Certificate of Test

NCT CO., LTD.

211-71, Geumgok-ro, Hwaseong-si, Gyeonggido, 18511, Republic of Korea (Tel: +82-31-323-6070 / Fax: +82-31-323-6071) Report No.: NW2410-F002

Page (1) / (23)

1. Client

- Name : CMITECH Co.,Ltd.
- Address : 4th floor office#417-419, 136, LS-ro, Dongan-gu, Anyang-si Gyeonggi-do Republic of Korea 14118
- o Date of Receipt : 2024-08-28
- 2. Use of Report : FCC Approval
- 3. Test Sample • Description / Model : IRIS CAMERA / EF-70-PI
 - FCC ID : 2AJY5-EF-70-PI
- **4.** Place of Test : Fixed test □ Field test (Address:211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Republic of Korea)
- 5. Date of Test : 2024-09-05 ~ 2024-10-15
- 6. Test method used : FCC Part 15 Subpart C 15.247

7. Testing Environment :

- \circ Temperature: (25 \pm 5) °C, Humidity: Less than 75 % R.H.
- * Unless specified otherwise in the individual methods, the tests were conducted on ambient conditions.

8. Test Results : Refer to the test results

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full This test report is not related to KOLAS recognition and RRA designation.

Affirmation	Tested by Jiwon, Hong	-	Technical Man II-shin, Kim	ager (signature)	~
				Oct 28, 2024	
		NC	CT CO., L		

Contact us at report@nct.re.kr to confirm the authenticity of this report

Table of contents

1. General Information	3
2. Information's about Test Item	4
3. Test Report	6
3.1 Test Summary	6
3.2 Test Report Version	7
3.3 Transmitter Requirements	
3.3.1 Antenna Requirement	8
3.3.2 Conducted Emission	9
3.3.3 Radiated Spurious Emission	12

APPENDIX

APPENDIX I TEST SETUP	20
APPENDIX II TEST EQUIPMENT USED FOR TESTS	22

1. General Information's

1.1 Test Performed

Laboratory

- Address
- Telephone
- Facsimile

1.2 Site Map

- FCC Designation No.
- : KR0166 : 409631

:

:

÷

: NCT Co., Ltd.

+82-31-323-6070

+82-31-323-6071

FCC Registration Number

Building Construction Constr

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Korea

Test Repot No.: NW2410-F002

Page 3 of 23

2. Information's about Test Item

2.1 Applicant Information

Company name	:	CMITECH Co.,Ltd.
Address	:	4th floor office#417-419, 136, LS-ro, Dongan-gu, Anyang-si Gyeonggi-do
		Republic of Korea 14118
Telephone	:	+82-70-8633-8459
Facsimile	:	+82-31-624-4490

2.2 Equipment Information

Equipment description	IRIS CAMERA
Model and/or type reference	EF-70-PI
Additional model name ^{see section 2.4}	EF-70-P, EF-70-I, FXT, EF-70
Serial number	Prototype
EUT condition	Pre-production, not damaged
Number of channels	Bluetooth LE 1M:40 ch
Modulation type	Bluetooth LE 1M:40: GFSK
EUT power source	DC 15.0 V(Adaptor) / DC 48.0 V(PoE)
Hardware version	V 1.0
Software version	V 1.00
Test software name(version)	-

2.3 Antenna Information

Туре	Model name	Gain	Note.
Chip antenna	AT3216-	0.5 dBi	Note. For Bluetooth LE 1M
	B2R7HAAT/LF	0.5 0.5	

2.4 Model different description

Model Name		Difference
Basic Model	EF-70-PI	Include BLE/NFC/USIM/POE/HID HW License
Family Madel ()	EF-70-P	Include BLE/NFC/USIM/POE
Family Model ①		Exclude HID HW License
Family Madel		Include BLE/NFC/USIM/HID HW License
Family Model ②	EF-70-1	Exclude POE
Family Madel	EVT.	Eye Lock OEM Model
Family Model ③	FXT	It is identical to the EF-70-I model
Family Madel Ø		Include BLE/NFC/USIM
Family Model ④	EF-70	Exclude POE/HID HW License

2.5 Tested Frequency

LE 1M	Low frequency	Middle frequency	High frequency
Frequency (MHz)	2 402	2 440	2 480

3. Test Report

3.1 Test Summary

Applied	Test Items	Clause	Test Condition	Result
\boxtimes	Antenna Requirement	15.203	-	С
\boxtimes	6 dB Bandwidth	15.247(e)		NT ^{Note 3}
\boxtimes	Maximum Peak Output Power	15.247(b)	Qualitated	NT ^{Note 3}
\boxtimes	Peak Power Spectral Density	15.247(e)	Conducted	NT ^{Note 3}
\boxtimes	Conducted Spurious Emission	15.247(d)		NT ^{Note 3}
	Radiated Spurious Emission	15.247(d) 15.205 & 15.209		С
\boxtimes	Conducted Emissions		AC Line Conducted	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data was reported.

