Test Report ## AIR-CAP3702y-A-K9 AIR-SAP3702y-A-K9 ## Cisco Aironet 802.11ac Dual Band Access Points FCC ID: LDK102087 IC: 2461B-102087 Also covers: AIR-CAP3702y-D-K9, AIR-SAP3702y-D-K9 AIR-CAP3702y-N-K9, AIR-SAP3702y-N-K9 AIR-CAP3702y-T-K9, AIR-SAP3702y-T-K9 AIR-CAP3702y-Z-K9, AIR-SAP3702y-Z-K9 y = E (External Antenna) or I (Internal Antenna) 2400-2483.5 MHz Against the following Specifications: CFR47 Part 15.247 RSS210 Cisco Systems 170 West Tasman Drive San Jose, CA 95134 Page No: 1 of 274 | エレ:~ | 11 | | | | | | α | | . 🗅 ~ ~ | Control system. | |-------|-----------------|----------|----------------|------------|--------------|------------|----------|-------------------|---------------|-----------------| | I nic | TAST TANOUT DAS | : NAAN 6 | alectronically | alimonized | and archived | HIGHNA THA | 1.15(.() | Enameering | i i incliment | Control system | | | | | | | | | | | | | | SECTION 1: OVERVIEW | 3 | |--|-----| | 1.1 Test Summary | 3 | | SECTION 2: ASSESSMENT INFORMATION | 4 | | 2.1 General | 4 | | 2.2 Date of testing | 5 | | 2.3 REPORT ISSUE DATE | | | 2.4 TESTING FACILITIES | 5 | | 2.5 EQUIPMENT ASSESSED (EUT) | | | 2.6 EUT DESCRIPTION | 6 | | SECTION 4: SAMPLE DETAILS | 7 | | APPENDIX A: EMISSION TEST RESULTS | 8 | | TARGET MAXIMUM CHANNEL POWER | 8 | | 6dB Bandwidth | | | 99% AND 26DB BANDWIDTH | | | PEAK OUTPUT POWER | | | Power Spectral Density | | | CONDUCTED SPURIOUS EMISSIONS | | | CONDUCTED BANDEDGE | 133 | | APPENDIX B: EMISSION TEST RESULTS | 261 | | RADIATED SPURIOUS EMISSIONS | 261 | | RADIATED EMISSIONS | 270 | | MAXIMUM PERMISSIBLE EXPOSURE (MPE) CALCULATIONS | 272 | | APPENDIX C: TEST EQUIPMENT/SOFTWARE USED TO PERFORM THE TEST | 274 | #### **Section 1: Overview** #### 1.1 Test Summary The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications: | Emission | Immunity | |-----------------------------|----------| | CFR47 Part 15.247
RSS210 | N/A | The specifications listed above represent actual tests performed to demonstrate compliance against the specifications and basic standards listed on the front cover of this report. This list is not a one to one match to the front cover for one or more of the following reasons. - 1. Basic standards call up many different test phenomena specifications such as the 61000-4-X series. The basic standards define which elements and levels shall be applied from these specifications and as such it is not appropriate to list the individual specifications on the front cover. - 2. A Standard listed on the front cover may be required in a particular country but is not appropriate for the particular technologies included in the equipment under test. E.g. You cannot test a DC product to the mains Harmonics requirements in EN61000-3-2. See section 3.2. - 3. Test results against a particular standard or specification may be included in a different test report. See section 3.2 for an EDCS reference of this data. - 4. Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test. - 5. Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures. - 6. Testing may have been performed to an equivalent test that satisfies the requirements of the standards and specifications listed on the front cover of the report. See section 3.2. - Where radiated emissions testing has been performed to EN55022/CISPR22 the additional requirements of VCCI: V- 3/2006.04, EN55022: 1994 +A1/2 and CAN/CSA- CISPR 22-02 have also been evaluated unless otherwise stated. - 8. Testing to the requirements of CFR47 Part 15 was performed against the CISPR22 limits. The results are therefore deemed satisfactory evidence of compliance with Industry Canada Interference Causing Equipment Standard ICES-003. - 9. Where assessment has been performed to CISPR24, all the applicable test requirements may have not been covered. Refer to the results section for the tests performed. ## Notes: - 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed. - 2) Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test. - 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures. #### **Section 2: Assessment Information** #### 2.1 General This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc: With regard to this assessment, the following points should be noted: - a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances. - b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only. - c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP). - d) All testing was performed under the following environmental conditions: Temperature 15°C to 35°C (54°F to 95°F) Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3") Humidity 10% to 75*% *[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%. e) All AC testing was performed at one or more of the following supply voltages: 110V 60 Hz (+/-20%) 220V 50 Hz (+/-20%) This report must not be reproduced except in full, without written approval of Cisco Systems. ## 2.2 Date of testing 18-February-2013 - 08-March-2013 ## 2.3 Report Issue Date Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled #### 2.4 Testing facilities This assessment was performed by: #### **Testing Laboratory** Cisco Systems, Inc., 4125 Highlander Parkway Richfield, OH 44286 Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 USA USA ## **Test Engineers** James Nicholson ## 2.5 Equipment Assessed (EUT) AIR-SAP3702E-A-K9 Cisco Aironet 802.11ac Dual Band Access Point #### 2.6 EUT Description The 3700 Series Cisco Aironet 802.11ac Dual Band Access Points support the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes. Non HT-20, One Antenna, 6 to 54 Mbps Non HT-20, Two Antennas, 6 to 54 Mbps Non HT-20, Three Antennas, 6 to 54 Mbps Non HT-20, Four Antennas, 6 to 54 Mbps Non HT-20 Beam Forming, Two Antennas, 6 to 54 Mbps Non HT-20 Beam Forming, Three Antennas, 6 to 54 Mbps Non HT-20 Beam Forming, Four Antennas, 6 to 54 Mbps HT-20, One Antenna, M0 to M7 HT-20, Two Antennas, M0 to M15 HT-20, Three Antennas, M0 to M23 HT-20, Four Antennas, M0 to M23 HT-20 STBC, Two Antennas, M0 to M7 HT-20 STBC, Three Antennas, M0 to M7 HT-20 STBC, Four Antennas, M0 to M7 HT-20 Beam Forming, Two Antennas, M0 to M15 HT-20 Beam Forming, Three Antennas, M0 to M23 HT-20 Beam Forming, Four Antennas, M0 to M23 The following antennas are supported by this product series. The data included in this report represent the worst case data for all antennas. | Frequency | Part Number | Antenna Type | Antenna
Gain
(dBi) | |-----------|------------------|--|--------------------------| | | AIR-ANT2524DB-R | Dual-resonant black dipole | 2/4 | | | AIR-ANT2524DW-R | Dual-resonant white dipole | 2/4 | | 0415 | AIR-ANT2524DG-R | Dual-resonant gray dipole | 2/4 | | 2.4 / 5 | AIR-ANT2524V4C-R | Dual-resonant ceiling mount omni (4-pack) | 2/4 | | GHz | AIR-ANT2535SDW-R | Dual-resonante "stubby" monopole | 3/5 | | OHZ | Internal | Omni | 4 / 4 | | | AIR-ANT2544V4M-R | Dual-resonant omni (4-pack) | 4/4 | | | AIR-ANT2566P4W-R | Dual-resonant "directional" antenna (4-pack) | 6/6 | Page No: 6 of 274 ## **Section 4: Sample Details** Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples. ## 4.1 Sample Details (Photographs of the test samples, where appropriate can be found in appendix H) | Sample
No. | Equipment Details | Part
Number | Manufacturer | Hardware
Rev. | Firmware
Rev. | Software Rev. | Serial
Number | |---------------|-------------------|----------------|---------------|------------------|------------------|---------------|------------------| | S01 | AIR-SAP3702E-A-K9 | | Cisco Systems | NA | NA | NA | | | S02 | AIR-PWR-B | 341-0306-01 | Cisco Systems | NA | NA | NA | | ####
