Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** # f=750 MHz, WGLS R9(H_convF) # f=1750 MHz, WGLS R22(H_convF) Page Number Report Issued Date: Sep. 29, 2018 : 185 of 257 # **Deviation from Isotropy in Liquid** -1.0 -0.80 -0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.0 Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z18-60343 Page 10 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3252 # **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 131.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 4mm | | Probe Tip to Sensor X Calibration Point | 2mm | | Probe Tip to Sensor Y Calibration Point | 2mm | | Probe Tip to Sensor Z Calibration Point | 2mm | | Recommended Measurement Distance from Surface | 3mm | Certificate No: Z18-60343 Page 11 of 11 Page Number Report Issued Date: Sep. 29, 2018 : 186 of 257 Report No.: I18D00109-SAR01 **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION C | CERTIFICATE | | | |--|---|---|--| | Object | D750V3 - SN: 11 | 44 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | August 03, 2015 | | | | This calibration certificate docum | | | d are part of the certificate | | The measurements and the unce | ertainties with confidence p | robability are given on the following pages an
ry facility: environment temperature $(22\pm3)^{\circ}0$ | | | The measurements and the unce | ertainties with confidence p | robability are given on the following pages an
ry facility: environment temperature (22 \pm 3)°0 | | | The measurements and the unce | ertainties with confidence p cted in the closed laborator TE critical for calibration) | robability are given on the following pages an | C and humidity < 70%. | | The measurements and the unce
All calibrations have been condu-
Calibration Equipment used (M&
Primary Standards | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # | robability are given on the following pages an
ry facility: environment temperature $(22 \pm 3)^{\circ}0$
Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | The measurements and the unce
All calibrations have been condu-
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 | robability are given on the following pages an ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) | C and humidity < 70%. Scheduled Calibration Oct-15 | | The measurements and the unce
All calibrations have been conducted
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 | robability are given on the following pages an ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) | Scheduled Calibration Oct-15 Oct-15 | | The measurements and the unce
All calibrations have been condu-
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 | robability are given on the following pages an ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) | Scheduled Calibration Oct-15 Oct-15 Oct-15 | | The measurements and the uncertainty u | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 | | The measurements and the uncertainty u | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 | | The measurements and the unce
All calibrations have been conduct
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 | | The measurements and the unce
All calibrations have been condu-
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 | | The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ertainties with confidence p cted in the closed laborator TE critical for
calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check | | The measurements and the uncertainty of the measurements and the uncertainty of the measurement used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | | The measurements and the uncertainty of the measurements and the uncertainty of the measurement used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | | The measurements and the uncertainty of the measurements and the uncertainty of the measurement used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 | Cal Date (Certificate No.) O7-Oct-14 (No. 217-02020) O7-Oct-14 (No. 217-02020) O7-Oct-14 (No. 217-02021) O1-Apr-15 (No. 217-02031) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) O4-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) | Scheduled Calibration Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | Certificate No: D750V3-1144_Aug15 Page 1 of 8 Report No.: I18D00109-SAR01 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1144_Aug15 Page 2 of 8 Report No.: I18D00109-SAR01 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.07 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.29 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.3 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ***** | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.60 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.71 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1144_Aug15 Page 3 of 8 Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.4 Ω - 1.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | Report No.: I18D00109-SAR01 # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.9 Ω - 3.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.032 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT
Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 28, 2015 | Certificate No: D750V3-1144_Aug15 Page 4 of 8 # **DASY5 Validation Report for Head TSL** Date: 03.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.93 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.34 W/kg Maximum value of SAR (measured) = 2.40 W/kg 0 dB = 2.40 W/kg = 3.80 dBW/kg Certificate No: D750V3-1144_Aug15 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D750V3-1144_Aug15 Page 6 of 8 # **DASY5 Validation Report for Body TSL** Date: 03.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1144 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 1 \text{ S/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.55 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.46 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.46 W/kgMaximum value of SAR (measured) = 2.57 W/kg 0 dB = 2.57 W/kg = 4.10 dBW/kg Certificate No: D750V3-1144_Aug15 Page 7 of 8 Page Number Report Issued Date: Sep. 29, 2018 : 193 of 257 # Impedance Measurement Plot for Body TSL Certificate No: D750V3-1144_Aug15 Page 8 of 8 : 195 of 257 # D750V3, Serial No.1144Extended Dipole Calibrations Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # Justification of the extended calibration | | | D750 | 0V3 Serial No. | 1144 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 750 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 08.03.2015 | -27.036 | | 54.412 | 1 | -1.455 | | | 08.02.2016 | -25.01 | 7.49 | 55.936 | 1.524 | 0.386 | 1.841 | | | D750V3 Serial No.1144 | | | | | | |------------------------|-----------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 750 Body | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 08.03.2015 | -29.522 | | 49.885 | | -3.338 | | | 08.02.2016 | -29.116 | 1.38 | 49.671 | 0.214 | -3.456 | 0.118 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications Page Number TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date: Sep. 29, 2018 : 196 of 257 Page Number Report Issued Date: Sep. 29, 2018 # Dipole Verification Data D750V3 Serial No.1144 750MHz-Head # 750MHz - Body : 197 of 257 # D750V3, Serial No.1144Extended Dipole Calibrations Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # Justification of the extended calibration | | | D750 | OV3 Serial No. | 1144 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 750 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 08.03.2015 | -27.036 | | 54.412 | | -1.455 | | | 08.02.2016 | -25.01 | 7.49 | 55.936 | 1.524 | 0.386 | 1.841 | | 08.02.2017 | -25.662 | 2.61 | 55.125 | 0.811 | -1.936 | 2.322 | | D750V3 Serial No.1144
750 Body | | | | | | | |-----------------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 08.03.2015 | -29.522 | | 49.885 | | -3.338 | | | 08.02.2016 | -29.116 | 1.38 | 49.671 | 0.214 | -3.456 | 0.118 | | 08.02.2017 | -30.474 | 4.66 | 49.189 | 0.482 | -2.859 | 0.597 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data D750V3 Serial No.1144 750MHz-Head # 750MHz - Body Page Number Report Issued Date: Sep. 29, 2018 : 198 of 257 East China Institute of Telecommunications TEL: +86 21 63843300FAX:+86 21 63843301 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Certificate No: Z15-97165 # **CALIBRATION CERTIFICATE** ECIT Object D835V2 - SN: 4d112 Calibration Procedure(s) Client FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: October 22, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Name | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 101919 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | SN 3617 | 26-Aug-15(SPEAG,No.EX3-3617_Aug15) | Aug -16 | | SN 777 | 26-Aug-15(SPEAG,No.DAE4-777_Aug15) | Aug -16 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729) | Feb-16 | | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728) | Feb-16 | | | 101547
SN 3617
SN 777
ID#
MY49071430 | 101919 01-Jul-15 (CTTL, No.J15X04256) 101547 01-Jul-15 (CTTL, No.J15X04256) SN 3617 26-Aug-15(SPEAG,No.EX3-3617_Aug15) SN 777 26-Aug-15(SPEAG,No.DAE4-777_Aug15) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 02-Feb-15 (CTTL, No.J15X00729) | Calibrated by: Function Zhao Jing SAR Test Engineer Signature Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: October 26, 2015 Page Number Report Issued Date: Sep. 29, 2018 : 199 of 257 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97165 Page 1 of 8 Report No.: I18D00109-SAR01 : 200 of 257 Page Number Report Issued Date: Sep. 29, 2018 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: d) DASY4/5
System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z15-97165 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.31 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.22 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.51 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.03 mW /g ± 20.4 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.37 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.57 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 $^{\text{C}m^3}$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.56 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.29 mW /g ± 20.4 % (k=2) | Certificate No: Z15-97165 Page 3 of 8 Report No.: I18D00109-SAR01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **Appendix** # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1Ω- 4.20jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.3dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.2Ω- 4.79jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.9dB | | # General Antenna Parameters and Design | Electrical Delay (one of | direction) | 1 502 no | | |--------------------------|------------|----------|--| | Electrical Delay (one to | illection) | 1.502 ns | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z15-97165 Page 4 of 8 Page Number Report Issued Date: Sep. 29, 2018 : 202 of 257 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn **DASY5 Validation Report for Head TSL** Date: 10.22,2015 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.907 S/m; ϵ_r = 42.15; ρ = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.56, 9.56, 9.56); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.46 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 2.93 W/kg 0 dB = 2.93 W/kg = 4.67 dBW/kg Certificate No: Z15-97165 Page 5 of 8 Page Number Report Issued Date: Sep. 29, 2018 : 203 of 257 : 204 of 257 Page Number Report Issued Date: Sep. 29, 2018 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z15-97165 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 10.22.2015 : 205 of 257 Page Number Report