

Report No. : FZ4O2915

FCC DFS Test Report

FCC ID	: XPYMAYAW4A
Equipment	: Host-based multi-radio modules with Wi-Fi 6, Bluetooth Low Energy 5.4 and 802.15.4
Brand Name	: u-blox
Model Name	: MAYA-W476-00B, MAYA-W466-00B, MAYA-W446-00B, MAYA-W436-00B, MAYA-W473-00B, MAYA-W463-00B, MAYA-W443-00B, MAYA-W433-00B
Applicant	: u-Blox AG Zürcherstrasse 68, 8800 Thalwil Switzerland
Manufacturer	: u-Blox AG Zürcherstrasse 68, 8800 Thalwil Switzerland
Standard	: 47 CFR FCC Part 15.407

The product was received on Nov. 28, 2024, and testing was started from Dec. 23, 2024 and completed on Dec. 23, 2024. We, SPORTON INTERNATIONAL INC. Hsinhua Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Hsinhua Laboratory, the test report shall not be reproduced except in full.

Sai

Approved by: Sam Tsai

SPORTON INTERNATIONAL INC. Hsinhua Laboratory

No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan (R.O.C.)

Table of Contents

HIST	ORY OF THIS TEST REPORT	3
SUM	MARY OF TEST RESULT	4
1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	10
1.3	Testing Location Information	10
2	TEST CONFIGURATION OF EUT	11
2.1	Test Channel Frequencies Configuration	11
2.2	The Worst Case Measurement Configuration	11
2.3	Support Equipment	11
3	DYNAMIC FREQUENCY SELECTION (DFS) TEST RESULT	12
3.1	General DFS Information	12
3.2	Radar Test Waveform Calibration	14
3.3	In-service Monitoring	21
4	TEST EQUIPMENT AND CALIBRATION DATA	26
5	MEASUREMENT UNCERTAINTY	27
Appe	endix A. Test Photos	

Photographs of EUT V01

History of this test report

Report No.	Version	Description	Issued Date
FZ4O2915	01	Initial issue of report	Jan. 22, 2025

Summary of Test Result

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	CMT ≤ 10sec
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	CCTT ≤ 60 ms starting at CMT 200ms
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	NOP ≥ 30 min

Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and explanations:

None

Reviewed by: Ben Tseng Report Producer: Julie Tseng

1 General Description

1.1 Information

1.1.1 **RF General Information**

Specification Items	Description					
Product Type	WL	AN (1TX, 1RX)				
Radio Type	Inte	ntional Transceiver				
Power Type	Fro	m host system				
Modulation	IEE IEE	IEEE 802.11a: OFDM (BPSK / QPSK / 16QAM / 64QAM) IEEE 802.11n/ac/ax: see the below table				
Data Rate (Mbps)	IEE IEE	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54) IEEE 802.11n/ac/ax: see the below table				
Channel Bandwidth	20 MHz operating channel bandwidth					
Operating Mode	Master					
		Client with radar detection				
	Client without radar detection					
Communication Mode	\boxtimes	IP Based (Load Based)		Frame Based		
TPC Function	\boxtimes	With TPC		Without TPC		
Weather Band (5600~5650MHz)	\boxtimes	With 5600~5650MHz		Without 5600~5650MHz		
	\boxtimes	Full RU		Partial RU		
Resource Unit		MRU (static preamble puncturing)		MRU (dynamic preamble puncturing)		
Power-on cycle	NA	(No Channel Availability Chec	k Fu	nction)		
Software / Firmware Version	Linux version 6.6.3-lts-next-gec619b70d6b4 (oe-user@oe-host) (aarch64-poky-linux-gcc (GCC) 13.2.0, GNU ld (GNU Binutils) 2.41.0.20230926) #1 SMP PREEMPT Thu Feb 29 08:37:44 UTC 2024					
Note: EUT employ a TPC mechanis output power.	sm ar	nd TPC have the capability to	oper	ate at least 6 dB below highest RF		

	Type of EUT							
\square	Stand-alo	one						
	Combine	ed (EUT where the radio part is fully integ	rated within another device)					
	Combined Equipment - Brand Name / Model No.:							
	Plug-in radio (EUT intended for a variety of host systems)							
	Host System - Brand Name / Model No.:							
	Other:							

