter	12.5 µs


Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.

2020-11-17 Page 48 of 72



Histogram of Carrier Frequency Stability

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

2020-11-17 Page 49 of 72

7.15 Monitoring Threshold, Least Interfered Channel

Measurement Procedure:

ANSI C63.17, clause 7.3.2

Monitoring Threshold limits:

Lower Threshold:

$$T_L = 15 \log B - 184 + 30 - P_{EUT}$$
 (dBm)

B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated value:

Lower Threshold	-80.3 dBm
-----------------	-----------

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) f ₁ T _L + 13 dB, f ₂ T _L + 6 dB	Transmission always on f ₂	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f ₁	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f ₂	Pass
e) f ₁ T _L , f ₂ at T _L + 7 dB	Transmission always on f ₁	Pass

2020-11-17 Page 50 of 72

Measurement Procedure:

ANSI C63.17, clause 7.3.3

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on f ₁	EUT transmits on f ₂	N/A
d) Shall not transmit on f ₂	EUT transmits on f ₁	N/A

Comment: This test is only applicable for EUTs that can be an initiating device.

2020-11-17 Page 51 of 72

7.16 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

2020-11-17 Page 52 of 72

7.17 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

Test Results:

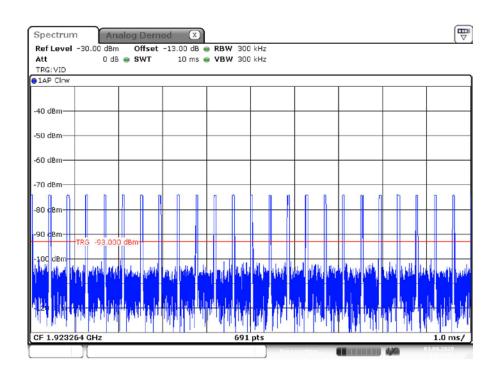
By administrative commands and out-of-operating region interference, the EUT is restricted to operate on carrier frequencies f_1 and f_2 .

Time-synchronized pulsed interference was then applied on f_1 at pulsed levels TL + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 μ s pulses. Additionally a CW signal was applied on f_2 with a level of TL.

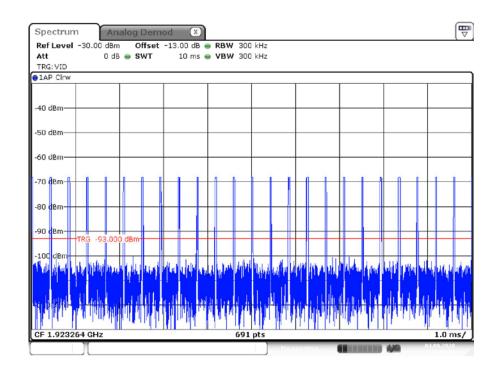
The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/B)	Transmission on f ₂	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B) and with interference level raised 6 dB	Transmission on f ₂	Pass

Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.


Limits: FCC 15.323(c)(1), (5) and (7)

The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.


If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

2020-11-17 Page 53 of 72

50 µs Pulses

35 µs Pulses

2020-11-17 Page 54 of 72

7.18 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	EUT transmits on the Interference free time slot	Pass
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	Transmission stops every 1.3 s	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	EUT changes to Interference free time slot, and stays there	Pass

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

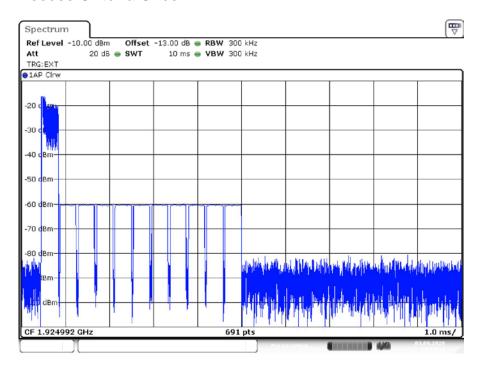
Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not support the Random Waiting Interval option.

