Electromagnetic Compatibility Test Report Test Report No: COB 250619 Rev. 2 **Issued on:** June 25, 2019 **Product Name RRU High Power** Tested According to FCC 47 CFR, Part 90 862 MHz – 869 MHz Band Tests Performed for Axell Wireless Qiryat Matalon, Petah Tikva, 49002, Tel: +972-3-918 0180 ## QualiTech EMC Laboratory 30 Hasivim Street, P.O.Box 7500 Petah-Tikva, 4951169, Israel Tel: +972-3-926-6994 Fax: +972-3-928 7490 Date: 29.10.2019 Rev. 2 The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions. The copyright for this document vests in QualiTech, EMC Lab. All rights reserved. This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab. If and when such permission is granted, the report must be reproduced only in the full format. #### **Test Personnel** | | Tag | |-----------------------------|--| | Tests Performed By: | | | Ι | Omitri Babiev | | Report Prepared By: | Blowl. | | | Bina Talkar | | | | | | Rami Nald | | Report Reviewed By : | | | I | Rami Nataf
EMC Lab. Manager
QualiTech EMC Laboratory | Date: 29.10.2019 Rev. 2 ## **Test Report details:** Test commencement date: 03.04.2019 Test completion date: 06.06.2019 Customer's representative: David Cohen Issued on: 29.10.2019 #### **Revision details:** | Version Date | | Details/Reasons | |--------------|------------|-----------------------------------| | Rev. 1 | 25.06.2019 | - | | Rev. 2 | 29.10.2019 | Updated according to TCB comments | #### **Assessment information:** This report contains an assessment of the EUT against Radio testing based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, Radio Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item. The EUT was set up and exercised using the configuration, modes of operation and arrangements defined in this report only. #### **Modifications:** **Modifications made to the EUT** None. Modifications made to the Test Standard None. **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 # **Summary of Compliance Status** | Test Spec. Clause | Test Case | Remarks | |---|--|---------| | Specific Requirements | | 1 | | -KDB 935210 D05 v01r02, sec. 3.3 | Out-of-Band Rejection | Pass | | General Requirements | | • | | -47 CFR §90.219 (e) (4) (i)/(ii)
-§2.1049
-KDB 935210 D05 v01r02, sec.3.4 | Occupied Bandwidth - Input-versus-output signal comparison | Pass | | -47 CFR \$90.635
-47 CFR \$2.1046
-KDB 935210 D05 v01r02, sec 3.5.4 | Mean Output Power and Amplifier/Booster Gain | Pass | | -47 CFR §90.219
-KDB 935210 D05 v01r02, sec. 3.6.2, Conducted | Out-of-Band/Out-of-Block & Intermodulation Emissions
Conducted Measurements | Pass | | -47 CFR §90.219 (e) (3)
-47 CFR §2.1051
-KDB 935210 D05 v01r02, sec. 3.6.3, Conducted | Spurious Emission Conducted Measurement | Pass | | -47 CFR §90.219 (e) (3)
-47 CFR §2.1053
-KDB 935210 D05 v01r02, sec. 3.6.8, Radiated | Spurious Emissions – Radiated Measurement | Pass | | -47 CFR §90.213
-47 CFR §2.1055
-KDR 935210 D05 v01r02 sec 3.7 Conducted | Frequency Stability | Pass | # **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 # Table of Contents | 1. | GENERAL | 6 | |------|---|----| | 1.1. | Referenced documents | 6 | | 1.2. | Product Description | 7 | | 2. | TEST FACILITY & UNCERTAINTY OF MEASUREMENT | 9 | | 2.1. | Accreditation / Registration reference | 9 | | 2.2. | Test Facility description | 9 | | 3. | EXAMINATION TEST RESULTS | 11 | | 3.1. | Out-of-Band Rejection | 11 | | 3.2. | Occupied Bandwidth - Input-versus-output signal comparison | 12 | | 3.3. | Mean Output Power and Amplifier/Booster Gain | 15 | | 3.4. | Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements | 16 | | 3.5. | Spurious Emission Conducted Measurement | 20 | | 3.6. | Spurious Emission, Radiated Measurements | 27 | | 3.7. | Frequency stability | | | 4. | APPENDIX | 35 | Date: 29.10.2019 Rev. 2 #### 1. General #### 1.1. Referenced documents KDB 935210 D05 v01r02: Measurements Guidance for Industrial and Non-consumer Signal Booster, Repeater and Amplifiers Devices. **ANSI/TIA-603-D:** Land Mobile FM or PM Communications Equipment and Performance Standards. Date: 29.10.2019 Rev. 2 #### 1.2. Product Description