Antenna & Bandwidth

Antenna				
Band width Mode	20 MHz	40 MHz	80 MHz	160 MHz
IEEE 802.11a	V	Х	Х	Х
IEEE 802.11n	V	Х	Х	Х
IEEE 802.11ac	V	Х	Х	Х
IEEE 802.11ax	V	Х	Х	Х

IEEE 11n/ac/ax Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11n (HT20)	1	MCS 0-7		
802.11ac (VHT20)	1	MCS 0-8/Nss1		
802.11ax (HEW20)	1	MCS 0-9/Nss1		

Note 1: IEEE Std. 802.11n modulation consists of HT20 (HT: High Throughput). Then EUT support HT20.

Note 2: HT20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: IEEE Std. 802.11ac modulation consists of VHT20 (VHT: Very High Throughput). Then EUT support VHT20.

Note 4: VHT20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 5: HEW20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.

Note 6: Modulation modes consist of below configuration:

11a: IEEE 802.11a, HT20: IEEE 802.11n, VHT20: IEEE 802.11ac, HEW20: IEEE 802.11ax.

1.1.2 Antenna Information

MAYA-W476-00B

Ant.	Brand	Model Name	Antenna Type	Support
1	U-Blox	MAYA-W4 PCB	PCB Antenna	2.4G+5G+BLE+802.15.4

Ant	Gain (dBi)							
Ant.	2.4G	UNII-1	UNII-2A	UNII-2C	UNII-3	UNII-4	BT	802.15.4
1	1.56	-1.74	1.56	1.56	-2.23	-0.95	1.56	1.56

For 2.4GHz function:

For IEEE 802.11 b/g/n/ax mode (1TX/1RX) Ant. 1 could transmit/receive.

For 5GHz function:

For IEEE 802.11 a/n/ac/ax mode (1TX/1RX) Ant. 1 could transmit/receive.

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX) Ant. 1 could transmit/receive.

For Zigbee function:

For IEEE 802.15.4 mode (1TX/1RX) Ant. 1 could transmit/receive.

MAYA-W473-00B

Ant.	Brand	Model Name	Antenna Type	Support
1	Linx	ANT-DB1-RAF-RPS	Dual-band dipole antenna	2.4G+5G+BLE+802.15.4
2	Chang Hong	DA-2458-02-SMR	Dual-band dipole antenna	2.4G+5G+BLE+802.15.4
3	Laird	001-0012	Dual-band dipole antenna	2.4G+5G+BLE+802.15.4
4	Taoglas	GW.59.3153	Dual-band dipole antenna	2.4G+5G+BLE+802.15.4
5	Laird	MAF94051	Dual-band dipole antenna	2.4G+5G+BLE+802.15.4
6	Unictron	H2B1PD1A1C385L	PCB antenna	2.4G+5G+BLE+802.15.4
7	Molex	1461530050	PCB antenna	2.4G+5G+BLE+802.15.4
8	Molex	2042810100	PCB antenna	2.4G+5G+BLE+802.15.4

Ant.	Gain (dBi)							
	2.4G	UNII-1	UNII-2A	UNII-2C	UNII-3	UNII-4	BT	802.15.4
1	4.1	5.1	5.1	5.1	5.1	5.1	4.1	4.1
2	2.85	1.52	0.36	1.35	2.17	1.49	2.85	2.85
3	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
4	3.8	5.3	5.3	5.3	5.3	5.3	3.8	3.8
5	2.1	2.6	2.6	2.6	2.6	3.4	2.1	2.1
6	2.7	3.5	3.5	3.5	3.5	3.5	2.7	2.7
7	3.2	4.25	4.25	4.25	4.25	4.25	3.2	3.2
8	2.0	3.3	3.3	3.3	3.3	3.3	2.0	2.0

For 2.4GHz function:

For IEEE 802.11 b/g/n/ax mode (1TX/1RX) Ant. 1 ~ Ant. 8 could transmit/receive.

