

TEST REPORT

APPLICANT	:	Anker Innovations	Limited

- PRODUCT NAME : eufyCam S3 Pro
- MODEL NAME : T8162
- **BRAND NAME** : eufy
- FCC ID : 2AOKB-T8162
- STANDARD(S) : 47 CFR Part 15 Subpart C
- **RECEIPT DATE** : 2024-07-10
- **TEST DATE** : 2024-07-23 to 2024-08-30
- **ISSUE DATE** : 2024-09-19

Edited by:

Zeng Xiao ying (Rapporteu

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

DIRECTORY

1. Summary of Test Result
1.1. Testing Applied Standards3
1.2. Test Equipment List4
1.3. Measurement Uncertainty8
1.4. Testing Laboratory8
2. General Description9
2.1. Information of Applicant and Manufacturer9
2.2. Information of EUT9
2.3. Test Configuration of EUT
2.4. Test Conditions 10
2.5. Test Setup Layout Diagram 11
3. Test Results15
3.1. Antenna Requirement15
3.2. E.I.R.P. and Transmitter Conducted Output Power16
3.3. Emission Bandwidth and Occupied Bandwidth18
3.4. Conducted Emission 19
3.5. Radiated Spurious Emission 20
3.6. Frequency Stability 22
Annex A Test Data and Result 23

Change History			
Version	Date	Reason for change	
1.0	2024-09-19	First edition	

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.255(c)	E.I.R.P.	Aug. 30, 2024	Gao Jianrou	PASS	No deviation
3	15.255(e)(2)	Emission Bandwidth and Occupied Bandwidth	Aug. 30, 2024	Gao Jianrou	PASS	No deviation
4	15.207	Conducted Emission	Jul. 24, 2024	Gao Jianrou	PASS	No deviation
5	15.255(d)	Radiated Spurious Emission	Aug. 15&16, 2024	Gao Jianrou	PASS	No deviation
6	15.255(f)	Frequency Stability	Aug. 30, 2024	Gao Jianrou	PASS	No deviation

Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 3: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• 47 CFR 15.255

1.2. Test Equipment List

1.2.1 Radiated Test Equipment

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Signal Analyzer	MY56060145	N9020A	Agilent	2024.05.30	2025.05.29
Test Antenna - Bi- Log	9163-519	VULB 9163	Schwarzbeck	2024.06.22	2025.06.21
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2024.06.03	2025.06.02
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2024.06.22	2025.06.21
Test Antenna – Horn	BBHA9170 #773	BBHA9170	Schwarzbeck	2024.06.22	2025.06.21
Preamplifier (10MHz-6GHz)	46732	S10M100L3 802	LUCIX CORP.	2024.05.30	2025.05.29
Preamplifier (2GHz-18GHz)	61171/61172	S020180L3 203	LUCIX CORP.	2024.05.30	2025.05.29
Preamplifier (18GHz-40GHz)	DS77209	DCLNA011 8-40C-S	Decentest	2024.05.30	2025.05.29
RF Coaxial Cable (DC-18GHz)	MRE001	PE330	Pasternack	2024.05.30	2025.05.29
RF Coaxial Cable (DC-18GHz)	MRE002	CLU18	Pasternack	2024.05.30	2025.05.29
RF Coaxial Cable (DC-18GHz)	MRE003	CLU18	Pasternack	2024.05.30	2025.05.29
RF Coaxial Cable (DC-40GHz)	22290045	QA360-40- KK-0.5	Qualwave	2024.07.03	2025.07.02
RF Coaxial Cable (DC-40GHz)	22290046	QA360-40- KKF-2	Qualwave	2024.07.03	2025.07.02
RF Coaxial Cable (DC-18GHz)	22120181	QA500-18- NN-5	Qualwave	2024.07.03	2025.07.02
Anechoic Chamber	N/A	9m*6m*6m	CRT	2022.05.10	2025.05.09
Low Noise Amplifier (40GHz- 60GHz)	ADSE01	OQ-LNA- 4060-3805C	Shanghai Ouqiao Electronics Technology Co., Ltd	2022.09.19	2024.09.18
Low Noise	ADJU05	OQ-LNA-	Shanghai	2022.08.25	2024.08.24

