11 - RADIATED EMISSION

11.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ±4.0 dB.

11.2 Test Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4-2001. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT was connected with 120Vac/60Hz power source.

11.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 10000 MHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	9kHz	9kHz
30 – 1000MHz	120kHz	120kHz
Above 1000MHz	1MHz	1MHz

11.4 Test Procedure

For the radiated emissions test, both the laptop and all peripheral power cords were connected to the AC floor outlet since the power supply used in the laptop did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "**Qp**" in the data table.

11.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

11.6 Test Equipment

Manufacturer	Model No.	Description	Calibration Due Date
Agilent	8564E	Spectrum Analyzer	2004-08-01

11.7 Summary of Test Results

According to the data in section 11.8, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.247</u>, and had the worst margin of:

For Model: PH10B

- -13.4 dB at 7206.00 MHz in the Vertical polarization, Low Channel.
- -11.9 dB at 7323.00 MHz in the Horizontal polarization, Middle Channel.
- -11.9 dB at 7440.00 MHz in the Horizontal polarization, High Channel.
- -8.9 dB at 486.57 MHz in the Vertical polarization, Unintentional Emission

For Model: PH10A

- -11.6 dB at 7206.00 MHz in the Vertical polarization, Low Channel.
- -11.5 dB at 7323.00 MHz in the Vertical polarization, Middle Channel.
- -11.4 dB at 7440.00 MHz in the Vertical polarization, High Channel.
- -10.1 dB at 485.90 MHz in the Vertical polarization, Unintentional Emission

11.8 Radiated Emission Test Data

11.8.1 Test Data for model: PH10B

	Indicated		Table	An	tenna	Сс	rrection Fa	ictor		FCC 15 S	Subpart C
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/ m	dB	dBμV/m	dBμV/ m	dB	
					Low	Channel					
2402.00	94.3	30	1.0	V	28.1	3.4	35.2	90.6			FUND/PEAK
2402.00	88.7	45	1.6	Н	28.1	3.4	35.2	84.9			FUND/PEAK
2402.00	59.5	30	1.0	V	28.1	3.4	35.2	55.8			FUND/AVE
2402.00	55.8	45	1.6	Н	28.1	3.4	35.2	52.1			FUND/AVE
7206.00	33.3	270	1.6	V	35.1	5.6	33.5	40.6	54	-13.4	AVE
7206.00	33.2	200	1.2	Н	35.1	5.6	33.5	40.4	54	-13.6	AVE
4804.00	33.2	90	1.8	V	32.5	4.9	33.0	37.6	54	-16.4	AVE
4804.00	31.2	60	1.6	Н	32.5	4.9	33.0	35.6	54	-18.4	AVE
7206.00	45.7	270	1.6	V	35.1	5.6	33.5	52.9	74	-21.1	PEAK
7206.00	45.5	200	1.2	Н	35.1	5.6	33.5	52.7	74	-21.3	PEAK
4804.00	46.0	90	1.8	V	32.5	4.9	33.0	50.4	74	-23.6	PEAK
4804.00	43.8	60	1.6	Н	32.5	4.9	33.0	48.2	74	-25.8	PEAK
	Middle Channel										
2441.00	95.0	330	1.1	V	28.1	3.4	35.2	91.3			FUND/PEAK
2441.00	89.5	300	1.8	Н	28.1	3.4	35.2	85.8			FUND/PEAK
2441.00	61.2	330	1.1	V	28.1	3.4	35.2	57.5			FUND/AVE
2441.00	56.5	300	1.8	Н	28.1	3.4	35.2	52.8			FUND/AVE
7323.00	34.8	90	1.5	Н	35.1	5.6	33.5	42.1	54	-11.9	AVE
7323.00	34.7	30	1.5	V	35.1	5.6	33.5	41.9	54	-12.1	AVE
4882.00	33.2	30	1.0	V	32.5	4.9	33.0	37.6	54	-16.4	AVE
4882.00	32.0	180	1.0	Н	32.5	4.9	33.0	36.4	54	-17.6	AVE
7323.00	46.3	30	1.5	V	35.1	5.6	33.5	53.6	74	-20.4	PEAK
7323.00	46.0	90	1.5	Н	35.1	5.6	33.5	53.2	74	-20.8	PEAK
4882.00	46.2	30	1.0	V	32.5	4.9	33.0	50.6	74	-23.4	PEAK
4882.00	44.7	180	1.0	Н	32.5	4.9	33.0	49.1	74	-24.9	PEAK
					High	Channel					
2480.00	92.5	0	1.6	V	28.1	3.4	35.2	88.8			FUND/PEAK
2480.00	88.0	0	1.0	Н	28.1	3.4	35.2	84.3			FUND/PEAK
2480.00	58.5	0	1.6	V	28.1	3.4	35.2	54.8			FUND/AVE
2480.00	56.3	0	1.0	Н	28.1	3.4	35.2	52.6			FUND/AVE
7440.00	34.8	150	1.2	Н	35.1	5.6	33.5	42.1	54	-11.9	AVE
7440.00	34.8	180	1.4	V	35.1	5.6	33.5	42.0	54	-12.0	AVE
4960.00	32.5	180	1.7	V	32.5	4.9	33.0	36.9	54	-17.1	AVE
4960.00	31.7	300	1.4	Н	32.5	4.9	33.0	36.1	54	-17.9	AVE
7440.00	46.3	150	1.2	Н	35.1	5.6	33.5	53.6	74	-20.4	PEAK
7440.00	46.2	180	1.4	V	35.1	5.6	33.5	53.4	74	-20.6	PEAK
4960.00	45.3	180	1.7	V	32.5	4.9	33.0	49.7	74	-24.3	PEAK
4960.00	43.5	300	1.4	Н	32.5	4.9	33.0	47.9	74	-26.1	PEAK