For 5GHz function:

For IEEE 802.11 a/n/ac/ax mode (1TX/1RX) Ant. 1 ~ Ant. 8 could transmit/receive.

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX) Ant. 1 ~ Ant. 8 could transmit/receive.

For Zigbee function:

For IEEE 802.15.4 mode (1TX/1RX) Ant. 1 ~ Ant. 8 could transmit/receive.

1.1.3 DFS Band Carrier Frequencies

There are one bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136,

	-)			
Channel No.	Frequency	Channel No.	Frequency	
52	5260 MHz	60	5300 MHz	
56	5280 MHz	64	5320 MHz	
100	5500 MHz	124	5620 MHz	
104	5520 MHz	128	5640 MHz	
108	5540 MHz	132	5660 MHz	
112	5560 MHz	136	5680 MHz	
116	5580 MHz	140	5700 MHz	
120	5600 MHz	144	5720 MHz	
	Channel No. 52 56 100 104 108 112 116 120	Channel No. Frequency 52 5260 MHz 56 5280 MHz 100 5500 MHz 104 5520 MHz 108 5540 MHz 112 5560 MHz 116 5580 MHz 120 5600 MHz	Channel No. Frequency Channel No. 52 5260 MHz 60 56 5280 MHz 64 100 5500 MHz 124 104 5520 MHz 128 108 5540 MHz 132 112 5560 MHz 136 116 5580 MHz 140 120 5600 MHz 144	Channel No. Frequency Channel No. Frequency 52 5260 MHz 60 5300 MHz 56 5280 MHz 64 5320 MHz 100 5500 MHz 124 5620 MHz 104 5520 MHz 128 5640 MHz 108 5540 MHz 132 5660 MHz 112 5560 MHz 136 5680 MHz 116 5580 MHz 140 5720 MHz 120 5600 MHz 144 5720 MHz

140, 144.

1.1.4 Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Model Name	Description	Chipset used	Radio Technologies	Antenna Type	Antenna item
MAYA-W476-00B	Product with integrated antenna	NXP IW610G	2.4G+5G Wi-Fi, BLE, 802.15.4	PCB Antenna	W9
MAYA-W466-00B	Product with integrated antenna	NXP IW610F	2.4G+5G Wi-Fi, BLE	PCB Antenna	W9
MAYA-W446-00B	Product with integrated antenna	NXP IW610C	2.4G Wi-Fi, BLE, 802.15.4	PCB Antenna	W9
MAYA-W436-00B	Product with integrated antenna	NXP IW610B	2.4G Wi-Fi, BLE	PCB Antenna	W9
MAYA-W473-00B	Product with antenna pin	NXP IW610G	2.4G+5G Wi-Fi, BLE, 802.15.4	External Antenna Dual-Band dipole Antenna or External PCB Antenna	W1~8
MAYA-W463-00B	Product with antenna pin	NXP IW610F	2.4G+5G Wi-Fi, BLE	External Antenna Dual-Band dipole Antenna or External PCB Antenna	W1~8
MAYA-W443-00B	Product with antenna pin	NXP IW610C	2.4G Wi-Fi, BLE, 802.15.4	External Antenna Dual-Band dipole Antenna or External PCB Antenna	W1~8
MAYA-W433-00B	Product with antenna pin	NXP IW610B	2.4G Wi-Fi, BLE	External Antenna Dual-Band dipole Antenna or External PCB Antenna	W1~8

From the above models, model: MAYA-W476-00B, MAYA-W473-00B was selected as representative model for the test and its data was recorded in this report.

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The following reference test guidance is not within the scope of accreditation of TAF:

KDB 905462 D03 Client Without DFS New Rules v01r02

1.3 Testing Location Information

Tes	t Lab. : Sport	on International	nc. Hsinhua Lat	ooratory	
\square	Hsinhua	ADD: No.52, Hu	uaya 1st Rd., Guis	shan Dist., Taoyuan City 3	33411, Taiwan (R.O.C.)
	(TAF: 3785)	TEL: 886-3-327	-3456	FAX: 886-3-327-0973	
	Test site Designation No. TW3785 with FCC.				
Те	st Condition	Test Site No.	Test Engineer	Test Environment	Test Date
	DFS	DFS03-HY	CHUN-YI WU	22.5~24.0°C / 54~61%	23/Dec/2024