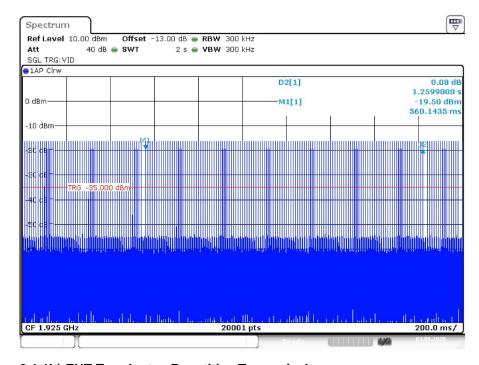
Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

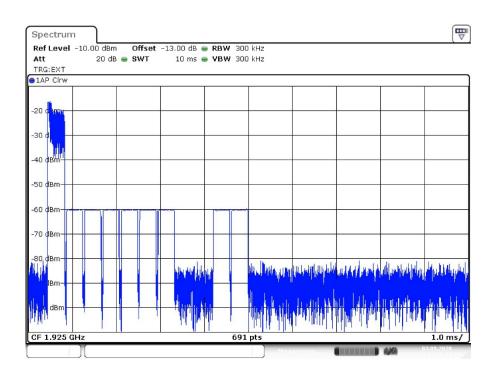

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

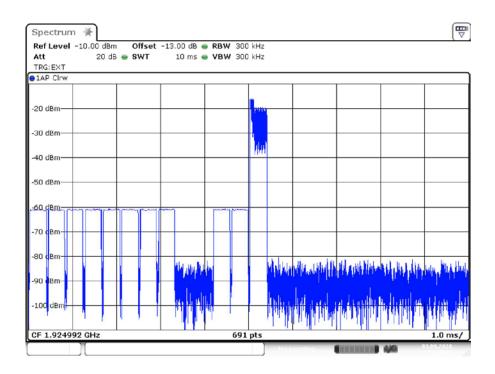

2020-11-17 Page 55 of 72

Access Criteria Check

8.1.1b) EUT Transmits on Unblocked Slot


8.1.1b) EUT Terminates Repetitive Transmission

Capture of transmission of base EUT control and signaling transmissions. The base EUT pauses in its transmission of the control and signaling channel to repeat the access criteria every 1.3 s seconds, meeting the requirement that it do so at least as often as every 30 seconds.


2020-11-17 Page 56 of 72

Access Criteria Check

8.1.2) EUT Changes to an Interference Free Timeslot, Before

8.1.2) EUT Changes to an Interference Free Timeslot, After

2020-11-17 Page 57 of 72

7.19 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	Only for initiating device	N/A
c) Transmission time after loss of acknowledgments	No duplex connection supported	N/A

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	Only for initiating device that controls which time slot is used	N/A

Comment: /

Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria. Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

2020-11-17 Page 58 of 72

7.20 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
b) EUT is restricted to a single carrier f_1 for TDMA systems. The test is pass if the EUT can set up a communication link.	N/A	N/A
c) d) No transmission on interference-free receive time/spectrum window. All transmit slots blocked	N/A	N/A
e) f) No transmission on interference-free transmit time/spectrum window. All transmit slots blocked	N/A	N/A

EUTs that implement the LIC algorithm:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
b) EUT is restricted to a single carrier f_1 for TDMA systems. The test is pass if the EUT can set up a communication link.	N/A	N/A
c) d) Transmission on interference-free receive time/spectrum window.	N/A	N/A
e) f) Transmission on interference-free transmit time/spectrum window.	N/A	N/A

Comment: This test is only applicable for EUTs that can be an initiating device of a duplex connection.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

2020-11-17 Page 59 of 72

7.21 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

7.22 Spurious Emissions (Radiated)

Measurement Procedure:

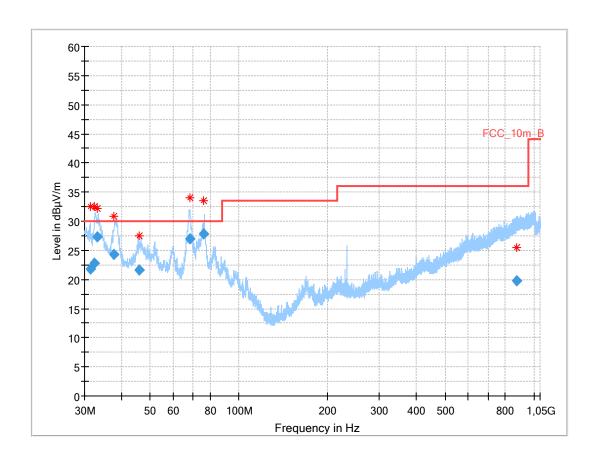
FCC 15.209, FCC 15.109

Test Result: Pass

Measurement Data: See plots

Requirement: FCC 15.109(b)

