

Figure 218 - Bluetooth 2-DH5, MIMO, Core 0 - Core 1 - Hopping Band Edge Frequency 2400 MHz

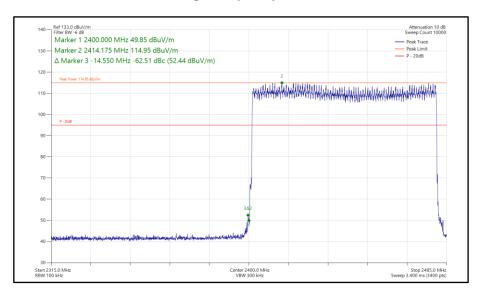


Figure 219 - Bluetooth 3-DH5, MIMO, Core 0 - Core 1 - Hopping Band Edge Frequency 2400 MHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.7.7 Test Location and Test Equipment Used

This test was carried out in RF Chamber 16 and RF Chamber 17.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
Emissions Software	TUV SUD	EmX V3.4.2	5125	-	Software
Test Receiver	Rohde & Schwarz	ESW44	5379	12	12-Dec-2024
1500W (300V 12A) AC Power Supply	iTech	IT7324	5957	-	O/P Mon
3m Semi-Anechoic Chamber, Chamber16	Albatross Projects	RF Chamber 16	5972	36	24-May-2025
Mast & Turntable Controller	Maturo Gmbh	FCU3.0	5973	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	5974	-	TU
Turntable	Maturo Gmbh	TT1.5SI	5975	-	TU
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5997	12	14-Sep-2024
Cable (SMA to SMA 4.5m)	Junkosha	MWX221- 04500AMSAMS/A	6002	12	14-Sep-2024
Cable (N to N 7m)	Junkosha	MWX221- 07000NMSNMS/B	6005	12	20-May-2025
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	6008	12	20-May-2025
Cable (N to N 1m)	Junkosha	MWX221- 01000AMSAMS/B	6009	12	20-May-2025
Cable (SMA to SMA 6.5m)	Junkosha	MWX221- 06500AMSAMS/B	6014	-	24-Aug-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	6018	12	10-Jun-2025
Cable (SMA to SMA 3m)	Junkosha	MWX221- 03000AMSAMS/A	6021	12	14-Sep-2024
Horn Antenna (1-10.5 GHz)	Schwarzbeck	BBHA9120B	6140	12	05-May-2025
Digital Multimeter	Fluke	115	6146	12	06-Jun-2025
Humidity & Temperature meter	R.S Components	1364	6148	12	29-Jul-2025

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
EMI Test Receiver	Rohde & Schwarz	ESW44	6294	12	06-Jan-2025
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	6315	12	04-Feb-2025
Cable (SMA to SMA 3m)	Junkosha	MWX221- 03000AMSAMS/A	6316	12	04-Feb-2025
Cable (SMA to SMA 8m)	Junkosha	MWX221- 08000AMSAMS/B	6319	-	04-Feb-2025
SAC Switch Unit	TUV SUD	TUV_SSU_004 PLC	6349	12	07-May-2025
Horn Antenna (1–10.5 GHz)	Schwarzbeck	BBHA 9120 B	6457	12	05-May-2025
Humidity and Temperature Meter	R.S Components	1364	6486	12	04-Jun-2025
AC Power Supply	iTech	IT7324	6657	-	O/P Mon
3m Semi-Anechoic Chamber	Albatross Projects	RF Chamber 17	6658	36	28-Jan-2026
Mast and Turntable Controller	Maturo Gmbh	FCU3.0	6659	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	6660	-	TU
Turntable	Maturo Gmbh	TT1.5SI	6661	-	TU
1m Cable	Junkosha	MWX241- 01000AMSAMS/B	6740	12	01-Feb-2025
1m Cable	Junkosha	MWX241- 01000AMSAMS/B	6741	12	01-Feb-2025
6.5m Cable	Junkosha	MWX221- 06500AMSAMS/B	6744	12	01-Feb-2025
8m Cable	Junkosha	MWX221- 08000AMSAMS/B	6748	12	01-Feb-2025