4.2 System Details | System # | Description | Samples | |----------|-------------|----------| | 1 | EUT | S01, S02 | #### 4.3 Mode of Operation Details | Mode# | Description | Comments | | | | | | | |-------|-------------------------|-------------------------|--|--|--|--|--|--| | 1 | Continuous Transmitting | Continuous Transmitting | | | | | | | All tests in this report were performed as described in FCC KDB 662911 D01 ## Appendix A: Emission Test Results Testing Laboratory: Cisco Systems, Inc., 4125 Highlander Parkway, Richfield, OH, USA ## **Target Maximum Channel Power** The following table details the maximum supported Total Channel Power for all operating modes. | | | Maximum Channel Power (dBm) Frequency (MHz) | | | | | |--------------------------------------|------|---|------|--|--|--| | Operating Mode | 2412 | 2437 | 2462 | | | | | Legacy CCK, 1 to 11 Mbps | 21 | 21 | 21 | | | | | Non HT-20, 6 to 54 Mbps | 21 | 21 | 21 | | | | | Non HT-20 Beam Forming, 6 to 54 Mbps | 20 | 21 | 19 | | | | | HT-20, M0 to M23 | 21 | 21 | 20 | | | | | HT-20 STBC, M0 to M7 | 21 | 21 | 20 | | | | | HT-20 Beam Forming, M0 to M23 | 20 | 21 | 20 | | | | ## 6dB Bandwidth 15.247 / RSS-210 A8.2: Systems using digital modulation techniques may operate in the 2400-2483.5MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz. Connect the antenna port(s) to the spectrum analyzer input. Using the spectrum analyzer Channel Bandwidth mode, configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer). Center Frequency: Frequency from table below Span: 2 x Nominal Bandwidth (e.g. 40MHz for a 20MHz channel) Reference Level: 20 dBm Attenuation: 10 dB Sweep Time: 5 s Resolution Bandwidth: 100 kHz Video Bandwidth: 100 kHz X dB Bandwidth: 6 dB Detector: Peak Trace: Single Place the radio in continuous transmit mode. View the transmitter waveform on the spectrum analyzer, and record the pertinent measurements: | Frequency
(MHz) | Mode | Data Rate
(Mbps) | 6dB BW
(MHz) | Limit
(kHz) | Margin
(MHz) | |--------------------|--------------------------|---|-----------------|----------------|-----------------| | 2412 | Legacy CCK, 1 to 11 Mbps | 11 | <u>10.13</u> | >500 | 12.8 | | | Non HT-20, 6 to 54 Mbps | 6 | <u>16.41</u> | >500 | 16.1 | | | HT-20, M0 to M23 | m0 | <u>17.63</u> | >500 | 17.2 | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>10.11</u> | >500 | 12.8 | | 2437 | Non HT-20, 6 to 54 Mbps | 6 | <u>16.41</u> | >500 | 16.1 | | | HT-20, M0 to M23 | (Mbps) (MHz 11 10.13 6 16.41 m0 17.63 11 10.11 6 16.41 m0 17.67 11 8.29 6 16.41 | <u>17.67</u> | >500 | 17.2 | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>8.29</u> | >500 | 12.7 | | 2462 | Non HT-20, 6 to 54 Mbps | 6 | <u>16.41</u> | >500 | 16.1 | | | HT-20, M0 to M23 | m0 | 17.67 | >500 | 17.2 | Page No: 10 of 274 ## 6dB Bandwidth, 2412 MHz, Non HT-20, 6 to 54 Mbps Page No: 11 of 274 ## 6dB Bandwidth, 2437 MHz, Legacy CCK, 1 to 11 Mbps Page No: 12 of 274 ## 6dB Bandwidth, 2437 MHz, HT-20, M0 to M23 Page No: 13 of 274 ## 6dB Bandwidth, 2462 MHz, Non HT-20, 6 to 54 Mbps Page No: 14 of 274 6dB Bandwidth, 2462 MHz, HT-20, M0 to M23 ## 99% and 26dB Bandwidth Connect the antenna port(s) to the spectrum analyzer input. Using the spectrum analyzer Channel Bandwidth mode, configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer). Center Frequency: Frequency from table be.low Span: 2 x Nominal Bandwidth (e.g. 40MHz for a 20MHz channel) Reference Level: 20 dBm Attenuation: 10 dB Sweep Time: 5 s Resolution Bandwidth: 1%-3% of 26 dB Bandwidth Video Bandwidth: ≥Resolution Bandwidth X dB Bandwidth: 26 dB Detector: Peak Trace: Single Place the radio in continuous transmit mode. View the transmitter waveform on the spectrum analyzer, and record the pertinent measurements: | Frequency
(MHz) | Mode | Data Rate
(Mbps) | 99% BW
(MHz) | 26dB
BW
(MHz) | |--------------------|--------------------------|---------------------|-----------------|---------------------| | | Legacy CCK, 1 to 11 Mbps | 11 | <u>13.3</u> | <u>16.2</u> | | 2412 | Non HT-20, 6 to 54 Mbps | 6 | <u>16.6</u> | <u>19.9</u> | | | HT-20, M0 to M23 | m0 | <u>17.7</u> | 20.2 | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>13.3</u> | 16.5 | | 2437 | Non HT-20, 6 to 54 Mbps | 6 | <u>16.6</u> | 20 | | | HT-20, M0 to M23 | m0 | <u>17.7</u> | 20.2 | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>13.3</u> | 16.4 | | 2462 | Non HT-20, 6 to 54 Mbps | 6 | <u>16.6</u> | <u>19.9</u> | | | HT-20, M0 to M23 | m0 | <u>17.7</u> | 20.2 | ## 26dB / 99% Bandwidth, 2412 MHz, Non HT-20, 6 to 54 Mbps Page No: 18 of 274 ## 26dB / 99% Bandwidth, 2437 MHz, Legacy CCK, 1 to 11 Mbps Page No: 19 of 274 ## 26dB / 99% Bandwidth, 2437 MHz, HT-20, M0 to M23 Page No: 20 of 274 ## 26dB / 99% Bandwidth, 2462 MHz, Non HT-20, 6 to 54 Mbps Page No: 21 of 274 26dB / 99% Bandwidth, 2462 MHz, HT-20, M0 to M23 ## **Peak Output Power** 15.247 / RSS-210 A8.4: The maximum conducted output power of the intentional radiator for systems using digital modulation in the 2400-2483.5 MHz band shall not exceed 1 Watt (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below. Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below. Enable "Channel Power" function of analyzer Center Frequency: Frequency from table below Span: 20 MHz (must be greater than 26dB bandwidth, adjust as necessary) Ref Level Offset: Correct for attenuator and cable loss. Reference Level: 20 dBm Attenuation: 20 dB Sweep Time: 100ms, Single sweep Resolution Bandwidth: 1 MHz Video Bandwidth: 3 MHz Detector: Sample Trace: Trace Average 100 traces in Power Averaging Mode Integration BW: =26 dB BW from 26 dB Bandwidth Data After averaging 100 traces of the transmitter waveform on the spectrum analyzer, record the spectrum analyzer Channel Power. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. | | | | 0 | T 4 | T 0 | T 0 | T- 4 | Tatal Ta | | | |-----------|---------------------------------|-------|-----------------------|--------------|--------------|--------------|--------------|---------------------|-------|--------| | | | | Correlated
Antenna | Tx 1
Peak | Tx 2
Peak | Tx 3
Peak | Tx 4
Peak | Total Tx
Channel | | | | Frequency | | Tx | Gain | Power | Power | Power | Power | Power | Limit | Margin | | (MHz) | Mode | Paths | (dBi) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dB) | | | Legacy CCK, 1 to 11 Mbps | 1 | 6 | 13.2 | , , | , , | , | 13.20 | 30 | 16.80 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | 14.3 | 15.7 | 14.8 | | 19.74 | 30 | 10.26 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | 14.3 | 15.7 | 14.8 | <u>15.6</u> | 21.16 | 30 | 8.84 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | 14.7 | | | | 14.70 | 30 | 15.30 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>14.7</u> | <u>15.5</u> | | | 18.13 | 30 | 11.87 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>14.7</u> | <u>15.5</u> | <u>14.8</u> | | 19.79 | 30 | 10.21 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>14.7</u> | <u>15.5</u> | <u>14.8</u> | <u>15.4</u> | 21.13 | 30 | 8.87 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 2 | 9 | <u>14.7</u> | <u>15.5</u> | | | 18.13 | 27 | 8.87 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 3 | 11 | <u>13.6</u> | <u>14.2</u> | <u>13.8</u> | | 18.65 | 25.2 | 6.55 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 4 | 12 | <u>13.6</u> | <u>14.2</u> | <u>13.8</u> | <u>14.3</u> | 20.00 | 24 | 4.00 | | | HT-20, M0 to M7 | 1 | 6 | <u>14.1</u> | | | | 14.10 | 30 | 15.90 | | | HT-20, M0 to M7 | 2 | 6 | <u>14.1</u> | <u>15.4</u> | | | 17.81 | 30 | 12.19 | | | HT-20, M8 to M15 | 2 | 6 | <u>14.1</u> | <u>15.4</u> | | | 17.81 | 30 | 12.19 | | 2412 | HT-20, M0 to M7 | 3 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 30 | 10.50 | | | HT-20, M8 to M15 | 3 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 30 | 10.50 | | | HT-20, M16 to M23 | 3 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 30 | 10.50 | | | HT-20, M0 to M7 | 4 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | <u>15.1</u> | 20.85 | 30 | 9.15 | | | HT-20, M8 to M15 | 4 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | <u>15.1</u> | 20.85 | 30 | 9.15 | | | HT-20, M16 to M23 | 4 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | <u>15.1</u> | 20.85 | 30 | 9.15 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>14.1</u> | <u>15.4</u> | | | 17.81 | 27 | 9.19 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>14.1</u> | <u>15.4</u> | | | 17.81 | 30 | 12.19 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>13.1</u> | <u>14.1</u> | <u>13.6</u> | | 18.39 | 25.2 | 6.81 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 28.2 | 8.70 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 30 | 10.50 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>12.1</u> | <u>13.1</u> | <u>12.2</u> | <u>13.0</u> | 18.64 | 24 | 5.36 | | | HT-20