2020-11-17 Page 60 of 72


Common Information

EUT: RM-WAP-16 Serial number: Z6J000063

Test description: FCC part 15 B class B @ 10 m DECT idle + traffic at ETH

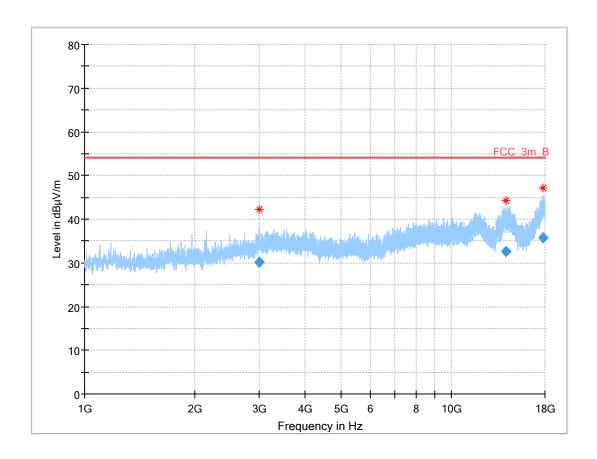
Operator name: Hennemann

Comment: PoE powered; ETH-cable: Cat. 5e UTP

Final Result

	-								
Frequency	QuasiPe	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimut	Corr.
(MHz)	ak	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		h	(dB/m
	(dBµV/m		, ,	` '		, ,		(deg)	`)
31.300	21.78	30.0	8.2	1000	120.0	120.0	٧	278	12
32.363	22.78	30.0	7.2	1000	120.0	100.0	٧	243	12
33.093	27.35	30.0	2.7	1000	120.0	100.0	٧	262	12
37.815	24.37	30.0	5.6	1000	120.0	109.0	٧	307	13
46.101	21.68	30.0	8.3	1000	120.0	103.0	٧	187	14
68.084	26.95	30.0	3.1	1000	120.0	313.0	٧	114	10
75.954	27.80	30.0	2.2	1000	120.0	212.0	٧	138	8
873.411	19.85	36.0	16.2	1000	120.0	400.0	٧	135	23
	Frequency (MHz) 31.300 32.363 33.093 37.815 46.101 68.084 75.954	(MHz) ak (dBμV/m 31.300 21.78 32.363 22.78 33.093 27.35 37.815 24.37 46.101 21.68 68.084 26.95 75.954 27.80	Frequency (MHz) QuasiPe ak (dBμV/m) Limit (dBμV/m) 31.300 21.78 30.0 32.363 22.78 30.0 33.093 27.35 30.0 37.815 24.37 30.0 46.101 21.68 30.0 68.084 26.95 30.0 75.954 27.80 30.0	Frequency (MHz) QuasiPe ak (dBμV/m) Limit (dBμV/m) Margin (dB) 31.300 21.78 30.0 8.2 32.363 22.78 30.0 7.2 33.093 27.35 30.0 2.7 37.815 24.37 30.0 5.6 46.101 21.68 30.0 8.3 68.084 26.95 30.0 3.1 75.954 27.80 30.0 2.2	Frequency (MHz) QuasiPe ak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) 31.300 21.78 30.0 8.2 1000 32.363 22.78 30.0 7.2 1000 33.093 27.35 30.0 2.7 1000 37.815 24.37 30.0 5.6 1000 46.101 21.68 30.0 8.3 1000 68.084 26.95 30.0 3.1 1000 75.954 27.80 30.0 2.2 1000	Frequency (MHz) QuasiPe ak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) 31.300 21.78 30.0 8.2 1000 120.0 32.363 22.78 30.0 7.2 1000 120.0 33.093 27.35 30.0 2.7 1000 120.0 37.815 24.37 30.0 5.6 1000 120.0 46.101 21.68 30.0 8.3 1000 120.0 68.084 26.95 30.0 3.1 1000 120.0 75.954 27.80 30.0 2.2 1000 120.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frequency (MHz) QuasiPe ak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) Height (cm) Pol (cm) 31.300 21.78 30.0 8.2 1000 120.0 120.0 V 32.363 22.78 30.0 7.2 1000 120.0 100.0 V 33.093 27.35 30.0 2.7 1000 120.0 100.0 V 37.815 24.37 30.0 5.6 1000 120.0 109.0 V 46.101 21.68 30.0 8.3 1000 120.0 103.0 V 68.084 26.95 30.0 3.1 1000 120.0 313.0 V 75.954 27.80 30.0 2.2 1000 120.0 212.0 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2020-11-17 Page 61 of 72