Table 120

TU - Traceability Unscheduled O/P Mon - Output Monitored using calibrated equipment

2.8 Spurious Radiated Emissions

2.8.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.209 and 15.247 (d) ISED RSS-247, Clause 3.3 and 5.5 ISED RSS-GEN, Clause 6.13 and 8.9

2.8.2 Equipment Under Test and Modification State

A3143, S/N: C3QWHF6CNX - Modification State 0

2.8.3 Date of Test

05-August-2024 to 21-September-2024

2.8.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.5 and 6.6.

The EUT was placed on the non-conducting platform in a manner typical of a normal installation.

In the 30 MHz to 1 GHz range pre-scans were only performed on the mid channel (2441 MHz) only.

The plots shown are the characterisation of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 20 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

Ports on the EUT were terminated with loads as described in ANSI C63.4 clause 6.2.4. For EUT's with multiple connectors of the same type, additional interconnecting cables were connected, and pre-scans performed to determine whether the level of the emissions were increased by >2 dB.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: $10^{(Field Strength in }dB\mu V/m/20)$.

Above 18 GHz, the measurement distance was reduced to 1 m. The limit line was increased by 20*LOG(3/1) = 9.54 dB.

Where formal measurements have been necessary, the results have been presented in the emissions table.

2.8.5 Example Test Setup Diagram

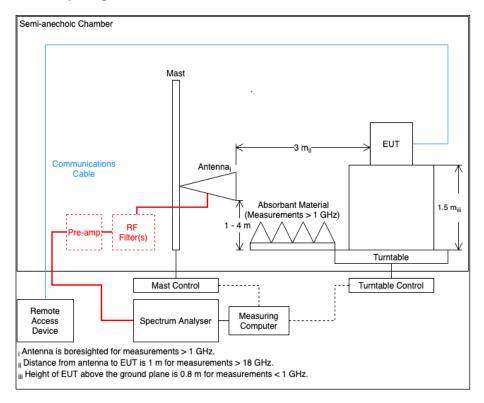


Figure 220

2.8.6 Environmental Conditions

Ambient Temperature 21.8 - 23.1 °C Relative Humidity 45.6 - 58.0 %

2.8.7 Test Results

2.4 GHz Bluetooth BDR/EDR

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 121 - 2402 MHz (CH0), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz

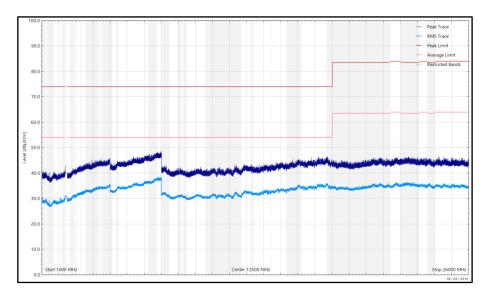


Figure 221 - 2402 MHz (CH0), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

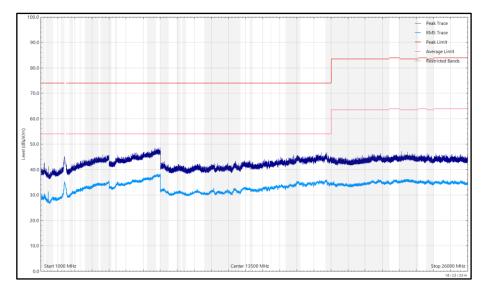


Figure 222 - 2402 MHz (CH0), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 122 - 2441 MHz (CH39), 2-DH5, ePA, Core 0 + Core 1, 30 MHz to 26 GHz

