

# **Test Report**

| Report No.:    | MTi241011003-01E1                                                             |
|----------------|-------------------------------------------------------------------------------|
| Date of issue: | 2024-11-15                                                                    |
| Applicant:     | Zhuhai Quin Technology Co., Ltd.                                              |
| Product name:  | Smart Mini Label Maker                                                        |
| Model(s):      | D35, D35S, D35Pro, D35SR, D35R, D35C, D35T,<br>CP-D35, D35A, D35AT, D31, D31T |
| FCC ID:        | 2ASRB-D35A                                                                    |

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.





# Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.



# **Table of contents**

| 1   | Gener                           | ral Description                                                                                                                                                   | 5                    |
|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     | 1.1<br>1.2<br>1.3<br>1.4<br>1.5 | Description of the EUT<br>Description of test modes<br>Environmental Conditions<br>Description of support units<br>Measurement uncertainty                        | 5<br>7<br>7          |
| 2   | Summ                            | nary of Test Result                                                                                                                                               | 8                    |
| 3   | Test F                          | acilities and accreditations                                                                                                                                      | 9                    |
|     | 3.1                             | Test laboratory                                                                                                                                                   | 9                    |
| 4   | List of                         | f test equipment                                                                                                                                                  | 10                   |
| 5   | Evalu                           | ation Results (Evaluation)                                                                                                                                        | 12                   |
|     | 5.1                             | Antenna requirement                                                                                                                                               | 12                   |
| 6   | Radio                           | Spectrum Matter Test Results (RF)                                                                                                                                 | 13                   |
|     | 6.1<br>6.2<br>6.3<br>6.4<br>6.5 | Conducted Emission at AC power line<br>Maximum Conducted Output Power<br>Channel Separation<br>Number of Hopping Frequencies<br>Dwell Time                        | 16<br>18<br>19<br>20 |
|     | 6.6<br>6.7<br>6.8<br>6.9        | RF conducted spurious emissions and band edge measurement<br>Band edge emissions (Radiated)<br>Radiated emissions (below 1GHz)<br>Radiated emissions (above 1GHz) | 23<br>28             |
| Pho | otograj                         | phs of the test setup                                                                                                                                             |                      |
| Pho | otograj                         | phs of the EUT                                                                                                                                                    | 40                   |
| Ар  | pendix                          | A: 20dB Emission Bandwidth                                                                                                                                        | 41                   |
| Арр | pendix                          | B: Maximum conducted output power                                                                                                                                 | 44                   |
| Ар  | pendix                          | C: Carrier frequency separation                                                                                                                                   | 47                   |
| Ар  | pendix                          | D: Time of occupancy                                                                                                                                              | 49                   |
| Ар  | pendix                          | E: Number of hopping channels                                                                                                                                     | 54                   |
| Ар  | pendix                          | F: Band edge measurements                                                                                                                                         | 56                   |
| Арр | pendix                          | G: Conducted Spurious Emission                                                                                                                                    | 59                   |



| Test Result Certification |                                                                                                                      |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Applicant:                | Zhuhai Quin Technology Co., Ltd.                                                                                     |  |  |  |
| Address:                  | ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18<br>FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA |  |  |  |
| Manufacturer:             | Zhuhai Quin Technology Co., Ltd.                                                                                     |  |  |  |
| Address:                  | ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18<br>FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA |  |  |  |
| Product description       |                                                                                                                      |  |  |  |
| Product name:             | Smart Mini Label Maker                                                                                               |  |  |  |
| Trade mark:               | N/A                                                                                                                  |  |  |  |
| Model name:               | D35                                                                                                                  |  |  |  |
| Series Model(s):          | D35S, D35Pro, D35SR, D35R, D35C, D35T, CP-D35, D35A, D35AT, D31, D31T                                                |  |  |  |
| Standards:                | 47 CFR Part 15.247                                                                                                   |  |  |  |
| Test Method:              | ANSI C63.10-2013<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                       |  |  |  |
| Date of Test              |                                                                                                                      |  |  |  |
| Date of test:             | 2024-11-12 to 2024-11-14                                                                                             |  |  |  |
| Test result:              | Pass                                                                                                                 |  |  |  |

| Test Engineer | • | Letter. Jan. |  |
|---------------|---|--------------|--|
|               |   | (Letter Lan) |  |
| Reviewed By   | : | Dowid. Cee   |  |
|               |   | (David Lee)  |  |
| Approved By   | : | (cov chen    |  |
|               |   | (Leon Chen)  |  |



## **1** General Description

#### 1.1 Description of the EUT

| Product name:              | Smart Mini Label Maker                                                             |
|----------------------------|------------------------------------------------------------------------------------|
| Model name:                | D35                                                                                |
| Series Model(s):           | D35S, D35Pro, D35SR, D35R, D35C, D35T, CP-D35, D35A, D35AT, D31, D31T              |
| Model difference:          | All the models are the same circuit and module, except the model name, and colour. |
| Electrical rating:         | Input: DC5V 2A<br>Powered by battery                                               |
| Accessories:               | Cable:<br>USB-A to Type-C cable 0.3m                                               |
| Hardware version:          | Q139_A                                                                             |
| Software version:          | _1.0.0                                                                             |
| Test sample(s) number:     | MTi241011003-01S1001                                                               |
| RF specification           |                                                                                    |
| Bluetooth version:         | V5.0                                                                               |
| Operating frequency range: | 2402-2480MHz                                                                       |
| Channel number:            | 79                                                                                 |
| Modulation type:           | GFSK, π/4-DQPSK                                                                    |
| Antenna(s) type:           | РСВ                                                                                |
| Antenna(s) gain:           | -0.58dBi                                                                           |

#### 1.2 Description of test modes

| No.   | Emission test modes |  |
|-------|---------------------|--|
| Mode1 | TX-GFSK             |  |
| Mode2 | TX-π/4-DQPSK        |  |

#### 1.2.1 Operation channel list

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 20      | 2422               | 40      | 2442               | 60      | 2462               |
| 1       | 2403               | 21      | 2423               | 41      | 2443               | 61      | 2463               |
| 2       | 2404               | 22      | 2424               | 42      | 2444               | 62      | 2464               |
| 3       | 2405               | 23      | 2425               | 43      | 2445               | 63      | 2465               |
| 4       | 2406               | 24      | 2426               | 44      | 2446               | 64      | 2466               |
| 5       | 2407               | 25      | 2427               | 45      | 2447               | 65      | 2467               |
| 6       | 2408               | 26      | 2428               | 46      | 2448               | 66      | 2468               |
| 7       | 2409               | 27      | 2429               | 47      | 2449               | 67      | 2469               |
| 8       | 2410               | 28      | 2430               | 48      | 2450               | 68      | 2470               |

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com



Page 6 of 64

Report No.: MTi241011003-01E1

| 11         2413         31         2433         51         2453         71         2473           12         2414         32         2434         52         2454         72         2474           13         2415         33         2435         53         2455         73         2475           14         2416         34         2436         54         2456         74         2476           15         2417         35         2437         55         2457         75         2477           16         2418         36         2438         56         2458         76         2478 |    |      |    |      |    |      |    |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----|------|----|------|----|------|
| 112413312433512453712473122414322434522454722474132415332435532455732475142416342436542456742476152417352437552457752477162418362438562458762478172419372439572459772479182420382440582460782480                                                                                                                                                                                                                                                                                                                                                                                                  | 9  | 2411 | 29 | 2431 | 49 | 2451 | 69 | 2471 |
| 122414322434522454722474132415332435532455732475142416342436542456742476152417352437552457752477162418362438562458762478172419372439572459772479182420382440582460782480                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | 2412 | 30 | 2432 | 50 | 2452 | 70 | 2472 |
| 132415332435532455732475142416342436542456742476152417352437552457752477162418362438562458762478172419372439572459772479182420382440582460782480                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 | 2413 | 31 | 2433 | 51 | 2453 | 71 | 2473 |
| 14         2416         34         2436         54         2456         74         2476           15         2417         35         2437         55         2457         75         2477           16         2418         36         2438         56         2458         76         2478           17         2419         37         2439         57         2459         77         2479           18         2420         38         2440         58         2460         78         2480                                                                                                   | 12 | 2414 | 32 | 2434 | 52 | 2454 | 72 | 2474 |
| 15         2417         35         2437         55         2457         75         2477           16         2418         36         2438         56         2458         76         2478           17         2419         37         2439         57         2459         77         2479           18         2420         38         2440         58         2460         78         2480                                                                                                                                                                                                     | 13 | 2415 | 33 | 2435 | 53 | 2455 | 73 | 2475 |
| 16         2418         36         2438         56         2458         76         2478           17         2419         37         2439         57         2459         77         2479           18         2420         38         2440         58         2460         78         2480                                                                                                                                                                                                                                                                                                       | 14 | 2416 | 34 | 2436 | 54 | 2456 | 74 | 2476 |
| 17         2419         37         2439         57         2459         77         2479           18         2420         38         2440         58         2460         78         2480                                                                                                                                                                                                                                                                                                                                                                                                         | 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 |
| 18         2420         38         2440         58         2460         78         2480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 |
| 19 2421 39 2441 59 2461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 | 2421 | 39 | 2441 | 59 | 2461 | -  | -    |

#### Test Channel List Operation Band: 2400-2483.5 MHz

| Bandwidth   | Lowest Channel (LCH) | Middle Channel (MCH) | Highest Channel (HCH) |  |
|-------------|----------------------|----------------------|-----------------------|--|
| (MHz) (MHz) |                      | (MHz)                | (MHz)                 |  |
| 1           | 2402                 | 2441                 | 2480                  |  |