Unintentional Emission

	Indicated			e Antenna		Correction Factor			FCC 15 Subpart B	
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/m	dB	dBμV/m	dBμV/m	dB
486.57	40.7	90	1.8	V	18.3	3.1	25.0	37.1	46	-8.9
57.40	44.5	60	2.0	Н	9.8	1.7	25.0	31.0	43.5	-12.5
135.11	42.0	90	1.2	Н	12.2	1.6	25.0	30.8	43.5	-12.7
492.40	36.3	270	1.3	V	18.7	3.1	25.0	33.2	46	-12.8
246.81	39.3	180	1.0	V	13.8	2.2	25.0	30.3	46	-15.7
356.37	33.3	200	1.2	Н	15.5	2.3	25.0	26.2	46	-19.8

Note: The test was performed by placing the EUT on 3-orthogonal axis.

11.8.2 Test Data for model: PH10A

	Indicated		Table	An	tenna	Сс	rrection Fa	ctor		FCC 15 S	Subpart C
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Mode
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	dBμV/	dB	dBμV/m	dBμV/	dB	
					Low	Channel			m		
2402.00	92.5	330	1.3	V	28.1	3.4	35.2	88.8			FUND/PEAK
2402.00	85.7	90	2.0	Н	28.1	3.4	35.2	81.9			FUND/PEAK
2402.00	58.5	330	1.3	V	28.1	3.4	35.2	54.8			FUND/AVE
2402.00	55.7	90	2.0	Н	28.1	3.4	35.2	51.9			FUND/AVE
7206.00	35.2	300	1.8	V	35.1	5.6	33.5	42.4	54	-11.6	AVE
7206.00	35.1	270	1.6	Н	35.1	5.6	33.5	42.3	54	-11.7	AVE
4804.00	33.0	0	1.5	V	32.5	4.9	33.0	37.4	54	-16.6	AVE
4804.00	31.7	30	1.4	Н	32.5	4.9	33.0	36.1	54	-17.9	AVE
7206.00	47.5	300	1.8	V	35.1	5.6	33.5	54.7	74	-19.3	PEAK
7206.00	46.3	270	1.6	Н	35.1	5.6	33.5	53.6	74	-20.4	PEAK
4804.00	45.8	0	1.5	V	32.5	4.9	33.0	50.2	74	-23.8	PEAK
4804.00	44.7	30	1.4	Н	32.5	4.9	33.0	49.1	74	-24.9	PEAK
	Middle Channel										
2441.00	94.2	30	1.2	V	28.1	3.4	35.2	90.4			FUND/PEAK
2441.00	90.7	0	1.0	Н	28.1	3.4	35.2	86.9			FUND/PEAK
2441.00	60.5	30	1.2	V	28.1	3.4	35.2	56.8			FUND/AVE
2441.00	57.7	0	1.0	Н	28.1	3.4	35.2	53.9			FUND/AVE
7323.00	35.3	150	1.5	V	35.1	5.6	33.5	42.5	54	-11.5	AVE
7323.00	35.0	180	1.2	Н	35.1	5.6	33.5	42.2	54	-11.8	AVE
4882.00	33.3	30	1.2	V	32.5	4.9	33.0	37.7	54	-16.3	AVE
4882.00	31.8	270	1.3	Н	32.5	4.9	33.0	36.2	54	-17.8	AVE
7323.00	47.2	150	1.5	V	35.1	5.6	33.5	54.4	74	-19.6	PEAK
7323.00	45.8	180	1.2	Н	35.1	5.6	33.5	53.0	74	-21.0	PEAK
4882.00	46.2	30	1.2	V	32.5	4.9	33.0	50.6	74	-23.4	PEAK
4882.00	44.5	270	1.3	Н	32.5	4.9	33.0	48.9	74	-25.1	PEAK
					High	Channel					
2480.00	91.3	30	1.0	V	28.1	3.4	35.2	87.6			FUND/PEAK
2480.00	90.5	45	1.8	Н	28.1	3.4	35.2	86.8			FUND/PEAK
2480.00	58.5	30	1.0	V	28.1	3.4	35.2	54.8			FUND/AVE
2480.00	57.8	45	1.8	Н	28.1	3.4	35.2	54.1			FUND/AVE
7440.00	35.4	60	1.2	V	35.1	5.6	33.5	42.6	54	-11.4	AVE
7440.00	35.3	330	1.8	Н	35.1	5.6	33.5	42.5	54	-11.5	AVE
4960.00	33.0	0	1.2	V	32.5	4.9	33.0	37.4	54	-16.6	AVE
4960.00	31.5	250	1.6	Н	32.5	4.9	33.0	35.9	54	-18.1	AVE
7440.00	47.1	60	1.2	V	35.1	5.6	33.5	54.3	74	-19.7	PEAK
7440.00	46.4	330	1.8	Н	35.1	5.6	33.5	53.6	74	-20.4	PEAK
4960.00	45.8	0	1.2	V	32.5	4.9	33.0	50.2	74	-23.8	PEAK
4960.00	44.3	250	1.6	Н	32.5	4.9	33.0	48.7	74	-25.3	PEAK