Fax: 86-755-36698525

E-mail: service@morlab.cn

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Amplifier(60GHz-		6090-3805T	Ouqiao		
90GHz)			Electronics		
			lechnology		
			Co., Ltd		
		AI-LNA-	Shanghai Al		0005 00 07
Amplifier(90GHz-	AEMA02	90140-	Microwave	2023.02.28	2025.02.27
140GHZ)		1806E	Lta.		
			Shanghai		
		140200	Ouqiao		2024 08 24
	ADAUUT	140200- 1606T	Electronics	2023.08.25	2024.08.24
200GHZ)		10001	Contra		
Horn Antonno	2020026000				
(40GHz-60GHz)	036	LB-19-20-A	A-INFOMW	2022.06.16	2025.06.15
Horn					
Antenna(60GHz-	J202026347	LB-12-20-A	A-INFOMW	2022.06.16	2025.06.15
90GHz)					
Horn					
Antenna(90GHz-	J202062617	LB-8-25-A	A-INFOMW	2022.06.16	2025.06.15
140GHz)					
Horn	2020004000				
Antenna(140GHz-	2020004000	LB-5-20-A	A-INFOMW	2022.06.16	2025.06.15
220GHz)	025				
Spectrum Analyzer			Nanjing		
Frequency			Nuozhijie		
Conversion	2022081902	SAFC19	Electronic	2023.06.11	2025.06.10
Module (40GHz-			Technology		
60GHz)			Co.,Ltd		
Spectrum Analyzer			Nanjing		
Frequency			Nuozhijie		
Conversion	2022081904	SAFC12	Electronic	2022.08.19	2024.08.18
Module(60GHz-			Technology		
90GHz)			Co.,Ltd		
Spectrum Analyzer			Nanjing		
Frequency			Nuozhijie		
Conversion	2023022002	SAFC08	Electronic	2023.02.20	2025.02.19
Module(90GHz-			Technology		
140GHz)			Co.,Ltd		

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Spectrum Analyzer			Nanjing		
Frequency			Nuozhijie		
Conversion	2023022004	SAFC05	Electronic	2023.02.20	2025.02.19
Module(140GHz-			Technology		
220GHz)			Co.,Ltd		
Signal&Spectrum	1406.6000K0	ESW/	R&S	2024 05 30	2025 05 20
Analyzer	3-183151-sS	1.000	Rao	2024.00.00	2023.03.23
RF Coaxial Cable	158230831	RAC360-	RETOR	2024 07 03	2025 07 02
(DC-40GHz)	130230031	40MM-1000		2024.07.03	2023.07.02
RF Coaxial Cable	158230832	RAC360-	PETOP	2024 07 03	2025 07 02
(DC-40GHz)	100200002	40MM-1000	RETOP	2024.07.03	2020.01.02
RF Coaxial Cable	ΝΔ	2 02 L2m	ΝΔ	2024 07 03	2025 07 02
(DC-40GHz)		2.929-2111		2024.07.03	2023.07.02
RF Coavial Cable		NYK360-			
	#01	29M29-	Decentest	2024.07.03	2025.07.02
(DC-40GHZ)		1500			
PE Coavial Cable		NYK360-			
	#02	29M29-	Decentest	2024.07.03	2025.07.02
(DC-40GHZ)		1500			
PE Coovial Cable		NYK360-			
	#03	29M29-	Decentest	2024.07.03	2025.07.02
		1500			

1.2.2 Conducted Emission Test Equipment

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2024.01.25	2025.01.24
LISN	8127449	NSLK 8127	Schwarzbeck	2024.02.02	2025.02.01
Pulse Limiter (10dB)	VTSD 9561 F- B #206	VTSD 9561-F	Schwarzbeck	2024.05.30	2025.05.29
RF Coaxial Cable (DC-100MHz)	MRE04	BNC	Qualwave	2024.07.02	2025.07.01

1.2.3 List of Software Used

Description	Manufacturer	Software Version
MORLAB EMCR	Morlab	V1.2
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

1.3. Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.:

Uncertainty of Radiated Emission Measurement

Test Items	Uncertainty	
Measuring Uncertainty for	30MHz-200MHz	±5.06dB
a Level of Confidence of	200MHz-1000MHz	±5.04dB
95%(U=2Uc(y))	1GHz-6GHz	±5.18dB
	6GHz-18GHz	±5.48dB

1.4. Testing Laboratory

1.4.1.Identification and Location of the Responsible Testing Laboratory

Laboratory Name	Shenzhen Morlab Communications Technology Co., Ltd.			
	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
Laboratory Address	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Telephone	+86 755 36698555			
Facsimile	+86 755 36698525			
FCC Designation Number	CN1192			
FCC Test Firm	226474			
Registration Number	220174			