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration	
IEEE Std.	Test Channel Freq. (MHz)
802.11ax (HEW20)	5300 MHz

2.2 The Worst Case Measurement Configuration

TI	ne Worst Case Mode for Following Conformance Tests
Tests Item	Dynamic Frequency Selection (DFS)
Test Condition	Conducted measurement at transmit chains The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used.
Modulation Mode	802.11ax (HEW20)

2.3 Support Equipment

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	Remark
1	AP (Master)	ASUS	RT-AX88U	MSQ-RTAXHP00	-
2	Notebook	HP	EliteBook 820 G3	-	-
3	Notebook	DELL	Latitude E5550	-	-
4	Shielding Box	EMEC	EM-SHB-6505503 00-M	-	-
5	Monitor	BENQ	GL2230-B	-	-
6	Fixture	U-blox AG	MAYA-W4 EUK	-	Provided by Customer
7	EVKB Board	NXP	8MMINILPDDR4- EVKB	-	Provided by Customer
8	Power Supply	EDAC	EA1045CR	-	Provided by Customer
9	USB Type-C Cable	N/A	N/A	-	Provided by Customer
10	USB micro-B Cable	N/A	N/A	-	Provided by Customer
11	USB Type-C to A Adapter	N/A	N/A	-	Provided by Customer
12	Adapter PCB	N/A	N/A	-	Provided by Customer

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values		
Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds (Note 1).	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).	
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).	
Note 1: Channel Move Time and the Channel Cl Type 0. The measurement timing begins	osing Transmission Time should be performed with Radar at the end of the Radar Type 0 burst.	

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
 Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values	
Maximum Transmit Power	Value (see note)
EIRP ≥ 200 mW	-64 dBm
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm
EIRP < 200 mW and PSD ≥ 10dBm/MHz	-64 dBm
Note 4. This is the local of the input of the nearly	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
 Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.
 Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911.

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	Yes	Not required (See the note)	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Note :

According to KDB 905462 D03 Client Without DFS New Rules v01r02 (b) 6."An analyzer plot that contains a single 30-minute sweep on the original channel "

Applicability of DFS Requirements during Normal Operation 3.1.3

	DFS Operational mode			
Requirement	Requirement Master		Client with radar detection	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statisti	cal performance check (Section	7.8.4) should include several

on bandwidth and frequencies near the edge of the r ection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$\left[(1), (19 \times 10^6) \right]$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$\left\{\left(\frac{1}{360}\right) \times \left(\frac{10 \times 10}{PRI}\right)\right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type	s 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

• The transmission period for the Long Pulse Radar test signal is 12 seconds.

• There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.

• Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each
 pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For
 example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and
 ends at 5310 MHz.
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000

TEL : 886-3-327-3456	Page Number	: 14 of 27
FAX : 886-3-327-0973	Issued Date	: Jan. 22, 2025
Report Template No.: HE1-D2 Ver3.2	Report Version	: 01
FCC ID : XPYMAYAW4A		

microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.

 The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

3.2.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

3.2.4 DFS Threshold Level

3.2.5 Calibration Setup

TEL : 886-3-327-3456	Page Number	: 15 of 27
FAX : 886-3-327-0973	Issued Date	: Jan. 22, 2025
Report Template No.: HE1-D2 Ver3.2	Report Version	: 01
FCC ID : XPYMAYAW4A		

3.2.6 Radar Waveform calibration Plot

3.2.7 Test Setup

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.