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

#### Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

| Mode      | 2402MHz     | 2441MHz | 2480MHz |  |
|-----------|-------------|---------|---------|--|
| GFSK      | 7           | 7       | 7       |  |
| π/4-DQPSK | π/4-DQPSK 7 |         | 7       |  |



#### **1.3 Environmental Conditions**

During the measurement the environmental conditions were within the listed ranges:

| Temperature:          | 15°C ~ 35°C      |
|-----------------------|------------------|
| Humidity:             | 20% RH ~ 75% RH  |
| Atmospheric pressure: | 98 kPa ~ 101 kPa |

#### 1.4 Description of support units

| Support equipment list              |              |      |                                      |  |  |  |  |
|-------------------------------------|--------------|------|--------------------------------------|--|--|--|--|
| Description Model Serial No. Manufa |              |      |                                      |  |  |  |  |
| Adapter                             | HW-090200CH0 | /    | Huizhou BYD<br>Electronics Co., Ltd. |  |  |  |  |
| Support cable list                  |              |      |                                      |  |  |  |  |
| Description                         | Length (m)   | From | То                                   |  |  |  |  |
| /                                   | 1            | /    | 1                                    |  |  |  |  |

#### 1.5 Measurement uncertainty

| Measurement                              | Uncertainty |
|------------------------------------------|-------------|
| Conducted emissions (AMN 150kHz~30MHz)   | ±3.1dB      |
| Occupied channel bandwidth               | ±3 %        |
| RF output power, conducted               | ±1 dB       |
| Time                                     | ±1 %        |
| Unwanted Emissions, conducted            | ±1 dB       |
| Radiated spurious emissions (above 1GHz) | ±5.3dB      |
| Radiated spurious emissions (9kHz~30MHz) | ±4.3dB      |
| Radiated spurious emissions (30MHz~1GHz) | ±4.7dB      |
| Temperature                              | ±1 °C       |
| Humidity                                 | ± 5 %       |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.





# 2 Summary of Test Result

| No. | Item                                                            | Standard           | Requirement                         | Result |
|-----|-----------------------------------------------------------------|--------------------|-------------------------------------|--------|
| 1   | Antenna requirement                                             | 47 CFR Part 15.247 | 47 CFR 15.203                       | Pass   |
| 2   | Conducted Emission at AC power line                             | 47 CFR Part 15.247 | 47 CFR 15.207(a)                    | Pass   |
| 3   | Maximum Conducted Output<br>Power                               | 47 CFR Part 15.247 | 47 CFR 15.247(b)(1)                 | Pass   |
| 4   | Channel Separation                                              | 47 CFR Part 15.247 | 47 CFR 15.247(a)(1)                 | Pass   |
| 5   | Number of Hopping<br>Frequencies                                | 47 CFR Part 15.247 | 47 CFR<br>15.247(a)(1)(iii)         | Pass   |
| 6   | Dwell Time                                                      | 47 CFR Part 15.247 | 47 CFR<br>15.247(a)(1)(iii)         | Pass   |
| 7   | RF conducted spurious<br>emissions and band edge<br>measurement | 47 CFR Part 15.247 | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| 8   | Band edge emissions<br>(Radiated)                               | 47 CFR Part 15.247 | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| 9   | Radiated emissions (below 1GHz)                                 | 47 CFR Part 15.247 | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| 10  | Radiated emissions (above 1GHz)                                 | 47 CFR Part 15.247 | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |



## 3 Test Facilities and accreditations

#### 3.1 Test laboratory

| Test laboratory:       | Shenzhen Microtest Co., Ltd.                                                                                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Test site location:    | 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China |
| Telephone:             | (86-755)88850135                                                                                                                     |
| Fax:                   | (86-755)88850136                                                                                                                     |
| CNAS Registration No.: | CNAS L5868                                                                                                                           |
| FCC Registration No.:  | 448573                                                                                                                               |
| IC Registration No.:   | 21760                                                                                                                                |
| CABID:                 | CN0093                                                                                                                               |



# 4 List of test equipment

| No. | Equipment                               | Manufacturer                                  | Model                                                                                                 | Serial No. | Cal. date  | Cal. Due   |  |  |
|-----|-----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|------------|------------|------------|--|--|
|     | Conducted Emission at AC power line     |                                               |                                                                                                       |            |            |            |  |  |
| 1   | EMI Test Receiver                       | Rohde&schwarz                                 | ESCI3                                                                                                 | 101368     | 2024-03-20 | 2025-03-19 |  |  |
| 2   | Artificial mains network                | Schwarzbeck                                   | NSLK 8127                                                                                             | 183        | 2024-03-21 | 2025-03-20 |  |  |
| 3   | Artificial Mains Network                | Rohde &<br>Schwarz                            | ESH2-Z5                                                                                               | 100263     | 2024-03-20 | 2025-03-19 |  |  |
|     |                                         | Chan<br>Number of I<br>[<br>Emissions in non- | nducted Output<br>nel Separation<br>Hopping Freque<br>Owell Time<br>-restricted freque<br>B Bandwidth | ncies      |            |            |  |  |
| 1   | Wideband Radio<br>Communication Tester  | Rohde&schwarz                                 | CMW500                                                                                                | 149155     | 2024-03-20 | 2025-03-19 |  |  |
| 2   | ESG Series Analog<br>Ssignal Generator  | Agilent                                       | E4421B                                                                                                | GB40051240 | 2024-03-21 | 2025-03-20 |  |  |
| 3   | PXA Signal Analyzer                     | Agilent                                       | N9030A                                                                                                | MY51350296 | 2024-03-21 | 2025-03-20 |  |  |
| 4   | Synthesized Sweeper                     | Agilent                                       | 83752A                                                                                                | 3610A01957 | 2024-03-21 | 2025-03-20 |  |  |
| 5   | MXA Signal Analyzer                     | Agilent                                       | N9020A                                                                                                | MY50143483 | 2024-03-21 | 2025-03-20 |  |  |
| 6   | RF Control Unit                         | Tonscend                                      | JS0806-1                                                                                              | 19D8060152 | 2024-03-21 | 2025-03-20 |  |  |
| 7   | Band Reject Filter Group                | Tonscend                                      | JS0806-F                                                                                              | 19D8060160 | 2024-03-21 | 2025-03-20 |  |  |
| 8   | ESG Vector Signal<br>Generator          | Agilent                                       | N5182A                                                                                                | MY50143762 | 2024-03-20 | 2025-03-19 |  |  |
| 9   | DC Power Supply                         | Agilent                                       | E3632A                                                                                                | MY40027695 | 2024-03-21 | 2025-03-20 |  |  |
|     |                                         | Band edge<br>Emissions in frequ               | emissions (Radi<br>uency bands (ab                                                                    |            |            |            |  |  |
| 1   | EMI Test Receiver                       | Rohde&schwarz                                 | ESCI7                                                                                                 | 101166     | 2024-03-20 | 2025-03-19 |  |  |
| 2   | Double Ridged<br>Broadband Horn Antenna | schwarabeck                                   | BBHA 9120 D                                                                                           | 2278       | 2023-06-17 | 2025-06-16 |  |  |
| 3   | Amplifier                               | Agilent                                       | 8449B                                                                                                 | 3008A01120 | 2024-03-20 | 2025-03-19 |  |  |
| 4   | MXA signal analyzer                     | Agilent                                       | N9020A                                                                                                | MY54440859 | 2024-03-21 | 2025-03-20 |  |  |
| 5   | PXA Signal Analyzer                     | Agilent                                       | N9030A                                                                                                | MY51350296 | 2024-03-21 | 2025-03-20 |  |  |
| 6   | Horn antenna                            | Schwarzbeck                                   | BBHA 9170                                                                                             | 00987      | 2023-06-17 | 2025-06-16 |  |  |
| 7   | Pre-amplifier                           | Space-Dtronics                                | EWLAN1840<br>G                                                                                        | 210405001  | 2024-03-21 | 2025-03-20 |  |  |
|     |                                         | Emissions in freq                             | uency bands (be                                                                                       | low 1GHz)  |            |            |  |  |
| 1   | EMI Test Receiver                       | Rohde&schwarz                                 | ESCI7                                                                                                 | 101166     | 2024-03-20 | 2025-03-19 |  |  |
| 2   | TRILOG Broadband<br>Antenna             | schwarabeck                                   | VULB 9163                                                                                             | 9163-1338  | 2023-06-11 | 2025-06-10 |  |  |
| 3   | Active Loop Antenna                     | Schwarzbeck                                   | FMZB 1519 B                                                                                           | 00066      | 2024-03-23 | 2025-03-22 |  |  |
| 4   | Amplifier                               | Hewlett-Packard                               | 8447F                                                                                                 | 3113A06184 | 2024-03-20 | 2025-03-19 |  |  |

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com





## 5 Evaluation Results (Evaluation)

#### 5.1 Antenna requirement

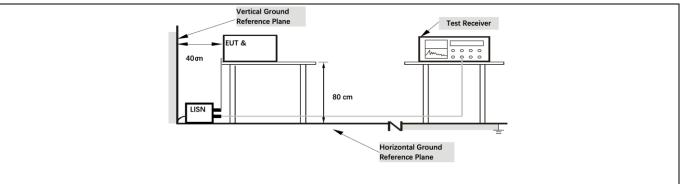
| Test Requirement: | Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to<br>ensure that no antenna other than that furnished by the responsible party<br>shall be used with the device. The use of a permanently attached antenna or<br>of an antenna that uses a unique coupling to the intentional radiator shall be |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | considered sufficient to comply with the provisions of this section.                                                                                                                                                                                                                                                    |