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	Anker Innovations Limited
Applicant Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road,
Applicant Address	Hong Kong
Manufacturer	Anker Innovations Limited
Monufacturer Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road,
Manufacturer Address	Hong Kong

2.2. Information of EUT

Product Name:	eufyCam S3 Pro	
Sample No.:	3#	
Hardware Version:	V3	
Software Version:	V3.0.3.5	
	⊠Field disturban	ce sensors/radars
Equipment Type:	□Pulsed field dis	sturbance sensors/radars
	Devices other t	than field disturbance sensors
Operating Frequency Range:	58GHz-64GHz	
Operating Frequency:	61.65GHz	
Modulation Type:	FMCW	
Antenna Type:	AiP Antenna	
Antenna Gain:	5dBi	
	Battery	
	Brand Name:	N/A
	Model No.: C0914G3	
Accessory Information:	Serial No.:	N/A
Accessory information.	Capacity:	12300mAh
	Rated Voltage:	3.6V
	Charge Limit:	4.2V
	Manufacturer: Guangdong Pow-Tech New Power Co	

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.3. Test Configuration of EUT

The EUT was tested while in a continues transmitter/receiver mode under the control of tool which is provided by manufacturer, all the items of transmitter were tested under the maximum output power.

2.4. Test Conditions

2.4.1.Environment Condition

Temperature (°C):	5-35
Relative Humidity (%):	45-85
Atmospheric Pressure (kPa):	86-106

2.4.2.EUT Setup and Operating Conditions

The EUT is activated and controlled by the System Simulator and software. The EUT is powered by adaptor.

Supply Voltage:	Normal(NV)	3.6V
Test Temperature:	Normal(NT)	25°C

2.5. Test Setup Layout Diagram

2.5.1.General

Free Space Loss (FSL): 71.77dB

Receive Antenna Gain (AG): 20.1dB

Cable Loss: 1dB

Attenuation: 6dB

Conversion Loss of Mixer: 4.97dB

Correction Factor = FSL - AG + Cable Loss + Attenuation + Conversion Loss of Mixer = 63.64dB

2.5.2.Conducted Emission

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

2.5.3.Radiation

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

3.1. Antenna Requirement

3.1.1.Requirements

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Results

Antenna location	Antenna Type	Coupling Method
⊠Internal	□FPC Antenna	□I-PEX Connector
□External	□Spring Antenna	□SMA Connector
	□Ceramic Antenna	□RP-SMA Connector
	□Integrated Antenna	□Metal Shrapnel
	□Dipole Antenna	SMD Connector
	□PCB Antenna	
	□PIFA Antenna	
	⊠AiP Antenna	

3.2. E.I.R.P. and Transmitter Conducted Output Power

3.2.1.Requirements

Equipment Type	Freq. Range/ Application	Peak EIRP	Average EIRP	Peak Conducted Power
	General	10dBm	-	<=-10dBm
		@15.255(c)(2)		
		<=20dBm		
	60-64GHz ¹	(the sum of tx off-time		
	(Deployed on	of >=2ms >=16.5ms within	-	
	unmanned aircraft)	33ms; and <=121.92m above		
		ground level) @15.255(b)(3)		
	57 0-59 4	<=20dBm (Indoor);		
	GHz ¹	<=30dBm (Outdoor).	-	
	012	@15.255(c)(2)(i)		
		<=3dBm;		
		<=20dBm		
	57.0-61.56	(the sum of tx off-time		
	GHz ¹	of >=2ms >=16.5ms within	-	
Field		33ms)		
disturbance		@15.255(c)(2)(ii)		
sensors/radars		<=14dBm		-
		(the sum of tx off-time		
		of >=2ms >=25.5ms within	-	
		33ms)		
	57.0-64.0	@15.255(c)(2)(iii)(A)		
	GHz ¹	<=20dBm		
		(the sum of tx off-time		
		of >=2ms >=16.5ms within	-	
		33ms when operated outdoor)		
		@15.255(c)(2)(iii)(B)		
		<=43dBm;	<=40dBm;	
	61.0-61.5	<=13dBm	<=10dBm	
		(Outside 61.0-61.5GHz, within	(Outside 61.0-61.5GHz,	
	GHZ '	57-71GHz)	within 57-71GHz)	
		@15.255(c)(2)(V)	@15.255(c)(2)(V)	

