

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Broadcom Corporation		
Applicant Address 190 Mathilda Place Sunnyvale CA 94086 U.S.A.			
FCC ID	QDS-BRCM1075		
Manufacturer's company	Broadcom Corporation		
Manufacturer Address 190 Mathilda Place Sunnyvale CA 94086 U.S.A.			

Product Name	Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth 4.0 NGFF2230 Mini Card			
Brand Name Broadcom				
Model No. BCM943162ZP				
Test Rule Part(s) 47 CFR FCC Part 15 Subpart E § 15.407				
Test Freq. Range	5150 ~ 5350MHz / 5470 ~ 5725MHz / 5725 ~ 5850 MHz			
Received Date	Dec. 25, 2013			
Final Test Date	Feb. 02, 2016			
Submission Type	Class II Change			

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E,

KDB789033 D02 v01r01, KDB662911 D01 v02r01, KDB644545 D03 v01

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. VER	RIFICATION OF COMPLIANCE	
2. SUM	MMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	
3.1.	Product Details	3
3.2.	Accessories	4
3.3.	Table for Filed Antenna	5
3.4.	Table for Carrier Frequencies	6
3.5.	Table for Test Modes	7
3.6.	Table for Testing Locations	9
3.7.	Table for Class II Change	9
3.8.	Table for Supporting Units	9
3.9.	Table for Parameters of Test Software Setting	10
3.10	D. EUT Operation during Test	11
3.11	I. Duty Cycle	11
3.12	2. Test Configurations	12
4. TEST	T RESULT	13
4.1.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	13
4.2.	6dB Spectrum Bandwidth Measurement	26
4.3.	Maximum Conducted Output Power Measurement	33
4.4.	Power Spectral Density Measurement	37
4.5.	Radiated Emissions Measurement	45
4.6.	Band Edge Emissions Measurement	84
4.7.	Frequency Stability Measurement	103
4.8.	Antenna Requirements	107
5. LIST	OF MEASURING EQUIPMENTS	108
6. MEA	ASUREMENT UNCERTAINTY	109
APPFN	IDIX A TEST PHOTOS	A1 ~ A5

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3D2546-12	Rev. 01	Initial issue of report	Feb. 03, 2016
FR3D2546-12	Rev. 02	Revise test mode description on section 3.5	Feb. 15, 2016

Page No. : ii of ii

Issued Date : Feb. 15, 2016

Project No: CB10412316

Page No.

: 1 of 109 Issued Date : Feb. 15, 2016

1. VERIFICATION OF COMPLIANCE

Product Name : Broadcom 802.11a/b/g/n/ac WLAN + Bluetooth 4.0 NGFF2230 Mini Card

Brand Name : Broadcom

Model No. : BCM943162ZP

Applicant: Broadcom Corporation

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Dec. 25, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-			
4.2	15.407(e)	6dB Spectrum Bandwidth	Complies	-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	9.46 dB			
4.4	15.407(a)	Power Spectral Density	Complies	25.48 dB			
4.5	15.407(b)	Radiated Emissions	Complies	0.02 dB			
4.6	15.407(b)	Band Edge Emissions	Complies	0.04 dB			
4.7	15.407(g)	Frequency Stability	Complies	-			
4.8	15.203	Antenna Requirements	Complies	-			

Page No. : 2 of 109 Issued Date : Feb. 15, 2016

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	IEEE 802.11a: OFDM
	IEEE 802.11n/ac: see the below table
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n/ac: see the below table
Frequency Range	5150 ~ 5350MHz / 5470 ~ 5725MHz / 5725 ~ 5850 MHz
Channel Number	25 for 20MHz bandwidth ; 12 for 40MHz bandwidth
	6 for 80MHz bandwidth
Channel Band Width (99%)	For Mode 1:
	IEEE 802.11a: 24.83 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT20): 25.09 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT40): 37.48 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT80): 75.83 MHz
	For Mode 2:
	IEEE 802.11a: 23.79 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT20): 23.88 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT40): 37.77 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT80): 75.83 MHz
Maximum Conducted Output Power	For Mode 1:
	IEEE 802.11a: 20.38 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT20): 20.38 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT40): 18.39 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT80): 15.15 dBm
	For Mode 2:
	IEEE 802.11a: 20.33 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT20): 20.21 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT40): 19.24 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT80): 15.64 dBm

Page No.

: 3 of 109

Issued Date : Feb. 15, 2016

Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Note 1: The MIMO transmission mode is correlated.

Note 2: The Maximum Conducted Output Power and Channel Band Width (99%) listed are for 5GHz band 4.

Items	Description				
Communication Mode		Frame Based			
Beamforming Function	☐ With beamforming				

Antenna and Band width

Antenna	Single (TX)					
Band width Mode	20 MHz	40 MHz	80 MHz			
IEEE 802.11a	V	Х	Х			
IEEE 802.11n	V	V	X			
IEEE 802.11ac	V	V	V			

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1	MCS 0-7
802.11n (HT40)	1	MCS 0-7
802.11ac (VHT20)	1	MCS 0-9/Nss1
802.11ac (VHT40)	1	MCS 0-9/Nss1
802.11ac (VHT80)	1	MCS 0-9/Nss1

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

N/A

Report Format Version: Rev. 02 Page No. : 4 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

3.3. Table for Filed Antenna

			Model Name	Antenna		Gain (dBi)				
Set	Ant.	Ant. Brand			Connector	2.4GHz	5GHz	5GHz	5GHz	5GHz
							B1	B2	В3	В4
	1	Hitachi	HMT05/HFT17-DL07	WLAN/BT antenna	Micro Coaxial	3.9	3.9	5.6	5.8	5.8
'	2	Hitachi	HMT05/HFT17-DL07	WLAN/BT antenna	Micro Coaxial	3.9	3.9	5.6	5.8	5.8
2	1	MAG.LAYERS	PCA-4077-25GC1-A1	WLAN/BT antenna	IPEX A13	3.33	5.85	5.85	6.21	6.21
2	2	MAG.LAYERS	PCA-4077-25GC1-A1	WLAN/BT antenna	IPEX A13	3.33	5.85	5.85	6.21	6.21

Note: The EUT has two set of antenna and each set has two antennas.

For 2.4GHz:

For IEEE 802.11b/g/n mode (1TX/1RX)

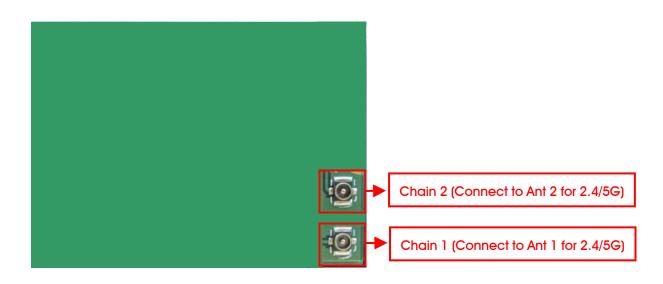
The EUT supports the antenna with TX/RX diversity function.

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna, but only one antenna can be used as transmitting/receiving antenna at the same time.

Chain 1 generated the worst case than Chain 2, so it tested and recorded in the report.

For 5GHz:

For IEEE 802.11a/n/ac mode (1TX/1RX)


The EUT supports the antenna with TX/RX diversity function.

Both Chain 1 and Chain 2 can be used as transmitting/receiving antenna, but only one antenna can be used as transmitting/receiving antenna at the same time.

Chain 1 generated the worst case than Chain 2, so it tested and recorded in the report.

For Bluetooth mode (1TX/1RX)

Only Chain 1 can be used as transmitting/receiving antenna.

 Report Format Version: Rev. 02
 Page No.
 : 5 of 109

 FCC ID: QDS-BRCM1075
 Issued Date
 : Feb. 15, 2016

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 138, 140, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159. For 80MHz bandwidth systems, use Channel 42, 58, 106, 122, 144, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5 4 7 0	108	5540 MHz	134	5670 MHz
5470~5725 MHz Band 3	110	5550 MHz	136	5680 MHz
balla 3	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Мо	de	Data Rate	Channel	Chain
Max. Conducted Output Power	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
Power Spectral Density	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
26dB Spectrum Bandwidth &	11a/BPSK	Band 4	6Mbps	149/157/165	1
99% Occupied Bandwidth	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
Measurement	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
6dB Spectrum Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	1
Measurement	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
Radiated Emission Above 1GHz	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
Band Edge Emission	11a/BPSK	Band 4	6Mbps	149/157/165	1
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1
	11ac VHT80	Band 4	MCS0/Nss1	155	1
Frequency Stability	20 MHz	Band 4	-	157	1
	40 MHz	Band 4	-	151	1
	80 MHz	Band 4	-	155	1

Page No. : 7 of 109

Issued Date : Feb. 15, 2016

Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.

Note 2: Mode 1 for mobile device and Mode 2 for mobile/portable device, but the output power of mode 2 was based on the output power of mobile to execute all tests. The output power of portable doesn't change (please refer to Sporton report no.: FA3D2546-02 for output power of portable, Date of Grant: 05/20/2014).

For Other tests:

Mode 1. CTX- EUT + Set 1 Antenna

Mode 2. CTX- EUT + Set 2 Antenna

For Radiated Emission test above 1GHz:

The EUT was performed at X axis, Y axis and Z axis position. The worst case was found at Z axis, so it was selected to perform test and its test result was written in the report.

Mode 1. CTX- Place EUT in Z axis + Set 1 Antenna

Mode 2. CTX- Place EUT in Z axis + Set 2 Antenna

3.6. Table for Testing Locations

	Test Site Location						
Address:	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.						
TEL:	886	5-3-656-9065					
FAX:	886	886-3-656-9085					
Test Site N	lo.	o. Site Category Location FCC Reg. No. IC File No. VCCI Reg. No					
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-	
TH01-CE	3	OVEN Room	Hsin Chu	-	-	-	

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR3D2546 and FR3D2546-02

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking	
Undating 5CHz Pand 1 to "Now Pulos" from "Old Pulos"	The output power remains the same, so it's	
Updating 5GHz Band 1 to "New Rules" from "Old Rules".	no need to re-test.	
Updating 5GHz Band $2{\sim}3$ to "New Rules" from "Old Rules".	After evaluating, it's no need to re-test.	
	1. 26dB Bandwidth and 99% Occupied	
	Bandwidth Measurement	
	2. 6dB Spectrum Bandwidth	
Updating test rule of 5GHz Band 4(5725~5850 MHz) to	3. Maximum Conducted Output Power.	
"New Rules" from "Old Rules".	4. Power Spectral Density.	
	5. Radiated Emission Above 1GHz.	
	6. Band Edge Emissions.	
	7. Frequency Stability.	

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC
Test fixture	Broadcom	BCM9NGFF2EC_1	N/A

Report Format Version: Rev. 02 Page No. : 9 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Mode: Mode 1

Test Software Version	Mtool 2.0.1.5				
	Test Frequency (MHz)				
Mode	NCB: 20MHz				
	5745 MHz 5785 MHz		5825 MHz		
802.11a	73 86		78		
802.11ac MCS0/Nss1 VHT20	72 86		77		
Mode	NCB: 40MHz				
802.11ac MCS0/Nss1 VHT40	5755 MHz		5795 MHz		
602.11dc WC30/NSS1 VH140	65		77		
Mode	NCB: 80MHz				
802.11ac MCS0/Nss1 VHT80	5775 MHz				
002.11GC WC30/NSS1 VH100	64				

Test Mode: Mode 2

Test Software Version	Mtool 2.0.1.5				
	Test Frequency (MHz)				
Mode	NCB: 20MHz				
	5745 MHz 5785 MHz		5825 MHz		
802.11a	75	85	82		
802.11ac MCS0/Nss1 VHT20	73 85		80		
Mode	NCB: 40MHz				
802.11ac MC\$0/Nss1 VHT40 —	5755 MHz		5795 MHz		
002.11dc W000/N001 VIII40	62		78		
Mode	NCB: 80MHz				
802.11ac MC\$0/Nss1 VHT80	5775 MHz				
332.1143 W333/N331 VIII00	64				

3.10. EUT Operation during Test

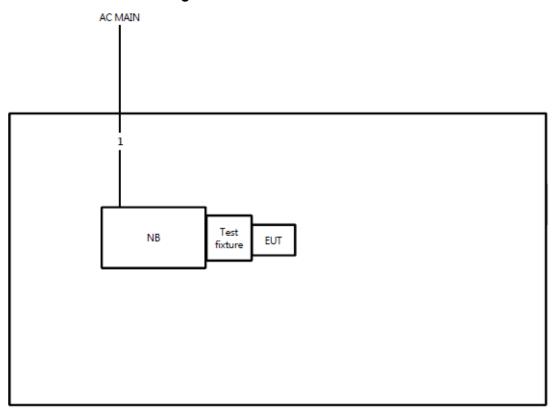
The EUT was programmed to be in continuously transmitting mode.

3.11. Duty Cycle

Test Mode: Mode 1

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Mode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.058	2.083	98.80%	0.05	0.01
802.11ac MCS0/Nss1 VHT20	1.933	1.965	98.37%	0.07	0.01
802.11ac MCS0/Nss1 VHT40	0.937	0.976	96.00%	0.18	1.07
802.11ac MCS0/Nss1 VHT80	0.452	0.489	92.43%	0.34	2.21

Test Mode: Mode 2


Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
IVIOGE	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.048	2.096	97.71%	0.10	0.49
802.11ac MCS0/Nss1 VHT20	1.923	1.962	98.04%	0.09	0.01
802.11ac MCS0/Nss1 VHT40	0.913	0.980	93.16%	0.31	1.10
802.11ac MCS0/Nss1 VHT80	0.425	0.488	87.09%	0.60	2.35

3.12. Test Configurations

3.12.1. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	2.6m

4. TEST RESULT

4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

	26dB Bandwidth			
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.1.3. Test Procedures

For conducted 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was conducted to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
- 3. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 4. Measurement perform conducted of each port.