Unintentional Emission

	Indicated			Antenna		Correction Factor			FCC 15 Subpart B	
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dBμV/m	$dB\mu V/m$	dB	dBμV/m	dBμV/m	dB
485.90	39.5	90	1.8	V	18.3	3.1	25.0	35.9	46	-10.1
492.43	37.2	300	1.4	V	18.7	3.1	25.0	34.0	46	-12.0
57.45	43.8	30	1.8	Н	9.8	1.7	25.0	30.3	43.5	-13.2
135.00	41.2	270	1.0	Н	12.2	1.6	25.0	30.0	43.5	-13.5
246.20	38.5	0	1.2	V	13.8	2.2	25.0	29.5	46	-16.5
356.60	35.7	220	1.5	Н	15.5	2.3	25.0	28.5	46	-17.5

Note: The test was performed by placing the EUT on 3-orthogonal axis.

12 - CONDUCTED EMISSION

12.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ±2.4 dB.

12.2 Test Setup

The measurement was performed at shield room, using the same setup per ANSI C63.4 – 2001 measurement procedure. The specification used was FCC Class B limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT was connected with 120Vac/60Hz power source.

12.3 Spectrum Analyzer Setup

The spectrum analyzer was set to investigate the spectrum from 150 kHz to 30Mhz.

12.4 Test Procedure

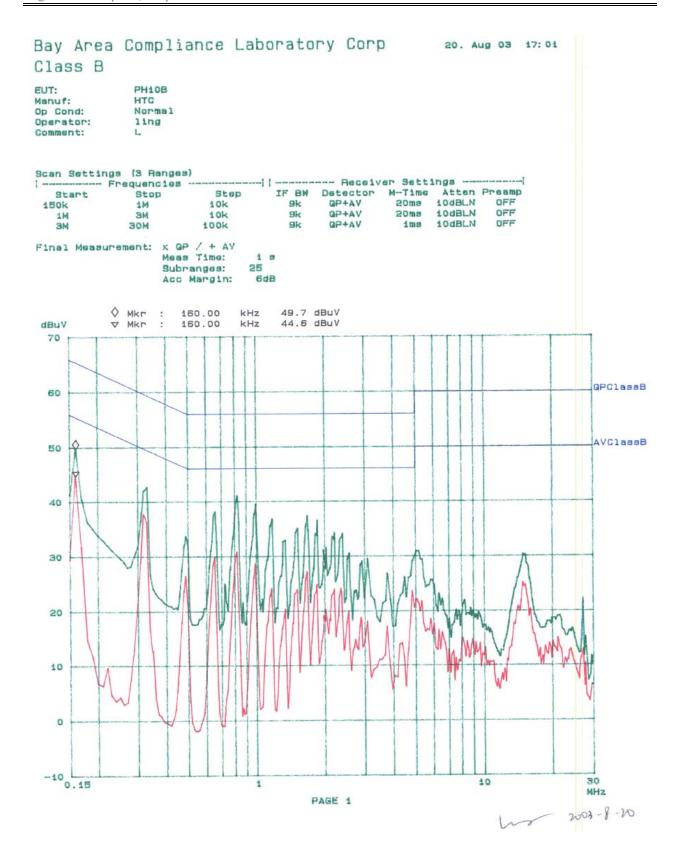
During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "Qp".

12.5 Summary of Test Results

According to the data in section 12.6, the EUT <u>complied with the FCC</u> Conducted margin for a Class B device, with the *worst* margin reading of:


-8.9 dB μ V at 0.350 MHz in the Neutral mode

12.6 Conducted Emissions Test Data

	LINE CON	NDUCTED EMISSIONS		FCC C	LASS B
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dΒμV	Qp/Ave/Peak	Line/Neutral	dΒμV	dB
0.350	39.1	AVG	Neutral	48	-8.9
0.160	44.7	AVG	Line	54	-9.3
0.180	41.4	AVG	Neutral	53	-11.6
0.330	36.2	AVG	Line	49	-12.8
0.900	32.4	AVG	Neutral	46	-13.6
0.350	44.0	QP	Neutral	58	-14.0
0.160	49.8	QP	Line	64	-14.2
0.900	41.3	QP	Neutral	56	-14.7
0.830	41.0	QP	Line	56	-15.0
0.830	30.8	AVG	Line	46	-15.2
0.180	47.3	QP	Neutral	63	-15.7
0.330	42.6	QP	Line	59	-16.4

12.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following page as reference.