Beam Forming, M8 to M15 | 4 | 9 | <u>13.1</u> | <u>14.1</u> | <u>13.6</u> | <u>14.2</u> | 19.79 | 27 | 7.21 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>13.1</u> | <u>14.1</u> | <u>13.6</u> | <u>14.2</u> | 19.79 | 28.8 | 9.01 | | | HT-20 STBC, M0 to M7 | 2 | 6 | <u>14.1</u> | <u>15.4</u> | | | 17.81 | 30 | 12.19 | | | HT-20 STBC, M0 to M7 | 3 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | | 19.50 | 30 | 10.50 | | | HT-20 STBC, M0 to M7 | 4 | 6 | <u>14.1</u> | <u>15.4</u> | <u>14.6</u> | <u>15.1</u> | 20.85 | 30 | 9.15 | Page No: 24 of 274 | | Legacy CCK, 1 to 11 Mbps | 1 | 6 | <u>14.2</u> | | | | 14.20 | 30 | 15.80 | |------|---------------------------------|---|----|-------------|-------------|-------------|-------------|-------|------|-------| | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | <u>14.2</u> | <u>15.5</u> | | | 17.91 | 30 | 12.09 | | | Legacy CCK, 1 to 11 Mbps | 3 | 6 | <u>14.2</u> | <u>15.5</u> | <u>14.8</u> | | 19.64 | 30 | 10.36 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | <u>14.2</u> | <u>15.5</u> | <u>14.8</u> | <u>15.6</u> | 21.08 | 30 | 8.92 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | <u>14.4</u> | | | | 14.40 | 30 | 15.60 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>14.4</u> | <u>15.6</u> | | | 18.05 | 30 | 11.95 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>14.4</u> | <u>15.6</u> | <u>14.6</u> | | 19.67 | 30 | 10.33 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>14.4</u> | <u>15.6</u> | <u>14.6</u> | <u>15.5</u> | 21.08 | 30 | 8.92 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 2 | 9 | <u>14.4</u> | <u>15.6</u> | | | 18.05 | 27 | 8.95 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 3 | 11 | <u>14.4</u> | <u>15.6</u> | <u>14.6</u> | | 19.67 | 25.2 | 5.53 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 4 | 12 | <u>14.4</u> | <u>15.6</u> | <u>14.6</u> | <u>15.5</u> | 21.08 | 24 | 2.92 | | | HT-20, M0 to M7 | 1 | 6 | <u>14.2</u> | | | | 14.20 | 30 | 15.80 | | | HT-20, M0 to M7 | 2 | 6 | <u>14.2</u> | <u>15.4</u> | | | 17.85 | 30 | 12.15 | | 2427 | HT-20, M8 to M15 | 2 | 6 | <u>14.2</u> | <u>15.4</u> | | | 17.85 | 30 | 12.15 | | 2437 | HT-20, M0 to M7 | 3 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 30 | 10.43 | | | HT-20, M8 to M15 | 3 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 30 | 10.43 | | | HT-20, M16 to M23 | 3 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 30 | 10.43 | | | HT-20, M0 to M7 | 4 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 30 | 9.08 | | | HT-20, M8 to M15 | 4 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 30 | 9.08 | | | HT-20, M16 to M23 | 4 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 30 | 9.08 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>14.2</u> | <u>15.4</u> | | | 17.85 | 27 | 9.15 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>14.2</u> | <u>15.4</u> | | | 17.85 | 30 | 12.15 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 25.2 | 5.63 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 28.2 | 8.63 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | | 19.57 | 30 | 10.43 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 24 | 3.08 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 27 | 6.08 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>14.2</u> | <u>15.4</u> | <u>14.7</u> | <u>15.2</u> | 20.92 | 28.8 | 7.88 | | | HT-20 STBC, M0 to M7 | 2 | 6 | 14.2 | 15.4 | | | 17.85 | 30 | 12.15 | | | HT-20 STBC, M0 to M7 | 3 | 6 | 14.2 | 15.4 | 14.7 | | 19.57 | 30 | 10.43 | | | HT-20 STBC, M0 to M7 | 4 | 6 | 14.2 | 15.4 | 14.7 | 15.2 | 20.92 | 30 | 9.08 | | | · | | | | | | | | | | Page No: 25 of 274 | | _ | | | | | | | | | | |------|---------------------------------|---|----|-------------|-------------|-------------|-------------|-------|------|-------| | 2462 | Legacy CCK, 1 to 11 Mbps | 1 | 6 | <u>13.6</u> | | | | 13.60 | 30 | 16.40 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | <u>14.6</u> | <u>15.6</u> | | | 18.14 | 30 | 11.86 | | | Legacy CCK, 1 to 11 Mbps | 3 | 6 | <u>14.6</u> | <u>15.6</u> | <u>15.0</u> | | 19.86 | 30 | 10.14 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | <u>14.6</u> | <u>15.6</u> | <u>15.0</u> | <u>15.3</u> | 21.16 | 30 | 8.84 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | <u>14.5</u> | | | | 14.50 | 30 | 15.50 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>14.5</u> | <u>15.5</u> | | | 18.04 | 30 | 11.96 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>14.5</u> | <u>15.5</u> | <u>14.9</u> | | 19.76 | 30 | 10.24 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>14.5</u> | <u>15.5</u> | <u>14.9</u> | <u>15.2</u> | 21.06 | 30 | 8.94 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 2 | 9 | <u>14.5</u> | <u>15.5</u> | | | 18.04 | 27 | 8.96 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 3 | 11 | <u>13.5</u> | <u>14.1</u> | <u>14.0</u> | | 18.65 | 25.2 | 6.55 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 4 | 12 | <u>12.5</u> | <u>13.1</u> | <u>12.6</u> | <u>12.9</u> | 18.80 | 24 | 5.20 | | | HT-20, M0 to M7 | 1 | 6 | <u>14.3</u> | | | | 14.30 | 30 | 15.70 | | | HT-20, M0 to M7 | 2 | 6 | <u>14.3</u> | <u>15.3</u> | | | 17.84 | 30 | 12.16 | | | HT-20, M8 to M15 | 2 | 6 | <u>14.3</u> | <u>15.3</u> | | | 17.84 | 30 | 12.16 | | | HT-20, M0 to M7 | 3 | 6 | <u>14.3</u> | <u>15.3</u> | <u>14.7</u> | | 19.56 | 30 | 10.44 | | | HT-20, M8 to M15 | 3 | 6 | <u>14.3</u> | <u>15.3</u> | <u>14.7</u> | | 19.56 | 30 | 10.44 | | | HT-20, M16 to M23 | 3 | 6 | <u>14.3</u> | <u>15.3</u> | <u>14.7</u> | | 19.56 | 30 | 10.44 | | | HT-20, M0 to M7 | 4 | 6 | <u>13.3</u> | <u>13.9</u> | <u>13.5</u> | <u>14.0</u> | 19.70 | 30 | 10.30 | | | HT-20, M8 to M15 | 4 | 6 | <u>13.3</u> | <u>13.9</u> | <u>13.5</u> | <u>14.0</u> | 19.70 | 30 | 10.30 | | | HT-20, M16 to M23 | 4 | 6 | <u>13.3</u> | <u>13.9</u> | <u>13.5</u> | <u>14.0</u> | 19.70 | 30 | 10.30 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>13.3</u> | <u>13.9</u> | | | 16.62 | 27 | 10.38 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>14.3</u> | <u>15.3</u> | | | 17.84 | 30 | 12.16 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>12.4</u> | <u>12.9</u> | <u>12.4</u> | | 17.34 | 25.2 | 7.86 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>13.3</u> | <u>13.9</u> | <u>13.5</u> | | 18.35 | 28.2 | 9.85 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | <u>14.3</u> | <u>15.3</u> | <u>14.7</u> | | 19.56 | 30 | 10.44 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>12.4</u> | <u>12.9</u> | <u>12.4</u> | <u>12.7</u> | 18.63 | 24 | 5.37 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | <u>12.4</u> | <u>12.9</u> | <u>12.4</u> | <u>12.7</u> | 18.63 | 27 | 8.37 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>12.4</u> | <u>12.9</u> | <u>12.4</u> | <u>12.7</u> | 18.63 | 28.8 | 10.17 | | | HT-20 STBC, M0 to M7 | 2 | 6 | <u>14.3</u> | <u>15.3</u> | | | 17.84 | 30 | 12.16 | | | HT-20 STBC, M0 to M7 | 3 | 6 | <u>14.3</u> | <u>15.3</u> | <u>14.7</u> | | 19.56 | 30 | 10.44 | | | HT-20 STBC, M0 to M7 | 4 | 6 | <u>13.3</u> | <u>13.9</u> | <u>13.5</u> | <u>14.0</u> | 19.70 | 30 | 10.30 | Page No: 26 of 274 ## Peak Output Power, 2412 MHz, Legacy CCK, 1 to 11 Mbps Antenna A Peak Output Power, 2412 MHz, Legacy CCK, 1 to 11 Mbps Antenna A Antenna B ## Peak Output Power, 2412 MHz, Legacy CCK, 1 to 11 Mbps #### Antenna A Antenna C #### Antenna B Antenna D ## Peak Output Power, 2412 MHz, Non HT-20, 6 to 54 Mbps Antenna A ## Peak Output Power, 2412 MHz, Non HT-20, 6 to 54 Mbps Antenna A Antenna B ## Antenna A Antenna C Antenna B ## Peak Output Power, 2412 MHz, Non HT-20, 6 to 54 Mbps # Antenna A Antenna C Antenna D #### Antenna B Peak Output Power, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Peak Output Power, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps #### Antenna A Antenna B Antenna C ## Peak Output Power, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps #### Antenna A Antenna B Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20, M0 to M7 Antenna A ### Peak Output Power, 2412 MHz, HT-20, M0 to M7 Antenna B ### Peak Output Power, 2412 MHz, HT-20, M8 to M15 Antenna C Antenna B ### Peak Output Power, 2412 MHz, HT-20, M8 to M15 Antenna C Antenna B ### Peak Output Power, 2412 MHz, HT-20, M16 to M23 Antenna C Antenna B ### Peak Output Power, 2412 MHz, HT-20, M0 to M7 ### Antenna A Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20, M8 to M15 ### Antenna A Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20, M16 to M23 ### Antenna A Antenna C Antenna D Peak Output Power, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B Peak Output Power, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Antenna B Peak Output Power, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C ### Peak Output Power, 2412 MHz, HT-20 Beam Forming, M8 to M15 ### Antenna A Ligorstan Analyzor Chemid Power Ter Freq 2.412000000 GHz Center Freq 2.412000000 GHz Ting Free Ruin Avgilledd: 100/100 Radio Device: BTS Antenna C Peak Output Power, 2412 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C ### Peak Output Power, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20 Beam Forming, M8 to M15 # | Applied Spectrum Analyses | Danied Disease Dis Antenna B Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20 Beam Forming, M16 to M23 ## PASS | Ref Offset 10.57 dB | Ref 20.10 dBm R Antenna B Antenna C Antenna D ### Peak Output Power, 2412 MHz, HT-20 STBC, M0 to M7 Antenna A Antenna B Antenna C Antenna B ### Peak Output Power, 2412 MHz, HT-20 STBC, M0 to M7 ### Antenna A Antenna C Antenna D Antenna A Antenna B Antenna C Antenna B ### Antenna A Antenna C Antenna A Antenna B Antenna C Antenna B ### Antenna A Antenna C Antenna D Peak Output Power, 2437 MHz, Non