Devices other	-	<=43dBm @15.255(c)(1)(i)	<=40dBm @15.255(c)(1)(i)	<=500mW*(6dB
than field disturbance sensors	Fixed P2P	<=85dBm (reduced by 2 dB for every dB that the antenna gain is less than 51 dBi) @15.255(c)(1)(ii)	<=82dBm (reduced by 2 dB for every dB that the antenna gain is less than 51 dBi) @15.255(c)(1)(ii)	6dB BW<=100MHz @15.255(e)(2)
Pulsed field disturbance sensors/radars	57-64 GHz	<=20dB above the maximum permitted average emission limit applicable to the EUT@15.255(c)(3)	<=13dBm (pulse duration time<=6ns, duty cycle<=10% within 0.3µs) @15.255(c)(3) Average integrated EIRP<=5dBm within 61.5-64GHz (in any 0.3µs) @15.255(c)(3)	Min [{-10dBm @15.255(c)(2)}, { <=500mW @15.255(e)(1)}]

Note 1: According to 47 CFR 15.255 (c)(2), this type will operate without being subject to a transmitter conducted output power limit.

3.2.2.Test Results

Equipment Type	Freq. Range/Application
	□60-64GHz (Deployed on unmanned aircraft)
	□57.0-59.4GHz
⊠Field disturbance sensors/radars	□57.0-61.56GHz
	⊠57.0-64.0GHz @ RSS-210 J.3.2(b)(iii)(1)
	□61.0-61.5GHz
Devices other than field disturbance sensors	□Fixed P2P
□Pulsed field disturbance sensors/radars	□57-64GHz

This product type is not subject to a transmitter conducted output power limit. For E.I.R.P. results, refer to <u>Annex A.1</u> in this report.

3.3. Emission Bandwidth and Occupied Bandwidth

3.3.1.Requirements

For the purposes of this paragraph, emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kilohertz resolution bandwidth spectrum analyzer.

3.3.2.Test Results

Refer to Annex A.2 in this report.

3.4. Conducted Emission

3.4.1.Requirements

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency Denge (MHz)	Conducted Limit (dBµV)		
Frequency Range (MHZ)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

Note:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.4.2.Test Results

Refer to Annex A.3 in this report.

Interpretation of the test data:

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the Average and Quasi peak limits, and that have narrow margins from the Average and Quasi peak limits will be re-measured with Average and Quasi peak detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

Test Mode: EUT + Adapter + Data Line + Radar TX

Test voltage: AC 120V/60Hz

The measurement results are obtained as below:

 $E [dB\mu V] = U_R[dB\mu V] + L_{Cable loss} [dB] + A_{Factor} [dB]$

U_R: Receiver Reading

A_{Factor}: Voltage division factor of LISN

3.5. Radiated Spurious Emission

3.5.1.Requirements

According to FCC section 15.255(d):

The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.

Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209.

Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.

The levels of the spurious emissions shall not exceed the level of the fundamental emission.

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note1: For above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. **Note2:** For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK). In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.5.2.Test Results

Refer to Annex A.4 in this report.

Interpretation of the test data:

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

value complies with the quasi-peak (or average) limit, it is unnecessary to perform a quasi-peak measurement (or average).

The measurement results are obtained as below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where: A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST_RX} is receiver level,

 $L_{\text{SUBST_CABLES}}$ is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the test spectrum analyze, so spectrum analyze reading is the final values which contain the data of A_{TOT} .

For above 40GHz:

Power Density (W/m²) = $10^{(EIRP-30)/10}/ 4\pi d$

Power Density (pW/cm2) = Power Density (W/m²)* 10⁽⁻⁸⁾

Desensitization correction factor.

3.6. Frequency Stability

3.6.1.Requirements

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

3.6.2.Test Results

Refer to <u>Annex A.5</u> in this report.

Annex A Test Data and Result

A.1. E.I.R.P. and Transmitter Conducted Output Power

E.I.R.P.:

Reading Value	Duty Cycle Factor	E.I.R.P. _{Corr.}	Limit	Vordict
(dBm)	(dB)	(dBm)	(dBm)	Verdict
-52.61	4.13	11.03	14	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Transmission Time:

Transmitter off-time	Total Time (ms)	Limit (ms)	Verdict
16.80ms+7.38ms+3.70ms	27.88	>=25.5	PASS

A.2. Emission Bandwidth and Occupied Bandwidth

Operation Frequency Pand	Results		
	6dB Emission Bandwidth		
57-71GHz	21.60MHz	2.134GHz	

A.3. Conducted Emission

(L Phase)