FCC ID: NEO43ID7D8C17C19A **IC:** 8749A-43ID7817C19 Model Numbers: id-DAS-RRU-M-4307-4308-4317-4319-AC-F Serial Number: 18061383 #### **Description of the EUT system/test Item:** \emph{id} RU – The idRU is an IP 65 outdoor as well as indoor four-band remote unit, where two units can be cascaded through a CPRI link to support eight bands. Each band can provide maximum power of 43 dBm \pm 0.75dB per band. The Remote Units serve as the backhaul port of any IP device or switch in the neighborhood; thus, it distributes combined cellular and data services according to user defined configuration profiles. The idRU is connected to the MSDH via 10 Gbit/s CPRI interfaces, where each interface contains an Embedded 1Gbit/s IP backhaul link. #### Description of the EUT system/test Item: #### Bands and Modulations: Fc = 862.354 MHz | Technology | Direction | Modulation & Bandwidth | Frequency Band | Maximum Output Power | | |------------|-----------|------------------------|----------------|----------------------|--| | | AC Model | | | | | | GSM | Downlink | QPSK,0.2 MHz | | 37.91dBm, 6.180w | | | CDMA | Downlink | 1.25MHz | | 42.86dBm, 19.320w | | | WCDMA | Downlink | 5MHz | 862 - 869 MHz | 42.86dBm, 19.320w | | | LTE | Downlink | 64 QAM 1.4MHz | | 42.86dBm, 19.320w | | | LIE | DOWIIIIK | 64 QAM 5MHz | | 42.86dBm, 19.320w | | Date: 29.10.2019 Rev. 2 #### **Support /Ancillary Equipment:** For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational features to the EUT. The system was configured in a typical fashion, as it would be normally used. However, the ancillary equipment can influence the test results. #### **Test Setup and Module Description:** Signal Generator 1 and Signal Generator 2 generates a single tone or two-tones to the system. The tones can be selected to be CW or modulated. The signal can be routed either to the APOI or MTDI via Coax. The APOI (Active Point of Interface), conditions and controls level of up to 16 low power BTS sectors of up to 30dBm. (Separate low PIM attenuators are used for higher power signals.) The signals are conditioned by up to eight, band-specific modules, supporting two same-band sectors. The conditioned signals of each module are converged and fed to the corresponding (band-specific) MTDI module for digitization. The MTDI (Multi Technology Digital Interface) unit digitizes and filters up to 16 conditioned cellular RF sectors from one more A-POI shelves. It then combines the signals over a single CPRI link that is routed towards the MSDH. The MSDH (Multi Sector Digital Hub) serves as the idDAS central switching hub and control system. It routes digitized cellular resources received from MTDI units, along with data from the Ethernet network, over CPRI links towards the relevant remotes. Date: 29.10.2019 Rev. 2 ## 2. Test Facility & Uncertainty of Measurement #### 2.1. Accreditation / Registration reference - A2LA Certificate Number: 1633.01 - IC Canada: Site# 4808A-1 #### 2.2. Test Facility description The tests were performed at the EMC Laboratory, QualiTech Division, ECI Telecom Group Address: 30, Hasivim St., Petah Tikva, Israel. Tel: 972-3-926-6994 #### 3m Anechoic Chamber: | Measurement distance | 3m | |--|--| | Chamber dimensions | 9.5m x 6.5m x 5.2m | | Antenna height | 1 - 4m | | Shielding Effectiveness | Magnetic field ≥80dB at 15 kHz
≥90dB at 100 kHz
Electric field >120dB from 1MHz to 1GHz
>110dB from 1GHz to 10GHz | | Absorbing material | Ferrite tiles on the walls and ceiling Emerson and Cuming absorbing material in selected positions on the walls | | Normalized Site Attenuation measured at 5 positions | ±3.9dB, 30MHz to 200MHz
±3dB, 200MHz to 1000MHz | | Transmission Loss
measured at 5 positions, at 1.5m height | ±3dB, 1GHz to 18GHz | Date: 29.10.2019 Rev. 2 #### **Uncertainty of Measurement:** The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements ". Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. | | | Uncertainty | | | |--------------------------|---|--|--|--| | Test Name | Test Method & Range Combined std. Uc(y) | | Expanded U | | | Radiated Emission | 30MHz÷230MHz, Horiz. polar.
