
Test Report

Report No.:	MTi240920006-06E2
Date of issue:	2024-10-21
Applicant:	Yenona Audio Co.,Limited
Product name:	Wireless Headphones
Model(s):	G18BT
FCC ID:	2AR6F-G18BT

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	of test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz)	
Pho	6.9	Radiated emissions (above 1GHz)	
	-	phs of the EUT	
		A: 20dB Emission Bandwidth	
		B: Maximum conducted output power	
		C: Carrier frequency separation	
		CD: Time of occupancy	
		c E: Number of hopping channels	
Ар	oendix	F: Band edge measurements	47
Ар	pendix	G: Conducted Spurious Emission	50

Test Result Certification				
Applicant:	Yenona Audio Co.,Limited			
Address:	4&6th, floor, Tongfuyu Industrial Park, Xixiang Town, Bao'an District, Shenzhen, China.			
Manufacturer:	Yenona Audio Co.,Limited			
Address:	Building41-1, No.3 Nanshan Road, Songshan Lake Park, Songshan LakeManagement Committee, Dongguan City, Guangdong Province, China			
Product description				
Product name:	Wireless Headphones			
Trade mark:	N/A			
Model name:	G18BT			
Series Model(s):	N/A			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013			
Date of Test				
Date of test:	2024-09-25 to 2024-10-18			
Test result:	Pass			

Test Engineer	:	Madean Lawy		
		(Maleah Deng)		
Reviewed By	•••	Dowid. Cee		
		(David Lee)		
Approved By :		leon chen		
		(Leon Chen)		

1 General Description

1.1 Description of the EUT

-	
Product name:	Wireless Headphones
Model name:	G18BT
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: DC 5V 1A Battery: DC 3.7V 1200mAh
Accessories:	Cable1: USB-A to USB-C cable 180cm Cable2: USB-C to 3.5mm cable 180cm Dongle*1
Hardware version:	V1.0
Software version:	V1.3
Test sample(s) number:	MTi240920006-06S1001
RF specification	
Operating frequency range:	2402-2480MHz
Channel number:	79
Modulation type:	GFSK,π/4-DQPSK
Antenna(s) type:	Ceramic Antenna
Antenna(s) gain:	1.85dBi
1.2 Description of test	modes

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Page 6 of 55

Report No.: MTi240920006-06E2

10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	FCC Assist 10.2.2					
Mode	2402MHz 2441MHz 2480MHz					
GFSK	10	10	10			
π/4-DQPSK	10 10 10					

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description	Model	Serial No.	Manufacturer				
/ / / /							
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	N/A
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: Since the EUT cannot be operating while charging, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Dwell Time Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies								
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19			
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20			
		Band edge Emissions in frequ	emissions (Radi uency bands (ab						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19			
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20			
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20			
	·	Emissions in freq	uency bands (be	low 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19			

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

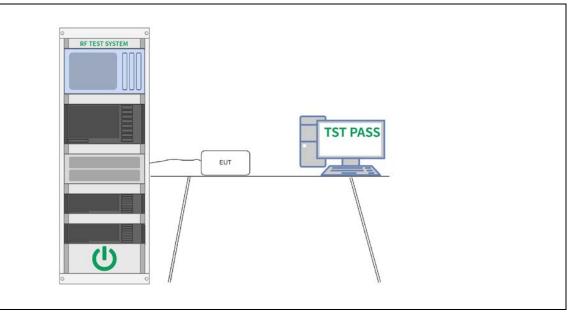
5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. j) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the enve



measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the
plot(s).

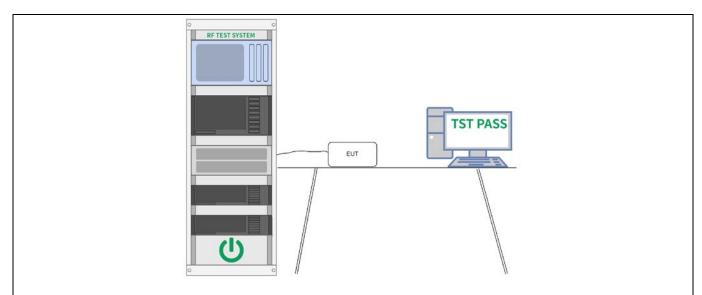
6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature: 25 °C			Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode: N			e1, Mode2			
Final test mode: Mod		Mode	e1, Mode2			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