Note 3: LE 1M mode test is not performed because it was tested on the certified RF module.

Refer to the test report of module for the detailed results. (Test report No.: 283004-2)

The sample was tested according to the following specification: ANSI C63.10:2020

Compliance was determined by specification limits of the applicable standard according to customer requirements.

3.2 Test Report Version

Test Report No.	Date	Description
NW2410-F002	2024-10-28	Initial issue

3.3 Transmitter Requirements

3.3.1 Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to \$15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.1.1 Result

Complies

(The transmitter has a Chip Antenna.)

3.3.2 Conducted Emission

3.3.2.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

3.3.2.2 Limit

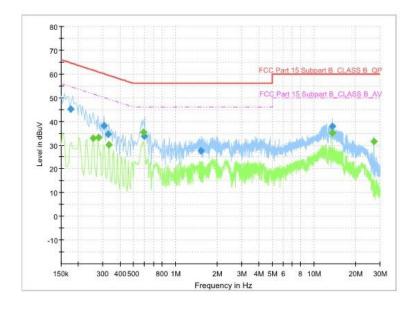
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Denge (MHz)	Conducted Limit (dBuV)			
Frequency Range (MHz)	Quasi-Peak	k Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

* Decreases with the logarithm of the frequency

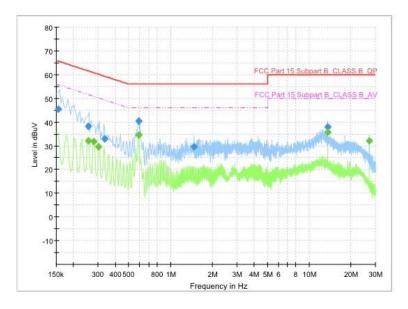
3.3.2.3 Test Procedure


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

3.3.2.4 Test Result

- AC Line Conducted Emission (Graph)
- LINE



Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.176000	45.15		64.67	19.53	1000.0	9.000	L1	9.8
0.256000		32.86	51.56	18.70	1000.0	9.000	L1	9.8
0.280000		33.17	50.82	17.64	1000.0	9.000	L1	9.8
0.306000	38.24		60.08	21.84	1000.0	9.000	L1	9.8
0.328000	34.52		59.50	24.99	1000.0	9.000	L1	9.8
0.332000		30.26	49.40	19.14	1000.0	9.000	L1	9.8
0.588000		35.38	46.00	10.62	1000.0	9.000	L1	10.0
0.600000	33.79		56.00	22.21	1000.0	9.000	L1	10.0
1.532000	27.76		56.00	28.24	1000.0	9.000	L1	10.3
13.560000	37.83		60.00	22.17	1000.0	9.000	L1	10.7
13.560000		35.20	50.00	14.80	1000.0	9.000	L1	10.7
27.120000		31.66	50.00	18.34	1000.0	9.000	L1	11.0

- NEUTRAL

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.156000	45.41		65.67	20.26	1000.0	9.000	N	9.8
0.256000	38.34		61.56	23.22	1000.0	9.000	N	9.8
0.256000		31.96	51.56	19.60	1000.0	9.000	N	9.8
0.280000		31.82	50.82	19.00	1000.0	9.000	N	9.8
0.304000		29.59	50.13	20.54	1000.0	9.000	N	9.8
0.334000	32.85		59.35	26.50	1000.0	9.000	N	9.8
0.588000		34.63	46.00	11.37	1000.0	9.000	N	10.0
0.588000	40.57		56.00	15.43	1000.0	9.000	N	10.0
1.480000	29.62		56.00	26.38	1000.0	9.000	N	10.2
13.560000	37.87		60.00	22.13	1000.0	9.000	N	10.6
13.560000		35.64	50.00	14.36	1000.0	9.000	N	10.6
27.120000		32.18	50.00	17.82	1000.0	9.000	N	11.0

3.3.3 Radiated Spurious Emission

3.3.3.1 Test Setup

Refer to the APPENDIX I.