30MHz÷230MHz, Ver. polar.
230MHz÷1000MHz, Horiz. polar.
230MHz÷1000MHz, Vert. polar. | [dB]
1.8
1.967
1.487
1.499 | [dB]
3.6
3.934
2.973
2.998 | | | Conducted Emission | 9 kHz÷150 kHz
150 kHz÷30MHz | [dB]
1.378
1.095 | [dB]
2.756
2.190 | | | Radio frequency | Up to 18 GHz | ±1*10 ⁻⁶ | < ±1*10 ⁻⁵ | | | Total Conducted RF Power | Up to 18 GHz | ±1.378 dB | < ±1.5dB | | | Conducted Power density | Up to 18 GHz | ±1.378 dB | < ±3dB | | | Temperature | 23.6 °C | ±0.6°C | < ±2°C | | | Humidity | 54.9% | ±3.1% | < ±5% | | | DC Voltage | 0-60 VDC | ±0.3% | < ±3% | | **Note:** QualiTech EMC labs expanded measurement instrumentation has less uncertainty than the industry norm and compliance is deemed to occur as no measured disturbance exceeds the disturbance limit. **Note:** The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. Date: 29.10.2019 Rev. 2 #### 3. Examination Test Results #### 3.1. Out-of-Band Rejection | Reference document: | KDB 935210 D05 v01r02 | | | |-------------------------|----------------------------------|--------------------------------|-------------------------------------| | Method of testing: | KDB 935210 D05 v01r02, Conducted | | Pass | | Operating conditions: | Under normal test conditions | 1 | | | Environment conditions: | Ambient Temperature: 23.2°c | Relative
Humidity:
57.8% | Atmospheric Pressure:
1011.4 hPa | | Test Result: | See below | See Plot 3.1 | | #### **Test results:** | Modulation | ±250% of Passband*,
MHz | Frequency fo, MHz | -20dB lowest point,
MHz | -20dB highest point,
MHz | |------------|----------------------------|-------------------|----------------------------|-----------------------------| | CW | 844.5886.5 | 862.354 | 861.753 | 869.264 | ^{* 7}MHz passband Plot 3.1: Out-of-Band rejection, CW **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 #### **3.2.** Occupied Bandwidth - Input-versus-output signal comparison | Reference document: | 47 CFR §90.219 (e) (4) (i)/(ii), §2.1049 | | | | |-------------------------|---|-------------------------------------|--|--| | Test Requirements: | The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. The spectral plot of the input signal shall be similar to the output signal. | | | | | Method of testing: | KDB 935210 D05 v01r02, Conducted | | | | | Operating conditions: | Under normal test conditions | | | | | Environment conditions: | Ambient Temperature: 22.3°c | Relative Humidity: 1011.4 hPa 57.8% | | | | Test Result: | See below | See Plots 3.2.1-3.2.4 | | | #### **Test results:** | Mode | Operating | -26 dB Bandwidth, MHz | | | |--|-------------------|----------------------------------|----------------------------------|--| | | Frequency,
MHz | Output | Input | | | | | 0.5 dB below AGC threshold level | 0.5 dB below AGC threshold level | | | MSK, Gaussian filter 0.3 data rate 270kbps | 865.5 | 313.000 kHz | 323.000 kHz | | | AWGN 4.1MHz | 865.5 | 4.679 MHz | 4.673 MHz | | | | | 3 dB above AGC threshold level | 3 dB above AGC threshold level | | | MSK, Gaussian filter 0.3 data rate 270kbps | 865.5 | 311.000 kHz | 323.000 kHz | | | AWGN 4.1MHz | 865.5 | 4.675 MHz | 4.670 MHz | | Note: Only at MSK modulation (GSM) the Composite Output Power transmission is 38 dBm. Date: 29.10.2019 Rev. 2 Plot 3.2.1: Input-versus-output signal comparison, MSK, Gaussian filter 0.3, data rate 270kbps, 0.5 dB below AGC threshold level Output Input Plot 3.2.2: Input-versus-output signal comparison, MSK, Gaussian filter 0.3, data rate 270kbps, 3 dB above AGC threshold level Output Input Date: 29.10.2019 Rev. 2 Plot 3.2.3: Input-versus-output signal comparison, AWGN 4.1MHz, 0.5 dB below AGC threshold level Output Input Plot 3.2.4: Input-versus-output signal comparison, AWGN 4.1MHz, 3 dB above AGC threshold