Bay Area Compliance Laboratory Corp 20. Aug 03 16: 29 Class B EUT: PH10B Manuf: HTC Op Gond: Operator: Normal LANG Comment: Scan Settings (3 Ranges) Frequencies -------- Receiver Settings ------Start Step IF BW Detector M-Time Atten Preamp Stop 150k 9k 20ms 10dBLN 20ms 10dBLN 1ms 10dBLN 1M 10k QP+AV OFF QP+AV 1M 3M 10k 9k OFF MOE ME 100k 9k QP+AV OFF Final Measurement: x QP / + AV Meas Time: Subranges: 25 Acc Margin: 6dB ♦ Mkr : 180.00 kHz 47.2 dBuV dBuV V Mkr 180.00 KHZ 41.3 dBuV 70 QPClassB 60 AVClassB 50 40 30 20 10 0 -10 L 0.15 PAGE 1 Los 2003-8-20.

13 - ANTENNA REQUIREMENT

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The gain of the integrated antenna used for transmitting is 3 dBi and is complied with 15.203. Please see EUT photo for details.

14 – RF EXPOSURE REQUIREMENT

According to the TCB Exclusions List, the limit for general population of portable transmitters that are used less than 2.5cm from a person's body is:

Low Threshold : $(60/f_{GHz})$ mW, d < 2.5 cm => (60/2.4) = 25mW

The maximum output power for the device is 0.0013W (1.3mW) which is less than the limit lited in the TCB exclusions lists (25mW). Therefore, SAR test is not required for the Part15 portion of this device.

15 - SUMMARY OF TEST RESULTS FOR FCC PART 24

FCC RULE	DESCRIPTION OF TEST	Measured	Result
§ 2.1046 (a)	Conducted Output Power	Section 16	Compliant
§ 2.1046 § 24.232(1)	RF Output powr	Section 17	Compliant
§ 2.1049 § 24.238	Emission Bandwidth	Section 18	Compliant
2.1051 § 24.238(a)	Spurious emissions at antenna terminals	Section 19	Compliant
2.1053 § 24.238 (a)	Field strength of spurious radiation	Section 20	Compliant
\$2.1049 \$24.238	Band Edge Test	Section 21	Compliant
§ 2.1055 (a) § 2.1055 (d) § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Section 22	Compliant
§ 2.1093 § 24.52	RF Exposure Requirement	SAR report	Compliant

16 - CONDUCTED OUTPUT POWER MEASUREMENT

16.1 Standard Applicable

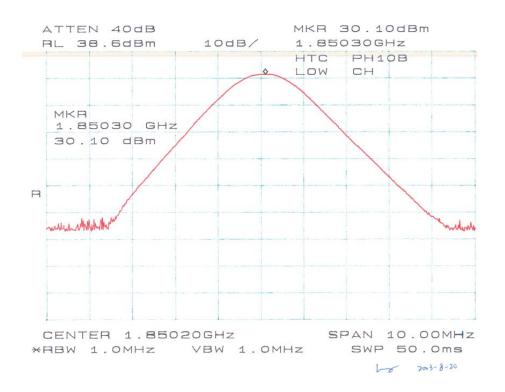
According to § 2.1046 (a) for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8).

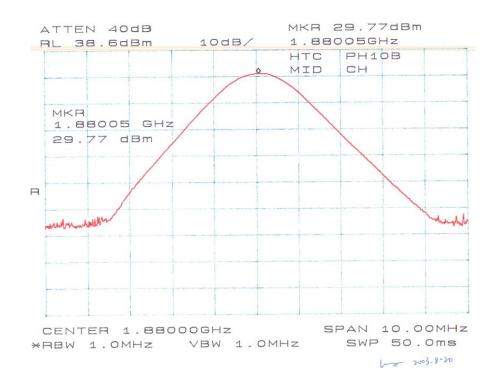
16.2 Measurement Procedure

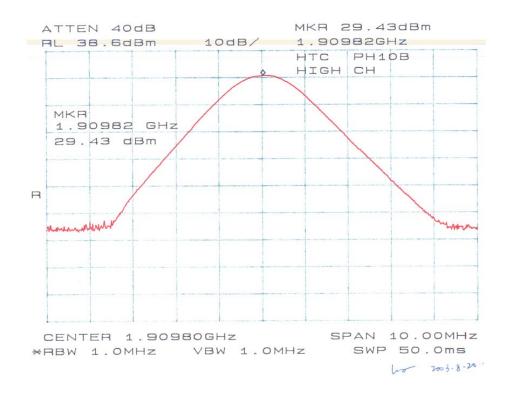
- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Add a correction factor to the display.

Note: The antenna is integrated with the EUT. The conducted output power may not be measured exactly.

16.3 Measurement Result


Please refer to the attached pictures for more information.


Frequency	Output Power (dBm)	Output Power (W)	Result	
1850.2	30.10	1.02	Compliant	
1880	29.77	0.95	Compliant	
1909.8	29.43	0.88	Compliant	


Please also refer to following plots.

16.4 Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Due Date	
HP	8568B	2610A02165	2003-12-06	
HP	8593B	2919A0242	2003-12-06	

17 - RF POWER OUTPUT

17.1 Applicable Standard

According to FCC §2.1046 and §24.232 (1), mobile/portable stations are limited to 2 watts EIRP.

