Testing the Future LABORATORIES, INC.

Nalloy, LLC

REVISED TEST REPORT TO 104760-44A

YRPOR7

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 104760-44B

Date of issue: March 22, 2022

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 46 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	8
15.247(a)(1) 20 dB Bandwidth	8
15.247(a)(1) Carrier Separation	11
15.247(a)(1)(i) Number of Hopping Channels	12
15.247(a)(1)(i) Time of Occupancy	13
15.247(b)(2) Output Power	16
15.247(d) Radiated Emissions & Band Edge	24
15.207 AC Conducted Emissions	38
Supplemental Information	45
Measurement Uncertainty	45
Emissions Tost Datails	45

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 104760

Customer Reference Number: 2D-04568090

DATE OF EQUIPMENT RECEIPT: May 14, 2021 **DATE(S) OF TESTING:** May 14 and 21, 2021

Revision History

Original: Testing of the YRPOR7 to FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (FHSS 902-928MHz).

Revision A: To replace the test setup photos to clarify the EUT from peripheral equipment.

Revision A: To replace Conducted Emissions data.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve J Bel

Page 3 of 46 Report No.: 104760-44B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version	
EMITest Emissions	5.03.19	

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 46 Report No.: 104760-44B

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	Pass
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NA1
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NA1 = Not applicable because the EUT does not have a conducted port.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summar	y of	Condi	itions

None

Page 5 of 46 Report No.: 104760-44B

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

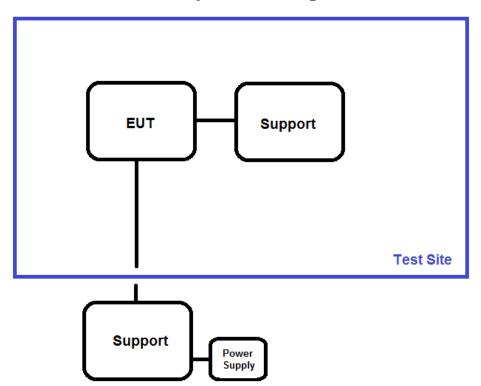
Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC.	YRPOR7	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Lenovo	T430	PBPXKGW
Laptop PSU	Lenovo	92P1156	11S92P1156Z1ZDXN0AVB44
Power Supply	ZKTeco Co LTD	ZK-MSS-PS	Power Supply

General Product Information:


Product Information	Manufacturer-Provided Details
Equipment Type:	Radio Module
Type of Wideband System:	FHSS
Operating Frequency Range:	902.4-927.6 MHz
Number of Hopping Channels:	64
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	GFSK-2
Maximum Duty Cycle:	Tested at 100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	PCB Antenna / -2 dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	5-30 VDC
Firmware / Software used for Test:	Railtest_v2.2.0 Realterm 2.0.0.70

Page 6 of 46 Report No.: 104760-44B

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 7 of 46 Report No.: 104760-44B

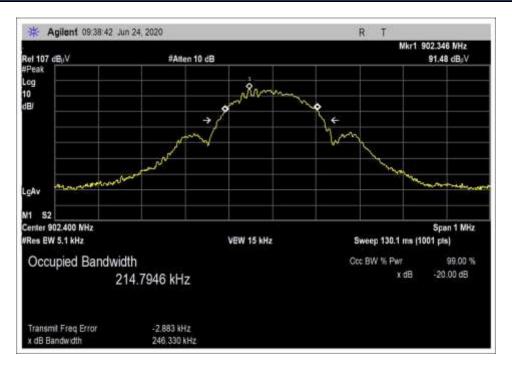
FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

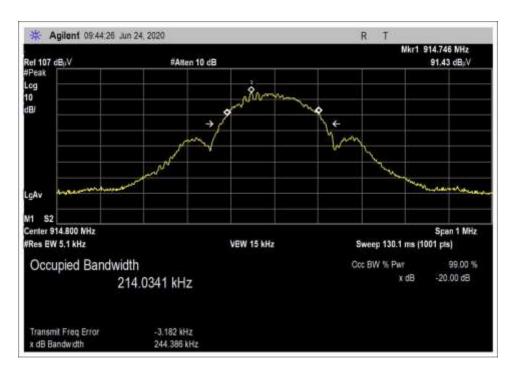
Test Setup/Conditions					
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison		
Test Method:	ANSI C63.10 (2013) Test Date(s): 5/21/2021				
Configuration:	Configuration: 1				
Test Setup: Test Mode: Continuously Modulated					
The spectrum analyzer is connected to a near field probe located near EUT antenna.					