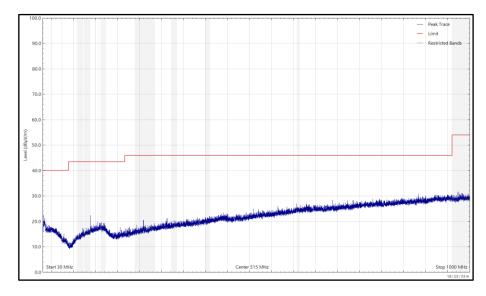


Figure 223 - 2441 MHz (CH39), 2-DH5, ePA, Core 0 + Core 1, 30 MHz to 1 GHz, Horizontal (Peak)

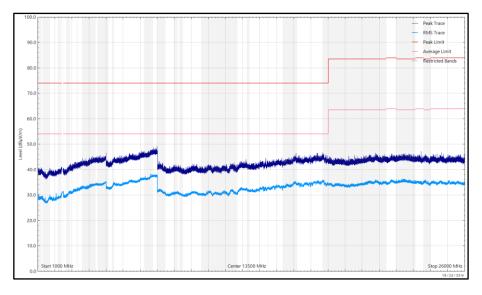


Figure 224 - 2441 MHz (CH39), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

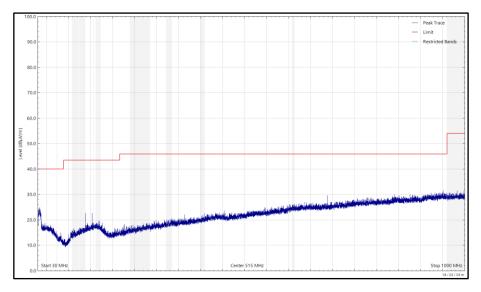


Figure 225 - 2441 MHz (CH39), 2-DH5, ePA, Core 0 + Core 1, 30 MHz to 1 GHz, Vertical (Peak)

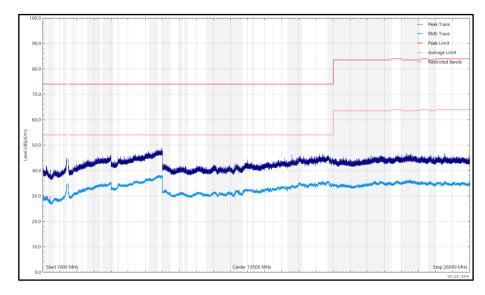


Figure 226 - 2441 MHz (CH39), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 123 - 2480 MHz (CH78), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz

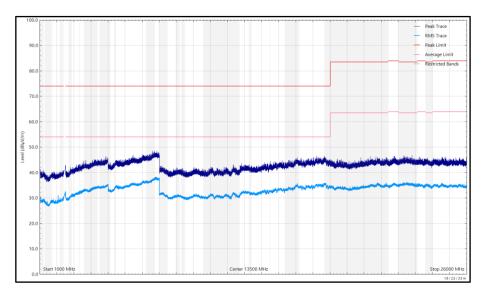


Figure 227 - 2480 MHz (CH78), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

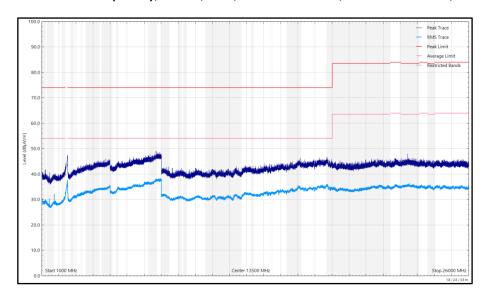


Figure 228 - 2480 MHz (CH78), 2-DH5, ePA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 124 - 2402 MHz (CH0), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz

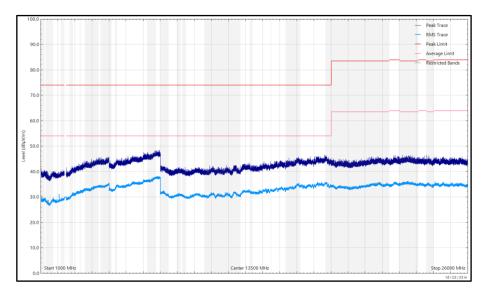


Figure 229 - 2402 MHz (CH0), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