HT-20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Peak Output Power, 2437 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C Center Fre 2,437000000 GH ### Peak Output Power, 2437 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps ### Center 2.437 GHz #Res BW 1 MHz Channel Power Power Spectral Density 15.62 dBm / 16.44 MH 3.458 dBm /MHz Antenna B Antenna C Antenna D ### Peak Output Power, 2437 MHz, HT-20, M0 to M7 ### Peak Output Power, 2437 MHz, HT-20, M0 to M7 Antenna A Antenna B ### Peak Output Power, 2437 MHz, HT-20, M8 to M15 Antenna A Antenna B Antenna C Antenna B ### Peak Output Power, 2437 MHz, HT-20, M8 to M15 Antenna C Antenna B # Peak Output Power, 2437 MHz, HT-20, M16 to M23 Antenna C Antenna B # Peak Output Power, 2437 MHz, HT-20, M0 to M7 # Antenna A Antenna C Antenna D # Peak Output Power, 2437 MHz, HT-20, M8 to M15 # Antenna A Antenna C Antenna D # Peak Output Power, 2437 MHz, HT-20, M16 to M23 # Antenna A Antenna C Antenna D Peak Output Power, 2437 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B Peak Output Power, 2437 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Antenna B Peak Output Power, 2437 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C # Peak Output Power, 2437 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C # Peak Output Power, 2437 MHz, HT-20 Beam Forming, M16 to M23 # | Action | Spectral Notifice | Content | Demois # Antenna A Antenna C Page No: 81 of 274 # Peak Output Power, 2437 MHz, HT-20 Beam Forming, M0 to M7 # Antenna B Antenna C Antenna D Center Fre 2,437000000 GH # Peak Output Power, 2437 MHz, HT-20 Beam Forming, M8 to M15 Antenna A # Antenna B Antenna D Channel Power 15.41 dBm / 16.44 MF Power Spectral Density 3.247 dBm /MHz # Peak Output Power, 2437 MHz, HT-20 Beam Forming, M16 to M23 # Antenna B Antenna C Antenna D # Peak Output Power, 2437 MHz, HT-20 STBC, M0 to M7 Antenna A Antenna B Page No: 85 of 274 Antenna C Antenna B # Peak Output Power, 2437 MHz, HT-20 STBC, M0 to M7 # Antenna A Antenna C Antenna D Antenna A Antenna B Antenna C Antenna B # Antenna A Antenna C Antenna D # Peak Output Power, 2462 MHz, Non HT-20, 6 to 54 Mbps # Peak Output Power, 2462 MHz, Non HT-20, 6 to 54 Mbps Antenna A Antenna B Antenna C Antenna B # Peak Output Power, 2462 MHz, Non HT-20, 6 to 54 Mbps # Antenna A Antenna C Antenna D Peak Output Power, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Peak Output Power, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C # Peak Output Power, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps # Antenna B Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20, M0 to M7 Antenna A # Peak Output Power, 2462 MHz, HT-20, M0 to M7 Antenna B # Peak Output Power, 2462 MHz, HT-20, M8 to M15 Antenna A Antenna B Antenna C Antenna B # Peak Output Power, 2462 MHz, HT-20, M8 to M15 Antenna C Antenna B # Peak Output Power, 2462 MHz, HT-20, M16 to M23 Antenna C Antenna B # Peak Output Power, 2462 MHz, HT-20, M0 to M7 # Antenna A Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20, M8 to M15 # Antenna A Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20, M16 to M23 # Antenna A Antenna C Antenna D Peak Output Power, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B Peak Output Power, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Antenna B Page No: 109 of 274 Peak Output Power, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C # Peak Output Power, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna C # Peak Output Power, 2462 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C # Peak Output Power, 2462 MHz, HT-20 Beam Forming, M0 to M7 # | Appendisportant Analyses | Daniel Diseases Daniel Diseases | Daniel Diseases | Daniel Dan Antenna B Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20 Beam Forming, M8 to M15 # Center 2.492 GHz #Res BW 1 MHz Channel Powe: 12.92 dBm / 18.44 MF 0.7561 dBm /MHz Antenna B Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20 Beam Forming, M16 to M23 # Antenna A Antenna C Antenna D # Peak Output Power, 2462 MHz, HT-20 STBC, M0 to M7 Antenna A Antenna B Antenna C Antenna B # Peak Output Power, 2462 MHz, HT-20 STBC, M0 to M7 # Antenna A Antenna C # Antenna B Antenna D # **Power Spectral Density** 15.247 / RSS-210 A8.2: For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below. Center Frequency: Frequency from table below Span: 20 MHz Ref Level Offset: Correct for attenuator and cable loss. Reference Level: 20 dBm Attenuation: 20 dB Sweep Time: 10s Resolution Bandwidth: 3 kHz Video Bandwidth: 10 kHz Detector: Peak Trace: Single Marker: Peak Search Record the Marker value. The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring in-band Power Spectral Density. With this technique, spectrum measurements are performed at each output of the device, and the quantity 10 log(4) (or 6dB) is added to the worst case spectrum value before comparing to the emission limit. | Frequency
(MHz) | Mode | Data
Rate
(Mbps) | PSD /
Antenna
(dBm/3kHz) | Total PSD
(dBm/3kHz) | Limit
(dBm/3kHz) | Margin
(dB) | |--------------------|--------------------------|------------------------|--------------------------------|-------------------------|---------------------|----------------| | | Legacy CCK, 1 to 11 Mbps | 11 | <u>-8.3</u> | -2.28 | 8.00 | 10.28 | | 2412 | Non HT-20, 6 to 54 Mbps | 6 | <u>-11.7</u> | -5.68 | 8.00 | 13.68 | | | HT-20, M0 to M23 | m0 | <u>-12.4</u> | -6.38 | 8.00 | 14.38 | | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>-7.4</u> | -1.38 | 8.00 | 9.38 | | 2437 | Non HT-20, 6 to 54 Mbps | 6 | <u>-12.9</u> | -6.88 | 8.00 | 14.88 | | | HT-20, M0 to M23 | m0 | <u>-10.6</u> | -4.58 | 8.00 | 12.58 | | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>-8.9</u> | -2.88 | 8.00 | 10.88 | | 2462 | Non HT-20, 6 to 54 Mbps | 6 | <u>-11.9</u> | -5.88 | 8.00 | 13.88 | | | HT-20, M0 to M23 | m0 | <u>-12</u> | -5.98 | 8.00 | 13.98 | Page No: 120 of 274 # Power Spectral Density, 2412 MHz, Non HT-20, 6 to 54 Mbps Page No: 121 of 274 # Power Spectral Density, 2437 MHz, Legacy CCK, 1 to 11 Mbps Page No: 122 of 274 # Power Spectral Density, 2437 MHz, HT-20, M0 to M23 Page No: 123 of 274 # Power Spectral Density, 2462 MHz, Non HT-20, 6 to 54 Mbps Page No: 124 of 274 # **Conducted Spurious Emissions** 15.247 / RSS-210 A8.5: In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Span: 30 MHz-26 GHz Reference Level: 20 dBm 10 dB Attenuation: Sweep Time: 5s Resolution Bandwidth: 100 kHz Video Bandwidth: 300 kHz Detector: Peak Trace: Single Marker: Peak Record the marker waveform peak to spur difference Out-of-band and spurious emissions tests are performed on each output individually without summing or adding 10 log(N) since the measurements are made relative to the in-band emissions on the individual outputs. The worst case output is recorded. | Frequency
(MHz) | Mode | Data Rate
(Mbps) | Conducted
Spur Delta
(dB) | Limit
(dB c) | Margin