Environmental Conditions				
Temperature (°C) 23 Relative Humidity (%): 40				

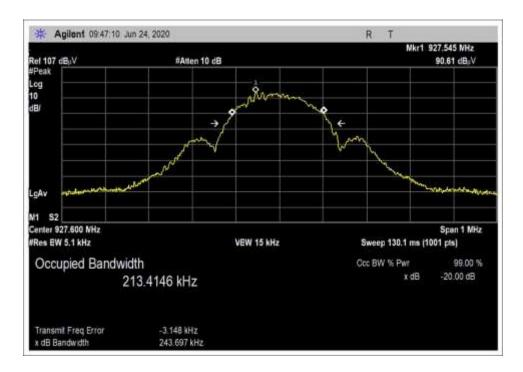
Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
2871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022	


15.247(a)(1) 20 dB Bandwidth

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Limit (kHz)	Results	
902.4	1	GFSK-2	246.3	≤500	Pass
914.8	1	GFSK-2	244.4	≤500	Pass
927.6	1	GFSK-2	243.7	≤500	Pass


Page 8 of 46 Report No.: 104760-44B

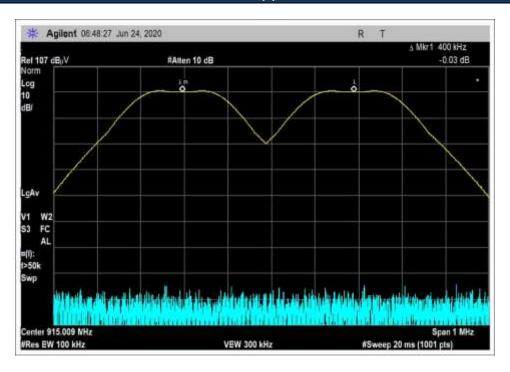
Plot(s)



Low Channel

Middle Channel

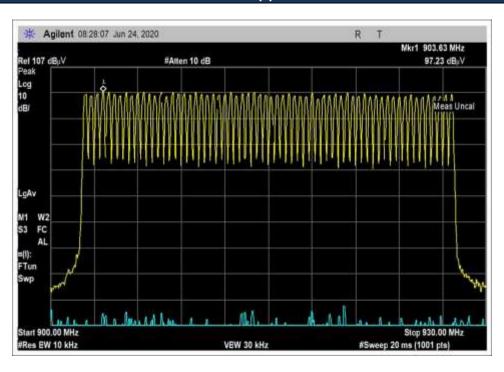
High Channel


Page 10 of 46 Report No.: 104760-44B

15.247(a)(1) Carrier Separation

Test Data Summary							
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.						
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results			
1	Transmitting	400	≥ 246.3	Pass			

Plot(s)


Page 11 of 46 Report No.: 104760-44B

15.247(a)(1)(i) Number of Hopping Channels

	Test Data Summary							
$Limit = \begin{cases} 50 & 0 \\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \text{ Channels } 20 \text{ dB BW} < 250 \text{kHz} \\ 25 \text{ Channels } 20 \text{ dB BW} \ge 250 \text{kHz} \end{cases}$							
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results				
1	Transmitting	64	≥ 50	Pass				

Plot(s)

Page 12 of 46 Report No.: 104760-44B

15.247(a)(1)(i) Time of Occupancy

Test Data Summary

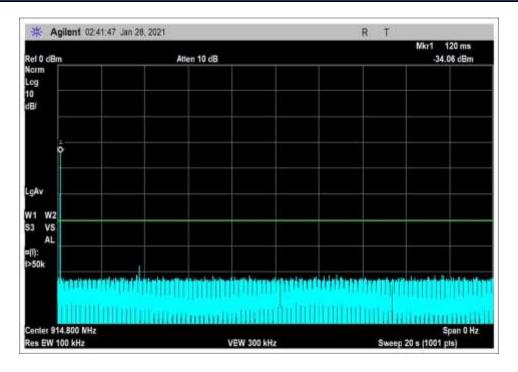
Observation Period, Pobs is derived from the following:

$$P_{Obs} = \begin{cases} 20 \ Seconds \ | 20 \ dB \ BW < 250 kHz \\ 10 \ Seconds \ | 20 \ dB \ BW \ge 250 kHz \end{cases}$$

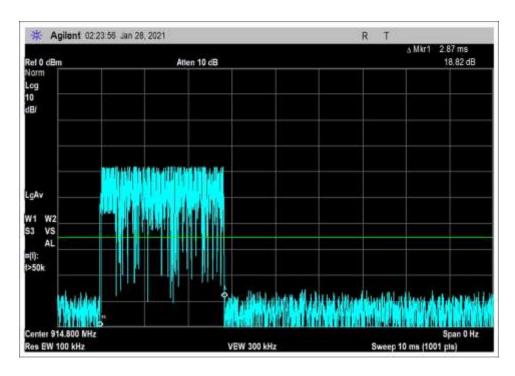
Antenna Port	Operational Mode	Measured (ms)	Limit (ms/P _{obs})	Results
1	Hopping	2.87	≤400	Pass

Measured results are calculated as follows:

$$\textit{Dwell time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs}}$$


Actual Calculated Values:

Parameter	Value
Observation Period (Pobs):	20s
Number of RF Bursts / Pobs::	1
On time of RF Burst:	2.87ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	2.87


Page 13 of 46 Report No.: 104760-44B

Plot(s)

TOO 20 Seconds

TOO Pulse

Test Setup Photo(s)

Page 15 of 46 Report No.: 104760-44B

15.247(b)(2) Output Power

Test Setup/Conditions								
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison					
Test Method:	ANSI C63.10 (2013) Test Date(s): 5/14/2021							
Configuration:	1							
Test Setup:	Test Mode: Continuously Modulated							
	The EUT is set 1.5 meters high on a Styrofoam table. X, Y and Z axis are investigated with the worst case reported.							
	In order not to mask emissions from the EUT, the power supply was placed at distance of 30cm from the EUT.							
The peripheral equipment was placed away from each other in order to simulate installation.								