Common Information

EUT: RM-WAP-16 Serial number: Z6J000063

Test description: FCC part 15 B class B
Operating condition: DECT idle + traffic at ETH

Operator name: Hennemann

Comment: PoE powered; ETH-cable: Cat. 5e UTP

Final_Result

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azim uth (deg	Corr. (dB/m)	Comm ent
2999.524	30.22	54.0	23.8	1000	1000.0	٧	0	-1	
14087.044	32.63	54.0	21.4	1000	1000.0	٧	330	10	
17786.700	35.82	54.0	18.2	1000	1000.0	٧	108	14	

The radiated spurious emission of the unintentional radiator is below the indicated limit.

2020-11-17 Page 62 of 72

7.23 Receiver Spurious Emissions

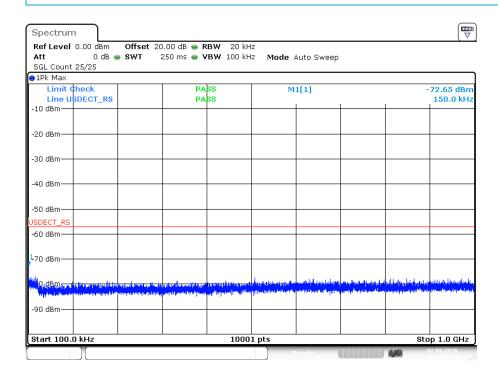
Measurement Procedure:

Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

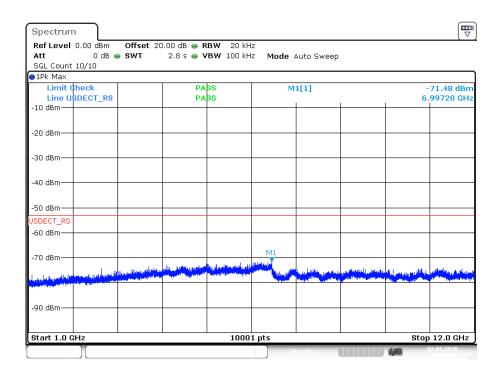
Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB	
30 - 1000	all	-72.6	-57	15.6	
> 1000	all	-69.9	-53	16.9	

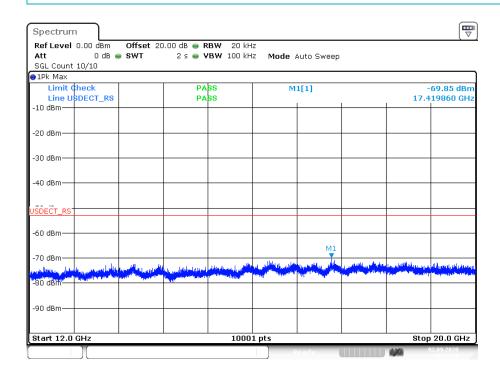
Requirements: RSS-GEN Issue 2, clause 6


The measurement can be performed either radiated or conducted.

When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.


When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

2020-11-17 Page 63 of 72


Receiver Spurious Emissions, Conducted, 100 kHz - 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz - 12 GHz

2020-11-17 Page 64 of 72

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

2020-11-17 Page 65 of 72

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Equipment	Manufacturer	Туре	Serial	Inv. No.	Kind of	Last	Next	
				No.		Calib.	Calib.	Calib.	
	Conducted								
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950	k	12/2019	12/2020	
L-2	Signal Generator	R&S	SMBV100A	257858	300004529	vlkl!	12/2017	12/2020	
L-3	Signaling Unit	R&S	CMD 65	825486	300003611	vlkl!	03/2019	03/2021	
L-4	Power Meter	R&S	NRP	100212	300003780	vlkl!	12/2018	12/2020	
L-5	Power Sensor	R&S	NRP-Z22	100031	400000188	vlkl!	12/2019	12/2021	