#### 5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

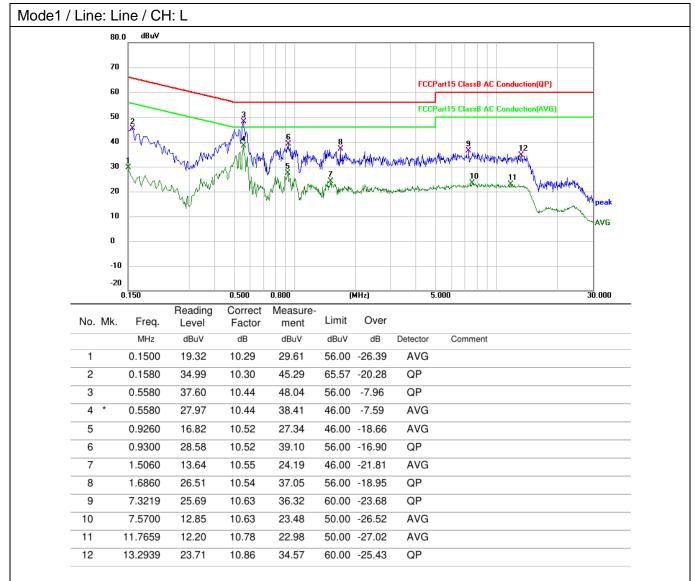


# 6 Radio Spectrum Matter Test Results (RF)

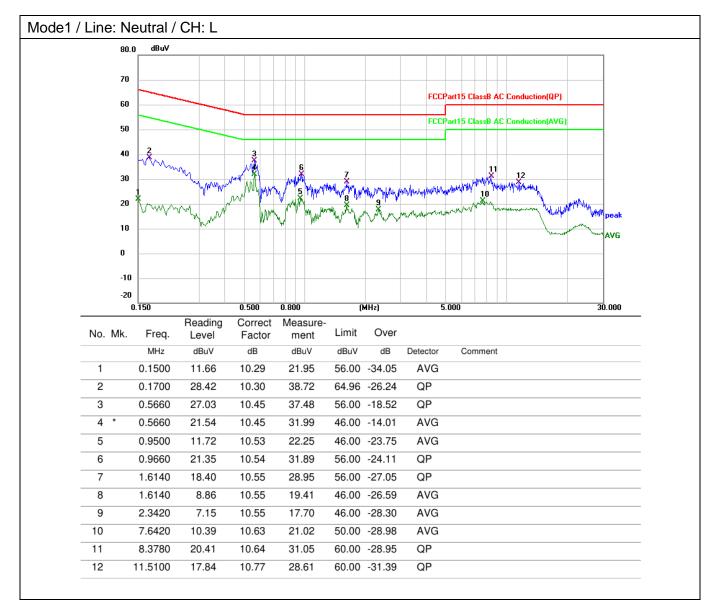

#### 6.1 Conducted Emission at AC power line

| Test Requirement: | Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu$ H/50 ohms line impedance stabilization network (LISN). |                |           |     |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----|--|
| Test Limit:       | Frequency of emission (MHz) Conducted limit (dBµV)                                                                                                                                                                                                                                                                                                                                                                                                                            |                |           |     |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak     | Average   |     |  |
|                   | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66 to 56*      | 56 to 46* |     |  |
|                   | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56             | 46        |     |  |
|                   | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60             | 50        |     |  |
|                   | *Decreases with the logarithm of                                                                                                                                                                                                                                                                                                                                                                                                                                              | the frequency. |           |     |  |
| Test Method:      | ANSI C63.10-2013 section 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |           |     |  |
| Procedure:        | Refer to ANSI C63.10-2013 sect<br>line conducted emissions from u                                                                                                                                                                                                                                                                                                                                                                                                             |                |           | er- |  |

#### 6.1.1 E.U.T. Operation:


| Operating Environment: |         |           |           |                                   |                                    |                   |
|------------------------|---------|-----------|-----------|-----------------------------------|------------------------------------|-------------------|
| Temperature:           | 25.9 °C |           | Humidity: | 44 %                              | Atmospheric Pressure:              | 101 kPa           |
| Pre test mode:         | Mode    | e1, Mode2 |           |                                   |                                    |                   |
| Final test mode.       |         |           |           | re-test mode w<br>ded in the repo | ere tested, only the data or<br>rt | of the worst mode |

#### 6.1.2 Test Setup Diagram:






#### 6.1.3 Test Data:

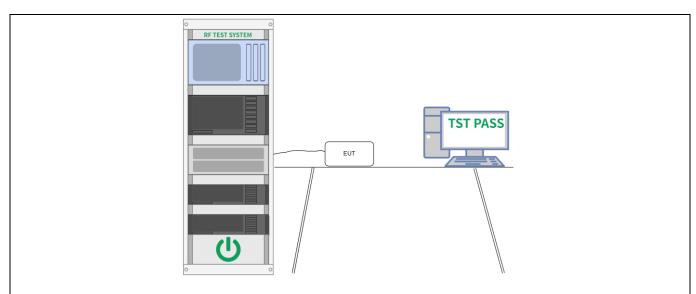








#### 6.2 Maximum Conducted Output Power


| Test Requirement: | 47 CFR 15.247(b)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Method:      | ANSI C63.10-2013, section 7.8.5<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Procedure:        | <ul> <li>This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: <ul> <li>a) Use the following spectrum analyzer settings:</li> <li>1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.</li> <li>2) RBW &gt; 20 dB bandwidth of the emission being measured.</li> <li>3) VBW &gt;= RBW.</li> <li>4) Sweep: Auto.</li> <li>5) Detector function: Peak.</li> <li>6) Trace: Max hold.</li> <li>b) Allow trace to stabilize.</li> <li>c) Use the marker-to-peak function to set the marker to the peak of the emission.</li> <li>d) The indicated level is the peak output power, after any corrections for external attenuators and cables.</li> <li>e) A plot of the test results and setup description shall be included in the test report.</li> <li>NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.</li> </ul> </li> </ul> |

#### 6.2.1 E.U.T. Operation:

| Operating Environment: |       |      |           |      |                |          |         |
|------------------------|-------|------|-----------|------|----------------|----------|---------|
| Temperature:           | 26 °C |      | Humidity: | 54 % | Atmospheric Pr | ressure: | 101 kPa |
| Pre test mode: N       |       | Mode | e1, Mode2 |      |                |          |         |
| Final test mode: Mod   |       | Mode | e1, Mode2 |      |                |          |         |
|                        |       |      |           |      |                |          |         |

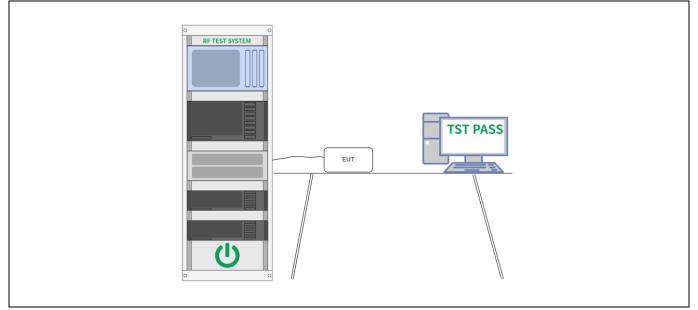
#### 6.2.2 Test Setup Diagram:





#### 6.2.3 Test Data:




#### 6.3 Channel Separation

| Test Requirement: | 47 CFR 15.247(a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have<br>hopping channel carrier frequencies separated by a minimum of 25 kHz or<br>the 20 dB bandwidth of the hopping channel, whichever is greater.<br>Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz<br>band may have hopping channel carrier frequencies that are separated by 25<br>kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever<br>is greater, provided the systems operate with an output power no greater<br>than 125 mW.                                                                                                                                                                                                                                                             |
| Test Method:      | ANSI C63.10-2013, section 7.8.2<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Procedure:        | <ul> <li>The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:</li> <li>a) Span: Wide enough to capture the peaks of two adjacent channels.</li> <li>b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.</li> <li>c) Video (or average) bandwidth (VBW) ≥ RBW.</li> <li>d) Sweep: Auto.</li> <li>e) Detector function: Peak.</li> <li>f) Trace: Max hold.</li> <li>g) Allow the trace to stabilize.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.</li> </ul> |

#### 6.3.1 E.U.T. Operation:

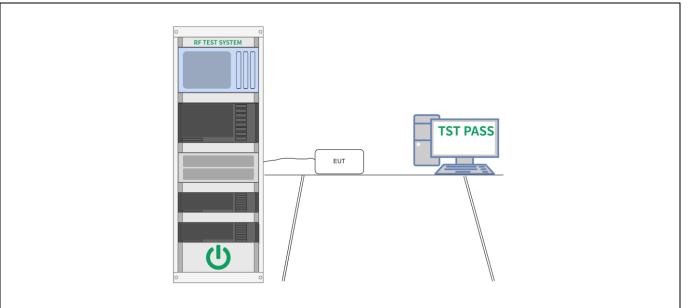
| Operating Environment: |     |           |      |                       |         |
|------------------------|-----|-----------|------|-----------------------|---------|
| Temperature: 26 °C     |     | Humidity: | 54 % | Atmospheric Pressure: | 101 kPa |
| Pre test mode:         | Mod | e1, Mode2 |      |                       |         |
| Final test mode: Mo    |     | e1, Mode2 |      |                       |         |

#### 6.3.2 Test Setup Diagram:



#### 6.3.3 Test Data:




#### 6.4 Number of Hopping Frequencies

| Test Requirement: | 47 CFR 15.247(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test Method:      | ANSI C63.10-2013, section 7.8.3<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Procedure:        | <ul> <li>The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:</li> <li>a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.</li> <li>b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.</li> <li>c) VBW ≥ RBW.</li> <li>d) Sweep: Auto.</li> <li>e) Detector function: Peak.</li> <li>f) Trace: Max hold.</li> <li>g) Allow the trace to stabilize.</li> <li>It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.</li> </ul> |