17.2 Test Procedure

- 1. On a test site, the EUT shall be placed at 1.5m height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the quasi-peak detector is used for the measurement.
- 4. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 5. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8. The maximum signal level detected by the measuring receiver shall be noted.
- 9. The transmitter shall be replaced by a horn (substitution antenna).
- 10. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

17. The measure of the effective radiated power is the large of the two levels recorded, at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

17.3 Test Results

For Model PH10B:

FREQUENCY	SUBSTITUTION	SUBSTITUTION	SUBSTITUTION	OUTPUT
`	READING	ANTENNA	CALBE LOSS	POWER
(MHZ)	(dBm)	GAIN	(dbm)	(dBm)
1850.2	22.2	6.7	0.1	28.8
1880.0	21.5	6.7	0.1	28.1
1909.8	21.0	6.7	0.1	27.6

For Model PH10A:

FREQUENCY (MHZ)	SUBSTITUTION READING (dBm)	SUBSTITUTION ANTENNA GAIN	SUBSTITUTION CALBE LOSTS (dbm)	OUTPUT POWER (dBm)
1850.2	21.6	6.7	0.1	28.2
1880.0	21.5	6.7	0.1	28.1
1909.8	21.2	6.7	0.1	27.8

Sample calculation:

Absolute level = substitution reading + antenna gain - cable loss

For example:

22.2+6.7-0.1=28.8

18 - EMISSION BANDWIDTH

18.1 Applicable Standards

According to FCC §2.1049 and §24.238 (b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

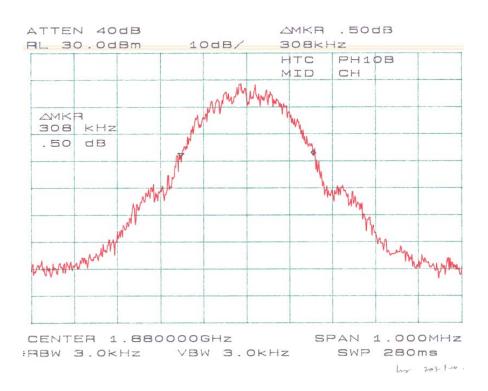
18.2 Test Procedure

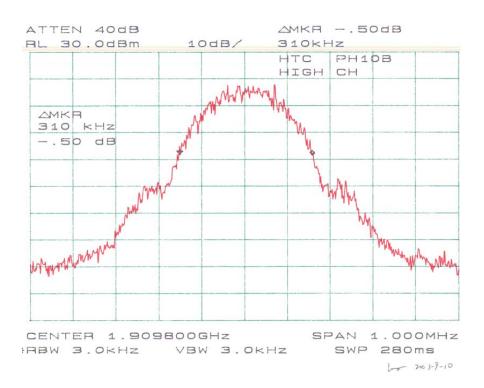
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 KHz and the spectrum was recorded.

18.3 Test Equipment


Agilent 8565EC Spectrum Analyzer Hewlett Packard HP 7470A Plotter Hewlett Packard 8449 Amplifier A.H. Systems, Inc SAS-200/571 Horn Antenna


18.4 Plots of Occupied Bandwidth


Please refer to plots hereinafter.

Test Data Summary

Channel	Emission Bandwidth in kHz
Low	313
Mid	308
High	310

19 - OUT OF BAND EMISSIONS AT ANTENNA TERMINALS

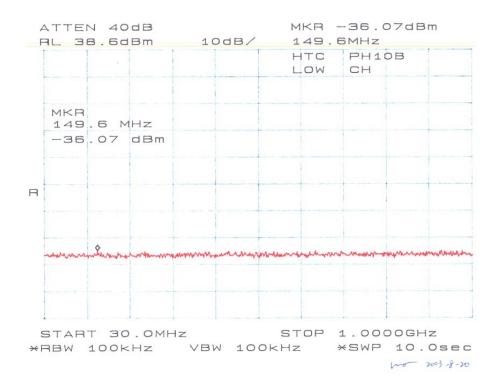
19.1 Applicable Standards

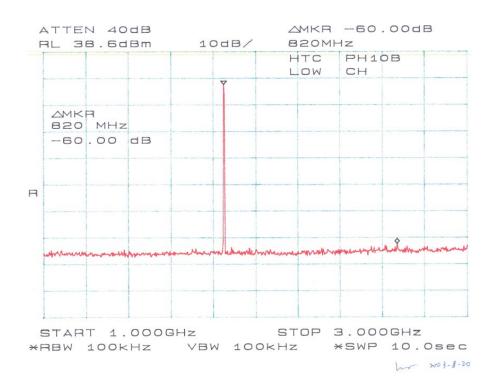
According to FCC §2.1049 and §24.238, on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB.

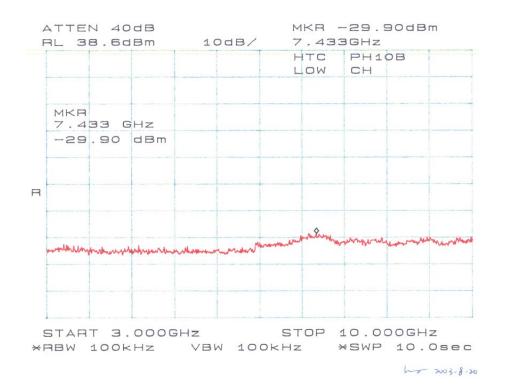
19.2 Test Procedure

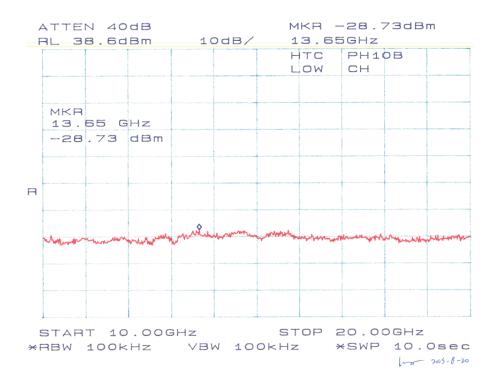
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1 MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