Environmental Conditions						
Temperature (°C)	20	Relative Humidity (%):	33			

Test Equipment								
Asset#	Description	Model	Cal Date	Cal Due				
2871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022			
1995	Biconilog Antenna	Chase	CBL6111C	4/14/2020	4/14/2022			
02307	Preamp	HP	8447D	1/10/2020	1/10/2022			
P05275	Attenuator	Weinschel	1W	3/26/2020	3/26/2022			
D06122	Power Supply	Lambda	GEN 125-80	1/18/2021	1/18/2023			

Test Data Summary - Voltage Variations							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
902.4	GFSK-2 / 1	16.3	16.5	16.4	0.2		
914.8	GFSK-2 / 1	17.3	17.4	17.3	0.1		
927.6	GFSK-2 / 1	15.9	16.1	16	0.2		

Test performed using operational mode with the highest output power, representing worst case.

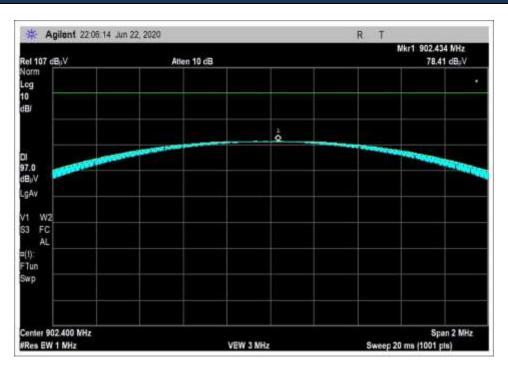
Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	5-30 VDC
V _{Minimum} :	4. 5 VDC (EUT Shut off below 4.5VDC)
V _{Maximum} :	34.5 VDC

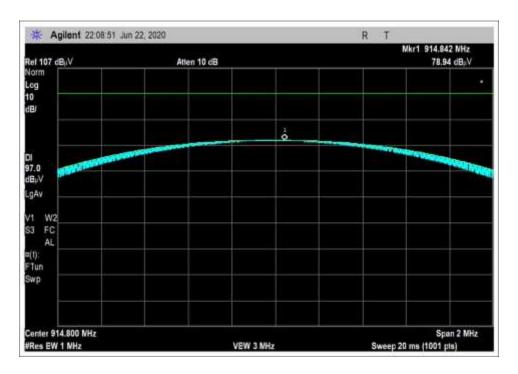
Page 16 of 46 Report No.: 104760-44B

Test Data Summary - Radiated Measurement									
$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min \ 25) \end{cases}$									
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm)	Limit (dBm)	Results			
902.4	GFSK-2	PCB Antenna / -2 dBi	111.7	18.5	≤ 30	Pass			
914.8	GFSK-2	PCB Antenna / -2 dBi	112.6	19.4	≤ 30	Pass			
927.6	GFSK-2	PCB Antenna / -2 dBi	111.3	18.2	≤ 30	Pass			

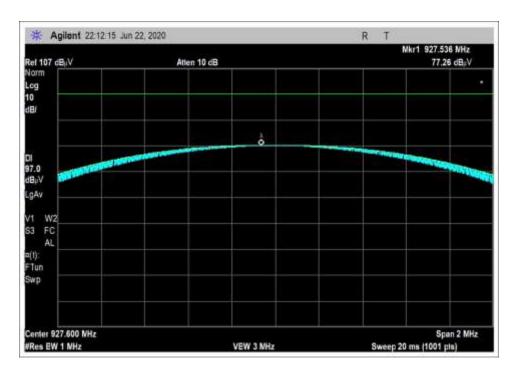

Conducted RF output power calculated in accordance with ANSI C63.10.

$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$

Or equivalently, in logarithmic form:


$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: **15.247(b) Power Output (902-928 MHz FHSS >50 Channels)**Work Order #: **104760** Date: 5/14/2021

Test Type: Maximized Emissions Time: 12:46:41
Tested By: M. Harrison Sequence#: 7

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10: 2013

Frequency range: 902.4-927.6 MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

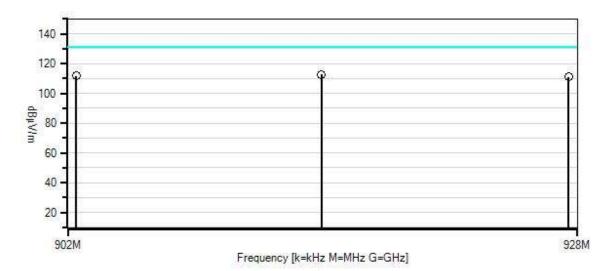
Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

Test Mode: Continuously Modulated

The EUT is set 1.5 meters high on a Styrofoam table. X, Y and Z axis are investigated with the worst case reported.