4.1.4. Test Setup Layout

For conducted 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

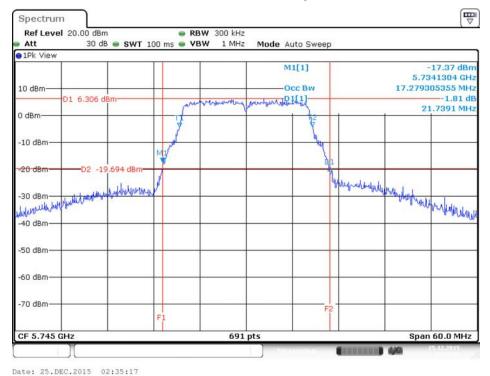
Report Format Version: Rev. 02 Page No. : 13 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

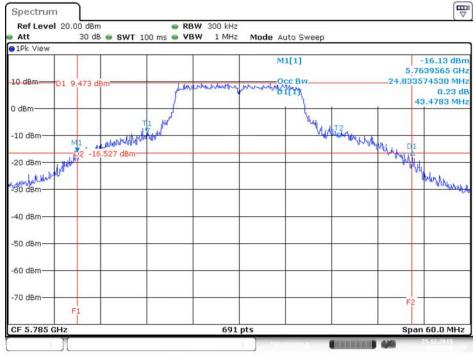
Temperature	21℃	Humidity	60%
Test Engineer	Lucas Huang	Test Mode	Mode 1

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
		Chain 1	Chain 1
	5745 MHz	21.74	17.28
802.11a	5785 MHz	43.48	24.83
	5825 MHz	27.57	17.63
000 11	5745 MHz	21.74	18.15
802.11ac MCS0/Nss1 VHT20	5785 MHz	44.78	25.09
IVIC30/INSST VHIZU	5825 MHz	22.00	18.32
802.11ac	5755 MHz	40.87	36.61
MCS0/Nss1 VHT40	5795 MHz	83.04	37.48
802.11ac	5775 MHz	82.03	75.83
MCS0/Nss1 VHT80	C, , O IVII IZ	32.00	7 5.66

Temperature	21℃	Humidity	60%
Test Engineer	Peter Wu	Test Mode	Mode 2


Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
		Chain 1	Chain 1	
	5745 MHz	22.09	17.37	
802.11a	5785 MHz	40.70	23.79	
	5825 MHz	38.17	19.10	
802.11ac	5745 MHz	22.09	18.32	
MCS0/Nss1 VHT20	5785 MHz	45.91	23.88	
IVIC30/INSST VH120	5825 MHz	31.39	18.67	
802.11ac	5755 MHz	41.30	36.90	
MCS0/Nss1 VHT40	5795 MHz	89.86	37.77	
802.11ac	5775 NALI-	90.20	75.83	
MCS0/Nss1 VHT80	5775 MHz	82.32	75.65	

Page No. : 15 of 109 Issued Date : Feb. 15, 2016

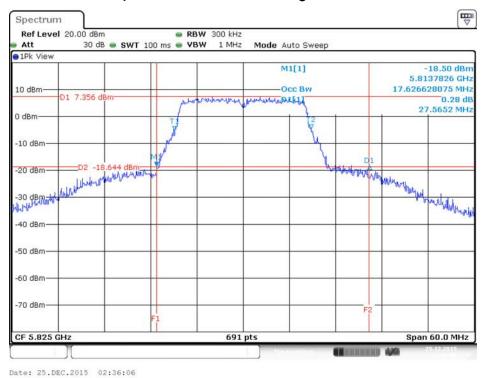


Test Mode: Mode 1

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

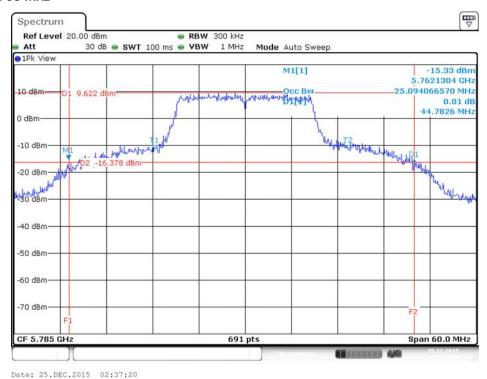
Date: 25.DEC.2015 02:35:40


 Report Format Version: Rev. 02
 Page No.
 : 16 of 109

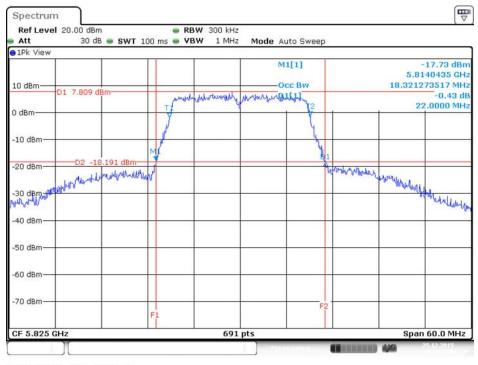
 FCC ID: QDS-BRCM1075
 Issued Date
 : Feb. 15, 2016

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5825 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1/5745 MHz

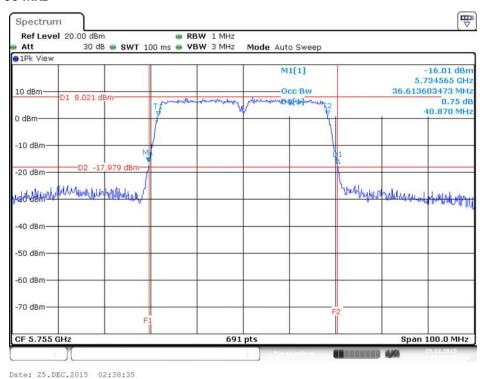

Report Format Version: Rev. 02 FCC ID: QDS-BRCM1075

Page No. : 17 of 109 Issued Date : Feb. 15, 2016

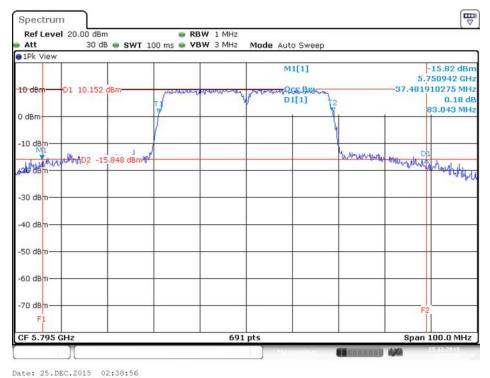


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1/5785 MHz

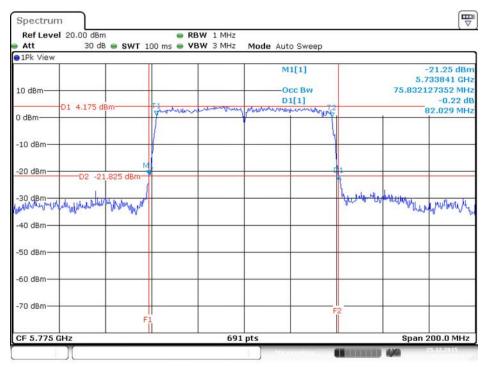
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1/5825 MHz


Date: 25.DEC.2015 02:37:58

Report Format Version: Rev. 02 Page No. : 18 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

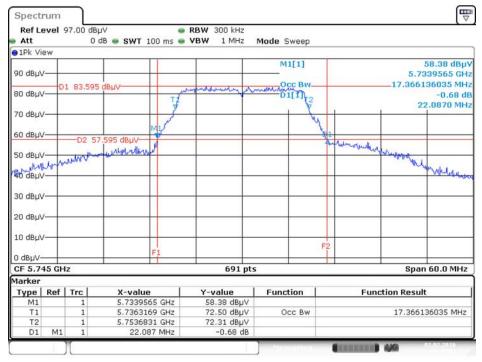


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1/5755 MHz

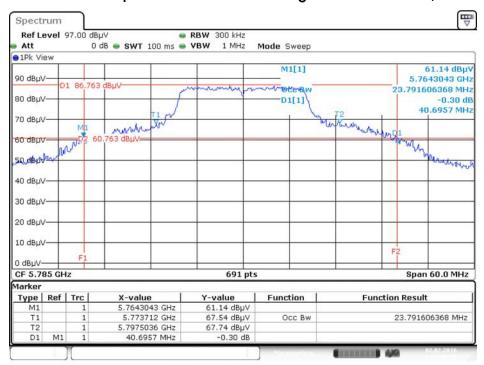

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1/5795 MHz

Report Format Version: Rev. 02 FCC ID: QDS-BRCM1075 Page No. : 19 of 109 Issued Date : Feb. 15, 2016

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 / 5775 MHz



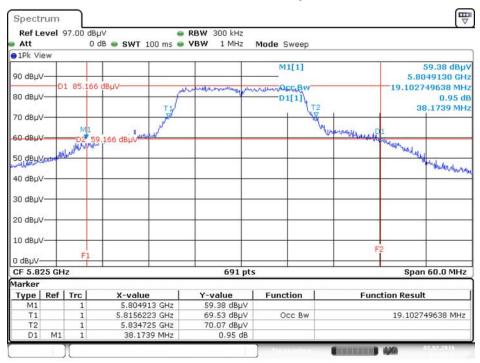
Date: 25.DEC.2015 02:39:29


Test Mode: Mode 2

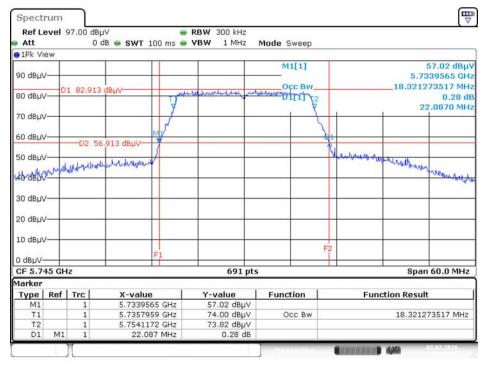
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz

Date: 2.FEB.2016 09:47:01

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz



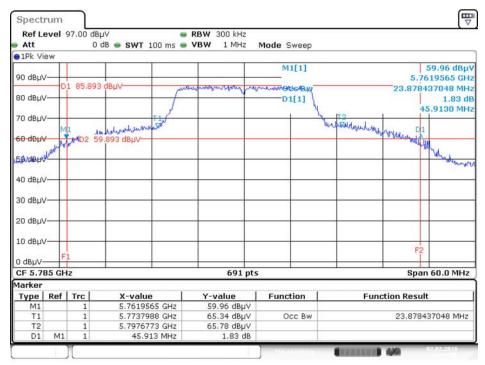
Date: 2.FEB.2016 09:48:35



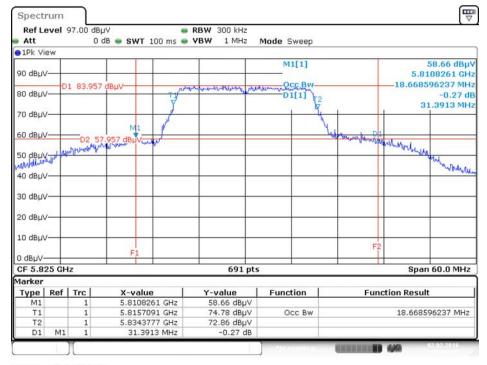
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5825 MHz

Date: 2.FEB.2016 09:48:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1/5745 MHz



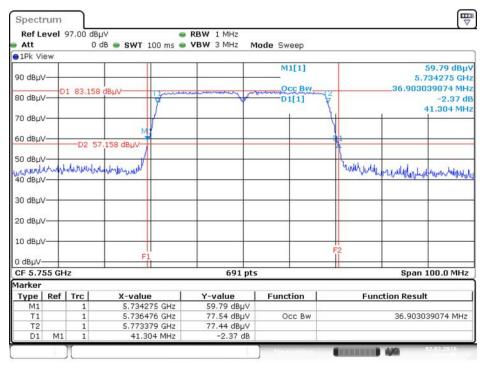
Date: 2.FEB.2016 09:49:43



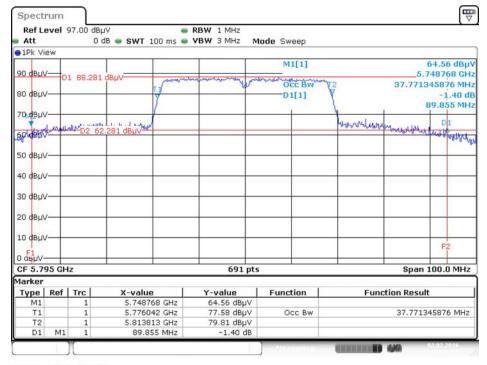
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1/5785 MHz

Date: 2.FEB.2016 09:50:06

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 / 5825 MHz


Date: 2.FEB.2016 09:50:23

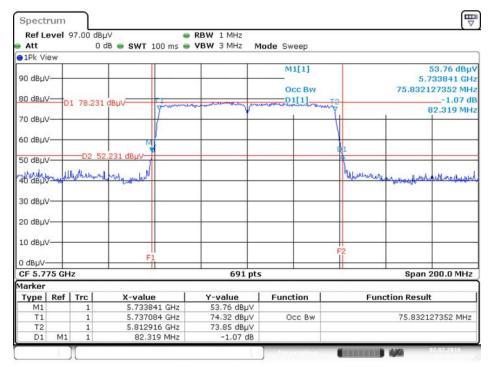
Report Format Version: Rev. 02 Page No. : 23 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1/5755 MHz

Date: 2.FEB.2016 09:50:57

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 1 / 5795 MHz



Date: 2.FEB.2016 09:51:14

Report Format Version: Rev. 02 Page No. : 24 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1/5775 MHz

Date: 2.FEB.2016 09:52:05

Page No. : 25 of 109

Issued Date : Feb. 15, 2016

4.2. 6dB Spectrum Bandwidth Measurement

4.2.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

6dB Spectrum Bandwidth		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> 6dB Bandwidth	
RBW	100kHz	
VBW	≥ 3 x RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

4.2.3. Test Procedures

For conducted 6dB Bandwidth Measurement:

- 1. The transmitter was conducted to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB789033 D02 v01r01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measurement perform conducted of each port.
- 5. Measured the spectrum width with power higher than 6dB below carrier.