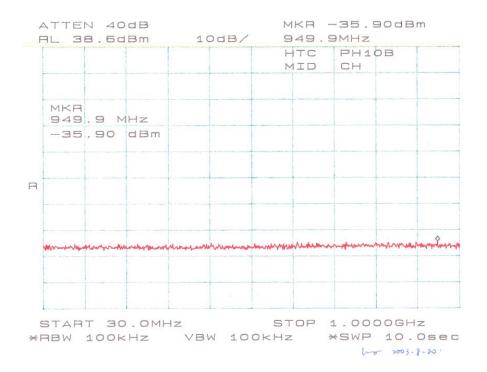
19.3 Test Equipment

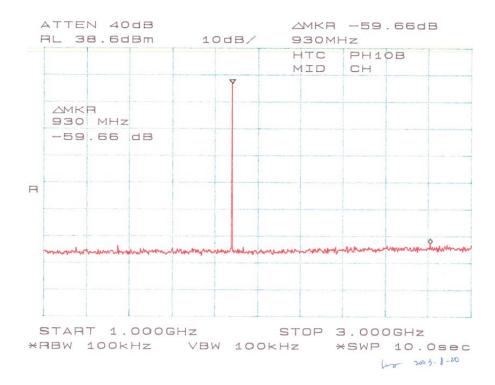

Agilent 8565EC Spectrum Analyzer HP 7470A Plotter Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter Hewlett Packard 8449 Amplifier A.H. Systems, Inc SAS-200/571 Horn Antenna

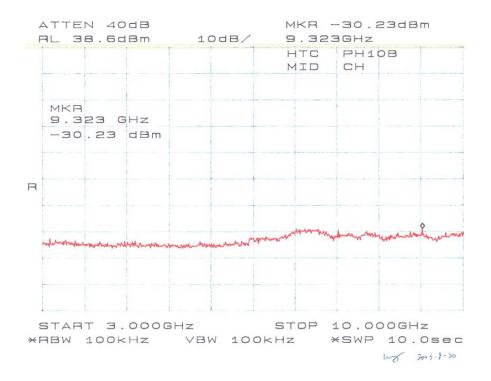

19.4 Test Results

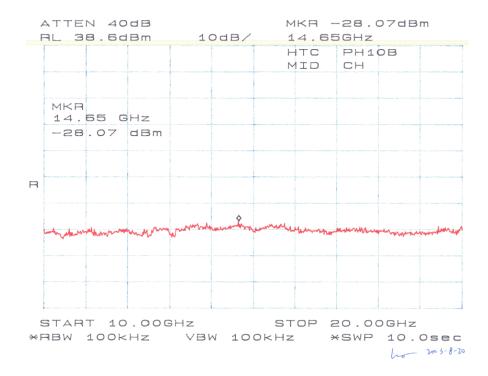

Channel	Measured
Low	<-13dBm
Mid	<-13dBm
High	<-13dBm

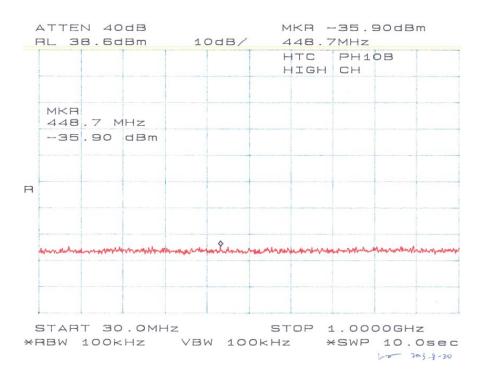

19.5 Plots of Out-of-Band Emissions at Antenna Terminal

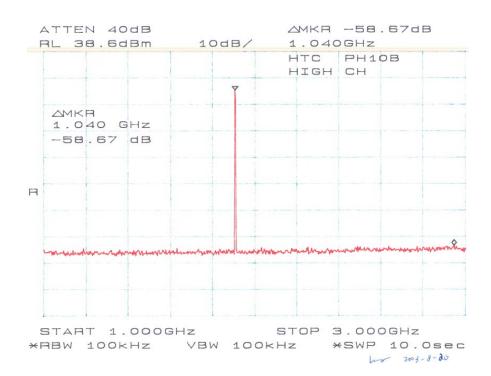

Please refer to plots hereinafter.