In order not to mask emissions from the EUT, the power supply was placed at distance of 30cm from the EUT.

The peripheral equipment was placed away from each other in order to simulate typical installation.

Page 19 of 46 Report No.: 104760-44B

Nalloy, LLC WO#: 104760 Sequence#: 7 Date: 5/14/2021 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Distance: 3 Meters Vert

---- Readings

O Peak Readings

× QP Readings

* Average Readings

Ambient

Software Version: 5.03.19

1 - 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T1	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T2	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T4	AN01995	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T5	ANP05275	Attenuator	1W	3/26/2020	3/26/2022

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	Ant
1	914.842M	78.9	+1.5	+2.1	+0.4	+23.6	+0.0	112.6	131.2	-18.6	Vert
			+6.1								
2	902.434M	78.4	+1.4	+2.1	+0.3	+23.4	+0.0	111.7	131.2	-19.5	Vert
			+6.1								
3	927.536M	77.3	+1.5	+2.2	+0.4	+23.8	+0.0	111.3	131.2	-19.9	Vert
			+6.1								

Page 20 of 46 Report No.: 104760-44B

Test Setup Photo(s)



Below 1GHz

Below 1GHz

X Axis

Y Axis

Z Axis

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 5/14/2021
Test Type: Maximized Emissions Time: 10:02:00
Tested By: M. Harrison Sequence#: 3

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10: 2013

Frequency range: 9k-10GHz (Highest Frequency Generated = 927.6MHz)

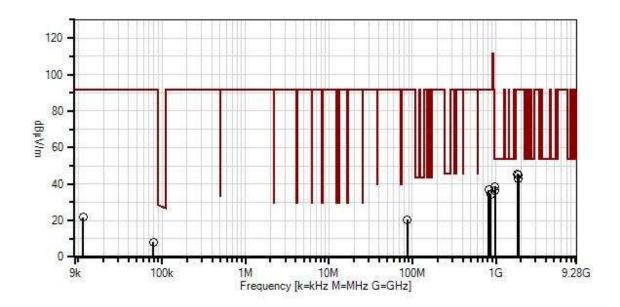
Setup:

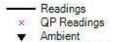
AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm


In order not to mask emissions from the EUT, the power supply was placed at distance of 30cm from the EUT.


The peripheral equipment was placed away from each other in order to simulate typical installation.

Page 24 of 46 Report No.: 104760-44B

Nalloy, LLC WO#: 104760 Sequence#: 3 Date: 5/14/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perp/Para

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5.03.19

Test Equipment:

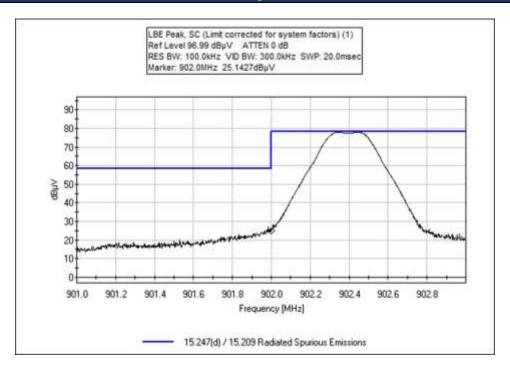
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T2	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T3	AN01467	Horn Antenna-ANSI	3115	7/5/2019	7/5/2021
		C63.5 Calibration			
T4	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	ANP07505	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T7	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
T8	AN02307	Preamp	8447D	1/10/2020	1/10/2022
Т9	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T10	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T11	AN01995	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T12	ANP05275	Attenuator	1W	3/26/2020	3/26/2022
T13	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