No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1590	38.02	26.30	65.52	55.52		PASS
2	0.3210	28.44	23.15	59.68	49.68		PASS
3	0.6900	31.71	25.66	56.00	46.00	Lino	PASS
4	1.5944	24.07	18.71	56.00	46.00	Line	PASS
5	2.2965	23.09	16.27	56.00	46.00		PASS
6	8.2901	18.31	12.13	60.00	50.00		PASS

(N Phase)

No.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		Fordiot
1	0.2175	40.24	24.62	62.91	52.91		PASS
2	0.7080	33.79	26.27	56.00	46.00		PASS
3	1.0050	27.12	21.80	56.00	46.00	Noutral	PASS
4	1.6259	23.46	18.37	56.00	46.00	neutrai	PASS
5	1.7564	21.90	16.78	56.00	46.00		PASS
6	1.8825	22.27	16.52	56.00	46.00		PASS

A.4. Radiated Spurious Emission

Start Freq	Stop Freq	FMC W Width (Fs)	Ramp Time (Ts)	Sweep Rate	RB W	RB W	Normalize d Sweep Rate	Desensitizatio n Correction Factor	Desensitizatio n Correction Factor
GHz	GHz	MHz	μs	MHz/µs	MHz	Hz	Lin.	Lin.	dB
60.5	62.7	2200	25200 0	0.0087 3	1	10 ⁶	8.73*10 ⁹	0.99999629	0.0000

Note:

1. Cntr Freq=(Start Freq + Stop Freq) /2

2. FMCW Width,(Fs)=(Stop Freq-Start Freq)*1000

3. Sweep Rate (MHz/us)=FMCW Width, (Fs) / Ramp Time, (Ts)

4. Normalized Sweep Rate (lin)= Sweep Rate (Hz/s) / [RBW (Hz)]

5.Desensitization correction factor (lin) = $1/((1+(((2*LN(2))/3.14)^{2*}(Normalized Sweep Rate (lin)^{2})))^{0.25})$

6. Desensitization correction factor (dB) =[20*log(Desensitization correction factor (lin))]

Note 1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition (X axis) was recorded in this test report.

Note 2: The low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

30MHz-18GHz

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

18GHz-40GHz

(Antenna Horizontal, 18GHz to 40GHz)

(Antenna Vertical, 18GHz to 40GHz)

40GHz to 60GHz

(Antenna Horizontal, 40GHz to 60GHz)

(Antenna Vertical, 40GHz to 60GHz)

60GHz to 90GHz

(Antenna Horizontal, 60GHz to 90GHz)

(Antenna Vertical, 60GHz to 90GHz)

90GHz to 140GHz

(Antenna Horizontal, 90GHz to 140GHz)

(Antenna Vertical, 90GHz to 140GHz)

140GHz to 200GHz

(Antenna Horizontal, 140GHz to 200GHz)

(Antenna Vertical, 140GHz to 200GHz)

A.5. Frequency Stability

f _L (GHz)	f _н (GHz)	Limit	Verdict
60.5388	62.6727	57.0 to 64.0GHz	PASS

Note: Test performed under both normal and extreme conditions, only worst-case reported.

lultiView 📲	Spectrum								
tef Level -11.00	dBm	RBW	1 MHz	Auto Courses					
o: ExtMix E	2441	5.1 IIIS - VDW	5 MICZ MODE	Auto Sweep					
Occupied Band	width								o 1Pk Ma
								M1[1]	-54.65 dE
0 dBm									61.650 00 G
1 dBm									
) dBm									
T1									
7								T2	
ubm	و هر ورور و رو	and an estimate			Allah Lenner	LOTE COM A.	a can be	Junhold	
	Manner		manulalit	M. Company		A Martin Martin			
) dBm									
) dBm									
menonent								\\	manution
) dBm									
) dBm									
10 dBm									
									l
61.65 GHz			1001 p	ts	27	U.U MHZ/			Span 2.7 G
Aarker Table	Tuo	V Value		V Value		Function		Eurotian D	ooult
M1	1	61.65 GF	iz ·	54.65 dBm	Occ Bw	Tunction		2.133 898	938 GHz
T1	î	60.53877 G	Hz	-48.83 dBm	Occ Bw Cer	ntroid		61.6057	716 95 GHz
T2	1	62.672.67 G	Hz	-52.45 dBm	Occ Bw Fre	q Offset		-44.283.05	50145 MHz
									- 02.09.20

------ END OF REPORT --