3.3.3.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 – 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

3.3.3.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
 (The EUT was protosted with three axes (X, X, Z) and the final test was performed at the worst case.)

(The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)

6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

Peak Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points $\ge 2 x Span / RBW$), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than tuming on and off with the transmit cycle, then no duty cycle correction is required for that emission.

3.3.3.4 Test Result

-Below 1 GHz Data

• Low frequency_BLE 1M_Adaptor

	est dition	Frequency (MHz)	Detector	Pol (V/H)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
NT	NV	36.01	QP	V	59.42	-23.20	36.22	40.00	3.78
NT	NV	41.93	QP	V	58.42	-23.10	35.32	40.00	4.68
NT	NV	296.94	QP	Н	64.32	-23.00	41.32	46.00	4.68
NT	NV	479.98	QP	V	62.47	-18.10	44.37	46.00	1.63
NT	NV	780.00	QP	Н	54.67	-12.50	42.17	46.00	3.83
NT	NV	959.94	QP	V	52.33	-10.20	42.13	48.00	5.87

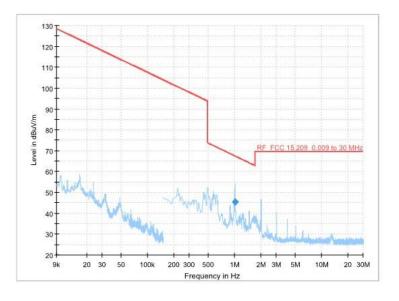
• Low frequency_BLE 1M_PoE

	est dition	Frequency (MHz)	Detector	Pol (V/H)	Reading (dBuV)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
NT	NV	36.01	QP	V	59.66	-23.20	36.46	40.00	3.54
NT	NV	41.93	QP	V	60.54	-23.10	37.44	40.00	2.56
NT	NV	296.94	QP	Н	61.69	-23.00	38.69	46.00	7.31
NT	NV	479.98	QP	Н	61.46	-18.10	43.36	46.00	2.64
NT	NV	960.04	QP	Н	47.92	-10.20	37.72	54.00	16.28

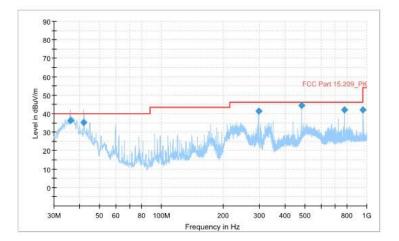
-Above 1 GHz Data

• Low frequency_BLE 1M_Adaptor

Frequency (MHz)	Detector	Pol (V/H)	Reading (dBuV)	Factor (dB)	Average Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4902.25	PK	Н	61.30	-8.50	-	52.80	83.50	30.70
4803.25	AV	-	-	-	-	-	-	-


• Low frequency_BLE 1M_PoE

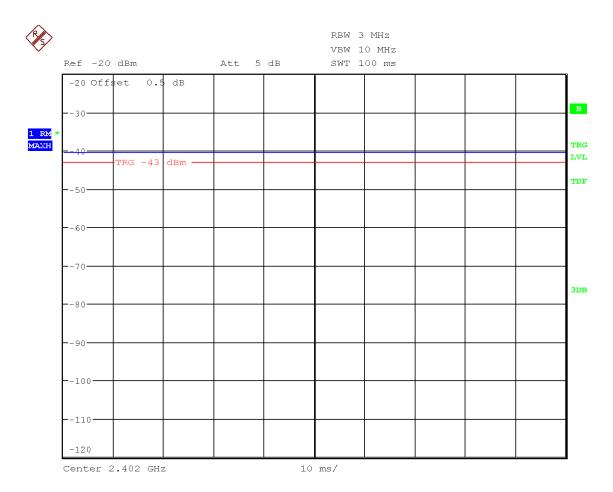
Frequency (MHz)	Detector	Pol (V/H)	Reading (dBuV)	Factor (dB)	Average Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4803.99	PK	Н	60.99	-8.50	-	52.49	83.54	31.05
4003.99	AV	-	-	-	-	-	-	-