4.2.4. Test Setup Layout

For conducted 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 02 Page No. : 26 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.2.7. Test Result of 6dB Spectrum Bandwidth

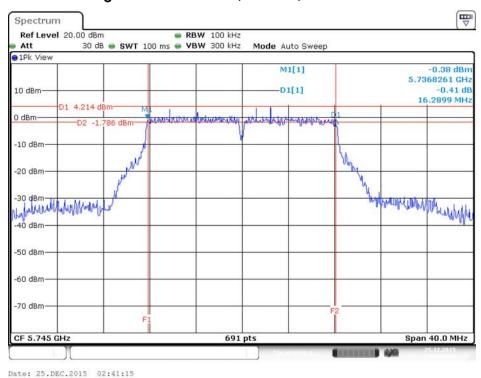
Temperature	21℃	Humidity	60%
Test Engineer	Lucas Huang	Test Mode	Mode 1

Mode	Frequency	6dB Bandwidth (MHz) Chain 1	Min. Limit (kHz)	Test Result
	5745 MHz	16.29	500	Complies
802.11a	5785 MHz	16.52	500	Complies
	5825 MHz	16.35	500	Complies
802.11ac	5745 MHz	17.57	500	Complies
MCS0/Nss1	5785 MHz	17.57	500	Complies
VHT20	5825 MHz	17.57	500	Complies
802.11ac	5755 MHz	36.29	500	Complies
MCS0/Nss1 VHT40	5795 MHz	36.29	500	Complies
802.11ac MCS0/Nss1	5775 MHz	75.07	500	Complies
VHT80				

Temperature	21℃	Humidity	60%
Test Engineer	Peter Wu	Test Mode	Mode 2

Mode	Frequency	6dB Bandwidth (MHz) Chain 1	Min. Limit (kHz)	Test Result
	5745 MHz	16.35	500	Complies
802.11a	5785 MHz	16.46	500	Complies
	5825 MHz	16.29	500	Complies
802.11ac	5745 MHz	17.57	500	Complies
MCS0/Nss1	5785 MHz	17.57	500	Complies
VHT20	5825 MHz	17.51	500	Complies
802.11ac	5755 MHz	36.29	500	Complies
MCS0/Nss1 VHT40	5795 MHz	36.29	500	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	75.07	500	Complies

Note: All the test values were listed in the report.

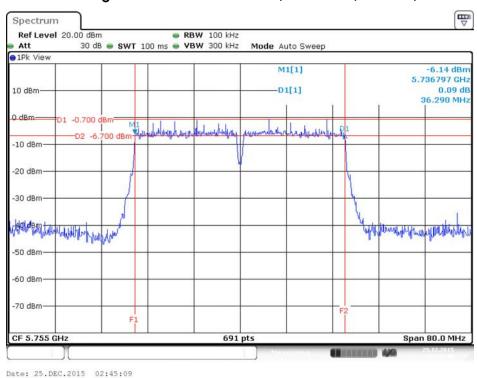

For plots, only the channel with worse result was shown.

Page No. : 28 of 109 Issued Date : Feb. 15, 2016

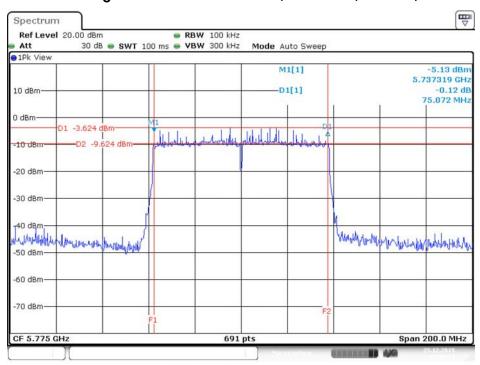
Test Mode: Mode 1

6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5745 MHz

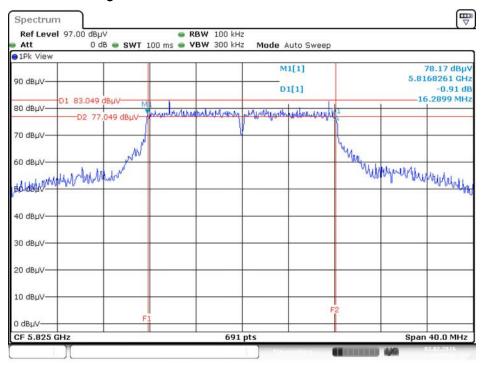
6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT20 / Chain 1 / 5745 MHz



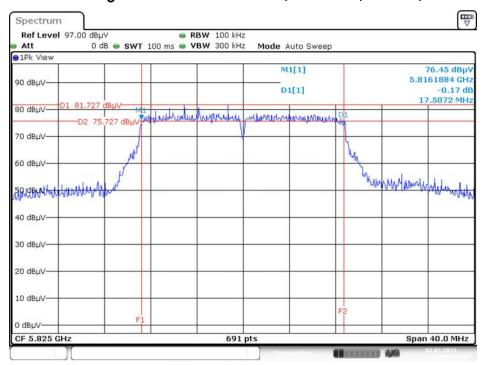
Date: 25.DEC.2015 02:43:31



6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 1 / 5755MHz


6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT80 / Chain 1 / 5775 MHz

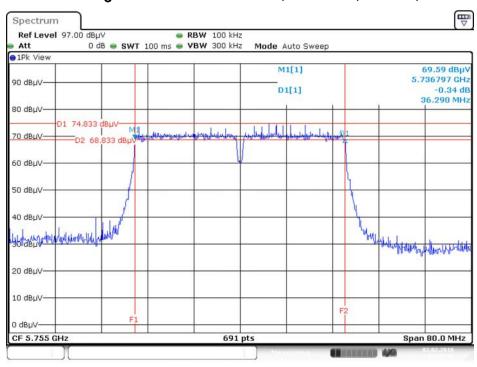
Date: 25.DEC.2015 02:46:33


Test Mode: Mode 2

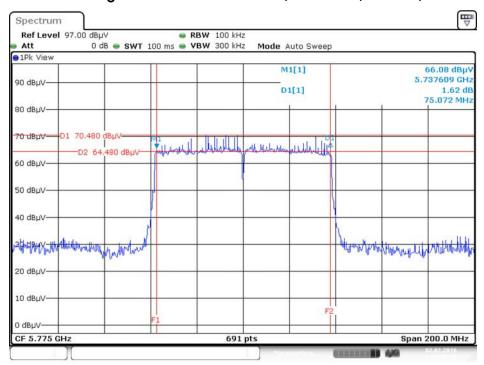
6 Db Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5825 MHz

Date: 2.FEB.2016 09:53:42

6 Db Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT20 / Chain 1 / 5825 MHz



Date: 2.FEB.2016 09:54:44



6 Db Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 / 5755MHz

Date: 2.FEB.2016 09:55:11

6 Db Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 / 5775 MHz

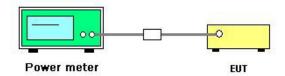
Date: 2.FEB.2016 09:52:26

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

Frequency Band	Limit
5.725~5.85 GHz	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in Db that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 v01r01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

Report Format Version: Rev. 02 Page No. : 33 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No. : 34 of 109

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	21°C	Humidity	60%
Test Engineer	Lucas Huang	Test Date	Dec. 25, 2015
Test Mode	Mode 1		

Mada	Fra guana.	Conducted Power (dBm)	Max. Limit	Doguilt
Mode	Frequency	Chain 1	(dBm)	Result
	5745 MHz	17.25	30.00	Complies
802.11a	5785 MHz	20.38	30.00	Complies
	5825 MHz	18.09	30.00	Complies
802.11ac	5745 MHz	16.83	30.00	Complies
MCS0/Nss1	5785 MHz	20.38	30.00	Complies
VHT20	5825 MHz	18.08	30.00	Complies
802.11ac	5755 MHz	15.44	30.00	Complies
MCS0/Nss1 VHT40	5795 MHz	18.39	30.00	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	15.15	30.00	Complies

 Report Format Version: Rev. 02
 Page No. : 35 of 109

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

Temperature	21℃	Humidity	60%
Test Engineer	Peter Wu	Test Date	Feb. 01, 2016 ~ Feb. 02, 2016
Test Mode	Mode 2		

Mode	Fraguency	Conducted Power (dBm)	Max. Limit	Result
Mode	Frequency	Chain 1	(dBm)	Result
	5745 MHz	18.12	29.79	Complies
802.11a	5785 MHz	20.33	29.79	Complies
	5825 MHz	19.56	29.79	Complies
802.11ac	5745 MHz	17.58	29.79	Complies
MCS0/Nss1	5785 MHz	20.21	29.79	Complies
VHT20	5825 MHz	19.21	29.79	Complies
802.11ac MCS0/Nss1	5755 MHz	15.12	29.79	Complies
VHT40	5795 MHz	19.24	29.79	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	15.64	29.79	Complies

Note: Ant gain= 6.21dBi >6dBi, so limit = 30 - (6.21-6) = 29.79dBm

Page No. : 36 of 109 Issued Date : Feb. 15, 2016

4.4. Power Spectral Density Measurement

4.4.1. Limit

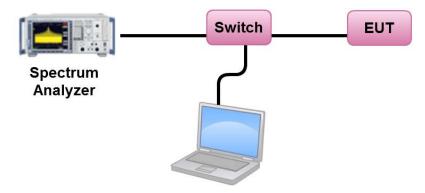
The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Band	Limit
⊠ 5.725~5.85 GHz	30 dBm/500kHz

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times


Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D02 v01r01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.
- 5. For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

Report Format Version: Rev. 02 Page No. : 37 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 38 of 109 Issued Date : Feb. 15, 2016

4.4.7. Test Result of Power Spectral Density

Temperature	21°C	Humidity	60%
Test Engineer	Lucas Huang	Test Date	Dec. 25, 2015
Test Mode	Mode 1		

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	4.21	-3.01	1.20	30.00	Complies
157	5785 MHz	7.25	-3.01	4.24	30.00	Complies
165	5825 MHz	5.35	-3.01	2.34	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	4.09	-3.01	1.08	30.00	Complies
157	5785 MHz	7.53	-3.01	4.52	30.00	Complies
165	5825 MHz	4.93	-3.01	1.92	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
151	5755 MHz	-0.58	-3.01	-3.59	30.00	Complies
159	5795 MHz	2.70	-3.01	-0.31	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
155	5775 MHz	-3.68	-3.01	-6.69	30.00	Complies

Report Format Version: Rev. 02 : 39 of 109 Page No. FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

Temperature	21℃	Humidity	60%
Test Engineer	Peter Wu	Test Date	Feb. 01, 2016 ~ Feb. 02, 2016
Test Mode	Mode 2		

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	5.37	-3.01	2.36	29.79	Complies
157	5785 MHz	7.32	-3.01	4.31	29.79	Complies
165	5825 MHz	6.40	-3.01	3.39	29.79	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	4.39	-3.01	1.38	29.79	Complies
157	5785 MHz	7.25	-3.01	4.24	29.79	Complies
165	5825 MHz	6.03	-3.01	3.02	29.79	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
151	5755 MHz	-0.75	-3.01	-3.76	29.79	Complies
159	5795 MHz	3.51	-3.01	0.50	29.79	Complies

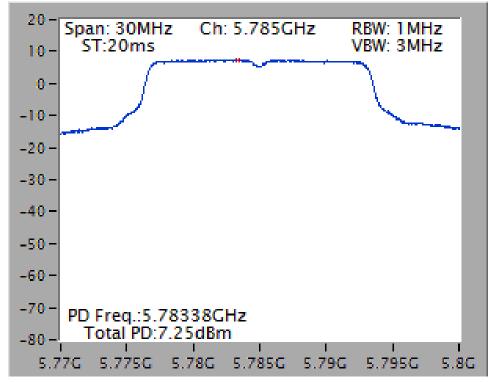
Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
155	5775 MHz	-3.30	-3.01	-6.31	29.79	Complies

Note: Ant gain = 6.21 dBi > 6 dBi, so limit = 30 - (6.21 - 6) = 29.79 dBm/500kHz

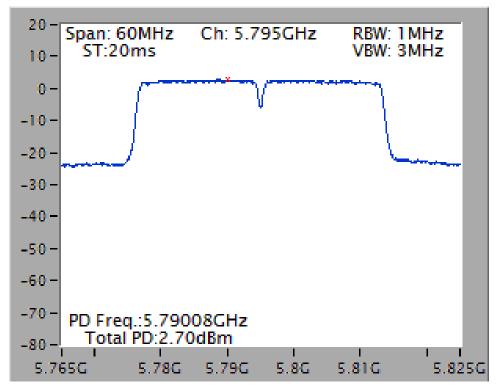
Note: All the test values were listed in the report.