(dB) | |--------------------|--------------------------|---------------------|---------------------------------|-----------------|----------------| | | Legacy CCK, 1 to 11 Mbps | 11 | <u>60.5</u> | 30 | 30.5 | | 2412 | Non HT-20, 6 to 54 Mbps | 6 | <u>64.7</u> | 30 | 34.7 | | | HT-20, M0 to M23 | m0 | <u>64.7</u> | 30 | 34.7 | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>66.8</u> | 30 | 36.8 | | 2437 | Non HT-20, 6 to 54 Mbps | 6 | <u>61.5</u> | 30 | 31.5 | | | HT-20, M0 to M23 | m0 | <u>64.5</u> | 30 | 34.5 | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 11 | <u>66.1</u> | 30 | 36.1 | | 2462 | Non HT-20, 6 to 54 Mbps | 6 | <u>60</u> | 30 | 30 | | | HT-20, M0 to M23 | m0 | <u>61</u> | 30 | 31 | Page No: 127 of 274 # Conducted Spurs Delta, 2412 MHz, Non HT-20, 6 to 54 Mbps Page No: 128 of 274 # Conducted Spurs Delta, 2437 MHz, Legacy CCK, 1 to 11 Mbps Page No: 129 of 274 # Conducted Spurs Delta, 2437 MHz, HT-20, M0 to M23 Page No: 130 of 274 # Conducted Spurs Delta, 2462 MHz, Non HT-20, 6 to 54 Mbps Page No: 131 of 274 Conducted Spurs Delta, 2462 MHz, HT-20, M0 to M23 11:15:55 PM Apr 05, 2013 TRACE 12 14 5 Avg Type: Log-Pwr Frequency Center Freq 13.015000000 GHz PNO: Fast Trig: Free Run **Auto Tune** Mkr1 2.46 GHz 0.29 dBm Ref Offset 10.58 dB Ref 10.00 dBm Center Freq 13.015000000 GHz Start Freq 30.000000 MHz Stop Freq 26.000000000 GHz Stop 26.00 GHz #Sweep 10.0 s (601 pts) Start 30 MHz CF Step 2.597000000 GHz #Res BW 100 kHz **#VBW 300 kHz** FUNCTION FUNCTION WIDTH Man FUNCTION VALUE Auto Freq Offset 0 Hz Page No: 132 of 274 # Conducted Bandedge 15.205 / RSS-210 2.7: Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). Use the procedures in 718828 D01 DTS Meas Guidance v01 to substitute conducted measurements in place of radiated measurements. Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Be sure to enter all losses between the transmitter output and the spectrum analyzer. Reference Level: 10 dBm Attenuation: 4 dB Sweep Time: Coupled
Resolution Bandwidth: 1MHz Video Bandwidth: 1 MHz for peak, 100 Hz for average Detector: Peak Save 2 plots: 1) Average Plot (Vertical and Horizontal), Limit= -41.25 dBm eirp (54dBuV/m @3m) 2) Peak plot (Vertical and Horizontal), Limit = -21.25 dBm eirp (74dBuV/m @3m) Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. This report represents the worst case data for all supported operating modes and antennas. Page No: 133 of 274 # **Average Bandedge Data** | Frequency
(MHz) | Mode | Tx
Paths | Correlated
Antenna Gain (dBi) | Tx 1 Bandedge
Level (dBm) | Tx 2 Bandedge
Level (dBm) | Tx 3 Bandedge
Level (dBm) | Tx 4 Bandedge
Level (dBm) | Total Tx Bandedge
Level (dBm) | Limit
(dBm) | Margin
(dB) | |--------------------|---|-------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|----------------|----------------| | | Legacy CCK, 1 to 11 Mbps | 1 | 6 | -71.80 | | | | -65.80 | -41.25 | 24.55 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | <u>-71.20</u> | <u>-69.00</u> | <u>-71.00</u> | | -60.95 | -41.25 | 19.70 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | <u>-71.20</u> | <u>-69.00</u> | <u>-71.00</u> | <u>-70.20</u> | -58.24 | -41.25 | 16.99 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | <u>-57.60</u> | | | | -51.60 | -41.25 | 10.35 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>-57.60</u> | <u>-54.40</u> | | | -46.70 | -41.25 | 5.45 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>-57.60</u> | <u>-54.40</u> | <u>-57.10</u> | | -45.36 | -41.25 | 4.11 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>-57.60</u> | <u>-54.40</u> | <u>-57.10</u> | <u>-54.40</u> | -43.61 | -41.25 | 2.36 | | | Non HT-20 Beam Forming, 6 to 54
Mbps | 2 | 9 | <u>-57.60</u> | <u>-54.40</u> | | | -43.70 | -41.25 | 2.45 | | | Non HT-20 Beam Forming, 6 to 54
Mbps | 3 | 11 | <u>-61.70</u> | <u>-59.00</u> | <u>-60.70</u> | | -44.75 | -41.25 | 3.50 | | | Non HT-20 Beam Forming, 6 to 54 Mbps | 4 | 12 | <u>-61.70</u> | <u>-59.00</u> | <u>-60.70</u> | <u>-58.70</u> | -41.84 | -41.25 | 0.59 | | | HT-20, M0 to M7 | 1 | 6 | <u>-58.10</u> | | | | -52.10 | -41.25 | 10.85 | | | HT-20, M0 to M7 | 2 | 6 | <u>-58.10</u> | <u>-52.40</u> | | | -45.36 | -41.25 | 4.11 | | 2412 | HT-20, M8 to M15 | 2 | 6 | <u>-58.10</u> | <u>-52.40</u> | | | -45.36 | -41.25 | 4.11 | | 2412 | HT-20, M0 to M7 | 3 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -43.58 | -41.25 | 2.33 | | | HT-20, M8 to M15 | 3 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -43.58 | -40.25 | 3.33 | | | HT-20, M16 to M23 | 3 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -43.58 | -41.25 | 2.33 | | | HT-20, M0 to M7 | 4 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | <u>-52.50</u> | -41.79 | -41.25 | 0.54 | | | HT-20, M8 to M15 | 4 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | <u>-52.50</u> | -41.79 | -41.25 | 0.54 | | | HT-20, M16 to M23 | 4 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | <u>-52.50</u> | -41.79 | -41.25 | 0.54 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>-58.10</u> | <u>-52.40</u> | | | -42.36 | -41.25 | 1.11 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>-58.10</u> | <u>-52.40</u> | | | -45.36 | -41.25 | 4.11 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>-61.70</u> | <u>-57.80</u> | <u>-57.70</u> | | -43.14 | -41.25 | 1.89 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -41.78 | -41.25 | 0.53 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -43.58 | -41.25 | 2.33 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>-64.40</u> | <u>-61.10</u> | <u>-61.40</u> | <u>-61.70</u> | -43.95 | -41.25 | 2.70 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | <u>-61.70</u> | <u>-57.80</u> | <u>-57.70</u> | <u>-56.40</u> | -42.99 | -41.25 | 1.74 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>-61.70</u> | <u>-57.80</u> | <u>-57.70</u> | <u>-56.40</u> | -44.79 | -41.25 | 3.54 | | | HT-20 STBC, M0 to M7 | 2 | 6 | <u>-58.10</u> | <u>-52.40</u> | | | -45.36 | -41.25 | 4.11 | | | HT-20 STBC, M0 to M7 | 3 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | | -43.58 | -41.25 | 2.33 | Page No: 134 of 274 | | HT-20 STBC, M0 to M7 | 4 | 6 | <u>-58.10</u> | <u>-52.40</u> | <u>-54.30</u> | <u>-52.50</u> | -41.79 | -41.25 | 0.54 | |------|---------------------------------|---|----|---------------|---------------|---------------|---------------|--------|--------|-------| | | | | | | | | | | | | | | Legacy CCK, 1 to 11 Mbps | 1 | 6 | <u>-72.60</u> | | | | -66.60 | -41.25 | 25.35 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | <u>-71.80</u> | <u>-70.10</u> | | | -61.86 | -41.25 | 20.61 | | | Legacy CCK, 1 to 11 Mbps | 3 | 6 | <u>-71.80</u> | <u>-70.10</u> | <u>-71.20</u> | | -60.20 | -41.25 | 18.95 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | <u>-71.80</u> | <u>-70.10</u> | <u>-71.20</u> | <u>-71.10</u> | -58.99 | -41.25 | 17.74 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | <u>-58.20</u> | | | | -52.20 | -41.25 | 10.95 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>-58.20</u> | <u>-53.50</u> | | | -46.23 | -41.25 | 4.98 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>-58.20</u> | <u>-53.50</u> | <u>-56.20</u> | | -44.77 | -41.25 | 3.52 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>-58.20</u> | <u>-53.50</u> | <u>-56.20</u> | <u>-52.50</u> | -42.54 | -41.25 | 1.29 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 2 | 9 | <u>-58.20</u> | <u>-53.50</u> | | | -43.23 | -41.25 | 1.98 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 3 | 11 | <u>-62.20</u> | <u>-58.90</u> | <u>-59.60</u> | | -44.45 | -41.25 | 3.20 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 4 | 12 | <u>-66.10</u> | <u>-63.40</u> | <u>-64.50</u> | <u>-62.70</u> | -45.97 | -41.25 | 4.72 | | | HT-20, M0 to M7 | 1 | 6 | <u>-55.80</u> | | | | -49.80 | -41.25 | 8.55 | | | HT-20, M0 to M7 | 2 | 6 | <u>-55.80</u> | <u>-50.90</u> | | | -43.68 | -41.25 | 2.43 | | 2462 | HT-20, M8 to M15 | 2 | 6 | <u>-55.80</u> | <u>-50.90</u> | | | -43.68 | -41.25 | 2.43 | | 2402 | HT-20, M0 to M7 | 3 | 6 | <u>-55.80</u> | <u>-50.90</u> | <u>-53.20</u> | | -42.08 | -41.25 | 0.83 | | | HT-20, M8 to M15 | 3 | 6 | <u>-55.80</u> | <u>-50.90</u> | <u>-53.20</u> | | -42.08 | -41.25 | 0.83 | | | HT-20, M16 to M23 | 3 | 6 | <u>-55.80</u> | <u>-50.90</u> | <u>-53.20</u> | | -42.08 | -41.25 | 0.83 | | | HT-20, M0 to M7 | 4 | 6 | <u>-60.10</u> | <u>-57.20</u> | <u>-57.70</u> | <u>-54.20</u> | -44.77 | -41.25 | 3.52 | | | HT-20, M8 to M15 | 4 | 6 | <u>-60.10</u> | <u>-57.20</u> | <u>-57.70</u> | <u>-54.20</u> | -44.77 | -41.25 | 3.52 | | | HT-20, M16 to M23 | 4 | 6 | <u>-60.10</u> | <u>-57.20</u> | <u>-57.70</u> | <u>-54.20</u> | -44.77 | -41.25 | 3.52 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>-60.10</u> | <u>-57.20</u> | | | -46.40 | -41.25 | 5.15 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>-55.80</u> | <u>-50.90</u> | | | -43.68 | -41.25 | 2.43 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>-64.10</u> | <u>-61.50</u> | <u>-62.10</u> | | -46.86 | -41.25 | 5.61 