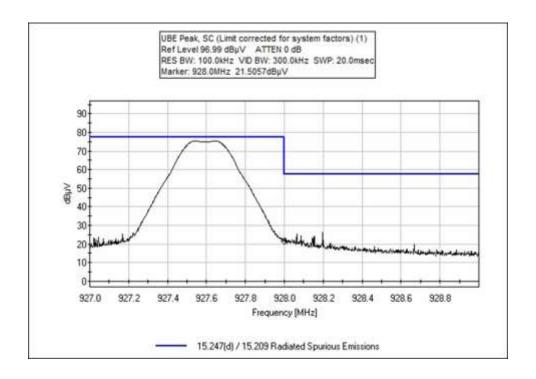
Page 25 of 46 Report No.: 104760-44B

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB		$dB\mu V/m$	•	dB	Ant
1	978.700M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	54.0	-15.4	Vert/
			+0.4	+0.0	+0.0	-27.1					
			+1.5	+2.3	+24.6	+6.1					
			+0.0								
2	979.600M	28.8	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Vert/
			+0.4	+0.0	+0.0	-27.1					
			+1.5	+2.3	+24.6	+6.1					
			+0.0								
3	1805.046M	50.8	+0.0	-34.8	+26.1	+2.3	+0.0	45.7	91.7	-46.0	Vert/
			+0.5	+0.3	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	1055 17014	40.5	+0.0	247	.065	. 2. 4	. 0. 0	44.0	01.7	46.0	X 7 . /
4	1855.170M	49.5	+0.0	-34.7	+26.5	+2.4	+0.0	44.9	91.7	-46.8	Vert/
			+0.5	+0.3	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	1020 47514	47.5	+0.0	24.0	.262	. 2. 4	. 0. 0	10.6	01.7	40.1	X I
5	1829.475M	47.5	+0.0	-34.8	+26.3	+2.4	+0.0	42.6	91.7	-49.1	Vert/
			+0.5	+0.3	+0.4	+0.0					
			$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
6	825.400M	31.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	91.7	-55.0	Vert/
0	623.400W	31.9	+0.0	+0.0	+0.0	-27.6	+0.0	30.7	71.7	-33.0	V CI U
			+0.3	+1.9	+22.7	+6.1					
			+0.0	11.7	122.1	10.1					
7	864.200M	28.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.3	91.7	-57.4	Vert/
,	004.20011	20.7	+0.3	+0.0	+0.0	-27.5	10.0	34.3	71.7	37.4	VCIU
			+1.4	+2.0	+23.1	+6.1					
			+0.0		. 2011						
8	11.397k	46.8	+0.0	+0.0	+0.0	+0.0	-40.0	21.9	91.7	-69.8	Perp/
			+0.0	+0.0	+0.0	+0.0			,,		
			+0.0	+0.0	+0.0	+0.0					
			+15.1								
9	86.300M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	20.4	91.7	-71.3	Vert/
			+0.1	+0.0	+0.0	-27.8					
			+0.4	+0.5	+8.2	+6.0					
			+0.0								
10	79.218k	38.5	+0.0	+0.0	+0.0	+0.0	-40.0	8.1	91.7	-83.6	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+9.6								
11	18.209M	11.5	+0.0	+0.0	+0.0	+0.2	-20.0	-0.2	91.7	-91.9	Perp/
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+8.0								

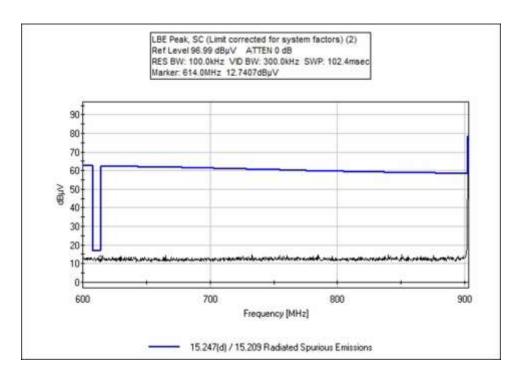
Page 26 of 46 Report No.: 104760-44B

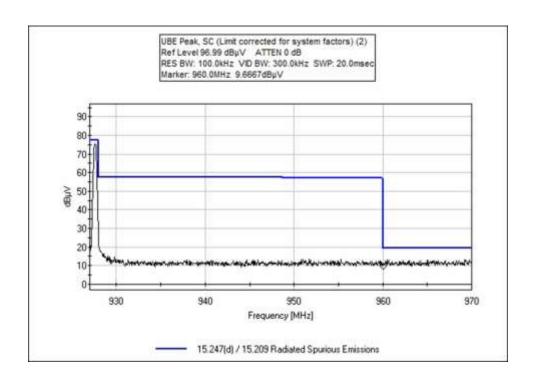
Band Edge

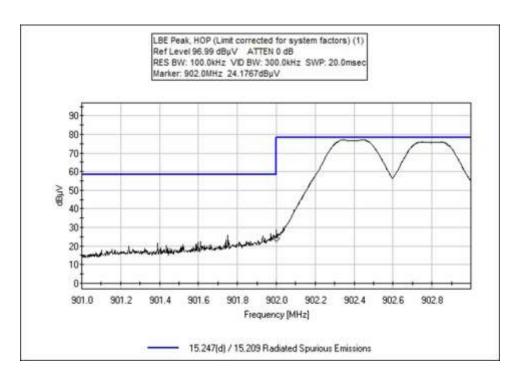

	Band Edge Summary									
Operating Mo	Operating Mode: Single Channel (Low and High)									
Frequency (MHz) Modulation Ant. Type			Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
614	GFSK-2	PCB Antenna	42	< 46	Pass					
902	GFSK-2	PCB Antenna	58.4	< 91.7	Pass					
928	GFSK-2	PCB Antenna	55.5	< 91.7	Pass					
960	GFSK-2	PCB Antenna	44.2	<54	Pass					

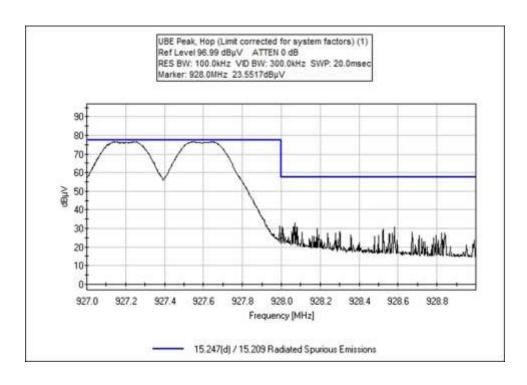

		Band Ed	lge Summary						
Operating Mo	Operating Mode: Hopping								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	GFSK-2	PCB Antenna	41.8	<46	Pass				
902	GFSK-2	PCB Antenna	57.5	< 91.7	Pass				
928	GFSK-2	PCB Antenna	57.6	< 91.7	Pass				
960	GFSK-2	PCB Antenna	47.8	<54	Pass				