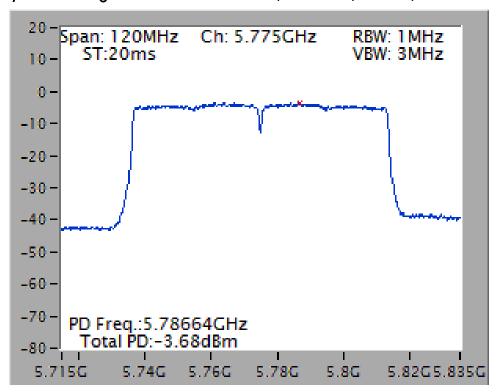
For plots, only the channel with worse result was shown.


Report Format Version: Rev. 02 Page No. : 40 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

Test Mode: Mode 1

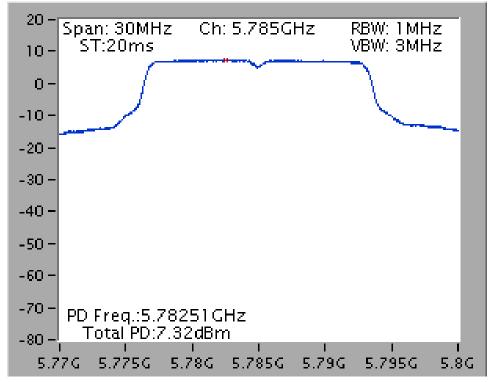
Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

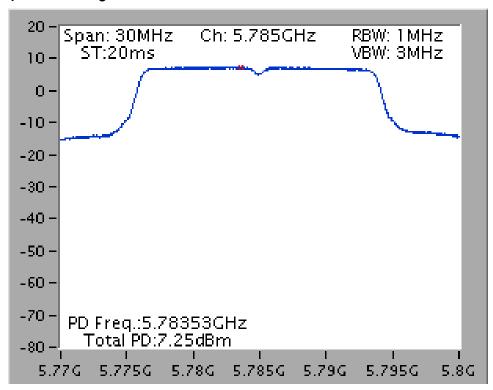

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 / 5785 MHz



Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 1 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 / 5775 MHz

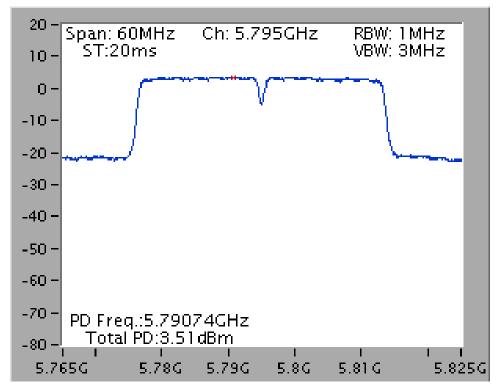




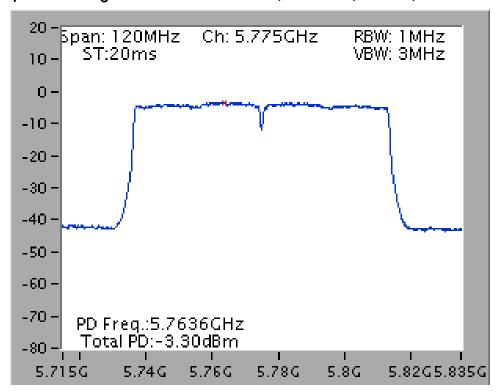
Test Mode: Mode 2

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 / 5785 MHz



Page No. : 43 of 109 Issued Date : Feb. 15, 2016



Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 1 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 / 5775 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

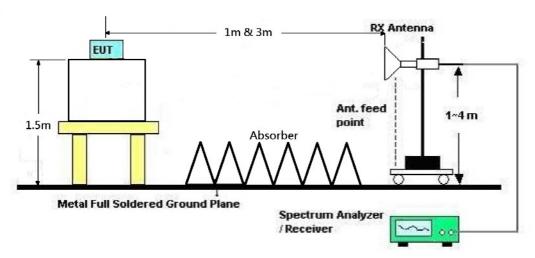
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 02 Page No. : 45 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 02 Page No. : 46 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.5.4. Test Setup Layout

For Radiated Emissions: Above 1GHz

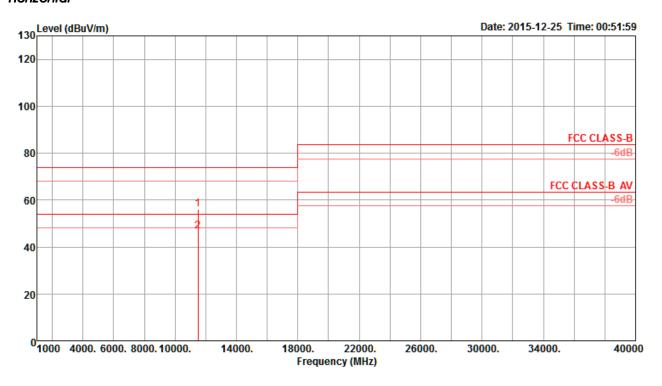
4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

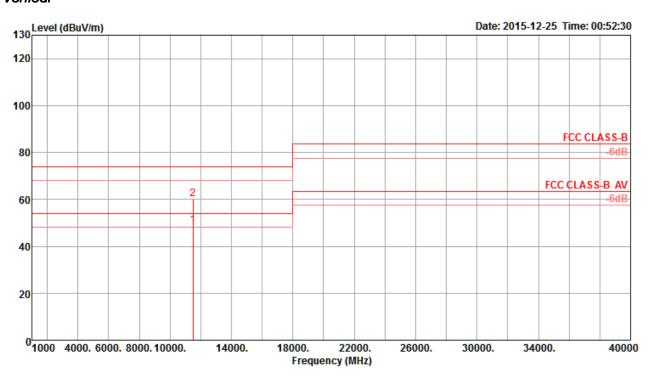
Page No. : 47 of 109 Issued Date : Feb. 15, 2016



4.5.7. Results for Radiated Emissions (1GHz~40GHz)

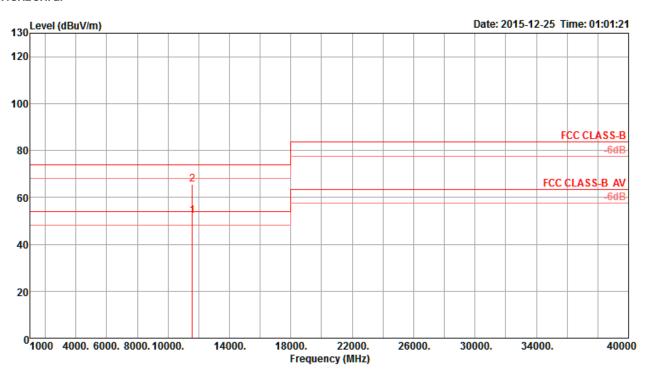
Test Mode: Mode 1

Temperature	emperature 23°C Hum		60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 149 / Chain 1

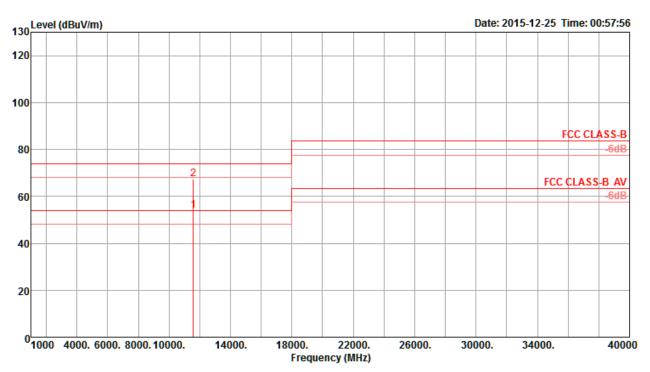

Horizontal

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	dB	deg	Cm		
1 2	11489.50 11489.61								42 42		Peak Average	HORIZONTAL HORIZONTAL

 Report Format Version: Rev. 02
 Page No. : 48 of 109


 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

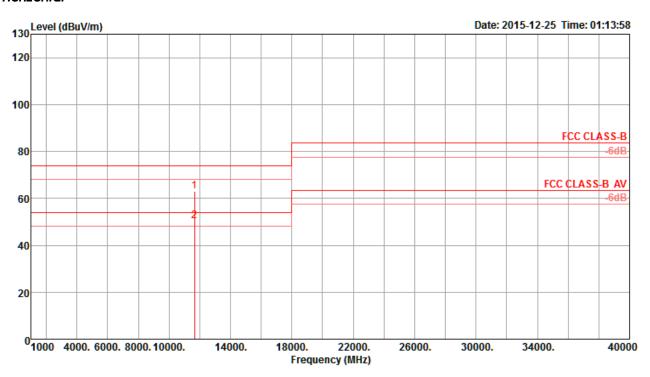
	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11489.04 11490.26								351 351		Average Peak	VERTICAL VERTICAL



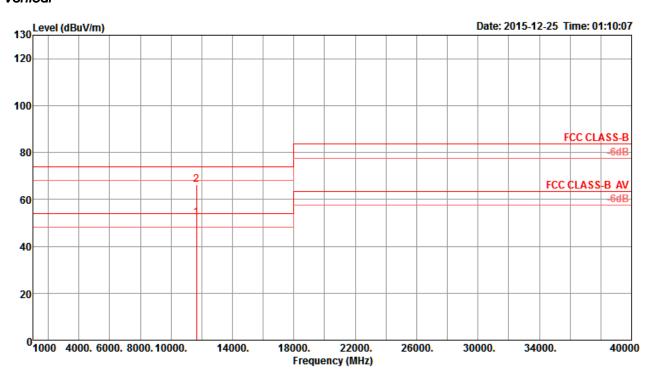
Temperature	23°C	Humidity	60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 157 / Chain 1

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	₫B	dB/m	dB	deg	Cm		
1 2	11569.12 11569.33								172 172		Average Peak	HORIZONTAL HORIZONTAL

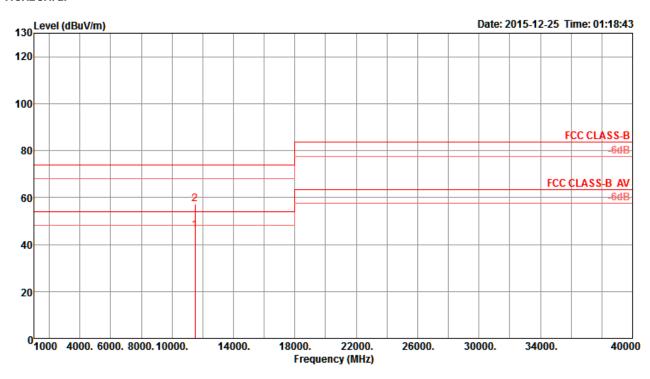
Vertical


Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 11569.34 2 11570.35									201 201	Average	VERTICAL VERTICAL

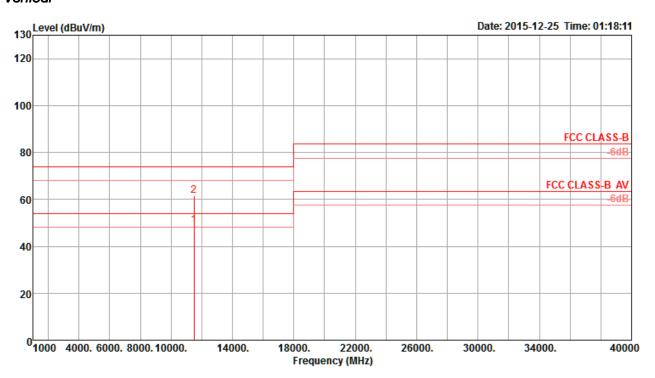
 Report Format Version: Rev. 02
 Page No. : 51 of 109


 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

Temperature	23°C	Humidity	60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 165 / Chain 1



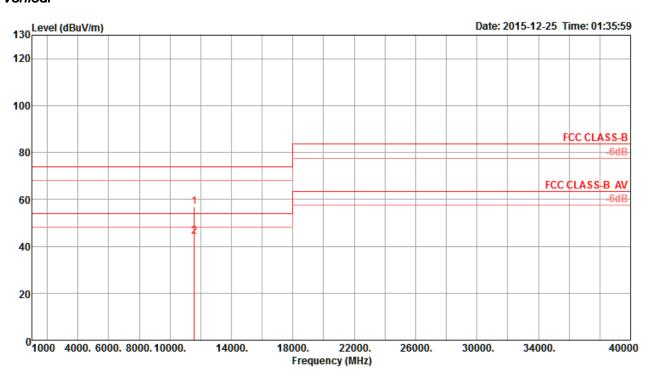
	Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2	11649.23 11650.65								143 143		Peak Average	HORIZONTAL HORIZONTAL



Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	₫B	dB/m	——dB	deg	Cm		
11649.36 11650.33										Average Peak	VERTICAL VERTICAL