#### 6.4.1 E.U.T. Operation:

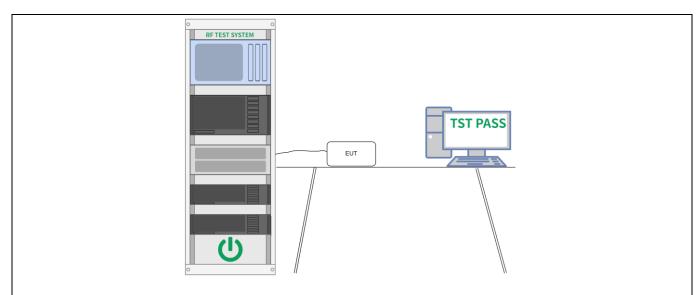
| Operating Environment: |                |      |           |      |                       |         |  |
|------------------------|----------------|------|-----------|------|-----------------------|---------|--|
| Temperature: 26 °C     |                |      | Humidity: | 54 % | Atmospheric Pressure: | 101 kPa |  |
| Pre test mode:         | Pre test mode: |      | e1, Mode2 |      |                       |         |  |
| Final test mode:       |                | Mode | e1, Mode2 |      |                       |         |  |

#### 6.4.2 Test Setup Diagram:



#### 6.4.3 Test Data:




#### 6.5 Dwell Time

| Test Limit:       Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.         Test Method:       ANSI C63.10-2013, section 7.8.4 KDB 558074 DD1 15.247 Meas Guidance v05r02         Procedure:       The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: <ul> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be &lt;= channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel, a second plot might be needed with a longer sweep time to show two successive hops on a channel.               d) Detector function: Peak.             e) Trace: Max hold.                Use the marker-della function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hops over the specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                         | Test Requirement: | 47 CFR 15.247(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:       KDB 558074 D01 15.247 Meas Guidance v05r02         Procedure:       The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: <ul> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be &lt;= channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel.</li> <li>c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.</li> <li>d) Detector function: Peak.</li> <li>e) Trace: Max hold.</li> <li>Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.</li> <li>Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements, using the following equation:</li> <li>(Number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops prime analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation</li></ul>                                                                                                                                                                                              | Test Limit:       | 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>analyzer settings:</li> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be &lt;= channel spacing and where possible RBW should be set &gt; 1 / T, where T is the expected dwell time per channel.</li> <li>c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.</li> <li>d) Detector function: Peak.</li> <li>e) Trace: Max hold.</li> <li>Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.</li> <li>Repeat the measurement using a longer sweep time to determine the number of hops on reperiod specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements. If the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in the period specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements, using the following equation:</li> <li>(Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in a specific time varies with different modes of operatio</li></ul> | Test Method:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 651 FUT Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | <ul> <li>analyzer settings:</li> <li>a) Span: Zero span, centered on a hopping channel.</li> <li>b) RBW shall be &lt;= channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel.</li> <li>c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.</li> <li>d) Detector function: Peak.</li> <li>e) Trace: Max hold.</li> <li>Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.</li> <li>Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation:</li> <li>(Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation:</li> <li>(Number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.</li> </ul> |

#### 6.5.1 E.U.T. Operation:

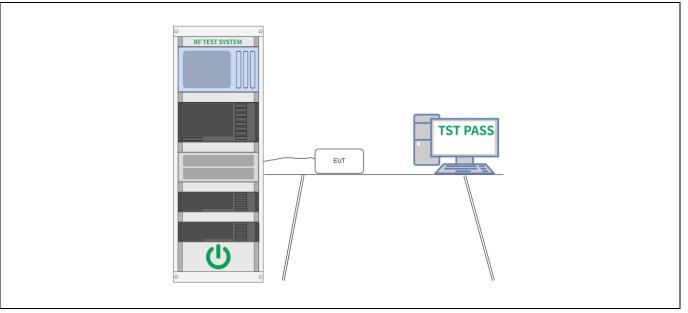
| Operating Environment: |                           |           |           |      |        |                 |         |  |  |
|------------------------|---------------------------|-----------|-----------|------|--------|-----------------|---------|--|--|
| Temperature: 26 °C     |                           |           | Humidity: | 54 % | Atmosp | heric Pressure: | 101 kPa |  |  |
| Pre test mode:         | Mode                      | e1, Mode2 |           |      |        |                 |         |  |  |
| Final test mode        | e:                        | Mode      | e1, Mode2 |      |        |                 |         |  |  |
| 6.5.2 Test Setu        | 6.5.2 Test Setup Diagram: |           |           |      |        |                 |         |  |  |





#### 6.5.3 Test Data:




#### 6.6 RF conducted spurious emissions and band edge measurement

| Test Requirement: | 47 CFR 15.247(d), 15.209, 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency<br>band in which the spread spectrum or digitally modulated intentional radiator<br>is operating, the radio frequency power that is produced by the intentional<br>radiator shall be at least 20 dB below that in the 100 kHz bandwidth within<br>the band that contains the highest level of the desired power, based on either<br>an RF conducted or a radiated measurement, provided the transmitter<br>demonstrates compliance with the peak conducted power limits. If the<br>transmitter complies with the conducted power limits based on the use of<br>RMS averaging over a time interval, as permitted under paragraph (b)(3) of<br>this section, the attenuation required under this paragraph shall be 30 dB<br>instead of 20 dB. Attenuation below the general limits specified in § 15.209(a)<br>is not required. |
| Test Method:      | ANSI C63.10-2013 section 7.8.8<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Procedure:        | Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers.<br>Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.                                                                                                                                                                                                                                           |

#### 6.6.1 E.U.T. Operation:

| Operating Environment: |  |           |           |                       |         |  |
|------------------------|--|-----------|-----------|-----------------------|---------|--|
| Temperature:           |  | Humidity: | 54 %      | Atmospheric Pressure: | 101 kPa |  |
| Pre test mode:         |  | Mode      | e1, Mode2 |                       |         |  |
| Final test mode:       |  | Mode      | e1, Mode2 |                       |         |  |

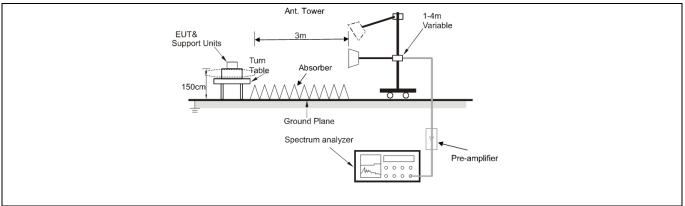
#### 6.6.2 Test Setup Diagram:



#### 6.6.3 Test Data:



#### 6.7 Band edge emissions (Radiated)


| Test Requirement: | restricted bands, as de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7(d), In addition, radiated em<br>fined in § 15.205(a), must als<br>s specified in § 15.209(a)(see | so comply with the                   |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field strength<br>(microvolts/meter)                                                               | Measuremen<br>t distance<br>(meters) |  |  |  |  |  |
|                   | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2400/F(kHz)                                                                                        | 300                                  |  |  |  |  |  |
|                   | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24000/F(kHz)                                                                                       | 30                                   |  |  |  |  |  |
|                   | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                 | 30                                   |  |  |  |  |  |
|                   | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 **                                                                                             | 3                                    |  |  |  |  |  |
|                   | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150 **<br>200 **                                                                                   | 3                                    |  |  |  |  |  |
|                   | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                  |                                      |  |  |  |  |  |
|                   | Above 960 500 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                      |  |  |  |  |  |
|                   | <ul> <li>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</li> </ul> |                                                                                                    |                                      |  |  |  |  |  |
| Test Method:      | ANSI C63.10-2013 sec<br>KDB 558074 D01 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion 6.10<br>47 Meas Guidance v05r02                                                               |                                      |  |  |  |  |  |
| Procedure:        | ANSI C63.10-2013 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion 6.10.5.2                                                                                      |                                      |  |  |  |  |  |

#### 6.7.1 E.U.T. Operation:

| Operating Environment: |                                                                                                                |  |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Temperature: 24 °C     | Humidity:       54 %       Atmospheric Pressure:       101 kPa                                                 |  |  |  |  |  |  |  |
| Pre test mode:         | Mode1, Mode2                                                                                                   |  |  |  |  |  |  |  |
| Final test mode:       | All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report |  |  |  |  |  |  |  |
| Note:                  |                                                                                                                |  |  |  |  |  |  |  |

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

#### 6.7.2 Test Setup Diagram:





#### 6.7.3 Test Data:

| Mode2 / | Polari | zatio | n: Horizonta | al / CH: L       |                   |                  |        |        |          |
|---------|--------|-------|--------------|------------------|-------------------|------------------|--------|--------|----------|
|         | No.    | Mk.   | Freq.        | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|         |        |       | MHz          | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
|         | 1      |       | 2310.000     | 48.17            | -4.83             | 43.34            | 74.00  | -30.66 | peak     |
|         | 2      |       | 2310.000     | 37.61            | -4.83             | 32.78            | 54.00  | -21.22 | AVG      |
|         | 3      |       | 2390.000     | 46.87            | -4.31             | 42.56            | 74.00  | -31.44 | peak     |
|         | 4      | *     | 2390.000     | 38.13            | -4.31             | 33.82            | 54.00  | -20.18 | AVG      |
|         |        |       |              |                  |                   |                  |        |        |          |



# Mode2 / Polarization: Vertical / CH: L

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 2310.000 | 47.05            | -4.83             | 42.22            | 74.00  | -31.78 | peak     |
| 2   |     | 2310.000 | 37.58            | -4.83             | 32.75            | 54.00  | -21.25 | AVG      |
| 3   |     | 2390.000 | 47.70            | -4.31             | 43.39            | 74.00  | -30.61 | peak     |
| 4   | *   | 2390.000 | 38.31            | -4.31             | 34.00            | 54.00  | -20.00 | AVG      |
|     |     |          |                  |                   |                  |        |        |          |