level Output Input Date: 29.10.2019 Rev. 2 #### 3.3. Mean Output Power and Amplifier/Booster Gain | Reference document: | 47 CFR §90.635, 47 CFR §2.1046 | | | | |-------------------------|---|---|--|--| | Test Requirements: | The effective radiated power and antenna height for base stations may not exceed 1 kilowatt (30 dBw) and 304 m. (1,000 ft.) above average terrain (AAT), respectively, or the equivalent thereof as determined from the Table. These are maximum values, and applicants will be required to justify power levels and antenna heights requested; | | | | | Method of testing: | KDB 935210 D05 v01r02, sec 3.5 (power meter method); | Pass | | | | Operating conditions: | Under normal test conditions | | | | | Environment conditions: | Ambient Temperature: 22.3°c | Relative Atmospheric Pressure: Humidity: 1011.4 hPa 59.1% | | | | Test Result: | See below | | | | #### **Test results:** | Mode | Operating | 1 0 | | VG Power | | Mean
Gain ² | Max Ant | ERP | Power
Limit | Delta ⁴ | Pass/Fail | |--|------------------------------------|--------------|-------------|--------------|--------------|---------------------------|---------|----------------------------------|----------------|--------------------|-----------| | | Frequency
(fo) ¹ MHz | Out | tput | t Input | | [dB] | [dBd] | Gain Calculated ³ [W] | | [W/MHz] | | | AWGN
4.1 MHz | 862.354 | 42.86
dBm | 19.320
W | -0.13
dBm | 970.51
μW | 42.86 | 11.85 | 295.801 | 1000 | -704.199 | Pass | | MSK,
Gaussian
filter 0.3
data rate
270kbps | 862.354 | 37.91
dBm | 6.180
W | 0.12
dBm | 1.028
mW | 37.91 | 11.85 | 94.624 | 1000 | -905.376 | Pass | **Note:** The EUT tested at 0.5 dB below AGC threshold level and 3 dB above AGC threshold level, and worst case results were presented. Note: Only at MSK modulation (GSM) the Composite Output Power transmission is 38 dBm. ¹From "Out-of-Band Rejection" test $^{^{2}}$ Mean Gain [dB] = Measured AVG Power (Output) [W] - Measured AVG Power (Input) [W] ³ ERP Calculated [W] = $[10 \land [(Measured AVG Power (Output) [dBm] + Max Ant Gain [dBd]) / 10]] / 1000$ ⁴ Delta [W/MHz] = ERP Calculated [W] - Power Limit [W/MHz] Date: 29.10.2019 Rev. 2 #### 3.4. Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements | Reference document: | 47 CFR §90.219, 47 CFR §2.1051 | | | | | | | |-------------------------|---|--------------------------------|-------------------------------------|--|--|--|--| | Test Requirements: | The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB* | | | | | | | | Method of testing: | KDB 935210 D05 v01r02, Conducted | | | | | | | | Operating conditions: | Under normal test conditions | | | | | | | | S.A. Settings: | RBW: minimum 1% of EBW or 100kHz or 1MHz;
VBW: 3 times RBW | | Pass | | | | | | Environment conditions: | Ambient Temperature: 22.4°c | Relative
Humidity:
57.8% | Atmospheric Pressure:
1011.4 hPa | | | | | | Test Result: | See below | Plot 3.4.1 - Plot 3.4.6 | | | | | | ^{*}It translates to a limit of -13dBm #### **Test results:** | Modulation | Operating Frequency, MHz | | Emission
Frequency, | Emission
Level, dBm | Limit, dBm | Delta, dB | Pass/Fail | | | | |---------------------------------|--------------------------|-----------|------------------------|-------------------------------|---------------------|-----------|-----------|--|--|--| | | Carrier 1 | Carrier 2 | MHz | , | | | | | | | | | 862.200 | NA | 862.000 | -23.581 | -13.00 | -10.581 | Pass | | | | | MSK Gaussian | 862.200 | 862.400 | 862.000 | -26.447 | -13.00 | -13.447 | Pass | | | | | filter 0.3 data