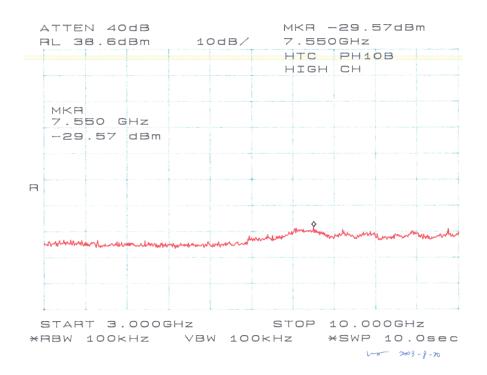


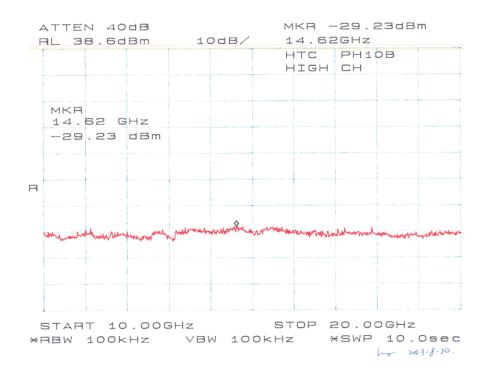












20 - FIELD STRENGTH OF SPURIOUS RADIATION

20.1 Test Procedure

Requirements: CFR 47, § 2.1053, § 24.238 (a).

20.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

20.3 Test Equipment

CDI B100/200/300 Biconical Antennas EMCO Bi-logcon Antenna EMCO 3115 Horn Antenna HP 8566B Spectrum Analyzer Preamplifiers HP8640 Generator Non-radiating Load

20.4 Test Result

For Model: PH10B

Low Channel: -10.17 dBm at 3700.4 MHz Middle Channel: -12.00 dBm at 3760 MHz High Channel: -8.5 dBm at 3819.6 MHz

For Model: PH10A

Low Channel: -11.6 dBm at 3700.4 MHz Middle Channel: -11.1 dBm at 3760 MHz High Channel: -8.5 dBm at 3819.6 MHz

20.4.1 Test Data for Model: PH10B

EUT			Generator					Standard				
Indic	ated	Table	Test Aı	ntenna	Sı	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
	Low Channel											
1850.2	118.8	90	1.5	V	1850.2	22.2	V	6.7	0.1	28.8		
1850.2	116	150	2.1	Н	1850.2	19.8	Н	6.7	0.1	26.4		
3700.4	55	0	2	V	3700.4	-31.7	V	8.8	0.3	-23.17	-13	-10.17
3700.4	54	300	1.5	Н	3700.4	-32.6	Н	8.8	0.3	-24.1	-13	-11.1
5550.6	52.5	330	1.8	V	5550.6	-36.2	V	9.1	0.5	-27.6	-13	-14.6
5550.6	48.67	330	2.5	Н	5550.6	-40.1	Н	9.1	0.5	-31.5	-13	-18.5
	MIDDLE CHANNEL											
1880	117	0	2	V	1880	21.5	V	6.7	0.1	28.1		
1880	114.5	120	1.8	Н	1880	19.2	Н	6.7	0.1	25.8		
3760	53.33	330	2	V	3760	-33.5	V	8.8	0.3	-25	-13	-12
3760	52.17	150	2.2	Н	3760	-36.3	Н	8.8	0.3	-27.8	-13	-14.8
5640	51.17	150	2.2	Н	5640	-37	Н	9.1	0.5	-28.4	-13	-15.4
5640	50.83	300	1.8	V	5640	-38.1	V	9.1	0.5	-29.5	-13	-16.5
HIGH CHANNEL												
1909.8	116.5	120	1.5	V	1909.8	21	V	6.7	0.1	27.6		
1909.8	114.2	330	1.5	Н	1909.8	19	Н	6.7	0.1	25.6		
3819.6	57	330	2.5	V	3819.6	-30	V	8.8	0.3	-21.5	-13	-8.5
3819.6	56.17	90	2.5	Н	3819.6	-30.6	Н	8.8	0.3	-22.1	-13	-9.1
5729.4	52.5	100	2.2	V	5729.4	-36.5	V	9.1	0.5	-27.9	-13	-14.9
5729.4	52.67	150	2.2	Н	5729.4	-36.6	Н	9.1	0.5	-28	-13	-15

Sample Calculation:

Absolute Level = Substitution Level + Antenna Gain – Cable Loss

For Example:

22.2 + 6.7 - 0.1 = 28.8

20.4.2 Test Data for Model: PH10A

EUT			Generator					Standard				
Indic	ated	Table	Test Aı	ntenna 	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
	Low Channel											
1850.2	117.8	220	1.8	V	1850.2	21.6	V	6.7	0.1	28.2		
1850.2	114.7	300	2.5	Н	1850.2	18.5	Н	6.7	0.1	25.1		
3700.4	54.5	120	1.8	Н	3700.4	-33.1	Н	8.8	0.3	-24.6	-13	-11.6
3700.4	54.17	150	1.8	V	3700.4	-33.2	V	8.8	0.3	-24.7	-13	-11.7
5550.6	51.17	150	1.6	V	5550.6	-36.1	V	9.1	0.5	-27.5	-13	-14.5
5550.6	49.83	150	2.2	Н	5550.6	-37.8	Н	9.1	0.5	-29.2	-13	-16.2
MIDDLE CHANNEL												
1880	117	100	1.8	V	1880	21.5	V	6.7	0.1	28.1		
1880	114.5	120	2.5	Н	1880	18.4	Н	6.7	0.1	25		
3760	54	200	1.7	V	3760	-32.6	V	8.8	0.3	-24.1	-13	-11.1
3760	53.33	270	2	Н	3760	-33	Н	8.8	0.3	-24.5	-13	-11.5
5640	51.8	0	1.8	V	5640	-36.8	V	9.1	0.5	-28.2	-13	-15.2
5640	48.5	270	1.5	Н	5640	-39.5	Н	9.1	0.5	-30.9	-13	-17.9
HIGH CHANNEL												
1909.8	117.2	100	2	V	1909.8	21.2	V	6.7	0.1	27.8		
1909.8	113.3	330	1.5	Н	1909.8	18.2	Н	6.7	0.1	24.8		
3819.6	57.17	90	2.2	Н	3819.6	-30	Н	8.8	0.3	-21.5	-13	-8.5
3819.6	57	0	2.3	V	3819.6	-30.1	V	8.8	0.3	-21.6	-13	-8.6
5729.4	54.17	0	2	V	5729.4	-33.2	V	9.1	0.5	-24.6	-13	-11.6
5729.4	50.83	270	1.5	Н	5729.4	-37.3	Н	9.1	0.5	-28.7	-13	-15.7