Page 26 of 64

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 2483.500 | 47.38            | -4.21             | 43.17            | 74.00  | -30.83 | peak     |
| 2   |     | 2483.500 | 38.18            | -4.21             | 33.97            | 54.00  | -20.03 | AVG      |
| 3   |     | 2500.000 | 47.47            | -4.10             | 43.37            | 74.00  | -30.63 | peak     |
| 4   | *   | 2500.000 | 38.42            | -4.10             | 34.32            | 54.00  | -19.68 | AVG      |
|     |     |          |                  |                   |                  |        |        |          |



Page 27 of 64

# Mode2 / Polarization: Vertical / CH: H

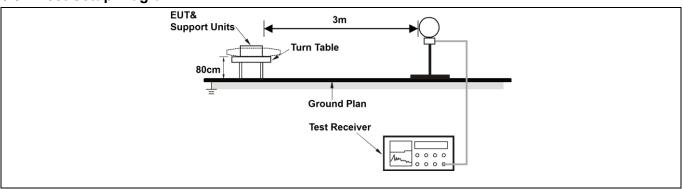
| iouez / | FUIAIT | zalio | n: vertical / | CH. H            |                   |                  |        |        |          |
|---------|--------|-------|---------------|------------------|-------------------|------------------|--------|--------|----------|
|         | No.    | Mk.   | Freq.         | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|         |        |       | MHz           | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
|         | 1      |       | 2483.500      | 47.50            | -4.21             | 43.29            | 74.00  | -30.71 | peak     |
|         | 2      |       | 2483.500      | 38.40            | -4.21             | 34.19            | 54.00  | -19.81 | AVG      |
|         | 3      |       | 2500.000      | 48.09            | -4.10             | 43.99            | 74.00  | -30.01 | peak     |
|         | 4      | *     | 2500.000      | 38.61            | -4.10             | 34.51            | 54.00  | -19.49 | AVG      |
|         |        |       |               |                  |                   |                  |        |        |          |



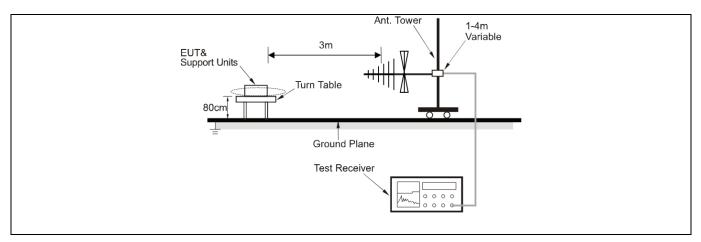
#### 6.8 Radiated emissions (below 1GHz)

| Test Requirement: | restricted bands, as de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7(d), In addition, radiated em<br>fined in § 15.205(a), must als<br>s specified in § 15.209(a)(see | so comply with the                   |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field strength<br>(microvolts/meter)                                                               | Measuremen<br>t distance<br>(meters) |  |  |  |  |
|                   | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2400/F(kHz)                                                                                        | 300                                  |  |  |  |  |
|                   | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24000/F(kHz)                                                                                       | 30                                   |  |  |  |  |
|                   | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                 | 30                                   |  |  |  |  |
|                   | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 **                                                                                             | 3                                    |  |  |  |  |
|                   | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150 **                                                                                             | 3                                    |  |  |  |  |
|                   | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 **                                                                                             | 3                                    |  |  |  |  |
|                   | Above 960 500 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                      |  |  |  |  |
|                   | <ul> <li>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</li> </ul> |                                                                                                    |                                      |  |  |  |  |
| Test Method:      | ANSI C63.10-2013 sec<br>KDB 558074 D01 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ction 6.6.4<br>47 Meas Guidance v05r02                                                             |                                      |  |  |  |  |
| Procedure:        | ANSI C63.10-2013 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ction 6.6.4                                                                                        |                                      |  |  |  |  |

#### 6.8.1 E.U.T. Operation:

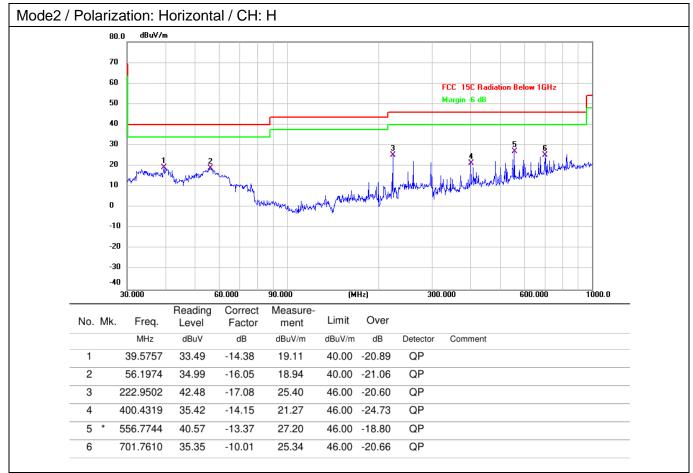

| Operating Environment |                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------|
| Temperature: 24 °C    | Humidity:       54 %       Atmospheric Pressure:       101 kPa                                                 |
| Pre test mode:        | Mode1, Mode2                                                                                                   |
| Final test mode:      | All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report |
| Nata                  |                                                                                                                |

Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

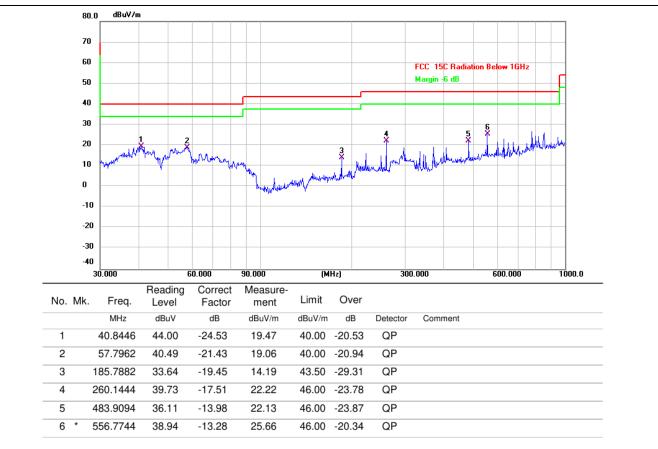
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

#### 6.8.2 Test Setup Diagram:








#### 6.8.3 Test Data:



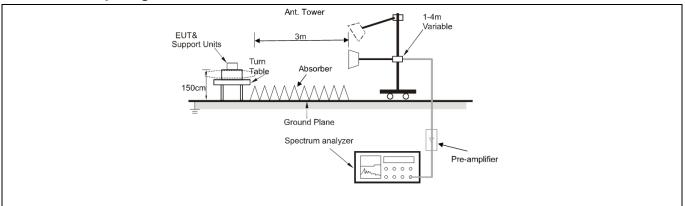


Mode2 / Polarization: Vertical / CH: H





#### 6.9 Radiated emissions (above 1GHz)


| Test Requirement: |                                                                                                                                                                                                                | nissions which fall in the rest<br>comply with the radiated em<br>5(c)).`                                                                                                                                                                                                                                            |                                                                                                                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                 | Measuremen<br>t distance<br>(meters)                                                                                                                                              |
|                   | 0.009-0.490                                                                                                                                                                                                    | 2400/F(kHz)                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                               |
|                   | 0.490-1.705                                                                                                                                                                                                    | 24000/F(kHz)                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                |
|                   | 1.705-30.0                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                |
|                   | 30-88                                                                                                                                                                                                          | 100 **                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                 |
|                   | 88-216                                                                                                                                                                                                         | 150 **                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                 |
|                   | 216-960                                                                                                                                                                                                        | 200 **                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                 |
|                   | Above 960                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                 |
|                   | intentional radiators op<br>frequency bands 54-72<br>However, operation wit<br>sections of this part, e.<br>In the emission table a<br>The emission limits sho<br>employing a CISPR qu<br>kHz, 110–490 kHz and | n paragraph (g), fundamenta<br>erating under this section sh<br>2 MHz, 76-88 MHz, 174-216<br>thin these frequency bands is<br>g., §§ 15.231 and 15.241.<br>bove, the tighter limit applies<br>own in the above table are ba<br>asi-peak detector except for<br>above 1000 MHz. Radiated<br>on measurements employing | all not be located in the<br>MHz or 470-806 MHz.<br>s permitted under other<br>at the band edges.<br>ased on measurements<br>the frequency bands 9–90<br>emission limits in these |
| Test Method:      | ANSI C63.10-2013 sec<br>KDB 558074 D01 15.2                                                                                                                                                                    | ction 6.6.4<br>47 Meas Guidance v05r02                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |
| Procedure:        | ANSI C63.10-2013 sec                                                                                                                                                                                           | ction 6.6.4                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   |

#### 6.9.1 E.U.T. Operation:

| Operating Env   | ironment  |        |              |                                |                                                                        |                   |
|-----------------|-----------|--------|--------------|--------------------------------|------------------------------------------------------------------------|-------------------|
| Temperature:    | 24 °C     |        | Humidity:    | 54 %                           | Atmospheric Pressure:                                                  | 101 kPa           |
| Pre test mode:  |           | Mode   | e1, Mode2    |                                |                                                                        |                   |
| Final test mode | e:        |        |              | re-test mode<br>ded in the rep | were tested, only the data port                                        | of the worst mode |
| attenuated mo   | re than 2 | 0 dB b | elow the lim | its are not re                 | plitude of spurious emission<br>ported.<br>nd only the worst-case resu |                   |