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>-60.10</u> | <u>-57.20</u> | <u>-57.70</u> | | -45.59 | -41.25 | 4.34 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | <u>-55.80</u> | -50.90 | <u>-53.20</u> | | -42.08 | -41.25 | 0.83 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>-64.10</u> | <u>-61.50</u> | <u>-62.10</u> | <u>-59.40</u> | -43.43 | -41.25 | 2.18 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | <u>-64.10</u> | <u>-61.50</u> | <u>-62.10</u> | <u>-59.40</u> | -46.43 | -41.25 | 5.18 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>-64.10</u> | <u>-61.50</u> | <u>-62.10</u> | <u>-59.40</u> | -48.23 | -41.25 | 6.98 | | | HT-20 STBC, M0 to M7 | 2 | 6 | <u>-55.80</u> | <u>-50.90</u> | | | -43.68 | -41.25 | 2.43 | | | HT-20 STBC, M0 to M7 | 3 | 6 | <u>-55.80</u> | <u>-50.90</u> | <u>-53.20</u> | | -42.08 | -41.25 | 0.83 | | | HT-20 STBC, M0 to M7 | 4 | 6 | -60.10 | -57.20 | -57.70 | -54.20 | -44.77 | -41.25 | 3.52 | # Conducted Bandedge Average, 2412 MHz, Legacy CCK, 1 to 11 Mbps # Conducted Bandedge Average, 2412 MHz, Legacy CCK, 1 to 11 Mbps Antenna B # Conducted Bandedge Average, 2412 MHz, Legacy CCK, 1 to 11 Mbps Antenna B Antenna C Antenna D Antenna B #### Antenna A | Context | Fire | Context Antenna C Page No: 141 of 274 Antenna B Antenna B Antenna C Antenna D Antenna B Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2412 MHz, HT-20, M0 to M7 Antenna A Page No: 146 of 274 ## Conducted Bandedge Average, 2412 MHz, HT-20, M0 to M7 Antenna B ## Conducted Bandedge Average, 2412 MHz, HT-20, M8 to M15 Antenna B # Conducted Bandedge Average, 2412 MHz, HT-20, M0 to M7 ### Antenna A Appendix post new Analyzor (serger 56. Center Freq 2.350000000 GHz PRO-less PRO-le Antenna C Page No: 149 of 274 Antenna B ## Conducted Bandedge Average, 2412 MHz, HT-20, M8 to M15 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20, M16 to M23 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20, M0 to M7 Antenna B Antenna C Antenna D ## Conducted Bandedge Average, 2412 MHz, HT-20, M8 to M15 Antenna B Antenna C Antenna D ## Conducted Bandedge Average, 2412 MHz, HT-20, M16 to M23 Antenna B Antenna C Antenna D ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M0 to M7
Antenna B ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Page No: 156 of 274 Antenna B ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C Antenna D ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C Antenna D ## Conducted Bandedge Average, 2412 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2412 MHz, HT-20 STBC, M0 to M7 Antenna B ## Conducted Bandedge Average, 2412 MHz, HT-20 STBC, M0 to M7 Antenna B Antenna C ## Conducted Bandedge Average, 2412 MHz, HT-20 STBC, M0 to M7 Antenna B Antenna C Antenna D Antenna A Page No: 166 of 274 Antenna B ### Antenna A Antenna C Page No: 168 of 274 Antenna B Antenna B Antenna C Antenna D Antenna A Page No: 170 of 274 Antenna B ### Antenna A Antenna C Antenna B Antenna B Antenna C Antenna D Antenna B ### Antenna A Appendix processes Analyzer in register to the second of t Antenna C Antenna B Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20, M0 to M7 ## Conducted Bandedge Average, 2462 MHz, HT-20, M0 to M7 Antenna B ## Conducted Bandedge Average, 2462 MHz, HT-20, M8 to M15 Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20, M0 to M7 ### Antenna A Agent Specime Analyses (1994) 18. Antenna C Page No: 180 of 274 Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20, M8 to M15 # Antenna A Antenna C Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20, M16 to M23 Antenna B Antenna C # Conducted Bandedge Average, 2462 MHz, HT-20, M0 to M7 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20, M8 to M15 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20, M16 to M23 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C Antenna D # Conducted Bandedge Average, 2462 MHz, HT-20 STBC, M0 to M7 Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20 STBC, M0 to M7 #### Antenna A Antenna C Page No: 195 of 274 Antenna B # Conducted Bandedge Average, 2462 MHz, HT-20 STBC, M0 to M7 Antenna B Antenna C Antenna D **Peak Bandedge Data** | Peak Bandedge Data | | | | | | | | | | | |--------------------|---|-------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|----------------|----------------| | Frequency
(MHz) | Mode | Tx
Paths | Correlated
Antenna Gain (dBi) | Tx 1 Bandedge
Level (dBm) | Tx 2 Bandedge
Level (dBm) | Tx 3 Bandedge
Level (dBm) | Tx 4 Bandedge
Level (dBm) | Total Tx Bandedge
Level (dBm) | Limit
(dBm) | Margin
(dB) | | , | Legacy CCK, 1 to 11 Mbps | 1 | 6 | -60.90 | | | | -54.90 | -21.25 | 33.65 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | -60.60 | -60.50 | -61.20 | | -51.54 | -21.25 | 30.29 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | -60.60 | -60.50 | <u>-61.20</u> | -59.30 | -48.32 | -21.25 | 27.07 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | <u>-40.60</u> | | | | -34.60 | -21.25 | 13.35 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | <u>-40.60</u> | <u>-37.90</u> | | | -30.03 | -21.25 | 8.78 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | <u>-40.60</u> | <u>-37.90</u> | <u>-39.90</u> | | -28.54 | -21.25 | 7.29 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | <u>-40.60</u> | <u>-37.90</u> | <u>-39.90</u> | <u>-36.90</u> | -26.55 | -21.25 | 5.30 | | | Non HT-20 Beam Forming, 6 to 54
Mbps | 2 | 9 | -40.60 | -37.90 | | | -27.03 | -21.25 | 5.78 | | | Non HT-20 Beam Forming, 6 to 54
Mbps | 3 | 11 | <u>-42.30</u> | <u>-41.80</u> | <u>-44.30</u> | | -27.10 | -21.25 | 5.85 | | | Non HT-20 Beam Forming, 6 to 54 Mbps | 4 | 12 | <u>-42.30</u> | <u>-41.80</u> | <u>-44.30</u> | <u>-41.40</u> | -24.30 | -21.25 | 3.05 | | | HT-20, M0 to M7 | 1 | 6 | -38.30 | | | | -32.30 | -21.25 | 11.05 | | | HT-20, M0 to M7 | 2 | 6 | <u>-38.30</u> | <u>-36.20</u> | | | -28.11 | -21.25 | 6.86 | | | HT-20, M8 to M15 | 2 | 6 | <u>-38.30</u> | <u>-36.20</u> | | | -28.11 | -21.25 | 6.86 | | 2412 | HT-20, M0 to M7 | 3 | 6 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | | -25.34 | -21.25 | 4.09 | | | HT-20, M8 to M15 | 3 | 6 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | | -25.34 | -20.25 | 5.09 | | | HT-20, M16 to M23 | 3 | 6 | -38.30 | -36.20 | -34.60 | | -25.34 | -21.25 | 4.09 | | | HT-20, M0 to M7 | 4 | 6 | -38.30 | <u>-36.20</u> | <u>-34.60</u> | -30.80 | -22.05 | -21.25 | 0.80 | | | HT-20, M8 to M15 | 4 | 6 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | <u>-30.80</u> | -22.05 | -21.25 | 0.80 | | | HT-20, M16 to M23 | 4 | 6 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | <u>-30.80</u> | -22.05 | -21.25 | 0.80 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>-38.30</u> | <u>-36.20</u> | | | -25.11 | -21.25 | 3.86 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>-38.30</u> | <u>-36.20</u> | | | -28.11 | -21.25 | 6.86 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | -39.20 | <u>-36.20</u> | <u>-40.10</u> | | -22.59 | -21.25 | 1.34 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | | -23.54 | -21.25 | 2.29 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | -38.30 | <u>-36.20</u> | <u>-34.60</u> | | -25.34 | -21.25 | 4.09 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>-42.50</u> | <u>-43.60</u> | <u>-44.50</u> | <u>-41.90</u> | -24.99 | -21.25 | 3.74 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | -39.20 | -36.20 | <u>-40.10</u> | <u>-37.70</u> | -23.02 | -21.25 | 1.77 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>-39.20</u> | <u>-36.20</u> | <u>-40.10</u> | <u>-37.70</u> | -24.82 | -21.25 | 3.57 | | | HT-20 STBC, M0 to M7 | 2 | 6 | <u>-38.30</u> | <u>-36.20</u> | | | -28.11 | -21.25 | 6.86 | | | HT-20 STBC, M0 to M7 | 3 | 6 | <u>-38.30</u> | <u>-36.20</u> | <u>-34.60</u> | | -25.34 | -21.25 | 4.09 | | | | _ | | 7 of 274 | | | | | | | Page No: 197 of 274 | | HT-20 STBC, M0 to M7 | 4 | 6 | -38.30 | -36.20 | -34.60 | -30.80 | -22.05 | -21.25 | 0.80 | |------|---------------------------------|---|----|---------------|---------------|---------------|---------------|--------|--------|-------| | | 111 20 3130, We to W. | • | | 30.30 | 30.20 | 31.00 | 30.00 | 22.03 | 21.23 | 0.00 | | | Legacy CCK, 1 to 11 Mbps | 1 | 6 | -62.60 | | | | -56.60 | -21.25 | 35.35 | | | Legacy CCK, 1 to 11 Mbps | 2 | 6 | -61.20 | -59.90 | | | -51.49 | -21.25 | 30.24 | | | Legacy CCK, 1 to 11 Mbps | 3 | 6 | -61.20 | -59.90 | -55.40 | | -47.31 | -21.25 | 26.06 | | | Legacy CCK, 1 to 11 Mbps | 4 | 6 | -61.20 | -59.90 | -55.40 | -59.60 | -46.39 | -21.25 | 25.14 | | | Non HT-20, 6 to 54 Mbps | 1 | 6 | -36.20 | | | | -30.20 | -21.25 | 8.95 | | | Non HT-20, 6 to 54 Mbps | 2 | 6 | -36.20 | -33.00 | | | -25.30 | -21.25 | 4.05 | | | Non HT-20, 6 to 54 Mbps | 3 | 6 | -36.20 | -33.00 | -37.80 | | -24.42 | -21.25 | 3.17 | | | Non HT-20, 6 to 54 Mbps | 4 | 6 | -36.20 | -33.00 | -37.80 | -32.60 | -22.37 | -21.25 | 1.12 | | | Non HT-20 Beam Forming, 6 to