6.2 Maximum Conducted Output Power

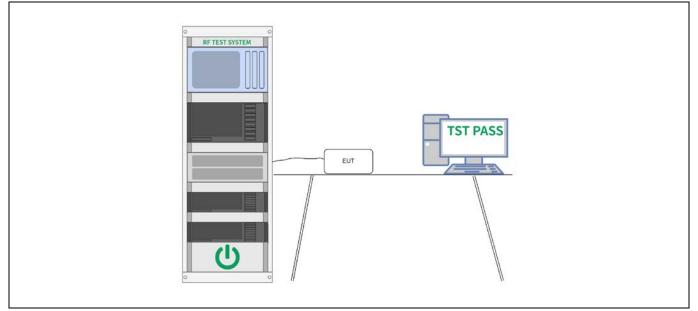

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature: 25 °C Humidity: 56 % Atmospheric Pressure: 99 kPa						99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mod			e1, Mode2			

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Channel Separation

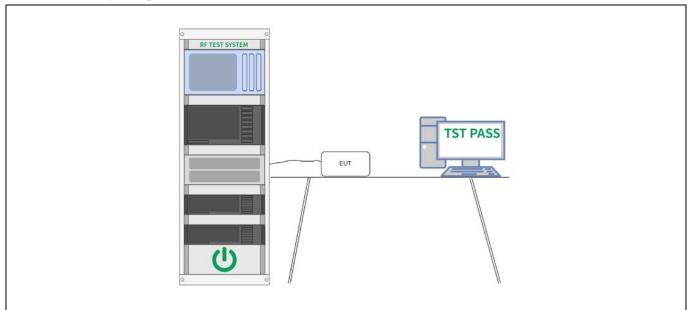
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Temperature:25 °CHumidity:56 %Atmospheric Pressure:99 kPaPre test mode:Mode1, Mode2	Operating Environment:							
Pre test mode: Mode1, Mode2	Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa	
	Pre test mode: M			e1, Mode2				
Final test mode: Mode1, Mode2	Final test mode: Mod		Mode	e1, Mode2				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Number of Hopping Frequencies

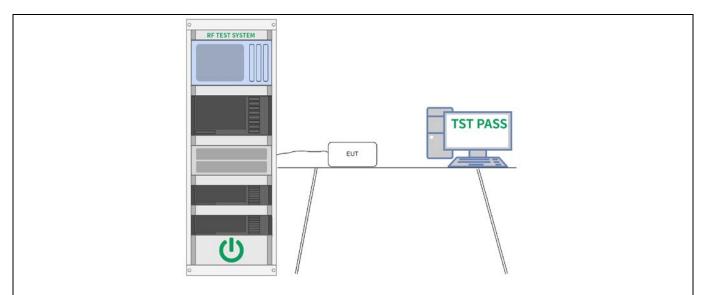
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Envi	ronment					
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