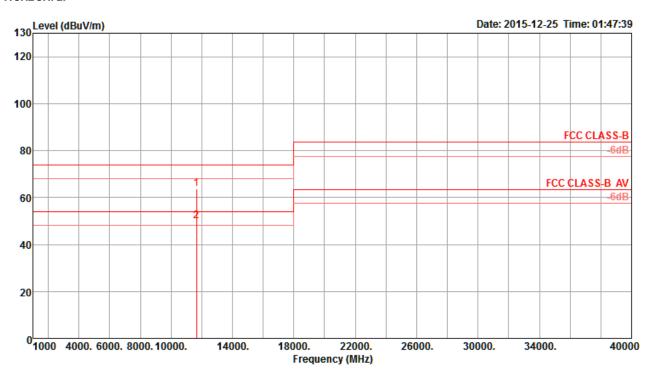
Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH
Test Engineer	Gary Cha	Configurations	149 / Chain 1

	Freq	Level		Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
1 2	11489.08 11490.67										Average Peak	HORIZONTAL HORIZONTAL

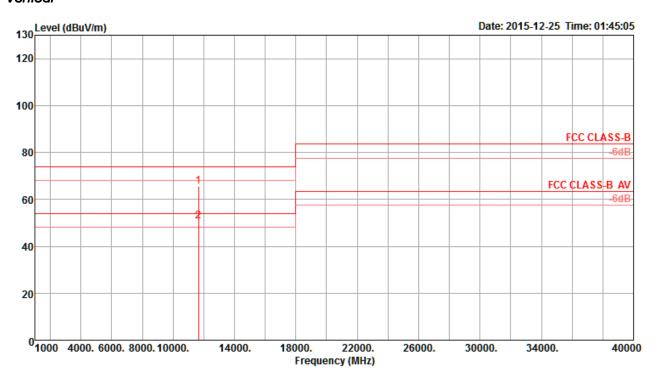


Freq	Level						Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
11489.12 11490.68										Average Peak	VERTICAL VERTICAL

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH
Test Engineer	Gary Cha	Configurations	157 / Chain 1



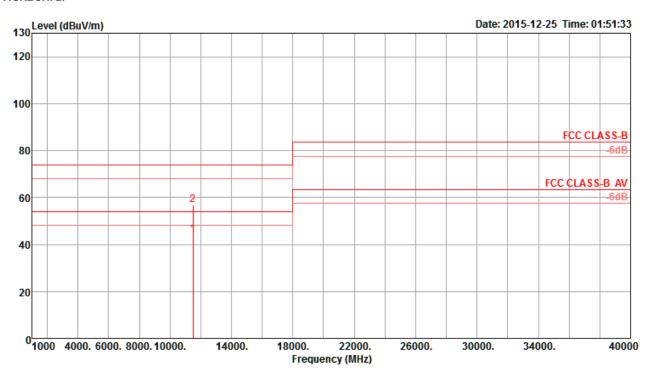
Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11569.42 11570.27										Average Peak	HORIZONTAL HORIZONTAL


	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11569.60 11570.41								170 170		Peak Average	VERTICAL VERTICAL

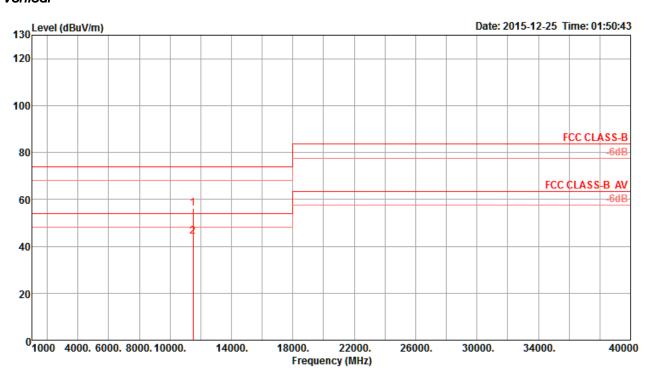
Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH
Test Engineer	Gary Cha	Configurations	165 / Chain 1

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
11649.43 11650.29								174 174		Peak Average	HORIZONTAL HORIZONTAL

Vertical

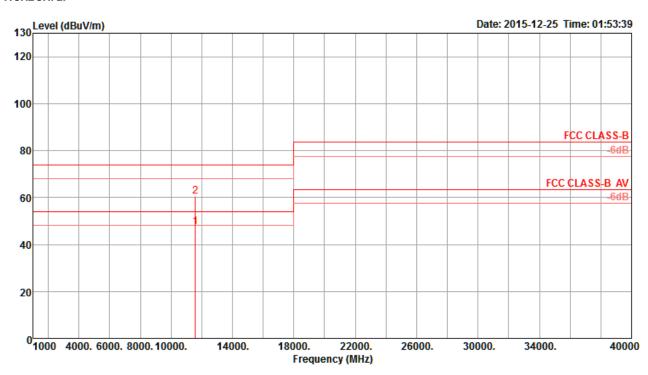


	Freq	Level	Limit Line					Preamp Factor			Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBu∀	dВ	dB/m	——dB	deg	Cm		
1 2	11649.06 11650.69										Peak Average	VERTICAL VERTICAL

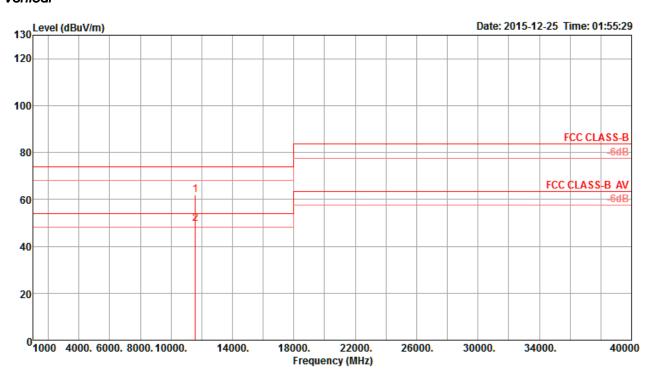

 Report Format Version: Rev. 02
 Page No. : 59 of 109

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

Temperature	Temperature 23°C Humidity		60%
Test Engineer	Cary Chy	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH
lesi Engineer	est Engineer Gary Chu C	Configurations	151 / Chain 1

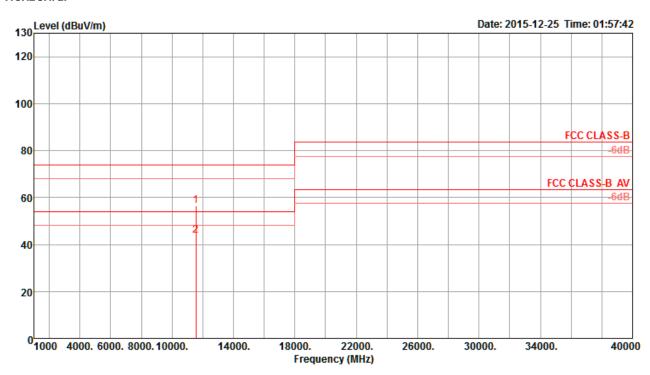


Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11509.16 11509.63										Average Peak	HORIZONTAL HORIZONTAL

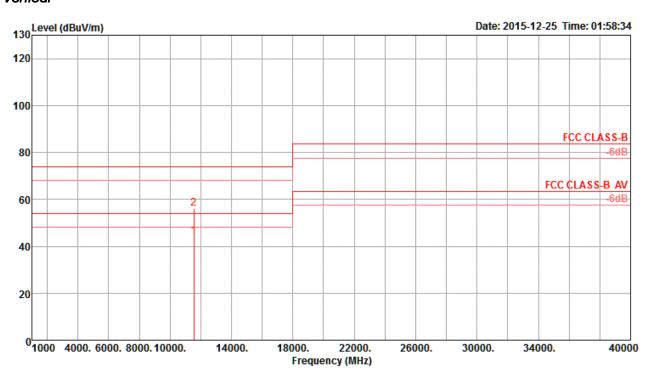


	Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2	11509.04 11509.72								334 334		Peak Average	VERTICAL VERTICAL

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH
Test Engineer	Gary Cha	Configurations	159 / Chain 1



Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		_
11590.07 11591.27										Average Peak	HORIZONTAL HORIZONTAL


Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dВ	dB/m	——dB	deg	Cm		
11588.39 11590.39										Peak Average	VERTICAL VERTICAL

Temperature	23°C	Humidity	60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH
Test Engineer	Gary Cha	Configurations	155 / Chain 1

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11548.79 11549.42										Peak Average	HORIZONTAL HORIZONTAL

Vertical

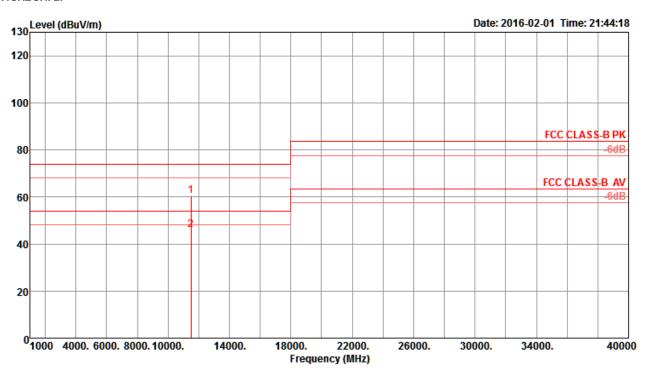
Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11550.16 11551.86										Average Peak	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

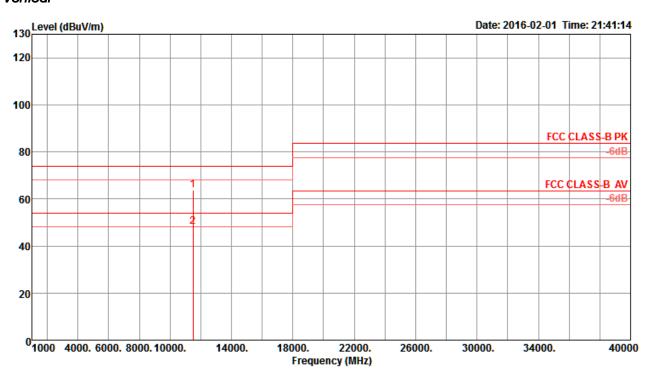
Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


Report Format Version: Rev. 02 Page No. : 65 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

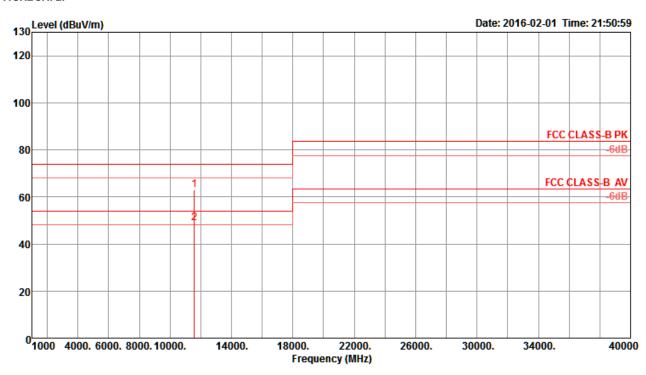
Test Mode: Mode 2

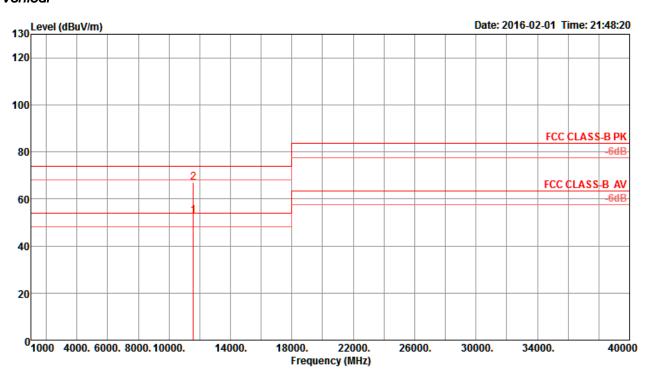
Temperature	23°C	Humidity	60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 149 / Chain 1


Horizontal

	Freq	Level						Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11488.71 11489.25								127 127		Peak Average	HORIZONTAL HORIZONTAL

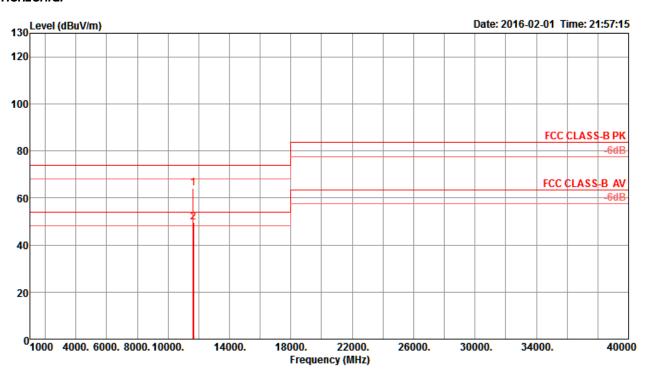
 Report Format Version: Rev. 02
 Page No. : 66 of 109


 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

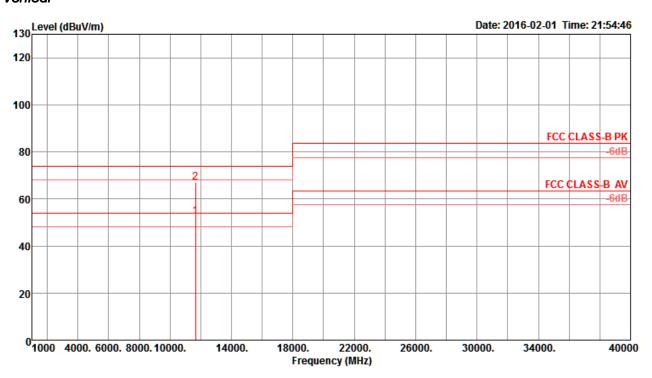

	Freq	Level	Limit Line	Over Limit						A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	— dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2	11490.23 11491.69										Peak Average	VERTICAL VERTICAL