54 | | | | | | | | | | | | Mbps | 2 | 9 | -36.20 | -33.00 | | | -22.30 | -21.25 | 1.05 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 3 | 11 | <u>-44.80</u> | <u>-38.90</u> | <u>-42.40</u> | | -25.79 | -21.25 | 4.54 | | | Non HT-20 Beam Forming, 6 to 54 | | | | | | | | | | | | Mbps | 4 | 12 | <u>-48.60</u> | <u>-43.30</u> | <u>-46.50</u> | <u>-40.90</u> | -25.85 | -21.25 | 4.60 | | | HT-20, M0 to M7 | 1 | 6 | <u>-31.20</u> | | | | -25.20 | -21.25 | 3.95 | | | HT-20, M0 to M7 | 2 | 6 | <u>-31.20</u> | <u>-31.10</u> | | | -22.14 | -21.25 | 0.89 | | 2462 | HT-20, M8 to M15 | 2 | 6 | -31.20 | -31.10 | | | -22.14 | -21.25 | 0.89 | | | HT-20, M0 to M7 | 3 | 6 | <u>-31.20</u> | <u>-31.10</u> | <u>-34.90</u> | | -21.31 | -21.25 | 0.06 | | | HT-20, M8 to M15 | 3 | 6 | <u>-31.20</u> | <u>-31.10</u> | <u>-34.90</u> | | -21.31 | -21.25 | 0.06 | | | HT-20, M16 to M23 | 3 | 6 | <u>-31.20</u> | <u>-31.10</u> | <u>-34.90</u> | | -21.31 | -21.25 | 0.06 | | | HT-20, M0 to M7 | 4 | 6 | <u>-37.30</u> | <u>-34.90</u> | <u>-34.30</u> | <u>-31.70</u> | -22.08 | -21.25 | 0.83 | | | HT-20, M8 to M15 | 4 | 6 | -37.30 | -34.90 | -34.30 | -31.70 | -22.08 | -21.25 | 0.83 | | | HT-20, M16 to M23 | 4 | 6 | -37.30 | -34.90 | -34.30 | <u>-31.70</u> | -22.08 | -21.25 | 0.83 | | | HT-20 Beam Forming, M0 to M7 | 2 | 9 | <u>-37.30</u> | <u>-34.90</u> | | | -23.93 | -21.25 | 2.68 | | | HT-20 Beam Forming, M8 to M15 | 2 | 6 | <u>-31.20</u> | <u>-31.10</u> | | | -22.14 | -21.25 | 0.89 | | | HT-20 Beam Forming, M0 to M7 | 3 | 11 | <u>-42.70</u> | <u>-38.00</u> | <u>-42.40</u> | | -24.89 | -21.25 | 3.64 | | | HT-20 Beam Forming, M8 to M15 | 3 | 8 | <u>-37.30</u> | <u>-34.90</u> | <u>-34.30</u> | | -22.75 | -21.25 | 1.50 | | | HT-20 Beam Forming, M16 to M23 | 3 | 6 | -31.20 | -31.10 | -34.90 | | -21.31 | -21.25 | 0.06 | | | HT-20 Beam Forming, M0 to M7 | 4 | 12 | <u>-42.70</u> | <u>-38.00</u> | <u>-42.40</u> | <u>-40.80</u> | -22.52 | -21.25 | 1.27 | | | HT-20 Beam Forming, M8 to M15 | 4 | 9 | <u>-42.70</u> | <u>-38.00</u> | <u>-42.40</u> | <u>-40.80</u> | -25.52 | -21.25 | 4.27 | | | HT-20 Beam Forming, M16 to M23 | 4 | 7 | <u>-42.70</u> | <u>-38.00</u> | <u>-42.40</u> | <u>-40.80</u> | -27.32 | -21.25 | 6.07 | | | HT-20 STBC, M0 to M7 | 2 | 6 | -31.20 | -31.10 | | | -22.14 | -21.25 | 0.89 | | | HT-20 STBC, M0 to M7 | 3 | 6 | -31.20 | -31.10 | -34.90 | | -21.31 | -21.25 | 0.06 | | | HT-20 STBC, M0 to M7 | 4 | 6 | <u>-37.30</u> | <u>-34.90</u> | <u>-34.30</u> | <u>-31.70</u> | -22.08 | -21.25 | 0.83 | Page No: 198 of 274 # Conducted Bandedge Peak, 2412 MHz, Legacy CCK, 1 to 11 Mbps Conducted Bandedge Peak, 2412 MHz, Legacy CCK, 1 to 11 Mbps Antenna A Antenna B # Conducted Bandedge Peak, 2412 MHz, Legacy CCK, 1 to 11 Mbps # ### 100 Center Freq 2.350000000 GHz | Fig. Free Run Fre Antenna B Antenna C Antenna D Antenna A Antenna B Antenna B Antenna C Antenna B Antenna C Antenna D Conducted Bandedge Peak, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Conducted Bandedge Peak, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C # Conducted Bandedge Peak, 2412 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2412 MHz, HT-20, M0 to M7 # Conducted Bandedge Peak, 2412 MHz, HT-20, M0 to M7 Antenna A Antenna B # Conducted Bandedge Peak, 2412 MHz, HT-20, M8 to M15 Antenna B # Conducted Bandedge Peak, 2412 MHz, HT-20, M0 to M7 Antenna C Antenna B # Conducted Bandedge Peak, 2412 MHz, HT-20, M8 to M15 #### Antenna A Antenna C Page No: 213 of 274 Antenna B # Conducted Bandedge Peak, 2412 MHz, HT-20, M16 to M23 Antenna C #### Conducted Bandedge Peak, 2412 MHz, HT-20, M0 to M7 #### Antenna A Antenna C #### Antenna B Antenna D #### Conducted Bandedge Peak, 2412 MHz, HT-20, M8 to M15 # Center Freq 2.35000000 GHz Fig. Fise Run F Antenna B Antenna C Antenna D ## Conducted Bandedge Peak, 2412 MHz, HT-20, M16 to M23 Antenna B Antenna C Antenna D Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Antenna B Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C # Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C # Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M16 to M23 Antenna C Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M0 to M7 ## Antenna A #VBW 1.0 MHz Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2412 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2412 MHz, HT-20 STBC, M0 to M7 Antenna A Antenna B ## Conducted Bandedge Peak, 2412 MHz, HT-20 STBC, M0 to M7 ## Antenna A Antenna C Page No: 227 of 274 Antenna B ## Conducted Bandedge Peak, 2412 MHz, HT-20 STBC, M0 to M7 Antenna B Antenna C Antenna D Antenna A Page No: 229 of 274 Antenna A Antenna B Antenna A Antenna B Antenna C Antenna B Antenna C Antenna D Antenna A Antenna B #### Antenna A #VBW 1.0 MHz Antenna C Page No: 235 of 274 Antenna B Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna A Antenna B Conducted Bandedge Peak, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps Antenna B Antenna C # Conducted Bandedge Peak, 2462 MHz, Non HT-20 Beam Forming, 6 to 54 Mbps #### Antenna A #VBW 1.0 MHz Antenna B Antenna C Antenna D # Conducted Bandedge Peak, 2462 MHz, HT-20, M0 to M7 # Conducted Bandedge Peak, 2462 MHz, HT-20, M0 to M7 Antenna A Antenna B ## Conducted Bandedge Peak, 2462 MHz, HT-20, M8 to M15 Antenna B ## Conducted Bandedge Peak, 2462 MHz, HT-20, M0 to M7 Antenna C Antenna B # Conducted Bandedge Peak, 2462 MHz, HT-20, M8 to M15 #### Antenna A Antenna C Antenna B # Conducted Bandedge Peak, 2462 MHz, HT-20, M16 to M23 Antenna C ## Conducted Bandedge Peak, 2462 MHz, HT-20, M0 to M7 Antenna C Antenna B Antenna D ## Conducted Bandedge Peak, 2462 MHz, HT-20, M8 to M15 # Center Freq 2.491750000 GHz Frequency Frequency Frequency Frequency Frequency Frequency Frequency Frequency Auto Tune Auto Tune Auto Tune Start 7.483500 GHz Start 7.483500 GHz Ref 0.00 MHz Frequency Frequ Antenna B Antenna C Antenna D ## Conducted Bandedge Peak, 2462 MHz, HT-20, M16 to M23 Antenna C Antenna B Antenna D Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna A Antenna B Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna A Antenna B Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C # Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna B Antenna C ## Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C ## Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M0 to M7 Antenna B Antenna C Antenna D ### Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M8 to M15 Antenna C Antenna D ## Conducted Bandedge Peak, 2462 MHz, HT-20 Beam Forming, M16 to M23 Antenna B Antenna C Antenna D ### Conducted Bandedge Peak, 2462 MHz, HT-20 STBC, M0 to M7 Antenna A Antenna B # Conducted Bandedge Peak, 2462 MHz, HT-20 STBC, M0 to M7 Antenna C \$tart Fre 2.483500000 GH ### Conducted Bandedge Peak, 2462 MHz, HT-20 STBC, M0 to M7 #### Antenna A Antenna B de Trig: Free Run #VBW 1.0 MH Antenna C Antenna D **Conducted Test Setup Photo** ### Appendix B: Emission Test Results Testing Laboratory: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134, USA ## Radiated Spurious Emissions 15.205 / RSS-210 2.7: Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode. Span: 1GHz – 18 GHz Reference Level: 80 dBuV Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 1MHz Video Bandwidth: 1 MHz for peak, 10 Hz for average Detector: Peak Terminate the access Point RF ports with 50 ohm loads. Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height) Save 2 plots: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m 2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz. | Frequency
(MHz) | Mode | Data
Rate
(Mbps) | Spurious
Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | | | | | | | |--------------------|--------------------------------------|------------------------|---|-------------------|----------------|--|--|--|--|--|--| | | Legacy CCK, 1 to 11 Mbps | 1 | 44.07 | <54 | 9.9 | | | | | | | | | Non HT-20, 6 to 54 Mbps | 6 | 44.07 | <54 | 9.9 | | | | | | | | 2412 | Non HT-20 Beam Forming, 6 to 54 Mbps | 6 | 44.07 | <54 | 9.9 | | | | | | | | 2412 | HT-20, M0 to M23 | m0 | 44.07 | <54 | 9.9 | | | | | | | | | HT-20 STBC, M0 to M7 | m0 | 44.07 | <54 | 9.9 | | | | | | | | | HT-20 Beam Forming, M0 to M23 | m0 | 44.07 | <54 | 9.9 | Legacy CCK, 1 to 11 Mbps | 1 | 43.81 | <54 | 10.19 | | | | | | | | | Non HT-20, 6 to 54 Mbps | 6 | 43.81 | <54 | 10.19 | | | | | | | | 2442 | Non HT-20 Beam Forming, 6 to 54 Mbps | 6 | 43.81 | <54 | 10.19 | | | | | | | | 2442 | HT-20, M0 to M23 | m0 | 43.81 | <54 | 10.19 | | | | | | | | | HT-20 STBC, M0 to M7 | m0 | 43.81 | <54 | 10.19 | | | | | | | | | HT-20 Beam Forming, M0 to M23 | m0 | 43.81 | <54 | 10.19 | | | | | | | | | | | | | | |
| | | | | | | Legacy CCK, 1 to 11 Mbps | 1 | 43.68 | <54 | 10.3 | | | | | | | | | Non HT-20, 6 to 54 Mbps | 6 | 43.68 | <54 | 10.3 | | | | | | | | 2462 | Non HT-20 Beam Forming, 6 to 54 Mbps | 6 | 43.68 | <54 | 10.3 | | | | | | | | 2402 | HT-20, M0 to M23 | m0 | 43.68 | <54 | 10.3 | | | | | | | | | HT-20 STBC, M0 to M7 | m0 | 43.68 | <54 | 10.3 | | | | | | | | | HT-20 Beam Forming, M0 to M23 | m0 | 43.68 | <54 | 10.3 | | | | | | | ## Radiated Transmitter Spurs, 2442 MHz, All Rates, All Modes, Average Page No: 263 of 274 ### Radiated Transmitter Spurs, 2412 MHz, All Rates, All Modes, Peak Page No: 264 of 274 #### Radiated Transmitter Spurs, 2462 MHz, All Rates, All Modes, Peak Page No: 265 of 274 # **Receiver Radiated Spurious Emissions** #### Radiated Receiver Spurs, All Rates, All Modes, Peak **Radiated Test Setup Photo** ### **Test Results Table** | Frequency | | Cable | | | Measureme | | | | Pass /Fail C | Comments | |-----------|------|-------|-----|------|-----------|---|------|-------|--------------|----------| | | | | | | nt Type | | | dB | | | | 0.15736 | | | | | | | | | | | | 0.15736 | 32.8 | 21.3 | 0.1 | 54.2 | Qp | N | 65.6 | -11.4 | Pass | | | 0.15288 | 32 | 21.4 | 0.1 | 53.5 | Qp | N | 65.8 | -12.4 | Pass | | | 3.424 | 22.7 | 20 | 0 | 42.8 | Qp | N | 56 | -13.2 | Pass | | | 0.15288 | 21 | 21.4 | 0.1 | 42.4 | Av | L | 55.8 | -13.4 | Pass | | | 3.351 | 22.5 | 20 | 0.1 | 42.6 | Qp | N | 56 | -13.4 | Pass | | | 3.351 | 11.1 | 20 | 0.1 | 31.2 | Av | N | 46 | -14.8 | Pass | | | 3.351 | 10.9 | 20 | 0.1 | 30.9 | Av | L | 46 | -15.1 | Pass | | | 3.424 | 20.3 | 20 | 0 | 40.3 | Qp | L | 56 | -15.7 | Pass | | | 3.424 | 10.2 | 20 | 0 | 30.3 | Av | N | 46 | -15.7 | Pass | | | 0.15288 | 28.1 | 21.4 | 0.1 | 49.6 | Qp | L | 65.8 | -16.3 | Pass | | | 3.424 | 9.4 | 20 | 0 | 29.5 | Av | L | 46 | -16.5 | Pass | | | 2.158 | 9.4 | 20 | 0 | 29.5 | Av | N | 46 | -16.5 | Pass | | | 0.15736 | 27.5 | 21.3 | 0.1 | 48.9 | Qp | L | 65.6 | -16.7 | Pass | | | 2.158 | 18.6 | 20 | 0 | 38.7 | Qp | N | 56 | -17.3 | Pass | | | 2.158 | 18.6 | 20 | 0 | 38.6 | Qp | L | 56 | -17.4 | Pass | | | 2.158 | 8.5 | 20 | 0 | 28.5 | Av | L | 46 | -17.5 | Pass | | | 3.351 | 17.6 | 20 | 0.1 | 37.6 | Qp | L | 56 | -18.4 | Pass | | | 0.23346 | 20.6 | 20.9 | 0 | 41.5 | Qp | L | 62.3 | -20.8 | Pass | | | 0.23346 | 19.8 | 20.9 | 0 | 40.7 | Qp | N | 62.3 | -21.6 | Pass | | | 4.916 | 4.3 | 20 | 0 | 24.4 | Av | N | 46 | -21.6 | Pass | | | 4.916 | 2.5 | 20 | 0 | 22.6 | Av | L | 46 | -23.4 | Pass | | Page No: 268 of 274 | | Raw
dBuV | | | | Measureme
nt Type | - | | Margin
dB | Pass /Fail | Comments | |---------|-------------|------|-----|------|----------------------|---|------|--------------|------------|----------| | 4.916 | | | | 31.9 | Ор | N | | | Pass | | | 0.15288 | 7.8 | 21.4 | 0.1 | 29.2 | Av | N | 55.8 | -26.6 | Pass | | | 4.916 | 9 | 20 | 0 | 29.1 | Qp | L | 56 | -26.9 | Pass | | | 0.15736 | 5.7 | 21.3 | 0.1 | 27.1 | Av | L | 55.6 | -28.5 | Pass | | | 0.23346 | -0.1 | 20.9 | 0 | 20.8 | Av | N | 52.3 | -31.6 | Pass | | | 0.23346 | -1.5 | 20.9 | 0 | 19.4 | Av | L | 52.3 | -32.9 | Pass | | Title: Power Line Conducted Emissions Test Setup #### **Test Results Table** | 10011100 | Test Nesalts Table | | | | | | | | | | | | |-----------|--------------------|-------|-------|--------|-----------|-----|-----|-----|--------|--------|------------|----------| | Frequency | Raw | Cable | AF dB | Level | Measureme | Pol | Hgt | Azt | Limit | Margin | Pass /Fail | Comments | | MHz | dBuV | Loss | | dBuV/m | nt Type | | cm | Deg | dBuV/m | dB | | | | 34.65 | 30.1 | 0.6 | -10.1 | 20.6 | Qp | V | 124 | 218 | 30 | -9.4 | Pass | | | 44.239 | 36.6 | 0.7 | -17.2 | 20.2 | Qp | V | 198 | 221 | 30 | -9.8 | Pass | | | 120.013 | 32.5 | 1.2 | -13.6 | 20.2 | Qp | V | 135 | 87 | 30 | -9.8 | Pass | | | 110.373 | 33.2 | 1.2 | -14.7 | 19.7 | Qp | V | 131 | 175 | 30 | -10.3 | Pass | | | 66.612 | 37.4 | 1 | -19.7 | 18.6 | Qp | V | 102 | 271 | 30 | -11.4 | Pass | | | 46.154 | 33.9 | 0.7 | -18.3 | 16.3 | Qp | V | 254 | 195 | 30 | -13.7 | Pass | | Title: Radiated Emissions 10m Test Distance # Maximum Permissible Exposure (MPE) Calculations 15.247: U-NII devices are subject to the radio frequency radiation exposure requirements specified in Sec. 1.1307(b), Sec. 2.1091 and Sec. 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a ``general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request. Given $E=\sqrt{(30*P*G)}/d$ and $S=E^2/3770$ where E=Field Strength in Volts/meter P=Power in Watts G=Numeric Antenna Gain d=Distance in meters S=Power Density in mW/cm^2 Combine equations and rearrange the terms to express the distance as a function of the remaining variables: $d=\sqrt{((30*P*G)/(3770*S))}$ Changing to units of power in mW and distance in cm, using: vields $d=100*\sqrt{((30*(P/1000)*G)/(3770*S))}$ $d=0.282*\sqrt{(P*G/S)}$ where d=Distance in cm P=Power in mW G=Numerica Antenna Gain S=Power Density in mW/cm^2 Substituting the logarithmic form of power and gain using: $P(mW)=10^{(P(dBm)/10)}$ $G(numeric)=10^{(G(dBi)/10)}$ vields $d=0.282*10^{(P+G)/20)/\sqrt{S}}$ Equation (1) and $s=((0.282*10^{((P+G)/20))/d})^2$ Equation (2) where d=MPE distance in cm P=Power in dBm G=Antenna Gain in dBi S=Power Density in mW/cm^2 Page No: 272 of 274 Equation (1) and the measured peak power are used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less. S=1mW/cm^2 maximum. The highest supported antenna gain is 6 dBi (9dBi with beamforming). Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows. | Frequency
(MHz) | Power
Density
(mW/cm^2) | Peak
Transmit
Power
(dBm) | Antenna
Gain
(dBi) | MPE
Distance
(cm) | Limit
(cm) | Margin
(cm) | |--------------------|-------------------------------|------------------------------------|--------------------------|-------------------------|---------------|----------------| | 2412 | 1 | 20.0 | 12 | 11.23 | 20 | 8.77 | | 2437 | 1 | 21.1 | 12 | 12.71 | 20 | 7.29 | | 2462 | 1 | 18.8 | 12 | 9.78 | 20 | 10.22 | **MPE Calculations** To maintain compliance, installations will assure a separation distance of at least 20cm. Using Equation 2, the MPE levels (s) at 20 cm are calculated as follows: | ſ | | | Peak | | | | | |---|-----------|----------|----------|---------|-----------|-----------|-----------| | | | MPE | Transmit | Antenna | Power | | | | ١ | Frequency | Distance | Power | Gain | Density | Limit | Margin | | | (MHz) | (cm) | (dBm) | (dBi) | (mW/cm^2) | (mW/cm^2) | (mW/cm^2) | | | 2412 | 20 | 20.0 | 12 | 0.32 | 1 | 0.68 | | | 2437 | 20 | 21.1 | 12 | 0.41 | 1 | 0.59 | | | 2462 | 20 | 18.8 | 12 | 0.24 | 1 | 0.76 | # Appendix C: Test Equipment/Software Used to perform the test | Equip # | Manufacturer Model | | Description | Last Cal | Next Due | |-----------|--------------------|-------------------------|--------------------------------------|-----------|-----------| | CIS004882 | EMC Test Systems | 3115 | Double Ridged Guide Horn Antenna | 04-Jun-12 | 04-Jun-13 | | CIS004927 | Miteq | NSP1000-S1 | Broadband Preamplifier | 01-Feb-13 | 01-Feb-14 | | CIS007704 | Fischer | FCC-LISN-50/250-50-2-01 | LISN | 11-May-12 | 11-May-13 | | CIS021117 | Micro-Coax | UFB311A-0-2484-520520 | RF Coaxial Cable, to 18GHz, 248.4 in | 24-Aug-12 | 24-Aug-13 | | CIS030564 | Micro-Coax | UFB311A-1-0950-504504 | RF Coaxial Cable, to 18GHz, 95 in | 24-Aug-12 | 24-Aug-13 | | CIS030652 | Sunol Sciences | JB1 | Combination Antenna, 30MHz-2GHz | 04-Sep-12 | 04-Sep-13 | | CIS044940 | Rohde & Schwarz | ESU40 | EMI Test Receiver | 08-May-12 | 08-May-13 | | CIS018313 | НР | 8447D | RF Preamplifier | 08-Jan-13 | 08-Jan-14 | | CIS043116 | Huber + Suhner | Sucoflex 104PE | N & SMA RF cable | 14-Dec-12 | 14-Dec-13 | | CIS049381 | Agilent | N9030A | Spectrum Analyzer | 28-Aug-12 | 28-Aug-13 | Page No: 274 of 274