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

#### 6.9.2 Test Setup Diagram:





#### 6.9.3 Test Data:

|   | No. I | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---|-------|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
| - |       |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| - | 1     |     | 4804.000 | 43.71            | 0.53              | 44.24            | 74.00  | -29.76 | peak     |
| - | 2     |     | 4804.000 | 37.61            | 0.53              | 38.14            | 54.00  | -15.86 | AVG      |
| - | 3     |     | 7206.000 | 43.03            | 7.90              | 50.93            | 74.00  | -23.07 | peak     |
| - | 4     |     | 7206.000 | 36.69            | 7.90              | 44.59            | 54.00  | -9.41  | AVG      |
|   | 5     |     | 9608.000 | 44.37            | 8.85              | 53.22            | 74.00  | -20.78 | peak     |
|   | 6     | *   | 9608.000 | 38.32            | 8.85              | 47.17            | 54.00  | -6.83  | AVG      |



Page 34 of 64

# Mode2 / Polarization: Vertical / CH: L

|   | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
| - |     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
|   | 1   |     | 4804.000 | 43.46            | 0.53              | 43.99            | 74.00  | -30.01 | peak     |
| - | 2   |     | 4804.000 | 37.03            | 0.53              | 37.56            | 54.00  | -16.44 | AVG      |
| - | 3   |     | 7206.000 | 43.98            | 7.90              | 51.88            | 74.00  | -22.12 | peak     |
|   | 4   |     | 7206.000 | 37.58            | 7.90              | 45.48            | 54.00  | -8.52  | AVG      |
|   | 5   |     | 9608.000 | 45.16            | 8.85              | 54.01            | 74.00  | -19.99 | peak     |
|   | 6   | *   | 9608.000 | 39.36            | 8.85              | 48.21            | 54.00  | -5.79  | AVG      |



Page 35 of 64

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4882.000 | 43.37            | 0.57              | 43.94            | 74.00  | -30.06 | peak     |
| 2   |     | 4882.000 | 36.69            | 0.57              | 37.26            | 54.00  | -16.74 | AVG      |
| 3   |     | 7323.000 | 44.30            | 7.57              | 51.87            | 74.00  | -22.13 | peak     |
| 4   |     | 7323.000 | 38.12            | 7.57              | 45.69            | 54.00  | -8.31  | AVG      |
| 5   |     | 9764.000 | 43.93            | 9.33              | 53.26            | 74.00  | -20.74 | peak     |
| 6   | *   | 9764.000 | 37.94            | 9.33              | 47.27            | 54.00  | -6.73  | AVG      |
|     |     |          |                  |                   |                  |        |        |          |



Page 36 of 64

| No | . Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |       | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 4882.000 | 43.74            | 0.57              | 44.31            | 74.00  | -29.69 | peak     |
| 2  |       | 4882.000 | 37.69            | 0.57              | 38.26            | 54.00  | -15.74 | AVG      |
| 3  |       | 7323.000 | 43.22            | 7.57              | 50.79            | 74.00  | -23.21 | peak     |
| 4  |       | 7323.000 | 37.00            | 7.57              | 44.57            | 54.00  | -9.43  | AVG      |
| 5  |       | 9764.000 | 44.29            | 9.33              | 53.62            | 74.00  | -20.38 | peak     |
| 6  | *     | 9764.000 | 37.93            | 9.33              | 47.26            | 54.00  | -6.74  | AVG      |
|    |       |          |                  |                   |                  |        |        |          |



Page **37** of **64** 

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4960.000 | 45.78            | 0.66              | 46.44            | 74.00  | -27.56 | peak     |
| 2   |     | 4960.000 | 39.70            | 0.66              | 40.36            | 54.00  | -13.64 | AVG      |
| 3   |     | 7440.000 | 43.72            | 7.94              | 51.66            | 74.00  | -22.34 | peak     |
| 4   |     | 7440.000 | 37.63            | 7.94              | 45.57            | 54.00  | -8.43  | AVG      |
| 5   |     | 9920.000 | 44.25            | 9.69              | 53.94            | 74.00  | -20.06 | peak     |
| 6   | *   | 9920.000 | 37.57            | 9.69              | 47.26            | 54.00  | -6.74  | AVG      |
|     |     |          |                  |                   |                  |        |        |          |



Page 38 of 64

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 4960.000 | 44.79            | 0.66              | 45.45            | 74.00  | -28.55 | peak     |
| 2   |     | 4960.000 | 38.96            | 0.66              | 39.62            | 54.00  | -14.38 | AVG      |
| 3   |     | 7440.000 | 43.64            | 7.94              | 51.58            | 74.00  | -22.42 | peak     |
| 4   |     | 7440.000 | 37.63            | 7.94              | 45.57            | 54.00  | -8.43  | AVG      |
| 5   |     | 9920.000 | 44.91            | 9.69              | 54.60            | 74.00  | -19.40 | peak     |
| 6   | *   | 9920.000 | 38.58            | 9.69              | 48.27            | 54.00  | -5.73  | AVG      |



## Photographs of the test setup

Refer to Appendix - Test Setup Photos



Page 40 of 64

# Photographs of the EUT

Refer to Appendix - EUT Photos



# Appendix

## Appendix A: 20dB Emission Bandwidth

Test Result

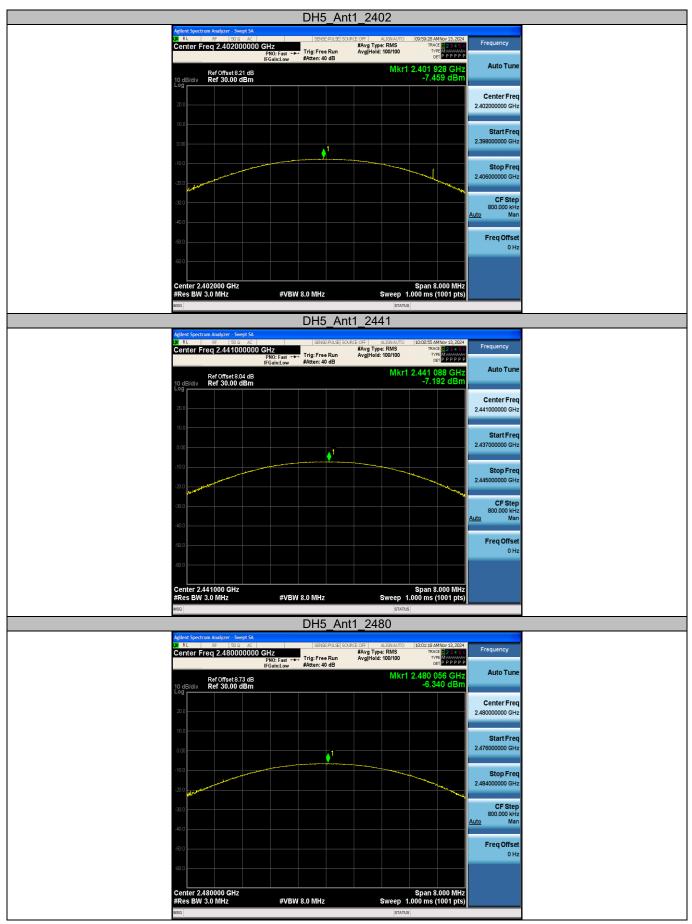
| Test Mode | Antenna | Frequency<br>[MHz] | 20db EBW<br>[MHz] |
|-----------|---------|--------------------|-------------------|
|           |         | 2402               | 0.951             |
| DH5       | Ant1    | 2441               | 0.951             |
|           |         | 2480               | 0.954             |
|           |         | 2402               | 1.281             |
| 2DH5      | Ant1    | 2441               | 1.281             |
|           |         | 2480               | 1.308             |



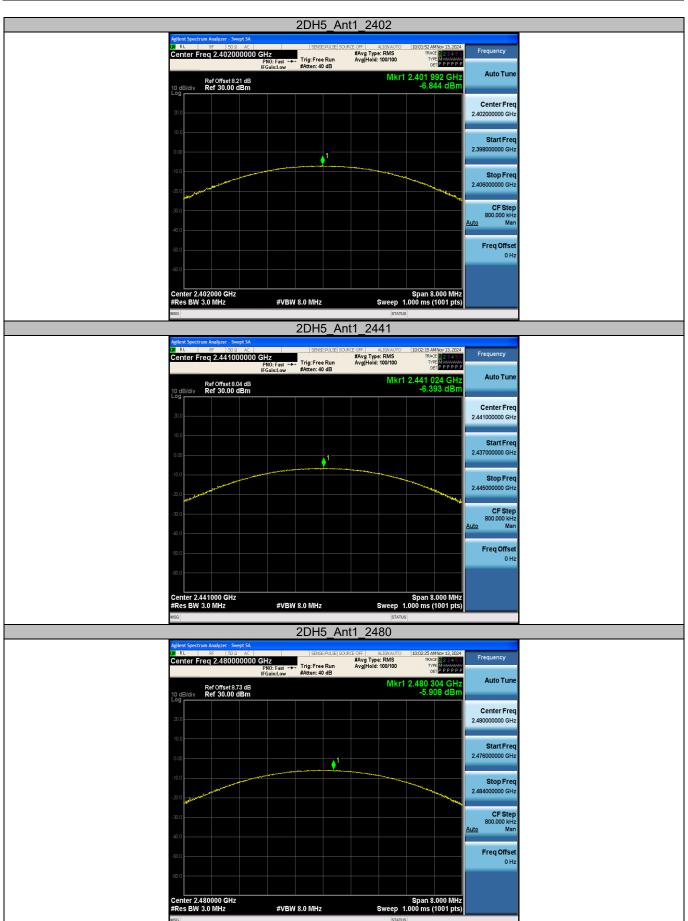









## Appendix B: Maximum conducted output power


Test Result Peak

| Test Mode | Antenna | Frequency<br>[MHz] | Conducted Peak Power<br>[dBm] | Limit<br>[dBm] | Verdict |
|-----------|---------|--------------------|-------------------------------|----------------|---------|
|           |         | 2402               | -7.46                         | ≤20.97         | PASS    |
| DH5       | Ant1    | 2441               | -7.19                         | ≤20.97         | PASS    |
|           |         | 2480               | -6.34                         | ≤20.97         | PASS    |
|           |         | 2402               | -6.84                         | ≤20.97         | PASS    |
| 2DH5      | Ant1    | 2441               | -6.39                         | ≤20.97         | PASS    |
|           |         | 2480               | -5.91                         | ≤20.97         | PASS    |