Sample Calculation:

Absolute Level = Substitution Level + Antenna Gain – Cable Loss

For Example:

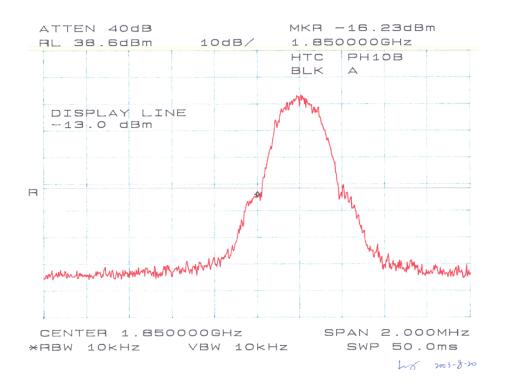
21.6 + 6.7 - 0.1 = 28.2

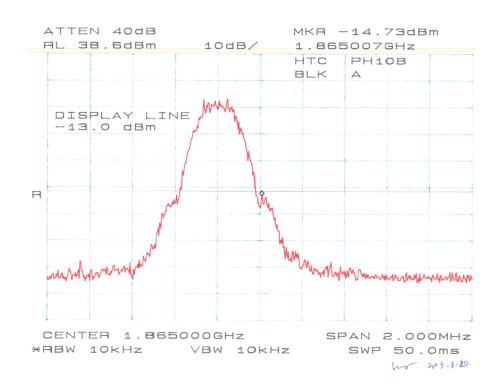
21 – BAND EDGE TEST

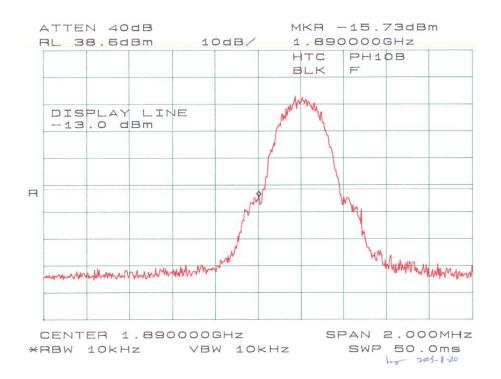
21.1 Applicable Standards

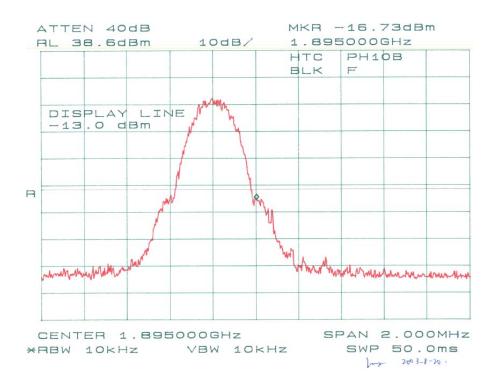
According to FCC §2.1049 and §24.238, when measuring the emission limits, carrier frequency shall be adjusted as close to the frequency block edges, both upper and lower.

21.2 Test Procedure


The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. Adjust the carrier frequency as close to the frequency block edges both upper and lower. Sufficient scans were taken to show any out of band-edge emission.


21.3 Test Equipment


Agilent 8565EC Spectrum Analyzer HP 7470A Plotter Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter Rohde & Schwarz SMIQ03B Signal Generator Rohde & Schwarz AMIQ I/Q Modulation Generator Hewlett Packard 8449 Amplifier A.H. Systems, Inc SAS-200/571 Horn Antenna


21.4 Plots of Out-of-Band-Edge Emissions at Antenna Terminal

Please refer to plots hereinafter.

22 - FREQUENCY STABILITY

Frequency Stability vs Temperature

Reference Frequency: 1880 MHz						
Temperature (°C)	MHz	%				
50	1880.004	0.00021%				
40	1880.002	0.00011%				
30	1880.001	0.00005%				
20	1880.001	0.00005%				
10	1880.001	0.00005%				
0	1879.998	-0.00011%				
-10	1879.997	-0.00016%				
-20	1879.997	-0.00016%				

Frequency Stability vs Battery Voltage

Reference Frequency: 1880 MHz						
Power Supplied (Vdc)	MHz	%				
3.6	1880.001	0.00005%				
4.2	1880.000	0.00000%				