Temperature	23°C	Humidity	60%			
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 157 / Chain 1			

Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
11569.14 11569.61										Peak Average	HORIZONTAL HORIZONTAL

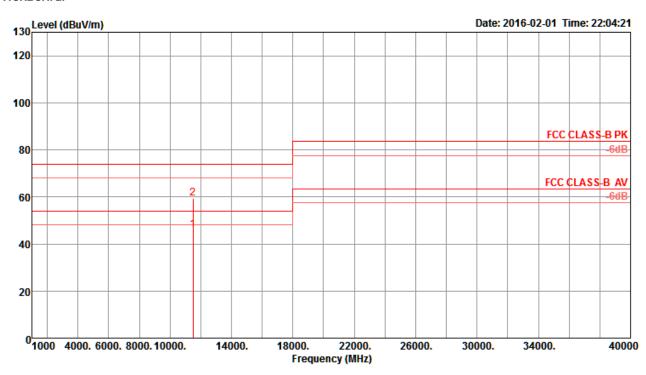


Freq	Level				CableAntenna Preamp Loss Factor Factor		T/Pos	A/Pos	Remark	Pol/Phase	
MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	<u>dB</u>	deg	Cm		
11569.87 11570.36										Average Peak	VERTICAL VERTICAL

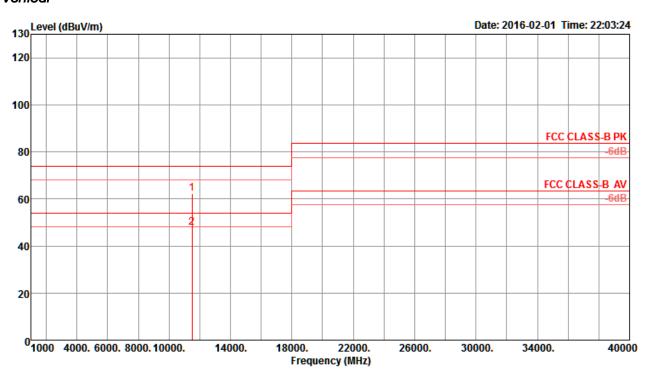

Temperature	23°C	Humidity	60%
Test Engineer	Gary Chu	Configurations	IEEE 802.11a CH 165 / Chain 1

Horizontal

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	₫B	dB/m	dB	deg	Cm		
1 2	11648.89 11649.21								136 136		Peak Average	HORIZONTAL HORIZONTAL

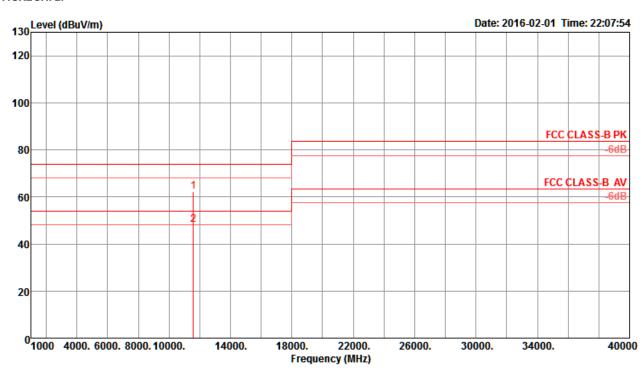

Vertical

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
1 2	11649.90 11650.25								128 128		Average Peak	VERTICAL VERTICAL

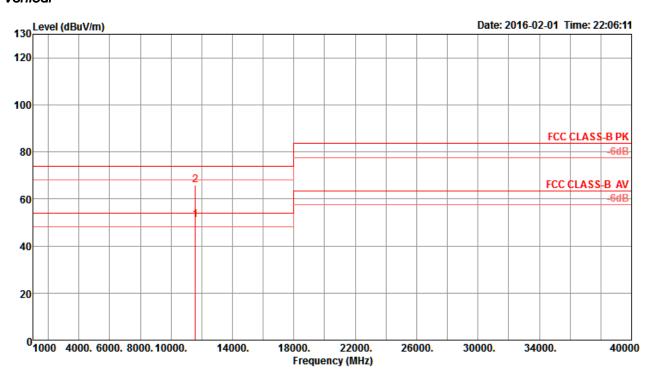

Temperature	23°C	Humidity	60%
Test Engineer	Cary Chy	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH
Test Engineer	Gary Chu	Configurations	149 / Chain 1

Horizontal

	Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
$\frac{1}{2}$	11490.98 11491.81								128 128		Average Peak	HORIZONTAL HORIZONTAL

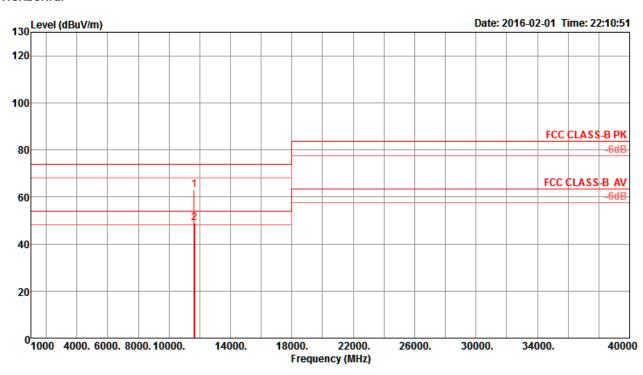

Vertical

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		_
11488.68 11489.33										Peak Average	VERTICAL VERTICAL

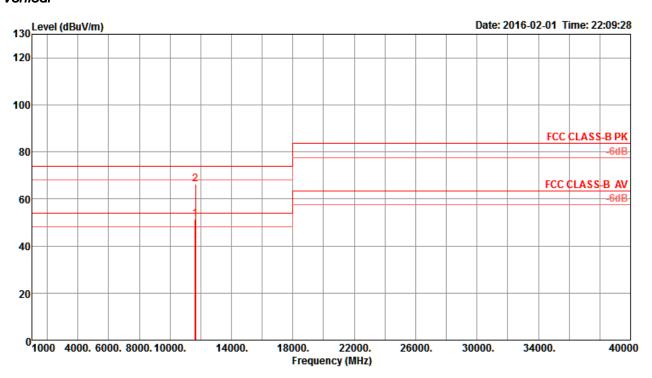

Temperature	23°C	Humidity	60%				
Tost Engineer	Cary Chy	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH				
Test Engineer	Gary Chu	Configurations	157 / Chain 1				

Horizontal

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
11568.78 11569.43										Peak Average	HORIZONTAL HORIZONTAL

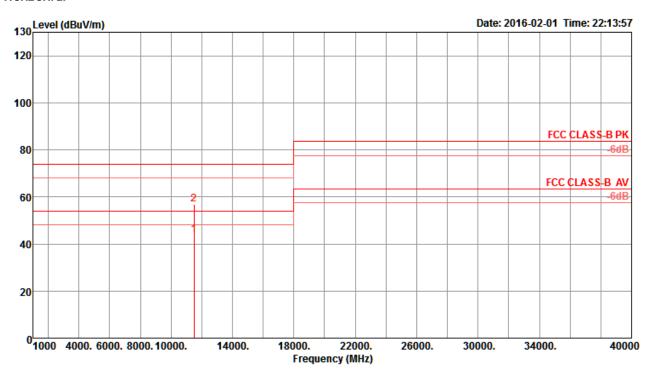

Vertical

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2	11568.65 11569.25										Average Peak	VERTICAL VERTICAL

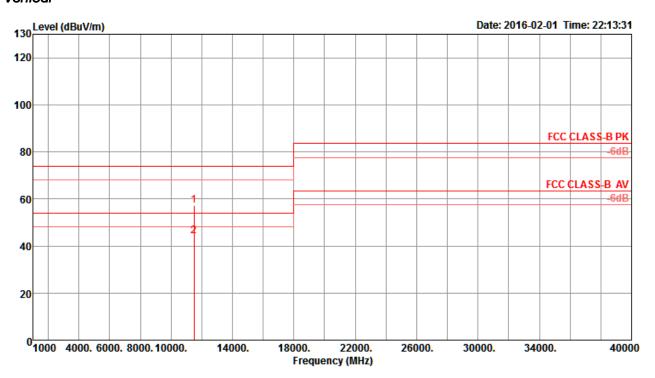

Temperature	23°C	Humidity	60%
Tost Engineer	Gary Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH
Test Engineer	Gary Cha	Configurations	165 / Chain 1

Horizontal

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
11648.32 11651.21										Peak Average	HORIZONTAL HORIZONTAL

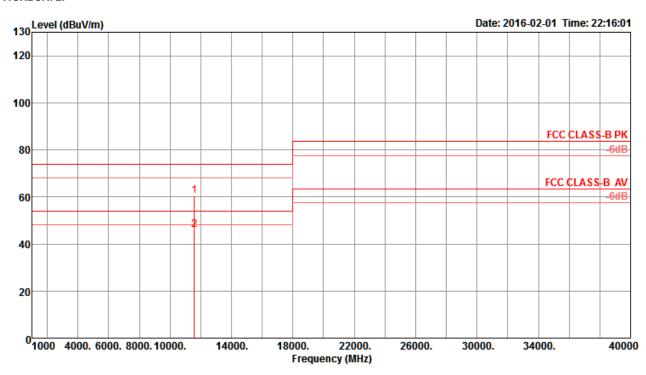

Vertical

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2	11648.57 11650.73										Average Peak	VERTICAL VERTICAL

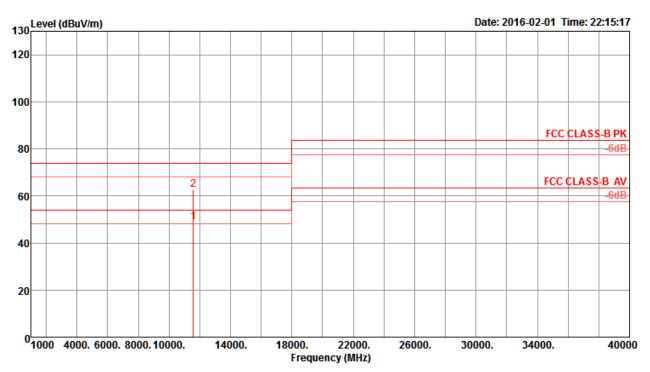

Temperature	23°C	Humidity	60%
Test Engineer	Cary Chy	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH
Test Engineer	Gary Chu	Configurations	151 / Chain 1

Horizontal

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11508.30 11508.49								128 128		Average Peak	HORIZONTAL HORIZONTAL


Vertical

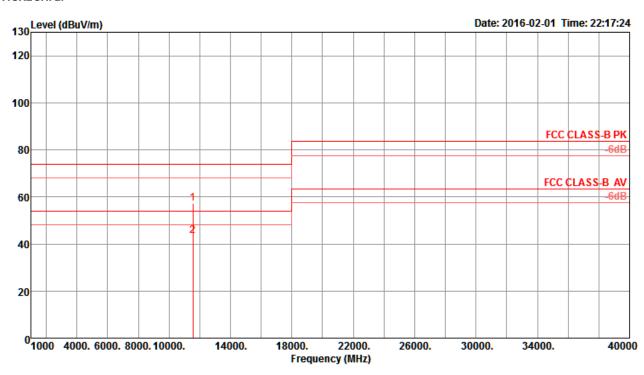
Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
11507.62 11509.98								144 144		Peak Average	VERTICAL VERTICAL


Temperature	23°C	Humidity	60%
Test Engineer	Cary Chy	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH
Test Engineer	Gary Chu	Configurations	159 / Chain 1

Horizontal

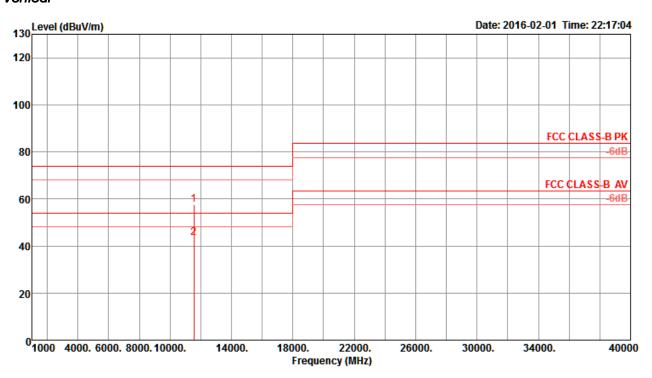
Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
11589.18 11589.86										Peak Average	HORIZONTAL HORIZONTAL

Vertical



	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		_
1 2	11590.80 11591.41										Average Peak	VERTICAL VERTICAL

Report Format Version: Rev. 02 Page No. : 81 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016


Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu		IEEE 802.11ac MCS0/Nss1 VHT80 CH
Test Engineer	Gary Cha	Configurations	155 / Chain 1

Horizontal

Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
11549.20 11551.01										Peak Average	HORIZONTAL HORIZONTAL

Vertical

Freq	Level	Limi t Line					Preamp Factor		A/Pos	Remark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	₫B	dB/m	——dB	deg	Cm		
11550.46 11550.92										Peak Average	VERTICAL VERTICAL