# Appendix C: Carrier frequency separation

Test Result

| Test Mode | Antenna | Frequency<br>[MHz] | Result<br>[MHz] | Limit<br>[MHz] | Verdict |
|-----------|---------|--------------------|-----------------|----------------|---------|
| DH5       | Ant1    | Нор                | 1.006           | ≥0.954         | PASS    |
| 2DH5      | Ant1    | Нор                | 1.012           | ≥0.872         | PASS    |



| -                                                                                                                                          | DH5_Ant                                                          | t1_Hop                                |                                                                           |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|
| Agilent Spectrum Analyzer - Swept SA<br>W RL BF SO & AC<br>Center Freq 2.441500000 G<br>IF                                                 | SENSE/PULSE SOUF<br>HZ<br>PNO: Fast →→<br>Gain:Low #Atten: 40 dB | #Avg Type: RMS<br>Avg Hold: 5000/5000 | 10:28:57 AMNov 13, 2024<br>TRACE 2 3 4 5 6<br>TYPE MWWWW<br>DET P P P P P | Frequency<br>Auto Tune                           |
| Ref Offset 8.04 dB<br>10 dB/div Ref 30.00 dBm                                                                                              |                                                                  | ΔN                                    | lkr2 1.006 MHz<br>0.022 dB                                                | Center Freq                                      |
| 20.0                                                                                                                                       |                                                                  |                                       |                                                                           | 2.441500000 GHz                                  |
| 0.00                                                                                                                                       |                                                                  | 2∆1                                   |                                                                           | Start Freq<br>2.440500000 GHz                    |
| -10.0                                                                                                                                      | - Law                                                            |                                       |                                                                           | Stop Freq<br>2.442500000 GHz                     |
| -30.0                                                                                                                                      |                                                                  |                                       |                                                                           | <b>CF Step</b><br>200.000 kHz<br><u>Auto</u> Man |
| -50.0                                                                                                                                      |                                                                  |                                       |                                                                           | Freq Offset<br>0 Hz                              |
| Start 2.440500 GHz<br>#Res BW 300 kHz                                                                                                      | #VBW 300 kHz                                                     | Success                               | top 2.442500 GHz<br>.000 ms (1001 pts)                                    |                                                  |
| MSG                                                                                                                                        | #VBW 500 KH2                                                     | Sweep 1.                              |                                                                           |                                                  |
|                                                                                                                                            | 2DH5_Ar                                                          | nt1_Hop                               |                                                                           |                                                  |
| Agilent Spectrum Analyzer - Swept SA           X         RL         RF         50 Ω         AC           Center Freq         2.441500000 G | SENSE: PULSE   SOUF                                              | #Avg Type: RMS                        | 10:29:40 AM Nov 13, 2024<br>TRACE 2 3 4 5 6                               | Frequency                                        |
| 1                                                                                                                                          | PNO: Fast +++ Trig: Free Run<br>Gain:Low #Atten: 40 dB           | Avg[Hold: 5000/5000                   | TRACE 2 3 4 5 6<br>TYPE MWWW<br>DET P P P P P P                           | Auto Tune                                        |
| Ref Offset 8.04 dB<br>10 dB/div Ref 30.00 dBm<br>Log                                                                                       |                                                                  |                                       | lkr2 1.012 MHz<br>0.068 dB                                                |                                                  |
| 20.0                                                                                                                                       |                                                                  |                                       |                                                                           | Center Freq<br>2.441500000 GHz                   |
| 0.00                                                                                                                                       |                                                                  | 2Δ1                                   |                                                                           | Start Freq<br>2.440500000 GHz                    |
| -10.0                                                                                                                                      |                                                                  |                                       |                                                                           | Stop Freq<br>2.442500000 GHz                     |
| -30.0                                                                                                                                      |                                                                  |                                       |                                                                           | CF Step<br>200.000 kHz<br><u>Auto</u> Man        |
| -40.0                                                                                                                                      |                                                                  |                                       |                                                                           | Freq Offset<br>0 Hz                              |
| -500                                                                                                                                       |                                                                  |                                       | top 2 442500 Oll-                                                         |                                                  |
| Start 2.440500 GH2<br>#Res BW 300 kHz                                                                                                      | #VBW 300 kHz                                                     | Sweep 1.                              | top 2.442500 GHz<br>.000 ms (1001 pts)                                    |                                                  |
|                                                                                                                                            |                                                                  | STATUS                                |                                                                           |                                                  |

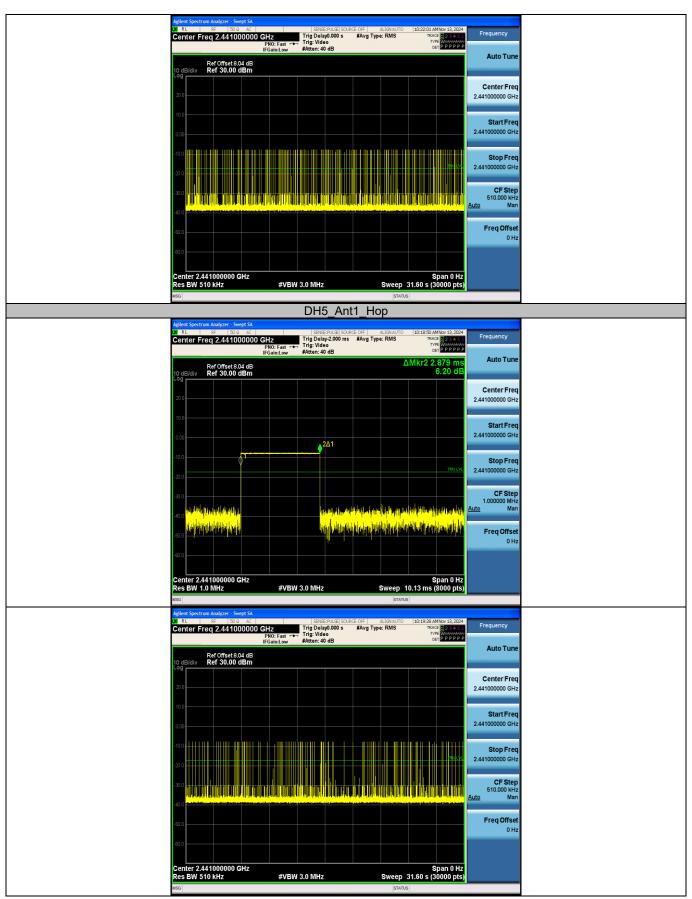


## Appendix D: Time of occupancy

Test Result

| Test Mode | Antenna | Frequency<br>[MHz] | BurstWidth<br>[ms] | Hops in 31.6s<br>[Num] | Result<br>[s] | Limit<br>[s] | Verdict |
|-----------|---------|--------------------|--------------------|------------------------|---------------|--------------|---------|
| DH1       | Ant1    | Нор                | 0.375              | 319                    | 0.12          | ≤0.4         | PASS    |
| DH3       | Ant1    | Нор                | 1.631              | 165                    | 0.269         | ≤0.4         | PASS    |
| DH5       | Ant1    | Нор                | 2.879              | 108                    | 0.311         | ≤0.4         | PASS    |
| 2DH1      | Ant1    | Нор                | 0.385              | 315                    | 0.121         | ≤0.4         | PASS    |
| 2DH3      | Ant1    | Нор                | 1.637              | 165                    | 0.27          | ≤0.4         | PASS    |
| 2DH5      | Ant1    | Нор                | 2.883              | 108                    | 0.311         | ≤0.4         | PASS    |