3.2.8 Data traffic Plot

3.3 In-service Monitoring

3.3.1 In-service Monitoring Limit

	In-service Monitoring Limit
Channel Move Time	10 sec
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.
Non-occupancy period	Minimum 30 minutes

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

3.3.4 Test Result of In-service Monitoring

Modulation Mode: 802.11ax (HEW20)

Parameter	Test Result	Limit
Farameter	Туре 0	Linin
Test Channel (MHz)	5300 MHz	-
Channel Move Time (sec.)	0.7715	< 10s
Channel Closing Transmission Time (ms) (Note)	12	< 60ms
Non-Occupancy Period (min.)	≧30	\geq 30 min

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Modulation Mode Freq. Radar Type 802.11ax (HEW20) 5300 MHz 0 RBW 3 MHz Marker 2 [T1] -63.35 dBm 10.000000 s *VBW 3 MHz SWT 12 s Ref 0 dBm *Att 10 dB 1 [T1 Marker EUT signal 88 dBn -54 0.0 Delta [T1 1 PK * CLRWR 04 dB DB يبعر أدب Radar Center 5.3 GHz 1.2 s/ Date: 23.DEC.2024 16:17:55

3.3.5 Test Plot of In-Service Monitoring for Channel Move Time

3.3.6 Test Plot of In-Service Monitoring for Channel Closing Transmission Time

802.11ax (HEW20) 5300 MHz Channel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Move Time plus 60ms additional intermittent control signals	Modulation Mode	Freq.	Radar Type
Channel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Move Time plus 60ms additional intermittent control signals	802.11ax (HEW20)	5300 MHz	0
Zoom	Channel Closing Transmission Time Time plus 60ms additional intermitte	e is comprised of 200 ms starting at ent control signals	the beginning of the Channel Move
200m 0 <td></td> <td></td> <td></td>			
Zoom 23/12/2024 Z1(5) NaNs Z2(5) NaNs Z2(5) NaNs Z2(5) NaNs Z2(5) NaNs Z2(5) NaNs Z2(5) NaNs Z0m TX 12 13 14 15 16 1,7 18 19 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3 3 3 3 3 3 3 3 3			
Zoom 2/2/12/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/2024 2/15] 2/1/2/202 2/1/2/2 2/1			
0	Zoom		
-10 -20 -30 -40 -50 -50 -60 -70 -70 -100 -112 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	0-		23/12/2024
-20 -30 -40 -50 -70 -80 -80 -90 -100	-10-		Z1[s]
-40- -50- -60- -70- -80- -90- -100- -12 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-20-		Z2[s]
-50- -60- -70- -80- -90- -100- -1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-40 -		NaNs
-60- -70- -80- -90- -100- 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-50 -		Zoom TX
-70- -80- -90- -100- 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-60- www	maket an all and a second and a second second and a second second second second second second second second sec	everyweet-deexered and the second sec
-90- -100- 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-70-		200m 1X Sample
-100 - 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-90 -		DC-Zoom
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3	-100 -		0.006661
	1.2 1.3 1.4 1.5 1.6 1.7 1.	.8 1.9 2 2.1 2.2 2.3 2.4 2.5	2.6 2.7 2.8 2.9 3

3.3.7 Test Plot of In-Service Monitoring for Non-Occupancy Period

М	odulation Mode	•		Freq.			
80)2.11ax (HEW20))		5300 MHz			
Non-associated te Master was off. During the 30 minu UUT power up.	est utes observation	time, The UUT c	lid not make a	any transmissions in the DFS bar	nd after		
	Ref 0 dBm	RI * VI * A++ 10 dB SI	BW 3 MHz Delta BW 3 MHz WT 2000 s	1 [T1] -43.80 dB			
1 PR Clevi	0 10 10 20 20 		Marke	1 [T1] -18.25 dBm 22 00000 r 2 -61.86 dBm 1.832 000 1.832 000 2 3DB			
Date	80 90 100 Center 5.3 GHz	200 s/					

4 Test Equipment and Calibration Data

Instrument	Manufacturer/ Brand Name	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSP40	100305	9 kHz ~ 40 GHz	21/Mar/2024	20/Mar/2025
Vector Signal Generator	R&S	SMW200A	111529	100kHz~7.5GHz	12/Mar/2024	11/Mar/2025

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Threshold Level	1.2 dB	Confidence levels of 95%
Statistical Performance Check	3.33 %	Confidence levels of 95%
СМТ	36.52 ms	Confidence levels of 95%
ССТТ	8 ms	Confidence levels of 95%
NOP	0 min	Confidence levels of 95%
Temperature	0.41 °C	Confidence levels of 95%
Humidity	3.4 %	Confidence levels of 95%