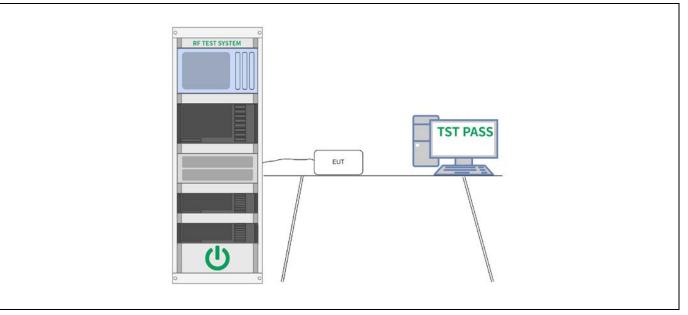

6.5 Dwell Time

2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissi on a particular hopping frequency provided that a minimum of 15 channel are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spect analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping charn where possible use a video trigger and trigger delay so that the transmitte signal starts a little to the right of the start of the plot. The trigger level mig need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep tim show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If th value varies with different modes of operation (data rate, modulation form number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. Repeat the measurement using a longer sweep time and calculate the total number of hops in the period specified in the requirements/ analyzer sweep time. N		
2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmission a particular hopping frequency provided that a minimum of 15 channel are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spect analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping char where possible use a video trigger and trigger delay so that the transmitte signal starts a little to the right of the start of the plot. The trigger level mig need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep tim show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If th value varies with different modes of operation (data rate, modulation form number of hops or the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements (analyzer sweep time) (Number of hops in the period specified in the requirements = (number of hops in spectrum analyzer) × (period specified in the requirement of hops in a specif	Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spect analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping char where possible use a video trigger and trigger delay so that the transmitte signal starts a little to the right of the start of the plot. The trigger level mig need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep tim show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If th value varies with different modes of operation (data rate, modulation form number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirement calculate the total number of hops in the period specified in the requirement suing the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hom multiplied by the number of hops in the period specified in the requirement of multiplied by the number of hops in the period specified in the requirement of multiplied by the number of hops in the period	Test Limit:	occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels
 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel where possible use a video trigger and trigger delay so that the transmitter signal starts a little to the right of the start of the plot. The trigger level mig need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If th value varies with different modes of operation (data rate, modulation form number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirement using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirement of hops on spectrum analyzer) × (period specified in the requirement for hops in the period specified in the requirement for hops in the period specified in the requirement for hops in the period specified in the requirement for hops in the period specified in the requirement of hops in the period specified in the requirement for hops in the period specified in the requirement for hops in the period specified in the requirement of hops in the period specified in the requirement of hops in the period specified in the requirement of hops in the period specified in the requirement of hops in the period specified in the requirement of hops in the period specifi	Test Method:	
then repeat this test for each variation.		 a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, and the period specified in the requirements, and the period specified in the requirements. If the period specified in the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in a specified normal time per hop specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopps in a specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopps in a specific time varies with different modes o

6.5.1 E.U.T. Operation:

Operating Envi	ronment					
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			
6.5.2 Test Setu	p Diagra	m:				

6.5.3 Test Data:


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

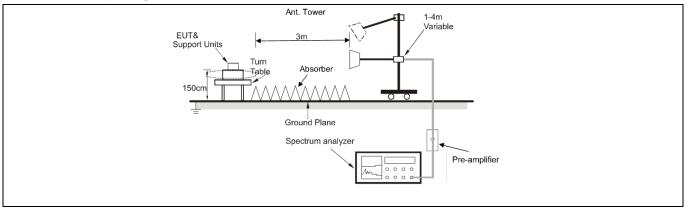
6.6.1 E.U.T. Operation:

Operating Envi	ronment					
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	9:	Mode	e1, Mode2			

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wi sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta perating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 see KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 see	ction 6.10.5.2	

6.7.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	20 °C		Humidity:	45.9 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:		•	re-test mode w ded in the repo	ere tested, only the data or rt	of the worst mode
Note:				•		

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode1 /	Polari	izatio	n: Horizonta	al / CH: L						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		2310.000	50.22	-4.83	45.39	74.00	-28.61	peak	
	2		2310.000	39.12	-4.83	34.29	54.00	-19.71	AVG	
	3		2390.000	51.00	-4.31	46.69	74.00	-27.31	peak	_
	4	*	2390.000	40.36	-4.31	36.05	54.00	-17.95	AVG	

Mode1 /	Polariza	ation: Vertical	-					
	No. N	/k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	2310.000	48.82	-4.83	43.99	74.00	-30.01	peak
	2	2310.000	38.68	-4.83	33.85	54.00	-20.15	AVG
	3	2390.000	49.76	-4.31	45.45	74.00	-28.55	peak
	4 *	2390.000	39.72	-4.31	35.41	54.00	-18.59	AVG

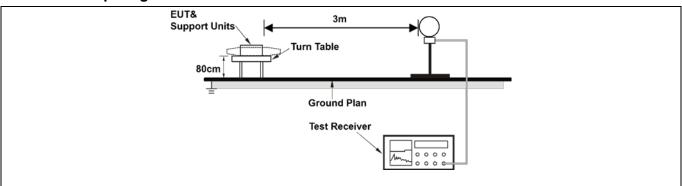
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	55.45	-4.21	51.24	74.00	-22.76	peak
2	*	2483.500	48.62	-4.21	44.41	54.00	-9.59	AVG
3		2500.000	51.42	-4.10	47.32	74.00	-26.68	peak
4		2500.000	41.20	-4.10	37.10	54.00	-16.90	AVG