Issued Date: Sep. 29, 2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112 Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.958$ S/m; $\epsilon_r = 55.11$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.71,9.71, 9.71); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.68 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 2.99 W/kg 0 dB = 2.99 W/kg = 4.76 dBW/kg Certificate No: Z15-97165 Page 7 of 8 : 206 of 257 Page Number Report Issued Date: Sep. 29, 2018 Certificate No: Z15-97165 Page 8 of 8 # D835V2, Serial No.4d112 Extended Dipole Calibrations Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement. Per KDB 865664 D01,if dipoles are verified in return loss(<-20dB,within 20% of prior calibration),and in impedance (within 5 ohm of prior calibration),the annual calibration is not necessary and the calibration interval can be extended. # Justification of the extended calibration | | | | = = | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | D835 | V2 Serial No.4 | ld112 | | | | | | | 835 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.22.2015 | -27.27 | - | 49.108 | 1 | -4.2018 | | | 10.21.2016 | -29.019 | 6.41 | 50.108 | 1 | -2.1757 | 2.0261 | | | | D835 | V2 Serial No.4 | d112 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 835 Body | | | | | Date of
Measurement
 Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.22.2015 | -23.036 | | 46.184 | | -4.7866 | | | 10.21.2016 | -23.131 | 0.56 | 47.003 | 0.819 | -2.9072 | 1.8794 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications Page Number : 207 of 257 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Sep. 29, 2018 # Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head # 835MHz - Body Page Number Report Issued Date: Sep. 29, 2018 : 208 of 257 # Justification of the extended calibration | | | D835 | V2 Serial No.4 | d112 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 835 Head | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.22.2015 | -27.27 | - | 49.108 | - | -4.2018 | | | 10.21.2016 | -29.019 | 6.41 | 50.108 | 1 | -2.1757 | 2.0261 | | 10.20.2017 | -28.040 | 3.37 | 49.98 | 0.128 | -3.965 | 1.789 | Report No.: I18D00109-SAR01 | | | D835 | V2 Serial No.4 | d112 | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | | | 835 Body | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.22.2015 | -23.036 | | 46.184 | | -4.7866 | | | 10.21.2016 | -23.131 | 0.56 | 47.003 | 0.819 | -2.9072 | 1.8794 | | 10.20.2017 | -24.962 | 7.92 | 47.613 | 0.61 | -4.977 | 2.07 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. East China Institute of Telecommunications Page Number : 209 of 257 TEL: +86 21 63843300FAX:+86 21 63843301 Report Issued Date : Sep. 29, 2018 : 210 of 257 Page Number Report Issued Date: Sep. 29, 2018 # Dipole Verification Data D835V2 Serial No.4d112 835MHz-Head # 835MHz - Body Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com ECIT Http://www.chinattl.cn Certificate No: Z15-97167 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1044 Calibration Procedure(s) Client FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: November 3, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 101919 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | 101547 | 01-Jul-15 (CTTL, No.J15X04256) | Jun-16 | | SN 3617 | 26-Aug-15(SPEAG,No.EX3-3617_Aug15) | Aug -16 | | SN 777 | 26-Aug-15(SPEAG,No.DAE4-777_Aug15) | Aug -16 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729) | Feb-16 | | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728) | Feb-16 | | | 101919
101547
SN 3617
SN 777
ID#
MY49071430 | 101919 01-Jul-15 (CTTL, No.J15X04256) 101547 01-Jul-15 (CTTL, No.J15X04256) SN 3617 26-Aug-15(SPEAG,No.EX3-3617_Aug15) SN 777 26-Aug-15(SPEAG,No.DAE4-777_Aug15) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 02-Feb-15 (CTTL, No.J15X00729) | Calibrated by: Name Function Zhao Jing SAR Test Engineer Signature Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Page Number Report Issued Date: Sep. 29, 2018 : 211 of 257 Issued: November 6, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z15-97167 Page 1 of 8 Report No.: I18D00109-SAR01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z15-97167 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com ### **Measurement Conditions** far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.48 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 37.3 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.09 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.1 mW /g ± 20.4 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.30 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 37.6 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.02 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 mW /g ± 20.4 % (k=2) | Certificate No: Z15-97167 Page 3 of 8 Page Number : 213 of 257 Report No.: I18D00109-SAR01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9Ω+
1.17jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 35.8dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.5Ω+ 0.58jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.5dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.319 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z15-97167 Page 4 of 8 Date: 11.03.2015 Page Number Report Issued Date: Sep. 29, 2018 : 215 of 257 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1044 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.403$ S/m; $\epsilon r = 39.72$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.34, 8.34, 8.34); Calibrated: 8/26/2015; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/26/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.40V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.0W/kg SAR(1 g) = 9.48 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 13.3 W/kg 0 dB = 13.3 W/kg = 11.24 dBW/kg Certificate No: Z15-97167 Page 5 of 8