3.3.3.5 Test Plot

- Below 30 MHz_Worst case

- Below 1 GHz_Worst case

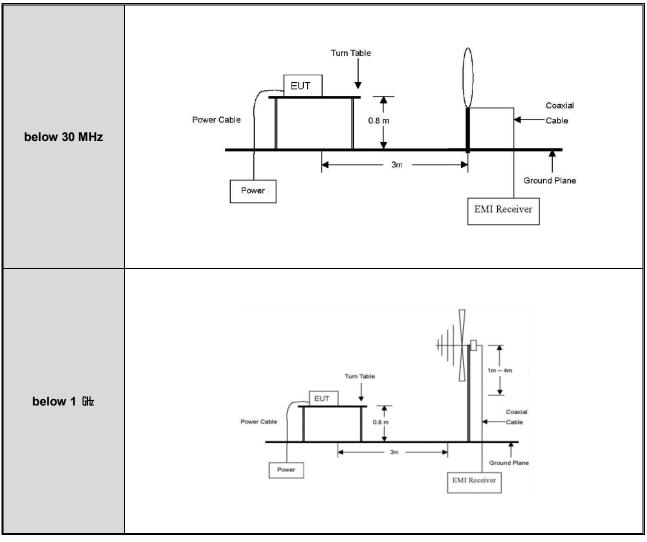


- Above 1 GHz_Worst case

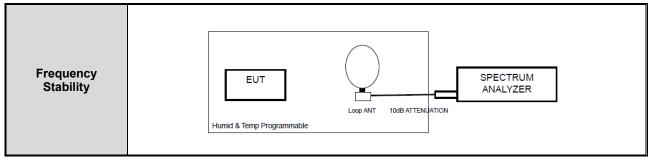
	Spectrum A	nalyzer						
MKR 🗕 📕	4.803	252 662 63	GHz	52.80 dBµV	M RBW			
Refere	nce Level	104.00dBµV				Positiv	re 2000	0 points
104.0								
94.0								
84.0								
74.0								
64.0								
54.0	++							
44.0		المحالية المتألية	w have	\sim	المجلي الجويب		Weighter	
34.0								
24.0								
14.0								
4.0								
Start 3.250 Marker List	OGHz						Stop 18.0	00 0GHz
MKR	Frequency	Le			equency		Level	
1 4.80	13 252 662 63 G	iHz	52.80 dBµV					
AWMax 10 Refint		nn Off Corr	ection On	D-	E-		3-	
Ref.Int	Pre-Ar	np Off Corr	ection On	D-	8-			
Ref.Int	Pre-Ar Spectrum A	np Off Corr			M RBW		z ATI	10dB
Ref.Int MS2850A MKR • A 1	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46				3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int	Pre-Ar Spectrum A	np Off Corr			M RBW		z ATT z SW	- 10dE
Ref.Int MS2850A MKR ~ A 1 Referee 104.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR A 1 Refere 104.0 94.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR ~ A 1 Refere: 104.0 94.0 84.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR A 1 Refere 104.0 94.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.int MS2850A MKR A 1 Refere 104.0 94.0 84.0 74.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.int MS2850A MKR A 1 04.0 94.0 94.0 84.0 74.0 64.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR A 1 Refere: 104.0 94.0 94.0 74.0 64.0 54.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR ▲ A 104.0 94.0 84.0 74.0 64.0 54.0 54.0 44.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dE T 29ms
Ref.Int MS2850A MKR ✓ A 104.0 94.0 84.0 64.0 54.0 34.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dB T 29ms
MS2850A MKR ~ A 1 Refere: 104.0 94.0 64.0 54.0 44.0 34.0 24.0	Pre-Ar Spectrum A 26.485	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW	T 10dB T 29ms
MS2850A MKR A 1 A Refere: 0 94.0 - 94.0 - 64.0 - 54.0 - 44.0 - 34.0 - 24.0 - 14.0 -	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW ve 2000	T 10dB T 29ms
Ref.Int MS2850A MKR ✓ A 104.0 94.0 84.0 74.0 64.0 34.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr malyzer 549 277 46			M RBW	3MH:	z ATT z SW ve 2000	T 10dB T 29ms D0 points
Ref.Int MKS2850A MKR 1 A Referen 104.0 94.0 84.0 64.0 54.0 44.0 34.0 24.0 14.0 4.0 Start 18.000 Marker List	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr inalizer 549 277 46 104.00dΒμV 104.00dΒμV 104.00dΒμV 104.00dΒμV	GHz	53.94 dBµV	M RBW	3MH:	z ATT z SW ve 2000	T 10dB T 29ms 00 points
Ref.Int MKS2850A MKR 1 A Referen 104.0 94.0 84.0 64.0 54.0 44.0 34.0 24.0 14.0 4.0 Start 18.000 Marker List	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr inalizer 549 277 46 104.00dΒμV 104.00dΒμV 104.00dΒμV 104.00dΒμV	GHz	53.94 dBµV		3MH:	z ATT z SW /e 2000	T 29ms 00 points
MS2850A MKR ▲ 1 ▲ 1 ▲ 94.0 ● 94.0 ● 74.0 ● 64.0 ● 34.0 ● 24.0 ● 14.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 34.0 ● 35.0 ● 36.0 ● 37.0 ● 37.0 ● 37.0 ● 37.0<	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr inalizer 549 277 46 104.00dΒμV 104.00dΒμV 104.00dΒμV 104.00dΒμV	GHz	53.94 dBµV		3MH:	z ATT z SW /e 2000	T 10dB T 29ms D0 points
Ref.Int MS2850A MKR ← A 1 ← A Referen 104.0 94.	Pre-Ar Spectrum A 26.485 nce Level	np Off Corr inalizer 549 277 46 104.00dΒμV 104.00dΒμV 104.00dΒμV 104.00dΒμV	GHz	53.94 dBµV		3MH:	z ATT z SW /e 2000	T 10dB T 29ms 00 points