/ Mode1	Polari	zatio	n: Vertical /	CH: H					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	54.10	-4.21	49.89	74.00	-24.11	peak
	2	*	2483.500	45.16	-4.21	40.95	54.00	-13.05	AVG
	3		2500.000	50.43	-4.10	46.33	74.00	-27.67	peak
	4		2500.000	39.98	-4.10	35.88	54.00	-18.12	AVG

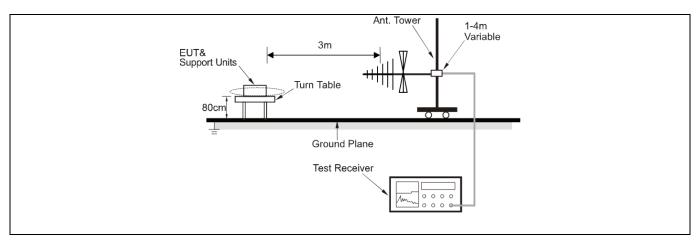
6.8 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.8.1 E.U.T. Operation:

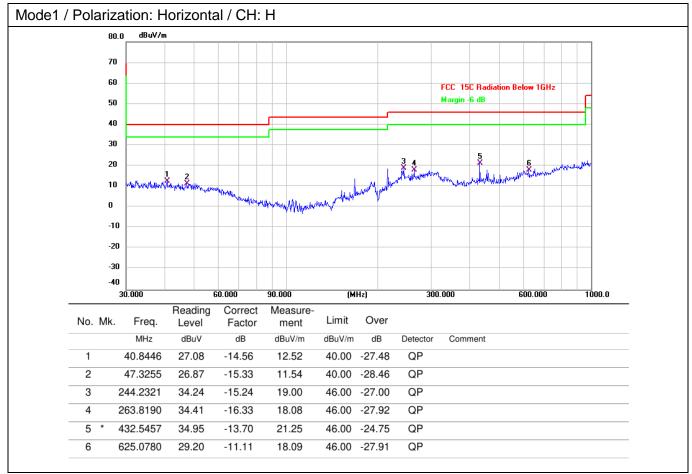

Operating Envi	Operating Environment:									
Temperature:	20 °C		Humidity:	45.9 %	Atmospheric Pressure:	100 kPa				
Pre test mode:		Mode	e1, Mode2							
Final test mode	All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report									
Noto										

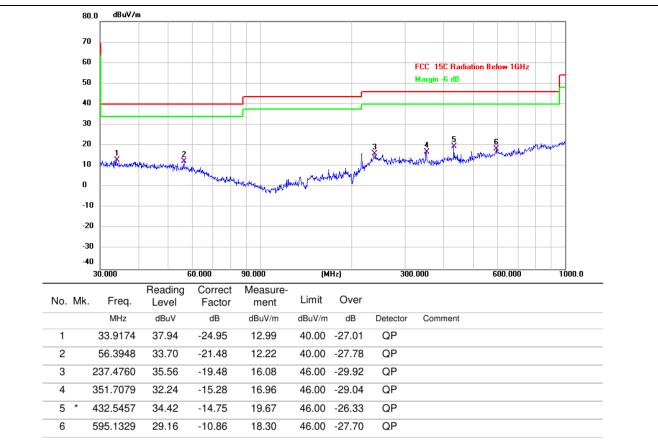
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

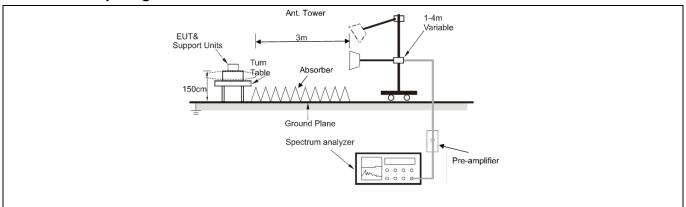
6.8.2 Test Setup Diagram:





6.8.3 Test Data:

Mode1 / Polarization: Vertical / CH: H


6.9 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	-	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in th MHz or 470-806 MHz. s permitted under othe at the band edges. ased on measurement the frequency bands s emission limits in thes	er ts 9–90 se
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02		
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4		

6.9.1 E.U.T. Operation:

Operating Environment:								
Temperature:	20 °C		Humidity:	45.9 %	Atmospheric Pressure:	100 kPa		
Pre test mode:		Mode	e1, Mode2					
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode						
		(Mode1) is recorded in the report						
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are								
attenuated more than 20 dB below the limits are not reported.								
All modes of op	All modes of operation of the EUT were investigated, and only the worst-case results are reported.							

6.9.2 Test Setup Diagram:

6.9.3 Test Data:

		-							
Mode1 /	Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	42.90	0.53	43.43	74.00	-30.57	peak
	2		4804.000	38.71	0.53	39.24	54.00	-14.76	AVG
	3		7206.000	44.31	7.90	52.21	74.00	-21.79	peak
	4		7206.000	39.95	7.90	47.85	54.00	-6.15	AVG
	5		9608.000	48.39	8.85	57.24	74.00	-16.76	peak
	6	*	9608.000	40.87	8.85	49.72	54.00	-4.28	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	43.14	0.53	43.67	74.00	-30.33	peak
2	*	4804.000	47.63	0.53	48.16	54.00	-5.84	AVG
3		7206.000	43.52	7.90	51.42	74.00	-22.58	peak
4		7206.000	37.39	7.90	45.29	54.00	-8.71	AVG
5		9608.000	44.26	8.85	53.11	74.00	-20.89	peak
6		9608.000	38.38	8.85	47.23	54.00	-6.77	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	43.89	0.57	44.46	74.00	-29.54	peak
2		4882.000	37.59	0.57	38.16	54.00	-15.84	AVG
3		7323.000	43.08	7.57	50.65	74.00	-23.35	peak
4		7323.000	37.72	7.57	45.29	54.00	-8.71	AVG
5		9764.000	50.08	9.33	59.41	74.00	-14.59	peak
6	*	9764.000	41.58	9.33	50.91	54.00	-3.09	AVG

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	43.51	0.57	44.08	74.00	-29.92	peak
2	2	4882.000	39.59	0.57	40.16	54.00	-13.84	AVG
3	3	7323.000	42.71	7.57	50.28	74.00	-23.72	peak
4	ł	7323.000	37.72	7.57	45.29	54.00	-8.71	AVG
Ę	5	9764.000	47.17	9.33	56.50	74.00	-17.50	peak
6	5 *	9764.000	40.53	9.33	49.86	54.00	-4.14	AVG

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	44.55	0.66	45.21	74.00	-28.79	peak
2		4960.000	39.50	0.66	40.16	54.00	-13.84	AVG
3		7440.000	42.52	7.94	50.46	74.00	-23.54	peak
4		7440.000	37.81	7.94	45.75	54.00	-8.25	AVG
5		9920.000	48.57	9.69	58.26	74.00	-15.74	peak
6	*	9920.000	41.05	9.69	50.74	54.00	-3.26	AVG

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4960.000	43.60	0.66	44.26	74.00	-29.74	peak
	2		4960.000	39.57	0.66	40.23	54.00	-13.77	AVG
	3		7440.000	43.09	7.94	51.03	74.00	-22.97	peak
	4		7440.000	39.25	7.94	47.19	54.00	-6.81	AVG
	5		9920.000	43.66	9.69	53.35	74.00	-20.65	peak
	6	*	9920.000	38.57	9.69	48.26	54.00	-5.74	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Page 33 of 55