rate 270kbps | 868.800 | NA | 869.000 | -23.340 | -13.00 | -10.340 | Pass | | | | | | 868.600 | 868.800 | 869.000 | -27.249 | -13.00 | -14.249 | Pass | | | | | | 864.500 | NA | 862.000 | -25.075 | -13.00 | -12.075 | Pass | | | | | AWGN | 804.300 | NA | | Two c | arriers operation - | N.A. | | | | | | 4.1MHz | 966 500 | 27.4 | 869.000 | -26.212 | -13.00 | -13.212 | Pass | | | | | | 866.500 | NA | | Two carriers operation - N.A. | | | | | | | **Note:** The EUT tested at 0.5 dB below AGC threshold level and 3 dB above AGC threshold level, and worst case results were presented. Note: Only at MSK modulation (GSM) the Composite Output Power transmission is 38 dBm. Plot 3.4.1: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.2 MHz, single test signal Plot 3.4.2: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.2 + 862.4 MHz, two test signals Plot 3.4.3: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, single test signal Plot 3.4.4: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.600 MHz + 868.800 MHz, two test signals Plot 3.4.5: Band Edge test results, AWGN 4.1MHz, Fc = 864.500 MHz, single test signal Plot 3.4.6: Band Edge test results, AWGN 4.1MHz, Fc = 866.5 MHz, single test signal **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 #### 3.5. **Spurious Emission Conducted Measurement** | Reference document: | 47 CFR §90.219, §2.1051 | | | | | | | | |-------------------------|--|---|------|--|--|--|--|--| | Test Requirements: | Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth. | | | | | | | | | Method of testing: | KDB 935210 D05 v01r02, Conducted | | Pass | | | | | | | Operating conditions: | Under normal test conditions | 1 455 | | | | | | | | S.A. Settings: | RBW: 100kHz, VBW: 3MHz | | | | | | | | | Environment conditions: | Ambient Temperature: 22.4°c | Relative Atmospheric Pressure: Humidity: 1011.4 hPa 56.8% | | | | | | | | Test Result: | See below | See Plot 3.5.1 - Plot 3.5.12 | | | | | | | #### **Test Results:** | Modulation | Operating
Frequency, MHz | Emission
Frequency,
MHz | Emission
Level, dBm | Limit, dBm | Delta, dB | Pass/Fail | | | |------------------------------|-----------------------------|-------------------------------|--|-------------------|-----------|-----------|--|--| | MCV Ci | 862.200 | All em | issions were at leas | at 15dB below the | Limit | Pass | | | | MSK Gaussian filter 0.3 data | 865.500 | All em | All emissions were at least 15dB below the Limit | | | | | | | rate 270kbps | 868.800 | All em | All emissions were at least 15dB below the Limit | | | | | | | | 864.500 | All em | Pass | | | | | | | AWGN
4.1MHz | 865.500 | All em | Pass | | | | | | | | 866.500 | All em | issions were at leas | t 15dB below the | Limit | Pass | | | $\textbf{Note:} \ \ \textbf{Only at MSK modulation (GSM) the Composite Output Power transmission is 38 dBm.}$ Date: 29.10.2019 Rev. 2 Plot 3.5.1: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.200 MHz, 9.0 kHz - 1.3 GHz Plot 3.5.2: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.200 MHz, 1.3 GHz - 10 GHz Date: 29.10.2019 Rev. 2 Plot 3.5.3: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 865.500 MHz, 9.0 kHz – 1.3 GHz Plot 3.5.4: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 865.500 MHz, 1.3 GHz - 10 GHz Date: 29.10.2019 Rev. 2 Plot 3.5.5: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, 9.0 KHz – 1.3 GHz Plot 3.5.6: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, 1.3 GHz - 10 GHz Date: 29.10.2019 Rev. 2 Plot 3.5.7: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 864.500 MHz, 9.0 KHz – 1.3 GHz Plot 3.5.8: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 864.500 MHz, 1.3 GHz - 10 GHz Date: 29.10.2019 Rev. 2 Plot 3.5.9: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 865.500 MHz, 9.0 KHz – 1.3 GHz Plot 3.5.10: Spurious Emission Conducted Measurement, AWGN 4.1MHz, $Fc = 865.500 \; MHz, \, 1.3 \; GHz - 10 \; GHz$ Date: 29.10.2019 Rev. 2 Plot 