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1 MHz / 3MHz for Peak

4.6.3. Test Procedures

1. The test procedure is the same as section 4.5.3.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

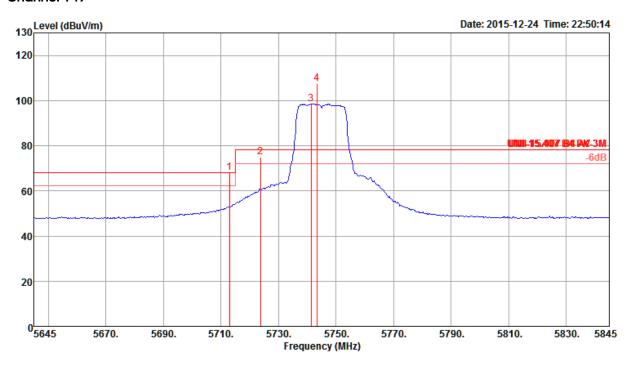
4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No. : 84 of 109

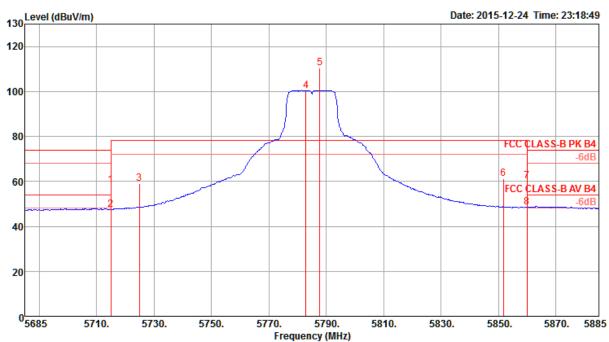

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

4.6.7. Test Result of Band Edge and Fundamental Emissions

Test Mode: Mode 1

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu		IEEE 802.11a CH 149, 157, 165/
lesi Engineer	Gary Chu	Configurations	Chain 1

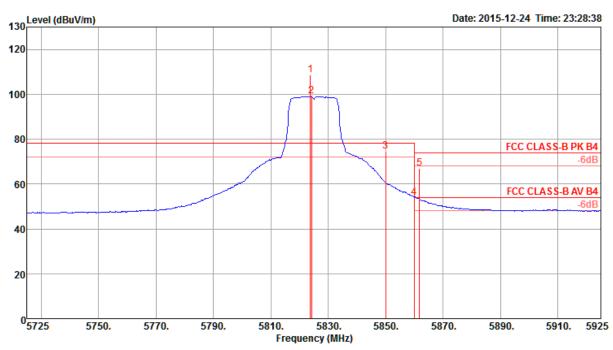
Channel 149


	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{d \mathtt{BuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dB	dB/m	dB	deg	Cm		
1 2 3 4	5713.00 5723.80 5741.40 5743.40	98.50		-0.04 -3.09	61.72 68.69 92.11 101.21	6.36	34.45 34.50 34.55 34.55		264 264 264 264	250 250	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5745 MHz.

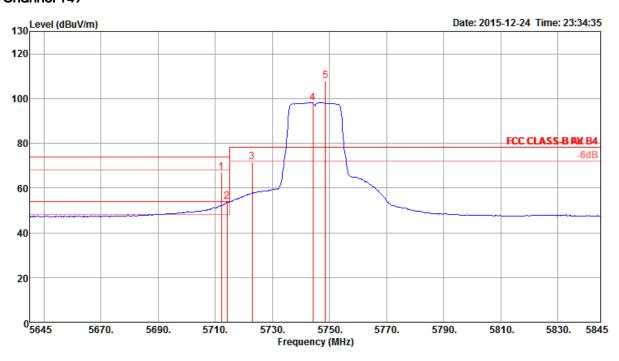
Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Report Format Version: Rev. 02 Page No. : 85 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016



	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor		T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5787.80		54.00 78.20	-15.64 -6.69 -19.16	51.92 40.87 52.62 94.08 104.23	6.50 6.50 6.43 6.22 6.22	34.45 34.45 34.50 34.65 34.65	34.51 34.51 34.51 34.53 34.53	179 179 179 179 179	175 175 175 175	Peak Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
6 7 8	5851.80 5860.00 5860.00	61.16 60.08 48.64	74.00	-17.04 -13.92 -5.36	54.46 53.25 41.81	6.39 6.47 6.47	34.85 34.90 34.90	34.54 34.54 34.54	179 179 179	175	Peak Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL

Item 4, 5 are the fundamental frequency at 5785 MHz.

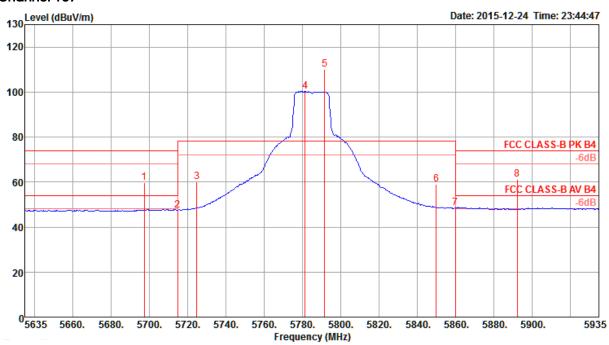


	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5823.80 5824.20 5850.00 5860.00 5861.80	99.06 74.50 53.91		-3.70 -0.09 -6.89	101.99 92.49 67.80 47.08 60.28	6.31		34.54 34.54 34.54	174 174 174 174 174	196 196 196	Peak Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	60%				
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH				
	Gary Chu	Configurations	149, 157, 165 / Chain 1				

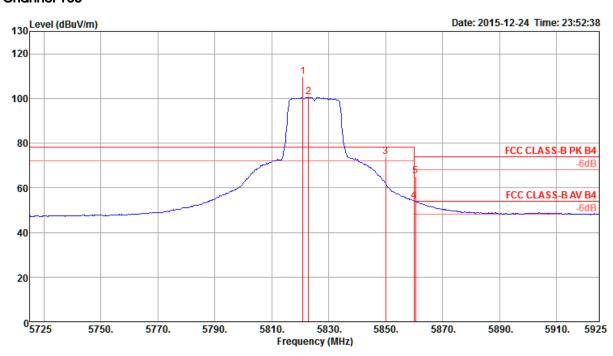
Channel 149


	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5712.20 5714.20 5723.00 5744.20 5748.60	71.72 98.14	74.00 54.00 78.20	-6.91 -0.10 -6.48	60.65 47.46 65.30 91.75 101.40	6.50 6.43 6.36	34.45 34.45 34.50 34.55 34.55	34.51 34.51	101 101 101 101 101	304 304 304	Peak Average Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 4, 5 are the fundamental frequency at 5745 MHz.

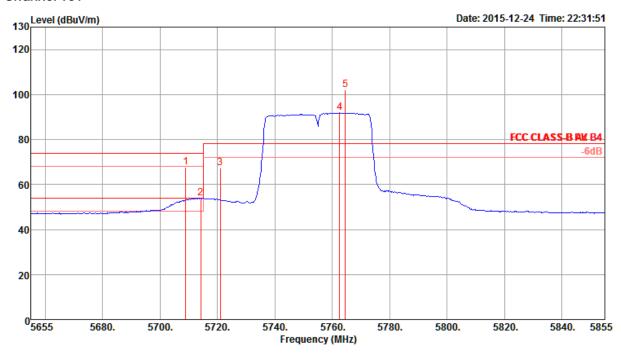
Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Issued Date : Feb. 15, 2016



	Freq	Level	Limi t Line	Over Limit	Read Level		ntenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5697.40 5715.00 5725.00 5781.40 5791.60 5850.00	47.40 60.04 100.38 110.10 58.92	54.00 78.20 78.20	-6.60 -18.16	53.20 40.96 53.62 94.04 103.78 52.22	6.57 6.50 6.43 6.22 6.15 6.39	34.40 34.45 34.50 34.65 34.70 34.85	34.51 34.51 34.51 34.53 34.53 34.53	174 174 174 174 174 174	175 175 175 175 175	Peak Average Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
7 8	5860.00 5892.40	48.57 61.18		-5.43 -12.82	41.74 54.10	6.47 6.63	34.90 35.00	34.54 34.55	174 174		Average Peak	HORIZONTAL HORIZONTAL

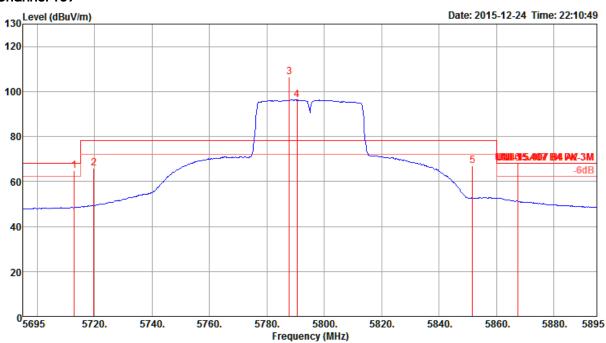
Item 4, 5 are the fundamental frequency at 5785 MHz.



	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5821.00 5823.00 5850.00 5860.00 5860.60		78.20 54.00 74.00	-4.41 -0.13 -8.89	103.13 93.96 67.09 47.04 58.28	6.23 6.31 6.39 6.47 6.47	34.75 34.80 34.85 34.90 34.90	34.54 34.54 34.54	101 101 101 101 101	305 305 305	Peak Average Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

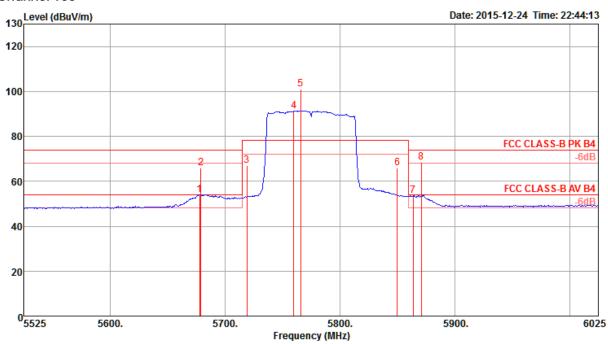
Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	60%
Toot Engineer	Cary Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Gary Chu	Configurations	CH 151, 159 / Chain 1


Channel 151

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	$\overline{\mathtt{dBuV/m}}$	d B	dBu∀	₫B	dB/m	dB	deg	Cm		
1 2 3 4 5	5709.00 5714.20 5721.00 5762.60 5764.60	53.89 67.19 91.82	54.00 78.20	-0.11	61.31 47.45 60.75 85.45 95.79	6.50	34.45 34.45 34.45 34.60 34.60	34.51 34.51 34.52	179 179 179 179 179	202 202 202	Peak Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 4, 5 are the fundamental frequency at 5755 MHz.



	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	d B	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5713.00 5719.80 5787.80 5790.60 5851.60 5867.40	65.75 106.55 96.27 67.00	78.20	-12.45 -11.20	59.31 100.21 89.95	6.50 6.22 6.15 6.39		34.51 34.53 34.53 34.54	179 179 179 179 179 179	175 175 175 175	Peak Peak Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5795 MHz.

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80
	Gary Chu	Configurations	CH 155 / Chain 1

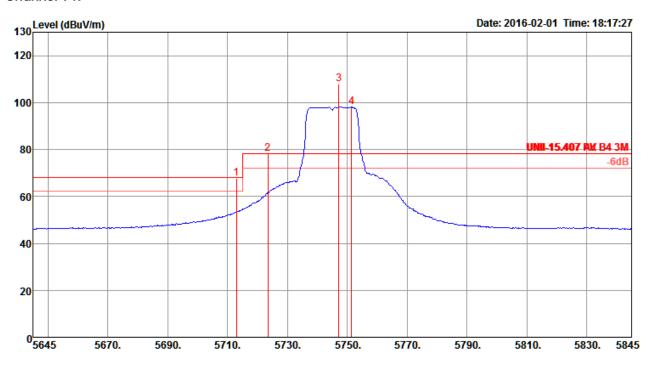
Channel 155

	Freq	Level	Limit Line	Over Limit	Read Le v el		ntenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	——dB	- dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6 7 8	5678.00 5679.00 5719.00 5760.00 5766.00 5850.00 5864.00 5871.00	53.88 66.04 66.97 91.42 100.97 66.04 53.58 68.35		-0.12 -7.96 -11.23 -12.16 -0.42 -5.65	47.39 59.55 60.53 85.05 94.61 59.34 46.75 61.52	6.65 6.65 6.29 6.29 6.39 6.47	34.35 34.35 34.45 34.60 34.60 34.85 34.90	34.51 34.51 34.51 34.52 34.53 34.54 34.54	107 107 107 107 107 107 107	312 312 312 312 312 312 312	Average Peak Peak Average Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 4, 5 are the fundamental frequency at 5775 MHz.

Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

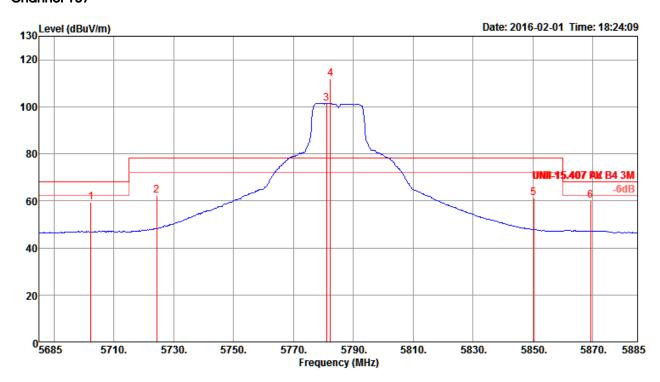
Note:


Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

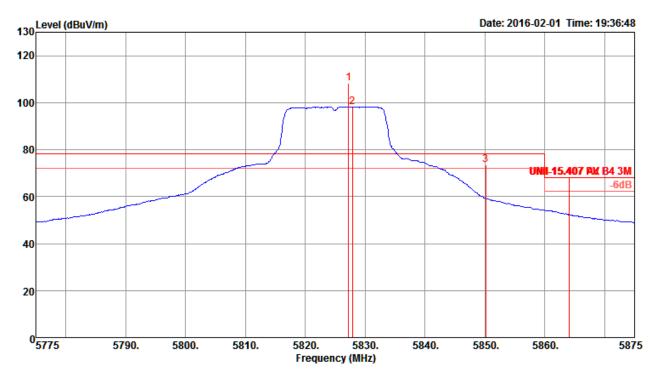
Test Mode: Mode 2

Temperature	23°C	Humidity	60%
Tost Engineer	Garv Chu	Configurations	IEEE 802.11a CH 149, 157, 165/
Test Engineer	Gary Chu	Configurations	Chain 1


Channel 149

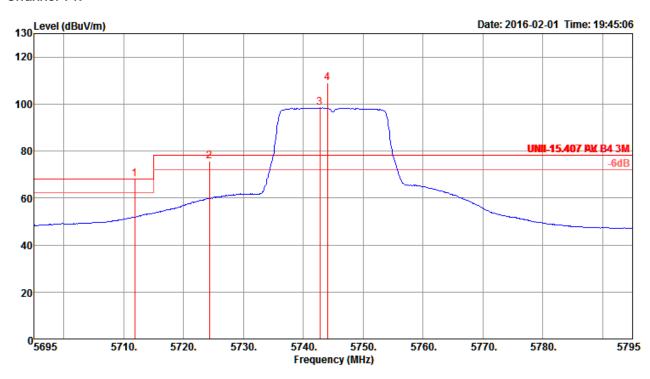
	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2 3 4	5712.95 5723.53 5747.24 5751.41	78.12 108.04			101.65	6.43 6.36	34.50 34.55		159 159 159 159	100 100	Peak Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5745 MHz.



	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
1 2 3 4 5	5702.31 5724.42 5781.15 5782.44 5850.39 5869.30	101.48 111.73 61.20	78.20	-8.89 -16.01 -17.00 -7.95	95.14 105.39 54.50	6.22 6.22 6.39	34.50		134 134 134 134 134 134	176 176 176 176	Peak Peak Average Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5785 MHz.



	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4	5827.24 5827.89 5850.16 5864.10	98.24 73.56	78.20 68.20	-4.64 -0.05	101.84 91.67 66.86 61.32				144 144 144 144	100 100	Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

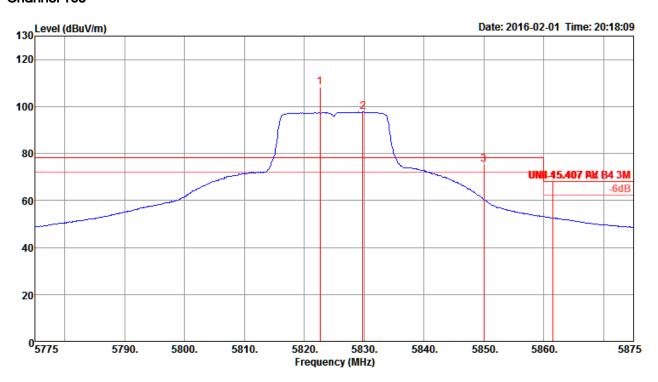
Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH
Test Engineer	Gary Chu	Configurations	149, 157, 165 / Chain 1

Channel 149

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	——dB	dB/m	——dB	deg	Cm		
1 2 3 4	5711.83 5724.33 5742.76 5744.04	75.61 98.39				6.43 6.36	34.55		158 158 158 158	103 103	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

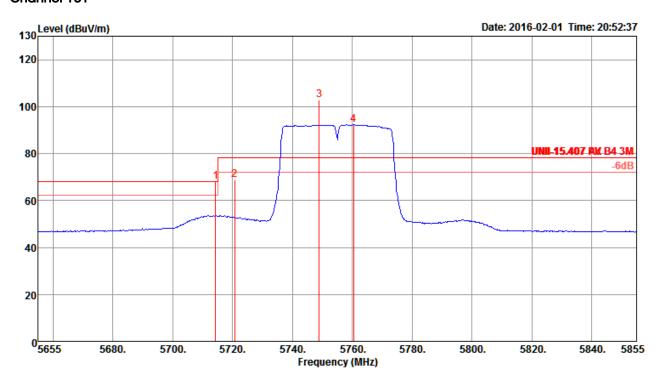
Item 3, 4 are the fundamental frequency at 5745 MHz.



	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
•	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	5702.63 5723.46 5779.23 5782.44 5852.56 5870.90	100.15 110.94 59.99	78.20	-8.13 -16.27 -18.21 -7.04	53.61 55.51 93.81 104.60 53.29 54.33	6.57 6.43 6.22 6.22 6.39 6.47	34.40 34.50 34.65 34.65 34.85 34.90	34.51 34.53 34.53 34.53 34.54 34.54	159 159 159 159 159 159	102 102 102 102	Peak Peak Average Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

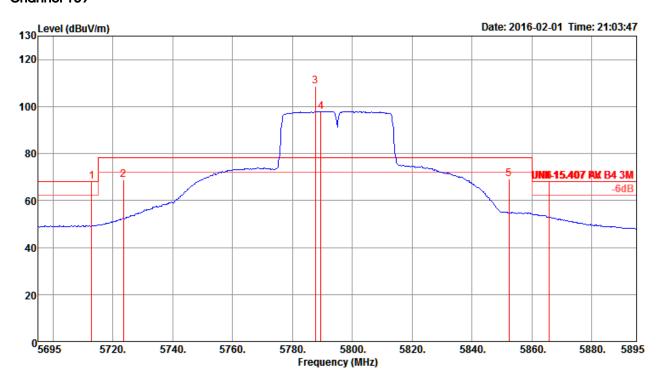
Channel 165



	Freq	Level	Limit Line		Read Level					A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2 3 4	5822.60 5829.81 5850.00 5861.54	97.60 75.38	78.20	-2.82 -0.19		6.31 6.39		34.54 34.54	144 144 144 144	100 100	Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Gary Chu	Configurations	CH 151, 159 / Chain 1

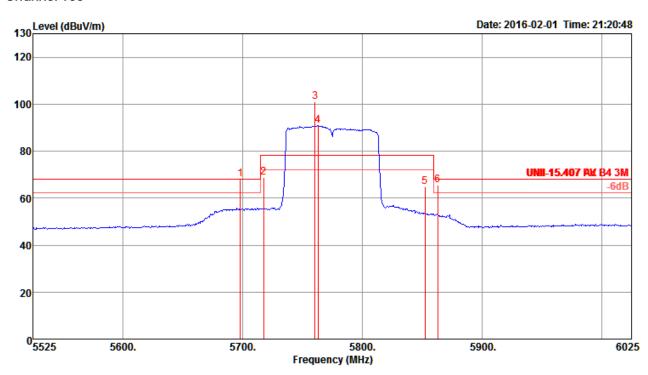

Channel 151

	Freq	Level	Limit Line					Preamp Factor			Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	——dB	dB/m	—dB	deg	Cm		
1 2 3 4	5714.30 5720.71 5748.91 5760.45	68.75 103.00	78.20	-0.09 -9.45		6.50 6.36	34.45 34.55		157 157 157 157	100 100	Peak Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5755 MHz.

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5712.95 5723.53 5787.63 5789.55 5852.37 5865.83	68.77 108.70 97.93 69.14	68.20 78.20 78.20 68.20	-0.18 -9.43 -9.06 -0.06	61.58 62.35 102.36 91.61 62.44 61.31	6.50 6.43 6.22 6.15 6.39 6.47	34.45 34.50 34.65 34.70 34.85 34.90	34.51 34.51 34.53 34.53 34.54 34.54	131 131 131 131 131 131	203 203 203 203 203	Peak Peak Peak Average Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5795 MHz.


Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Page No. : 101 of 109

Issued Date : Feb. 15, 2016

Temperature	23°C	Humidity	60%
Test Engineer	Garv Chu	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80
lesi Engineer	Gary Chu	Cornigulations	CH 155 / Chain 1

Channel 155

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	5698.08 5717.79 5760.58 5762.98 5852.40 5863.14	68.82	68.20 78.20 78.20 68.20	-0.22 -9.38 -13.52 -2.83	61.52 62.38 94.74 84.46 57.98 58.54	6.57 6.50 6.29 6.29 6.39 6.47	34.40 34.45 34.60 34.60 34.85 34.90	34.51 34.51 34.52 34.52 34.54 34.54	158 158 158 158 158 158	100 100 100 100	Peak Peak Peak Average Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5775 MHz.

Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

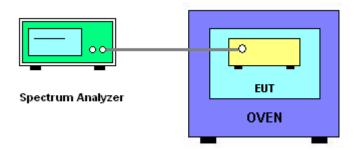
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is $0^{\circ}C \sim 70^{\circ}C$.

4.7.4. Test Setup Layout

Report Format Version: Rev. 02 Page No. : 103 of 109
FCC ID: QDS-BRCM1075 Issued Date : Feb. 15, 2016

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	21℃	Humidity	60%
Test Engineer	Lucas Huang	Test Date	Dec. 25, 2015

Mode: 20 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
00	5785 MHz						
(V)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5784.9485	5784.9471	5784.9453	5784.9432			
110.00	5784.9473	5784.9460	5784.9444	5784.9425			
93.50	5784.9459	5784.9448	5784.9436	5784.9414			
Max. Deviation (MHz)	0.0541	0.0552	0.0564	0.0586			
Max. Deviation (ppm)	9.35	9.54	9.75	10.13			
Result	Complies						

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)						
(%)	5785 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
0	5784.9532	5784.9520	5784.9501	5784.9479			
10	5784.9519	5784.9506	5784.9491	5784.9473			
20	5784.9507	5784.9494	5784.9478	5784.9459			
30	5784.9493	5784.9482	5784.9468	5784.9452			
40	5784.9477	5784.9462	5784.9446	5784.9426			
50	5784.9460	5784.9448	5784.9433	5784.9406			
60	5784.9460	5784.9448	5784.9433	5784.9406			
70	5784.9460	5784.9448	5784.9433	5784.9406			
Max. Deviation (MHz)	0.0540	0.0552	0.0567	0.0594			
Max. Deviation (ppm)	9.33	9.54	9.80	10.27			
Result	Complies						

Page No.

: 105 of 109

Issued Date : Feb. 15, 2016

Mode: 40 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
0.0		5755 MHz					
(V)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5754.9439	5754.9425	5754.9407	5754.9386			
110.00	5754.9427	5754.9414	5754.9398	5754.9379			
93.50	5754.9413	5754.9402	5754.9390	5754.9368			
Max. Deviation (MHz)	0.0587	0.0598	0.0610	0.0632			
Max. Deviation (ppm)	10.20	10.39	10.60	10.98			
Result	Complies						

Temperature vs. Frequency Stability

Temperature		Measurement F	requency (MHz)				
(°C)	5755 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
0	5754.9420	5754.9408	5754.9389	5754.9367			
10	5754.9407	5754.9394	5754.9379	5754.9361			
20	5754.9395	5754.9382	5754.9366	5754.9347			
30	5754.9381	5754.9370	5754.9356	5754.9340			
40	5754.9365	5754.9350	5754.9334	5754.9314			
50	5754.9348	5754.9336	5754.9321	5754.9294			
60	5754.9348	5754.9336	5754.9321	5754.9294			
70	5754.9348	5754.9336	5754.9321	5754.9294			
Max. Deviation (MHz)	0.0652	0.0664	0.0679	0.0706			
Max. Deviation (ppm)	11.33	11.54	11.80	12.27			
Result	Complies						

Mode: 80 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
00	5775 MHz					
(V)	0 Minute	2 Minute	5 Minute	10 Minute		
126.50	5774.9398	5774.9384	5774.9366	5774.9345		
110.00	5774.9386	5774.9373	5774.9357	5774.9338		
93.50	5774.9372	5774.9361	5774.9349	5774.9327		
Max. Deviation (MHz)	0.0628	0.0639	0.0651	0.0673		
Max. Deviation (ppm)	10.87	11.06	11.27	11.65		
Result	Complies					

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)						
(%C)	5775 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
0	5774.9433	5774.9421	5774.9402	5774.9380			
10	5774.9420	5774.9407	5774.9392	5774.9374			
20	5774.9408	5774.9395	5774.9379	5774.9360			
30	5774.9394	5774.9383	5774.9369	5774.9353			
40	5774.9378	5774.9363	5774.9347	5774.9327			
50	5774.9361	5774.9349	5774.9334	5774.9307			
60	5774.9361	5774.9349	5774.9334	5774.9307			
70	5774.9361	5774.9349	5774.9334	5774.9307			
Max. Deviation (MHz)	0.0639	0.0651	0.0666	0.0693			
Max. Deviation (ppm)	11.06	11.27	11.53	11.99			
Result	Complies						

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: Rev. 02
 Page No. : 107 of 109

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Feb.10, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

Report Format Version: Rev. 02 FCC ID: QDS-BRCM1075

Page No. : 108 of 109 Issued Date : Feb. 15, 2016

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

 Report Format Version: Rev. 02
 Page No. : 109 of 109

 FCC ID: QDS-BRCM1075
 Issued Date : Feb. 15, 2016