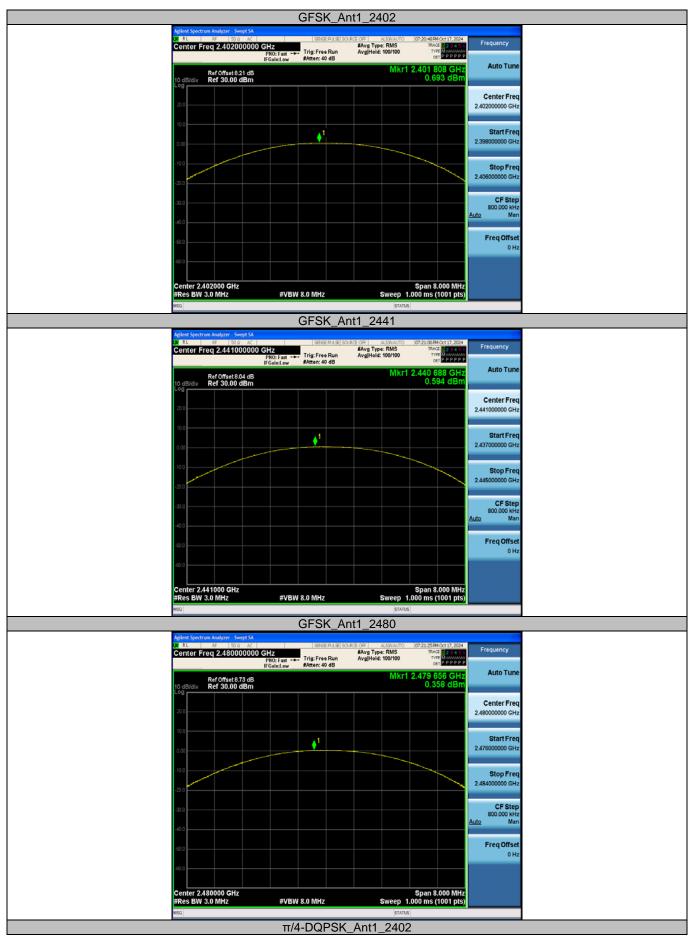
Appendix

Appendix A: 20dB Emission Bandwidth

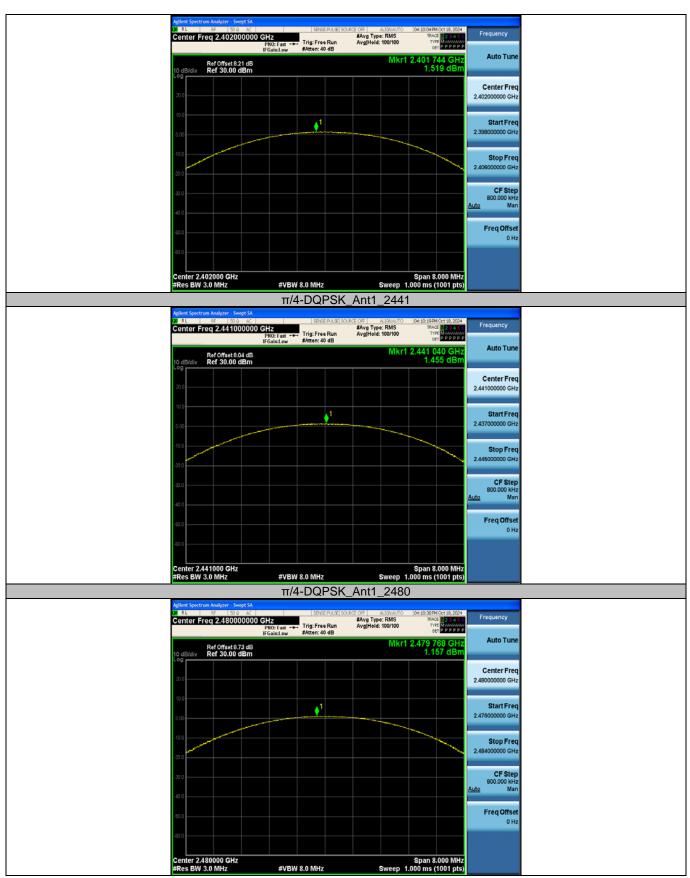
Test Result


Test Mode	Antenna Frequency [MHz]		20db EBW [MHz]	
		2402	0.957	
GFSK	Ant1	2441	0.951	
		2480	0.957	
		2402	1.326	
π/4-DQPSK	Ant1	2441	1.287	
		2480	1.317	