3.5.11: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 866.500 MHz, 9.0 KHz – 1.3 GHz Plot 3.5.12: Spurious Emission Conducted Measurement, AWGN 4.1MHz, $Fc = 866.500 \; MHz, \, 1.3 \; GHz - 10 \; GHz$ Date: 29.10.2019 Rev. 2 #### 3.6. Spurious Emission, Radiated Measurements | Reference document: | 47 CFR §90.219, §2.1053 (e) (3) | | | | | | | |-------------------------|--|---|--|--|--|--|--| | Test Requirements: | Spurious emissions from a signal booster must not exceed –13 dBm within any 100 kHz measurement bandwidth. | | | | | | | | Method of testing: | KDB 935210 D05 v01r02, Radiated
KDB 971168[R8] | Pass | | | | | | | Operating conditions: | Under normal test conditions | | | | | | | | S.A. Settings: | RBW: 1MHz, VBW: 3MHz | | | | | | | | Environment conditions: | Ambient Temperature: 22.3°c | Relative Humidity: Atmospheric Pressure: 58.8% 1011.4 hPa | | | | | | | Test Result: | See below | See Plot 3.6.1 - 3.6.12 | | | | | | ^{*}It translates to a limit of $-13dBm = 84 dB\mu V/m$ @3m distance **Note 1**: All measurements performed with 3 simultaneous transmissions: <u>Low frequency</u>: 728.2 MHz, 862.2 MHz, 1930.2 MHz <u>Middle frequency</u>: 737.0 MHz, 865.5 MHz, 1962.5 MHz <u>High frequency</u>: 745.8 MHz, 868.8 MHz, 1994.8 MHz Note 2: All measurements done in horizontal and vertical polarizations; the table below shows the worst case. #### **Test Results:** | | | | | Substituti | on Method | | | | | | |-------------------|--|------------------|---|---------------------------|-------------------|------------------------------|----------------|---------------|---------------|-------------| | Frequency,
MHz | Emission
Level,
dBµV/m | evel, Polarizati | Signal
generator
output,
[dBm] | Antenna
Gain,
[dBd] | Cable
Loss, dB | Calculated
ERP*,
[dBm] | Limit
[dBm] | Margin,
dB | Pass/
Fail | Ref Plots | | | Low Frequency | | | | | | | | | | | | | All emis | sions were a | at least 15dI | B below the | Limit | | | Pass | 3.6.1-3.6.4 | | | | | | Mi | ddle Frequen | су | | | | | | | All emissions were at least 15dB below the Limit | | | | | | | Pass | 3.6.5-3.6.8 | | | | High Frequency | | | | | | | | | | | | All emissions were at least 15dB below the Limit | | | | | | | Pass | 3.6.9-3.6.12 | | ^{*}Calculated ERP = Signal Generator Output + Antenna Gain - Cable Loss Plot 3.6.1: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Low Frequency Plot 3.6.2: Spurious Emission test results, 30 MHz – 1 GHz range, Vertical polarization, Low Frequency Plot 3.6.3: Spurious Emission test results, 1 GHz – 18 GHz range, Horizontal polarization, Low Frequency Plot 3.6.4: Spurious Emission test results, 1 GHz – 18 GHz range, Vertical polarization, Low Frequency Plot 3.6.5: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Middle Frequency Plot 3.6.6: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, Middle Frequency Plot 3.6.7: Spurious Emissions test results, 1 GHz – 18 GHz range, Horizontal polarization, Middle Frequency Plot 3.6.8: Spurious Emissions test results, 1 GHz – 18GHz range, Vertical polarization, Middle Frequency Plot 3.6.9: Spurious Emissions test results, 30 MHz – 1GHz range, Horizontal polarization, High Frequency Plot 3.6.10: Spurious Emissions test results, 30 MHz – 1GHz range, Vertical polarization, High Frequency Plot 3.6.11: Spurious Emissions test results, 1 GHz – 18 GHz range, Horizontal polarization, High Frequency Plot 3.6.12: Spurious Emissions test results, 1 GHz – 18 GHz range, Vertical polarization, High Frequency **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 #### Frequency stability **3.7.** | Reference document: | 47 CFR §90.213(a), 47 CFR §2.1055 | | | | | | | |-------------------------|---|--------------------------|----------------------------------|--|--|--|--| | Test Requirements: | Transmitters used in the services governed by this part must have a minimum frequency stability of 1.5 parts per million. | | | | | | | | Method of testing: | KDB 935210 D05 v01r02,