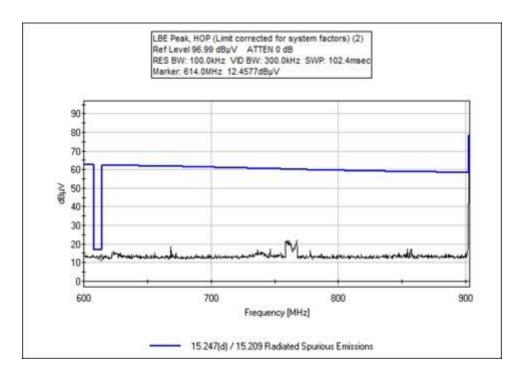
Page 27 of 46 Report No.: 104760-44B

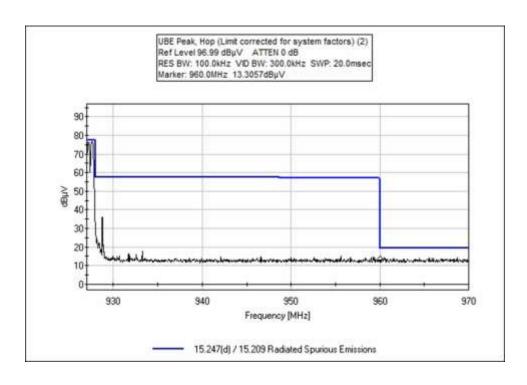

Band Edge Plots




Page 28 of 46 Report No.: 104760-44B







Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 5/14/2021
Test Type: Maximized Emissions Time: 08:40:47
Tested By: M. Harrison Sequence#: 6

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10: 2013

Frequency range: 600-970MHz (Highest Frequency Generated = 927.6MHz)

Setup

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

In order not to mask emissions from the EUT, the power supply was placed at distance of 30cm from the EUT.

The peripheral equipment was placed away from each other in order to simulate typical installation.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T2	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T3	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T4	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T5	AN01995	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
T6	ANP05275	Attenuator	1W	3/26/2020	3/26/2022

Page 32 of 46 Report No.: 104760-44B

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5	T6					_	_	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	902.345M	78.4	+0.0	+1.4	+2.1	+0.3	+0.0	111.7	111.7	+0.0	Vert
			+23.4	+6.1					SC		
2	614.000M	12.7	+0.0	+1.2	+1.7	+0.3	+0.0	42.0	46.0	-4.0	Vert
			+20.0	+6.1					SC		
3	614.000M	12.5	+0.0	+1.2	+1.7	+0.3	+0.0	41.8	46.0	-4.2	Vert
			+20.0	+6.1					Hop		
4	960.000M	13.3	+0.0	+1.5	+2.2	+0.4	+0.0	47.8	54.0	-6.2	Vert
			+24.3	+6.1					Hop		
5	960.000M	9.7	+0.0	+1.5	+2.2	+0.4	+0.0	44.2	54.0	-9.8	Vert
			+24.3	+6.1					SC		
6	902.000M	25.1	+0.0	+1.4	+2.1	+0.3	+0.0	58.4	91.7	-33.3	Vert
			+23.4	+6.1					SC		
7	928.000M	23.6	+0.0	+1.5	+2.2	+0.4	+0.0	57.6	91.7	-34.1	Vert
			+23.8	+6.1					Hop		
8	902.000M	24.2	+0.0	+1.4	+2.1	+0.3	+0.0	57.5	91.7	-34.2	Vert
			+23.4	+6.1					Hop		
9	928.000M	21.5	+0.0	+1.5	+2.2	+0.4	+0.0	55.5	91.7	-36.2	Vert
			+23.8	+6.1					SC		

Page 33 of 46 Report No.: 104760-44B

Test Setup Photo(s)

Below 1GHz

Below 1GHz

Above 1GHz

Above 1GHz

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

 Work Order #:
 104760
 Date: 5/14/2021

 Test Type:
 Conducted Emissions
 Time: 13:58:29

Tested By: M. Harrison Sequence#: 8

Software: EMITest 5.03.19 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

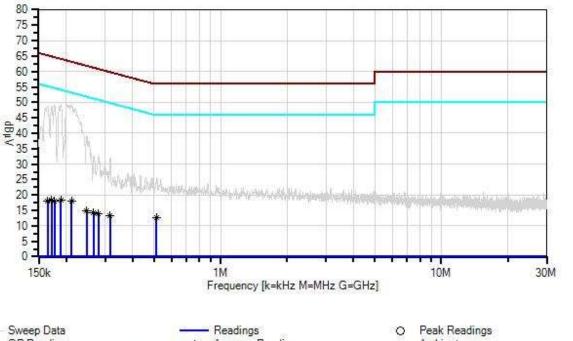
Test Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