#### Notes:


1. Period time = 0.4s \* 79 = 31.6s

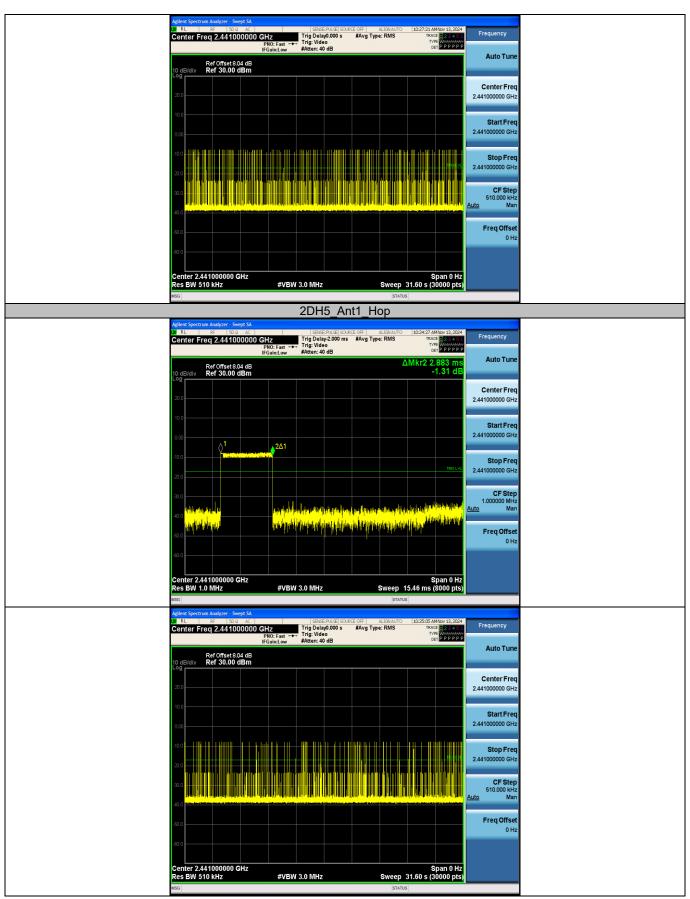
2. Result (Time of occupancy) = BurstWidth[ms] \* Hops in 31.6s [Num]



| DH1_Ant1_Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| Apilent Spectrum Analyzer - Swept SA           VI         RF         50.0         AC         SENSE PULSE[SOURCE OFF         ALIGNAUTO         10:2005 AMNov 13, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
| Center Freq 2.441000000 GHz<br>PN0: Fast →→ Trig: Video Trig: Video Trig: Video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Tune                       |  |
| Ref offset8.04 dB Дик 7 2 57.0 µв<br>10 dB/div Ref 30.00 dBm 10.87 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center Freq<br>2.44100000 GHz   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq                      |  |
| ααο<br><u>2Δ1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.441000000 GHz                 |  |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop Freq                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.441000000 GHz                 |  |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CF Step                         |  |
| 200 verters of the file internet and the statement of the | 1.000000 MHz<br><u>Auto</u> Man |  |
| a standing the standing of the stan                                                                                                                                                                                                                                            |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset<br>0 Hz             |  |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
| Center 2.441000000 GHz Span 0 Hz<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |  |
| Agitent Spectrum Analyzer - Swept SA<br>R L RF S0.9. AC SPIREFULSE SOURCE OFF ALLSMAUTO 10:20:43 AMNov 13, 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                       |  |
| Center Freq 2.441000000 GHz<br>PN0: Fast → Trig: Video #Avg Type: RMS TRACE Bote so<br>PN0: Fast → Trig: Video trie: PPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |  |
| Paf Officer 2 04 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Auto Tune                       |  |
| 10 dB/div <b>Ref 30.00 dBm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center Freq<br>2.44100000 GHz   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.441000000 GHz                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Freq                       |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.441000000 GHz                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Step                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510.000 kHz<br><u>Auto</u> Man  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Freq Offset<br>0 Hz             |  |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
| Center 2.441000000 GHz Span 0 Hz<br>Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |  |
| DH3_Ant1_Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |  |
| Agilent Spectrum Analyzer - Swept SA<br>R L 87 500 AC SPINEPULE SOURCE OFF ALLSHAUTO 102123 AMIlor 13,2024<br>Center Freg 2,441000000 GHz Trig Delay-2.000 ns #Avg Type: RMS TRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frequency                       |  |
| Center Freq 2.441000000 GHz Trig Delay2.000 ms #Avg Type: RMS TRACE 10.5 st<br>PN0: Fast → Trig: Video Trig: Video Trig: Video Center PP PP PP F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |  |
| Ref Offset 8.04 dB ΔMkr2 1.631 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Auto Tune                       |  |
| 10 dB/div Ref 30.00 dBm 5.70 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center Freq<br>2.44100000 GHz   |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq<br>2.44100000 GHz    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Freq                       |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.441000000 GHz                 |  |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CF Step                         |  |
| 🚙 o birns tears of day on the statement of the statement  | 1.000000 MHz<br><u>Auto</u> Man |  |
| Place study of the product of the second state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset<br>0 Hz             |  |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |
| Center 2.441000000 GHz Span 0 Hz<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |  |
| usg status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |  |












| 2DH1_Ant1_Hop                                                                                                                                                                                                                                                                                                                                        |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Agitent Spectrum Analyzer - Swept SA<br>24 RL 57 1508 AC   SERE DALEE SOLREE OFF ALISYAUTO 10.2533 AM109 15,20<br>Center Freq 2.444100000 GHz<br>PNOC RESER → Trig: Video ms #Avg Type: RMS trace To 28<br>PNOC RESERVE → Trig: Video ms #Avg Type: RMS trace To 28<br>IFGainLow # Area to 40                                                        | P P P P P P P P P P P P P P P P P P P                         |
| Ref offset 8.04 dB         ΔMkr2 385.0 μ           10 dB/dlv         Ref 30.00 dBm         11.90 d                                                                                                                                                                                                                                                   | IS Auto Tune<br>IB                                            |
|                                                                                                                                                                                                                                                                                                                                                      | Center Freq<br>2.44100000 GHz<br>Start Freq<br>2.44100000 GHz |
| 201<br>-100<br>-100                                                                                                                                                                                                                                                                                                                                  | Stop Freq<br>2.44100000 GHz<br>CF Step                        |
|                                                                                                                                                                                                                                                                                                                                                      | Auto Man<br>Freq Offset<br>0 Hz                               |
| Center 2.441000000 GHz<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt<br>Msg                                                                                                                                                                                                                                                                 | HZ<br>(5)                                                     |
| Aglent Spectrum Analyzer - Swept SA<br>DN RL RF [50] a.C.   SEVEPALSE[SOURCE CFF] ALIGNAUTO [10:26:12:AM1Nov 13:20<br>Center Freq 2.441000000 GHz<br>PN0: fast ++<br>IFGainLow #Atten: 40 dB tel:                                                                                                                                                    | 5 6 Frequency                                                 |
| Ref Offset8 04 dB         Ref 30.00 dBm           Log                                                                                                                                                                                                                                                                                                | Center Freq<br>2.44100000 GHz                                 |
|                                                                                                                                                                                                                                                                                                                                                      | Start Freq<br>2.44100000 GHz                                  |
|                                                                                                                                                                                                                                                                                                                                                      | Stop Freq<br>2.44100000 GHz<br>CF Step                        |
| Center 2.441000000 GHz #VEW 3.0 MHz Sweep 31.60 s (30000 pt                                                                                                                                                                                                                                                                                          | ES 510.000 KHz<br>Man<br>Freq Offset<br>0 Hz<br>53            |
| All Antiger Status                                                                                                                                                                                                                                                                                                                                   |                                                               |
| Aglent Spectrum Analyzer         Swight SA           D_RL         sc           PRL         sc           Center Freq 2.441000000 GHz           PN0: fast           PN0: fast           IFG-bit Action w           Ref Offset 8.04 dB           QB/Bidit           Ref Offset 8.04 dB           T0 dB/dit           Ref Offset 8.04 dB           T7 dB | Auto Tune                                                     |
|                                                                                                                                                                                                                                                                                                                                                      | Center Freq<br>2.44100000 GHz<br>Start Freq                   |
| ο του του του του του του του του του το                                                                                                                                                                                                                                                                                                             | 2.441000000 GHz<br>Stop Freq                                  |
|                                                                                                                                                                                                                                                                                                                                                      | CF Step<br>1.00000 MHz<br>Auto Man<br>Freq Offset<br>0 Hz     |
| Center 2.44/1000000 GHz Span 0 F<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt<br>150                                                                                                                                                                                                                                                       | H2<br>(5)                                                     |







# Appendix E: Number of hopping channels

Test Result

| Test Mode | Antenna | Frequency<br>[MHz] | Result<br>[Num] | Limit<br>[Num] | Verdict |
|-----------|---------|--------------------|-----------------|----------------|---------|
| DH5       | Ant1    | Нор                | 79              | ≥15            | PASS    |
| 2DH5      | Ant1    | Нор                | 79              | ≥15            | PASS    |



| DH5_Ant1_Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Aglent Spetzm Aadyer - Swed 53.<br>I RL SF ISO AC SENE PLACE SOURCE CFF ALISIANTO 101825 AM<br>Center Freq 2.441750000 GHz<br>FRO: Fast Trig: Free Run Trig:<br>Fro: Free Run Advert Ad B cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |  |
| Ref Offset 7.98 dB<br>10 dB/div Ref 30.00 dBm<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Auto Tune                                                                                  |  |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Center Freq<br>2.441750000 GHz                                                             |  |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start Freq<br>2.40000000 GHz                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.483500000 GHz                                                                            |  |
| -300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CF Step<br>8.350000 MHz                                                                    |  |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Man<br>Freq Offset                                                                    |  |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Hz                                                                                       |  |
| Start 2.40000 GHz Stop 2.483<br>#Res BW 300 kHz #VBW 300 kHz Sweep 1.133 ms (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 350 GHz<br>001 pts)                                                                        |  |
| status<br>2DH5_Ant1_Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |  |
| Agilent Spectrum Analyzer - Swept SA           Mil. RL         RF         SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nov 13 2024                                                                                |  |
| Start Freq 2 40000000 GHz #Avg Type: RMS TRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123456 Frequency                                                                           |  |
| Ref Offset 7.96 dB<br>10 dB/div Ref 30.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Auto Tune                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Center Freq<br>2.441750000 GHz                                                             |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Start Freq                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.40000000 GHz                                                                             |  |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stop Freq                                                                                  |  |
| 0.00<br>-100 - <del>Longer Marthall, Martha</del> | 2.483500000 GHz                                                                            |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stop Freq<br>2.483500000 GHz<br>CF Step<br>8.350000 MHz<br>Auto Man                        |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.48350000 GHz<br>CF Step<br>8.360000 MHz                                                  |  |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stop Freq<br>2.483500000 GHz<br>CF Step<br>8.350000 MHz<br>Auto Man<br>Freq Offset<br>0 Hz |  |