Conducted | | | | | | | | Operating conditions: | Under normal and extremes test conditions | | Pass | | | | | | Environment conditions: | Ambient Temperature: 22.7°c | Relative Humidity: 59.8% | Atmospheric Pressure: 1011.4 hPa | | | | | | Test Result: | See below | - | | | | | | Test results - Fc= 865.500 MHz Frequency error vs. Voltage: AC Model | Voltage
[VAC] | Frequency Error
[Hz] | Frequency Error [%] | Frequency Error
[ppm] | Limit
[ppm] | Test Result | | | | | | |------------------|--|---------------------|--------------------------|----------------|-------------|--|--|--|--|--| | | Carrier frequency at 20°C (120 Vac): Fc = 865.500160 MHz | | | | | | | | | | | 102-138 | No frequency error observed | | | | | | | | | | ## Frequency error vs. Temperature: AC Model | Temperature, °C | Reference
Frequency,
MHz | Measured
Frequency,
MHz | Frequency
Error, Hz | Frequency
Error, ppm | Limit,
ppm | Delta | Pass/Fail | |-----------------|--------------------------------|-------------------------------|------------------------|-------------------------|---------------|-------|-----------| | -30 | 865.500160 | 865.500100 | 60.00 | 0.030573 | 1.50 | -1.47 | Pass | | -20 | 865.500160 | 865.500110 | 50.00 | 0.025478 | 1.50 | -1.47 | Pass | | -10 | 865.500160 | 865.500120 | 40.00 | 0.020382 | 1.50 | -1.48 | Pass | | 0 | 865.500160 | 865.500130 | 30.00 | 0.015287 | 1.50 | -1.48 | Pass | | 10 | 865.500160 | 865.500120 | 40.00 | 0.020382 | 1.50 | -1.48 | Pass | | 20 | | | Reference | temperature | | | | | 30 | 865.500160 | 865.500140 | 20.00 | 0.010191 | 1.50 | -1.49 | Pass | | 40 | 865.500160 | 865.500150 | 10.00 | 0.005096 | 1.50 | -1.49 | Pass | | 50 | 865.500160 | 865.500140 | 20.00 | 0.010191 | 1.50 | -1.49 | Pass | **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 #### Appendix 4. ## Appendix A: List of test equipment used | Description | Manufacturer | Model | Serial No. | Last Cal | Cal Due | |----------------------------------|-----------------------|-----------------------------|------------|------------|------------| | Anechoic new (large) chamber | | | | 21/03/2018 | 21/03/2020 | | Environmental Test Chamber | TENNEY ENGINEERING | TTRS | 10.158-5 | 10/10/2018 | 10/10/2019 | | MXE EMI RECEIVER 3Hz-44GHz | Keysight Technologies | N9038A | MY55420200 | 06/04/2019 | 06/04/2020 | | MXE EMI RECEIVER 3Hz-44GHz | Keysight Technologies | N9038A | MY56400070 | 08/04/2019 | 08/04/2020 | | Power Meter | Agilent | N1911A | MY45100784 | 20/03/2019 | 20/03/2021 | | Wideband Power Sensor | Agilent | N1921A | MY45241242 | 20/03/2019 | 20/03/2021 | | Highpass Filter, 1.2GHz - 15GHz | WAINWRIGHT | WHKX10-1010-1200-15000-40EF | 1 | 04/11/2018 | 04/11/2019 | | Bilog Antenna 30MHz – 1000MHz | Teseq | CBL 6141B | 34119 | 18/03/2019 | 18/03/2022 | | Horn Antenna 1GHz - 18GHz | A.R.A | DRG-118/A | 17188 | 17/09/2018 | 17/09/2019 | | Low Noise Amplifier 1GHz - 18GHz | Spacek Labs | SL1018-56-5 | 17J29 | 31/01/2019 | 31/01/2020 | Date: 29.10.2019 Rev. 2 #### **Appendix B: Accreditation Certificate** # **Accredited Laboratory** A2LA has accredited ## QUALITECH Petah-Tikva, Israel for technical competence in the field of #### Electrical Testing This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017). Presented this 31st day of May 2018. President and CEO For the Accreditation Council Certificate Number 1633,01 Valid to June 30, 2020 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation. **EMC Test Report: COB 250619** Date: 29.10.2019 Rev. 2 End of the Test Report