Test Graphs



Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	0.69	≤30	PASS
GFSK	Ant1	2441	0.59	≤30	PASS
		2480	0.36	≤30	PASS
		2402	1.52	≤20.97	PASS
π/4-DQPSK	Ant1	2441	1.46	≤20.97	PASS
		2480	1.16	≤20.97	PASS

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
GFSK	Ant1	Нор	0.996	≥0.638	PASS
π/4-DQPSK	Ant1	Нор	1.01	≥0.884	PASS

		K_Ant1_Hop		
Ağleri Spectru Analyze Denter Freq 2.44	r Swept SA S0 0 AC SENSES SENSES SENSES SENSES SENSES Trig: Free F #Atten: 40 c	#Avg Type: RMS Run Avg Held: 5000/5000 #B	07:34:40 PM Oct 17, 2024 TRACE 2 3 4 5 6 TYPE MUNICIPAL DET P P P P P	Frequency
10 dB/div Ref 30	et 8.04 dB .00 dBm		∆Mkr2 996 kHz 0.082 dB	Auto Tune
20.0				Center Freq 2.441500000 GHz
10.0	\$1	¢ ^{2∆1}		Start Freq 2.440500000 GHz
-10.0				Stop Freq 2.442500000 GHz
				CF Step 200.000 kHz <u>Auto</u> Man
				Freq Offset 0 Hz
Start 2.440500 GF #Res BW 300 kHz	lz #VBW 300 kHz	Si Sweep 1.	top 2.442500 GHz .000 ms (1001 pts)	
MSG	π/4-DQF	PSK_Ant1_Hop		
Agilent Spectrum Analyze	r - Swept SA		04:26:51 PM Oct 18, 2024	
Center Freq 2.44		#Avg Type: RMS Run Avg Hold: 5000/5000	TRACE	Frequency
10 dB/div Ref Offs Log	et 8.04 dB .00 dBm	ΔΜ	1kr2 1.010 MHz 0.071 dB	Auto Tune
20 0				Center Freq 2.441500000 GHz
0.00	0	2Δ1		Start Freq 2.440500000 GHz
-10.0				Stop Freq 2.442500000 GHz
				CF Step 200.000 kHz Auto Man
50.0				Freq Offset 0 Hz
Start 2.440500 GH #Res BW 300 kHz		S Sweep 1.	itop 2.442500 GHz .000 ms (1001 pts)	

Appendix D: Time of occupancy

Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
GFSK	Ant1	Нор	2.885	95	0.274	≤0.4	PASS
π/4-DQPSK	Ant1	Нор	2.889	107	0.309	≤0.4	PASS

Notes:

1. Period time = 0.4s * 79 = 31.6s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

GFSK_Ant1_Hop	
Agtient Spectrum Analyzer - Swept SA Series Public Science OFF All Public Off 2000 Off 2010 Off 20100 Off 2010 Off 20100 Off 201000 Off 201000 Off 2010000 Off 2010000 Off 20100000 Off 201000000 Off 201000000000000 Off 2010000000000000000000000000000000000	24 Frequency
PNO: Fast Trig: Video IVE IFGain:Low #Atten: 40 dB Det PPPP	
Ref 0ffset.8.04 dB ΔMkr2 2.885 m 10 dB/div Ref 30.00 dBm 2.57 c	
	Center Freq
	2.441000000 GHz
2 <u>01</u>	Start Freq 2.44100000 GHz
	Stop Freq 2.44100000 GHz
	CF Step
and the first state of the stat	1.000000 MHz Auto Man
na biratan la tala ana ana ana ana ana ana ana ana ana	FreqOffset
	0 Hz
460.0	
Center 2.441000000 GHz Span 0 Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 p	tz ts)
MSG STATUS	
Agilent Spectrum Analyzer - Swept SA Or RL - Solo ac - Select - Select - Alizanization (27.20198940.0117), 20 Center Freq 2.4410000000 GHz - Trig Delay0000 s #Avg Type: RMS - RMC - Pred	Frequency
Center Freq 2.441000000 GHz Trig Delay0.000 \$ #Avg Type: RMS TWAC IP 24 HRCF Late - Trig: USe - Trig:	Auto Tune
Ref Offset8.04 dB 10 dB/div Ref 30.00 dBm	
20.0	Center Freq 2.44100000 GHz
	2.44 100000 012
	Start Freq 2.44100000 GHz
	Stop Freq 2.44100000 GHz
	CF Step
	510.000 kHz Auto Man
400	FreqOffset
80.0	0 Hz
60.0	
Center 2.441000000 GHz Span 0 Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 p	tz (s)
 NSG STATUS	
π/4-DQPSK_Ant1_Hop Agilent Spectrum Analyzer - Swept SA	
OP RL RF SD Q AC SENSE FLASE SOURCE OFF ALISYAUTO OH: ISSO2 PM Oct 18, 20 Center Freq 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS IRAGE 12.84	5.6 Prequency
A MU-0, 0,000 m	Auto Tune
Ref Offset 8:04 dB AUNKT 2.389 m 10 dBidiv Ref 30.00 dBm 3.26 c	
20.0	Center Freq 2.44100000 GHz
10.0	Start Freg
	2.441000000 GHz
100	Stop Freq
	2.441000000 GHz
30.0	CF Step 1.000000 MHz
- 20 <mark>Million Market Miles</mark>	Auto Man
ooo <mark>aada kan jar ka jaan da kan jaraha kan jarah</mark>	FreqOffset
	0 Hz
Center 2.441000000 GHz Span 0 Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 p	