No.	Equipment	Manufacturer	Туре	Serial No.	Inv. No.	Kind of Calib.	Last Calib.	Next Calib.	
	Power Line Conducted Emission								
G-1	EMI Receiver	R&S	ESCI 3	100083	3000003312	k	12/2019	12/2020	
G-2	VISN	R&S	ESH 3-Z5	893045/004	300000584	vlkl!	12/2018	12/2020	

No.	Equipment	Manufacturer	Туре	Serial	Inv. No.	Kind of	Last	Next
				No.		Calib.	Calib.	Calib.
	Radiated Emission							
F-1	EMI Receiver	R&S	ESR3	102587	300005771	k	12/2019	12/2020
F-2	Spectrum Analyzer	R&S	FSU26	200809	300003874	k	12/2019	12/2020
F-3	Trilog Antenna	Schwarzbeck	VULB9163	371	300003854	vlkl!	11/2017	11/2020
F-4	Horn antenna	Schwarzbeck	BBHA9120B	188	300003896	vlkl!	04/2020	04/2022

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkI!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

2020-11-17 Page 66 of 72

9 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A: Photographs of the Test Set-up

See additional PDF document Annex A-C.

Annex B: External Photographs of the EUT

See additional PDF document Annex A-C.

Annex C: Internal Photographs of the EUT

See additional PDF document Annex A-C.

2020-11-17 Page 67 of 72

Annex D: Document History

Version	Applied Changes	Date of Release	

2020-11-17 Page 68 of 72

Annex E: Further Information

Glossary

DUT - Device under Test

EMC - Electromagnetic Compatibility

EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable
S/N - Serial Number
SW - Software

2020-11-17 Page 69 of 72

Annex F: Safety exposure levels

Prediction of MPE limit at a given distance:

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG / 4\pi R^2$

where: S = Power density

P = Power input to the antenna

G = Antenna gain

R = Distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm²)	Averaging Time (minutes)
300 -1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Prediction:

Р	Max power input to the antenna:	19.81 dBm
Ρ	Max power input to the antenna:	95.7 mW
R	Distance:	20 cm
G	Maximum antenna gain:	3.00 dBi
G	Maximum antenna gain:	2.0 numeric
S	MPE limit for uncontrolled exposure:	1 mW/cm ²

Calculated Power density: 0.0380 mW/cm²

0.380 W/m²

This prediction demonstrates the following:

The power density levels at a distance of 20 cm are below the maximum levels allowed by FCC regulations

2020-11-17 Page 70 of 72

Annex G: Accreditation Certificate

first page	last page			
Dautsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig			
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following ames, with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 By ord popting, (my Main Egyper Head of Division) The certificate bagetier with its ames reflects the status at the time of the distribution on the flowed in the distribution of accredited books of the date of sase. The current status of the scope of occreditation can be flowed in the distribution of accredited books of the date of flowers that the distribution of the date of	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aktrediterungsstele GmbH (DAXS). Exempted is the unchanged form of separate disseminations of the cover shee by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2623) and the Regulation (EC) No 768/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1. 228 of 9 July 2008, p. 30). DAXS is a signatory to the Multilateral Agreements for Multial Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILCA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org EAC: www.european-accreditation.org			

2020-11-17 Page 71 of 72

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee S2 Bundesallee 100 30117 Berlin 00327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation unmber D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 The certificate makes of Deviction of the current steams of the scope of accreditation can be found in the destrobase of accreditation can be found with the same of accreditation can be found in the destrobase of accreditation can be found with the destrobase of accreditation can be found with the same of accreditation can be found that the same of accreditation can be found with the same of accreditation can be found that the same of accreditation can be found that the same of accreditation can be found to the same of accreditation ca	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAXS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMS-Stellac) of 31 July 2009 [Federal tabe Gastate Iz, a 2523 and the Regulation (EQ No 765/CD03 of the European Planfament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Diffical Journal of the European Union). 212 of 9 July 2008, p. 30) (DAXs is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EQ). International Accreditation Formul (EA) and international Laboratory Accreditation Coperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.european-accreditation.org ILAC: www.european-accreditation.org

Note:

The current certificate including annex can be received on request.

2020-11-17 Page 72 of 72