Page 38 of 46 Report No.: 104760-44B

Nalloy, LLC WO#: 104760 Sequence#: 8 Date: 5/14/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Sweep Data
 QP Readings
 Software Version: 5.03.20

Readings
 Average Readings
 1 - 15.207 AC Mains - Average

O Peak Readings

Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T4	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 39 of 46 Report No.: 104760-44B

Measure	ment Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	512.876k	2.8	+9.1	+0.0	+0.0	-0.4	+0.0	12.5	46.0	-33.5	Line
	ve		+0.2								
^	512.875k	16.8	+9.1	+0.0	+0.0	-0.4	+0.0	26.5	46.0	-19.5	Line
	011.0051	7.4	+0.2	0.0	0.0	1.1	0.0	17.0	50.0	25.2	T .
3	211.085k	7.4	+9.1	+0.0	+0.0	-1.1	+0.0	17.9	53.2	-35.3	Line
A	ve 211.085k	41.1	+0.3	+0.0	+0.0	-1.1	+0.0	51.6	53.2	-1.6	Line
	211.063K	41.1	+9.1	+0.0	+0.0	-1.1	+0.0	31.0	33.2	-1.0	Line
5	189.269k	7.6	+9.1	+0.0	+0.0	-1.3	+0.0	18.3	54.1	-35.8	Line
	ve	7.0	+0.3	10.0	10.0	1.5	10.0	10.5	54.1	33.0	Line
٨	189.269k	41.1	+9.1	+0.0	+0.0	-1.3	+0.0	51.8	54.1	-2.3	Line
			+0.3								
7	316.530k	3.4	+9.1	+0.0	+0.0	-0.7	+0.0	13.3	49.8	-36.5	Line
A	ve		+0.1								
٨	316.530k	23.5	+9.1	+0.0	+0.0	-0.7	+0.0	33.4	49.8	-16.4	Line
			+0.1								
9	176.907k	7.0	+9.1	+0.0	+0.0	-1.4	+0.0	17.9	54.6	-36.7	Line
	ve		+0.4								
^	176.906k	41.0	+9.1	+0.0	+0.0	-1.4	+0.0	51.9	54.6	-2.7	Line
	.=		+0.4								
11	171.816k	7.2	+9.1	+0.0	+0.0	-1.5	+0.0	18.2	54.9	-36.7	Line
A	ve	40.0	+0.4	. 0. 0	. 0. 0	1.5	. 0. 0	71.0	740	2.1	т.
^	171.816k	40.8	+9.1 +0.4	+0.0	+0.0	-1.5	+0.0	51.8	54.9	-3.1	Line
13	279.443k	3.9	+9.1	+0.0	+0.0	-0.8	+0.0	13.9	50.8	-36.9	Line
	279.443K .ve	3.9	+0.1	+0.0	+0.0	-0.8	+0.0	13.9	30.6	-30.7	Line
۸	279.442k	24.3	+9.1	+0.0	+0.0	-0.8	+0.0	34.3	50.8	-16.5	Line
	217.112K	21.3	+0.1	10.0	10.0	0.0	10.0	51.5	30.0	10.5	Line
15	266.353k	4.2	+9.1	+0.0	+0.0	-0.8	+0.0	14.3	51.2	-36.9	Line
	ve		+0.2								
^	266.352k	24.3	+9.1	+0.0	+0.0	-0.8	+0.0	34.4	51.2	-16.8	Line
			+0.2								
17	164.544k	6.9	+9.1	+0.0	+0.0	-1.6	+0.0	18.1	55.2	-37.1	Line
A	ve		+0.5								
^	164.544k	40.8	+9.1	+0.0	+0.0	-1.6	+0.0	52.0	55.2	-3.2	Line
- 10	0.45.4.5		+0.5							a= :	<u>.</u> .
19	247.446k	4.5	+9.1	+0.0	+0.0	-0.9	+0.0	14.7	51.8	-37.1	Line
	ve 247 4451	20.0	+0.2	.0.0	.0.0	0.0	.0.0	41.1	51.0	10.7	T *
^	247.445k	30.9	+9.1	+0.0	+0.0	-0.9	+0.0	41.1	51.8	-10.7	Line
			+0.2								

Page 40 of 46 Report No.: 104760-44B

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

 Work Order #:
 104760
 Date: 5/14/2021

 Test Type:
 Conducted Emissions
 Time: 14:10:26

Tested By: M. Harrison Sequence#: 9

Software: EMITest 5.03.19 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Humidity: 33% Pressure: 102.1kPa