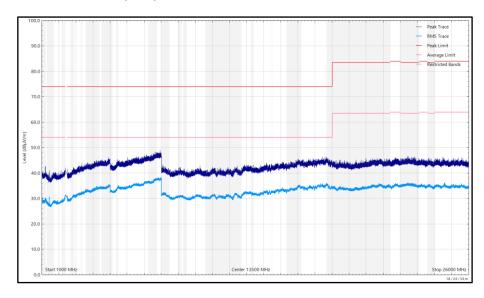


Figure 230 - 2402 MHz (CH0), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 125 - 2441 MHz (CH39), DH5, iPA, Core 0 + Core 1, 30 MHz to 26 GHz

Figure 231 - 2441 MHz (CH39), DH5, iPA, Core 0 + Core 1, 30 MHz to 1 GHz, Horizontal (Peak)

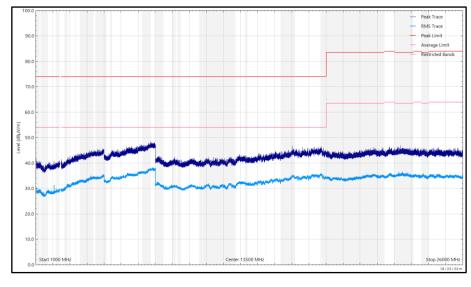


Figure 232 - 2441 MHz (CH39), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

Figure 233 - 2441 MHz (CH39), DH5, iPA, Core 0 + Core 1, 30 MHz to 1 GHz, Vertical (Peak)

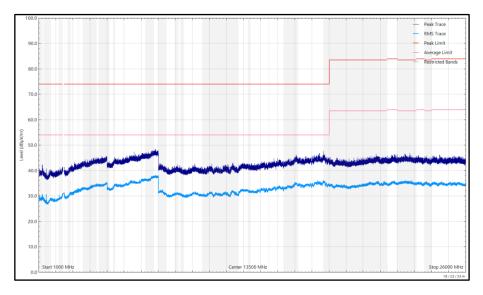


Figure 234 - 2441 MHz (CH39), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 126 - 2480 MHz (CH78), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz

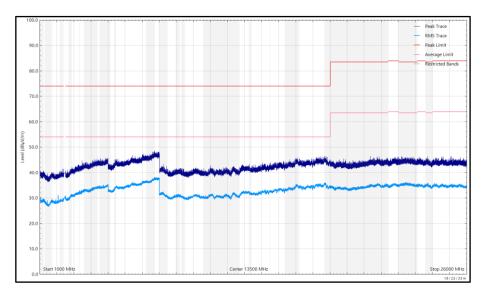


Figure 235 - 2480 MHz (CH78), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Horizontal

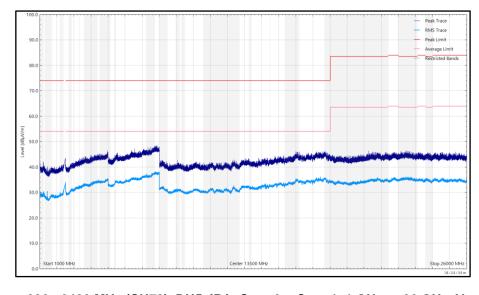


Figure 236 - 2480 MHz (CH78), DH5, iPA, Core 0 + Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 127 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz

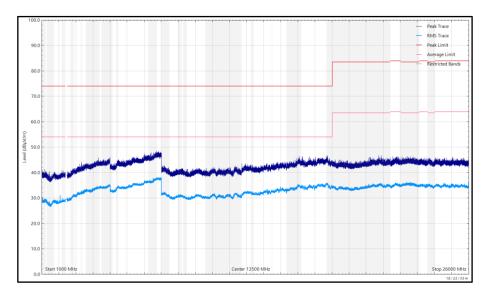


Figure 237 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

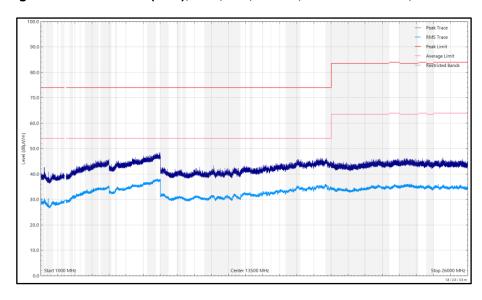


Figure 238 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 128 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 26 GHz