3.3.3.6 Test Plot for Duty Cycle

APPENDIX I


TEST SETUP

Test Repot No.: NW2410-F002


211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, Korea 18511 www.nct.re.kr TEL: +82-31-323-6070 FAX: +82-31-323-6071

• Radiated Measurement

• Temp & Humid Chamber Measurement

Test Repot No.: NW2410-F002

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, Korea 18511 www.nct.re.kr TEL: +82-31-323-6070 FAX: +82-31-323-6071

APPENDIX II

TEST EQUIPMENT USED FOR TESTS

	Description	Manufacturer	Serial No.	Model No.	Cal. Date	Next Cal. Date
1	Signal Analyzer	Anritsu	6261831920	MS2850A	2024-01-10	2025-01-10
2	Triple Output DC Power Supply	Agilent	MY4003881 6	E3631A	2024-02-27	2025-02-27
3	DC power supply	KIKUSUI	MH002327	PWR400L	2024-03-07	2025-03-07
4	Vector SG	R&S	255563	SMBV100A	2024-02-27	2025-02-27
5	8360B SERIES SWEPT SIGNAL GENERATOR	HP	3614A00312	83640B	2024-07-17	2025-07-17
6	Humi./Baro/Temp. data recorder	Lutron	89503	MHB-382SD	2024-07-22	2025-07-22
7	TRILOG Broadband Antenna	Schwarzbeck	01027	VULB 9168	2023-05-23	2025-05-23
8	TRILOG Broadband Antenna	Schwarzbeck	01029	VULB 9168	2023-05-03	2025-05-03
9	Double Ridged Broadband Horn Antenna	Schwarzbeck	02087	BBHA 9120 D	2024-04-24	2025-04-24
10	Double Ridged Broadband Horn Antenna	Schwarzbeck	02086	BBHA 9120 D	2024-05-24	2025-05-24
11	Broadband Horn Antenna	Schwarzbeck	00938	BBHA 9170	2024-05-24	2025-05-24
12	Broadband Horn Antenna	Schwarzbeck	00937	BBHA 9170	2024-05-24	2025-05-24
13	LOOP-ANTENNA	Schwarzbeck	00124	FMZB1519 B	2023-05-25	2025-05-25
14	Amplifier	TESTEK	190008-L	TK-PA1840H	2024-05-04	2025-05-04
15	Amplifier	TESTEK	190007-L	TK-PA18H	2024-05-21	2025-05-22
16	Amplifier	TESTEK	190009-L	TK-PA01S	2024-05-21	2025-05-22
17	EMI Test Receiver	ROHDE&SCHWAR Z	102138	ESR	2024-05-21	2025-05-21
18	High Pass Filter	Mini-Circuits	1741	VHF-3100+	2024-07-17	2025-07-17
19	TRUE RMS MULTIMETER	FLUKE	42120033	175	2024-02-01	2025-02-01