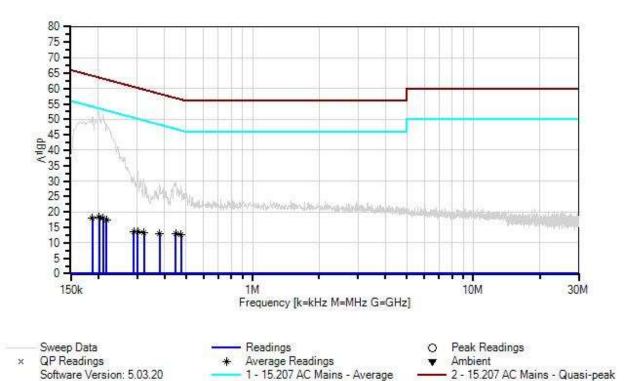
Test Method: ANSI C63.10: 2013

Frequency range: 150k-30MHz

Setup:

AOS V2 Powered Via Delta PSU (24VDC/100W PSU MSS)

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 150 PWR Output: 15dBm

> Page 41 of 46 Report No.: 104760-44B

Nalloy, LLC WO#: 104760 Sequence#: 9 Date: 5/14/2021 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
T4	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 42 of 46 Report No.: 104760-44B

	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	473.607k	3.0	+9.1	+0.0	+0.0	-0.4	+0.0	12.7	46.5	-33.8	Neutr
-	Ave		+0.2								
٨	473.606k	19.5	+9.1	+0.0	+0.0	-0.4	+0.0	29.2	46.5	-17.3	Neutr
	4.40.0001	2.1	+0.2	0.0	0.0	0.5	0.0	12.0	46.0	24.0	37 .
3	448.882k	3.1	+9.1	+0.0	+0.0	-0.5	+0.0	12.9	46.9	-34.0	Neutr
٨	Ave 448.881k	20.0	+0.2	. 0. 0	.00	-0.5	.00	20.7	46.9	16.2	Massass
	448.881K	20.9	+9.1 +0.2	+0.0	+0.0	-0.5	+0.0	30.7	40.9	-16.2	Neutr
5	210.358k	7.7	+9.1	+0.0	+0.0	-1.1	+0.0	18.2	53.2	-35.0	Neutr
	Ave	7.7	+0.3	+0.0	+0.0	-1.1	+0.0	10.2	33.2	-33.0	ricuti
^	210.358k	43.2	+9.1	+0.0	+0.0	-1.1	+0.0	53.7	53.2	+0.5	Neutr
	210.336K	73.2	+0.3	10.0	10.0	1.1	10.0	33.1	33.2	10.5	ricuti
7	201.632k	7.9	+9.1	+0.0	+0.0	-1.2	+0.0	18.4	53.5	-35.1	Neutr
	Ave		+0.2								
^	201.631k	44.1	+9.1	+0.0	+0.0	-1.2	+0.0	54.6	53.5	+1.1	Neutr
			+0.2								
9	379.070k	3.2	+9.1	+0.0	+0.0	-0.5	+0.0	13.0	48.3	-35.3	Neutr
	Ave		+0.2								
^	379.069k	20.4	+9.1	+0.0	+0.0	-0.5	+0.0	30.2	48.3	-18.1	Neutr
			+0.2								
11	218.357k	7.0	+9.1	+0.0	+0.0	-1.1	+0.0	17.5	52.9	-35.4	Neutr
-	Ave		+0.3								
^	218.357k	40.1	+9.1	+0.0	+0.0	-1.1	+0.0	50.6	52.9	-2.3	Neutr
10	100 5 401		+0.3	0.0	0.0	1.0	0.0	10.2	7.1.1	25.0	37 .
13	188.542k	7.5	+9.1	+0.0	+0.0	-1.3	+0.0	18.2	54.1	-35.9	Neutr
٨	Ave	42.0	+0.3	. 0. 0	. 0. 0	1.2	.00	52.5	<i>5</i> 4 1	0.6	NT. do
	188.541k	42.8	+9.1 +0.3	+0.0	+0.0	-1.3	+0.0	53.5	54.1	-0.6	Neutr
15	321.621k	3.3	+9.1	+0.0	+0.0	-0.6	+0.0	13.1	49.7	-36.6	Neutr
	Ave	3.3	+0.1	10.0	10.0	-0.0	10.0	13.1	7 2.1	-30.0	rveuu
٨	321.620k	22.1	+9.1	+0.0	+0.0	-0.6	+0.0	31.9	49.7	-17.8	Neutr
1	221.020K		+0.1	. 3.0	. 0.0	0.0	. 3.0	21.7	.,,,	27.0	
17	301.259k	3.6	+9.1	+0.0	+0.0	-0.7	+0.0	13.5	50.2	-36.7	Neutr
	Ave		+0.1								
٨		24.7	+9.1	+0.0	+0.0	-0.7	+0.0	34.6	50.2	-15.6	Neutr
			+0.1								
19	290.351k	3.7	+9.1	+0.0	+0.0	-0.7	+0.0	13.6	50.5	-36.9	Neutr
	Ave		+0.1								
^	290.350k	23.1	+9.1	+0.0	+0.0	-0.7	+0.0	33.0	50.5	-17.5	Neutr
			+0.1								

Page 43 of 46 Report No.: 104760-44B

Test Setup Photo(s)

Page 44 of 46 Report No.: 104760-44B

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBμV)			
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBμV/m)			

Page 45 of 46 Report No.: 104760-44B

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 46 of 46 Report No.: 104760-44B