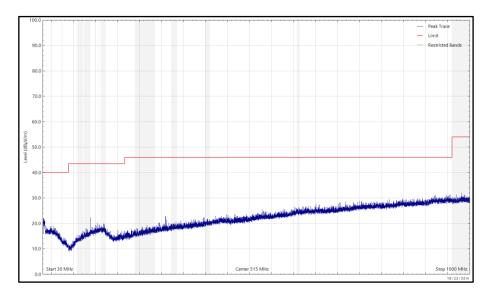


Figure 239 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 1 GHz, Horizontal (Peak)

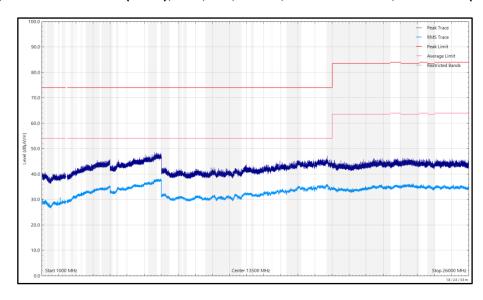


Figure 240 - 2441 MHz (CH39), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

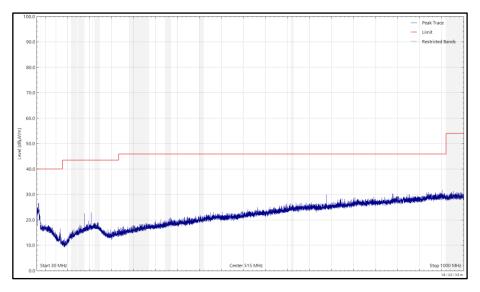


Figure 241 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 1 GHz, Vertical (Peak)

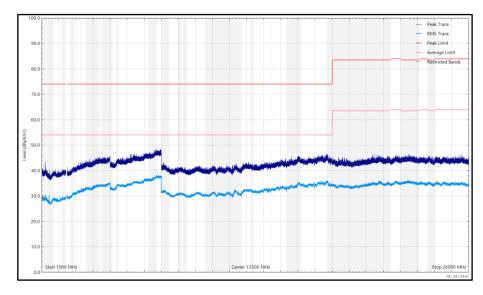


Figure 242 - 2441 MHz (CH39), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 129 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz

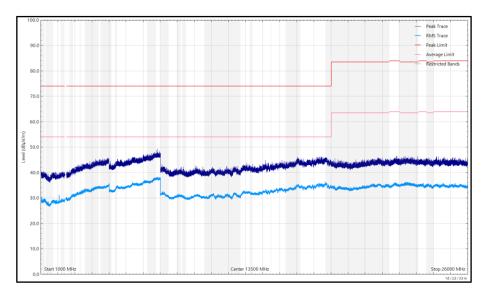


Figure 243 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

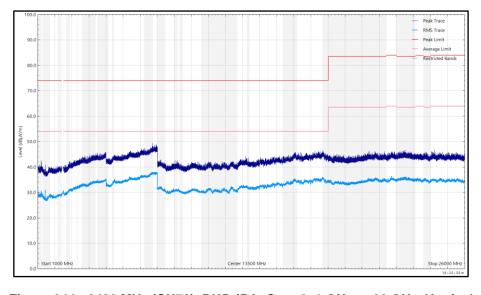


Figure 244 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in RSS-GEN, clause 8.10, must also comply with the radiated emission limits specified in RSS-GEN clause 8.9.

2.8.8 Test Location and Test Equipment Used

This test was carried out in RF Chamber 16, RF Chamber 17 and RF Chamber 18.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
Emissions Software	TUV SUD	EmX V3.4.2	5125	-	Software
Test Receiver	Rohde & Schwarz	ESW44	5379	12	12-Dec-2024
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5939	12	05-May-2025
1500W (300V 12A) AC Power Supply	iTech	IT7324	5957	-	O/P Mon
3m Semi-Anechoic Chamber, Chamber16	Albatross Projects	RF Chamber 16	5972	36	24-May-2025
Mast & Turntable Controller	Maturo Gmbh	FCU3.0	5973	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	5974	-	TU
Turntable	Maturo Gmbh	TT1.5SI	5975	-	TU
Cable (N to N 7m)	Junkosha	MWX221- 07000NMSNMS/B	6005	12	20-May-2025
Cable (N to N 1m)	Junkosha	MWX221- 01000AMSAMS/B	6009	12	20-May-2025
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	6018	12	10-Jun-2025
Horn Antenna (1-10.5 GHz)	Schwarzbeck	BBHA9120B	6140	12	05-May-2025

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
Horn Antenna (1-10 GHz)	Schwarzbeck	BBHA9120B	6142	12	05-May-2025
SAC Switch Unit	TUV SUD	TUV_SSU_001	6144	12	11-Dec-2024
Digital Multimeter	Fluke	115	6146	12	06-Jun-2025
Humidity & Temperature meter	R.S Components	1364	6148	12	29-Jul-2025
EMI Test Receiver	Rohde & Schwarz	ESW44	6294	12	06-Jan-2025
Cable (SMA to SMA 8m)	Junkosha	MWX221- 08000AMSAMS/B	6318	12	18-Feb-2025
Cable (SMA to SMA 8m)	Junkosha	MWX221- 08000AMSAMS/B	6319	-	04-Feb-2025
Cable (K Type 2m)	Junkosha	MWX241- 02000KMSKMS/B	6324	12	04-Feb-2025
SAC Switch Unit	TUV SUD	TUV_SSU_004 PLC	6349	12	07-May-2025
8 GHz High Pass Filter	Wainwright	WHKX 7150 8000 18000 50SS	6427	12	23-Apr-2025
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	6456	24	10-Feb-2025
Horn Antenna (1-10.5 GHz)	Schwarzbeck	BBHA 9120 B	6457	12	05-May-2025
3m Semi-Anechoic Chamber	Albatross Projects	Chamber 18	6597	36	07-Feb-2026
Coax cable sma to sma with N-Type adapter	TUV SUD	N/A	6637	12	23-Apr-2025
AC Power Supply	iTech	IT7324	6657	-	O/P Mon
3m Semi-Anechoic Chamber	Albatross Projects	RF Chamber 17	6658	36	28-Jan-2026
Mast and Turntable Controller	Maturo Gmbh	FCU3.0	6659	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	6660	-	TU
Turntable	Maturo Gmbh	TT1.5SI	6661	-	TU
Double Ridge Active Horn Antenna (18-40 GHz	Com-Power	AHA-840	6771	24	17-Jan-2025
Pre Amp 8 - 18 GHz	Wright Technologies	APS06-0061	6783	12	23-Apr-2025
Mast & Turntable Controller	Maturo Gmbh	FCU3.0	6795	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	6796	-	TU
Turntable	Maturo Gmbh	TT1.5SI	6797	-	TU
AC Programmable Power Supply	iTech	IT7324	6812	-	O/P Mon

Table 130

TU - Traceability Unscheduled O/P Mon - Output Monitored using calibrated equipment

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty		
Restricted Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB		
Frequency Hopping Systems - Average Time of Occupancy	-		
Frequency Hopping Systems - Channel Separation	± 40.30 kHz		
Frequency Hopping Systems - Number of Hopping Channels	-		
Frequency Hopping Systems - 99% & 20 dB Bandwidth	± 45.99 kHz		
Maximum Conducted Output Power	± 1.38 dB		
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB		
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB		

Table 131

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.