Ref Offset 8.04 dB	(SENS FRASE SOURCE OFF. AL SOLATO Z Trig Delay0.000 5 SAvg Type: RMS NC: Fast →→ Trig: Video SARten: 40 4B	04:15-40540ct 18:2024 Road By a data the By a data cet and a set and Auto Tune	
10 dBidiv Ref 30.00 dBm		Center Freq 2.44100000 GHz Start Freq	
		2.44100000 GHz 2.44100000 GHz Stop Freq 2.44100000 GHz	
-0.0		CF Step 510.000 kHz Auto Man	
600 Center 2.44 1000000 GHz		Span 0 Hz	

Appendix E: Number of hopping channels

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
GFSK	Ant1	Нор	79	≥15	PASS
π/4-DQPSK	Ant1	Нор	79	≥15	PASS

GFSK_Ant1_Hop		
Agliett Sportrum Audyer - Swept SA. Senet Full Senet Full Source (OF) 41.149.8170 (07) Center Freq 2.441750000 GHz Flore Full Flore Full Flore Full PR0: Fast Cold Flore Full Flore Full Flore Full Fraint, ow Flore Full Flore Full Flore Full		
Ref Offset 7.96 dB Log div Ref 30.00 dBm	Auto Tune Center Freq	
	2.441750000 GHz Start Freq 2.40000000 GHz	
	CF Step 8.35000 MHz Auto Man	
e00	Freq Offset 0 Hz	
400 Start 2.40000 GHz Stop #Res BW 300 kHz #VBW 300 kHz Sweep 1.133	9 2.48350 GHz ms (1001 pts)	
MSG STATUS		
π/4-DQPSK_Ant1_Hop Agilent Spectrum Analyzer - Swept SA		
Agents System And Part System Strategy State (SPIGE PLUSE SOLACE OFF ALSOLAUTO OFF Center Freq 2.441750000 CHz Sat State (SPIGE PLUSE SOLACE OFF ALSOLAUTO OFF PROF. Fast State (SPIGE PLUSE SOLACE OFF ALSOLAUTO OFF Figeling State (SPIGE PLUSE SOLACE OFF ALSOLAUTO OFF Sate (SPIGE SOLAUTO OFF SATE	Received to the second	
Ref Offset 7.98 dB 10 dB/div Ref 30.00 dBm	Center Freq	
10.0	2.441750000 GHz Start Freq	
⁰⁰⁰ - พรพรพรพรพรพรพรพรพรพรพรพรพรพรพรพรพรพรพ	2:40000000 GHz Stop Freq 2:483500000 GHz	
-200	CF Step 8.350000 MHz Auto Man	
-00 V	Freq Offset 0 Hz	
40.0 Stort 2.40000 GHz Stor	2.48350 GHz	
#Res BW 300 kHz #VBW 300 kHz Sweep 1.133	ms (1001 pts)	


Appendix F: Band edge measurements

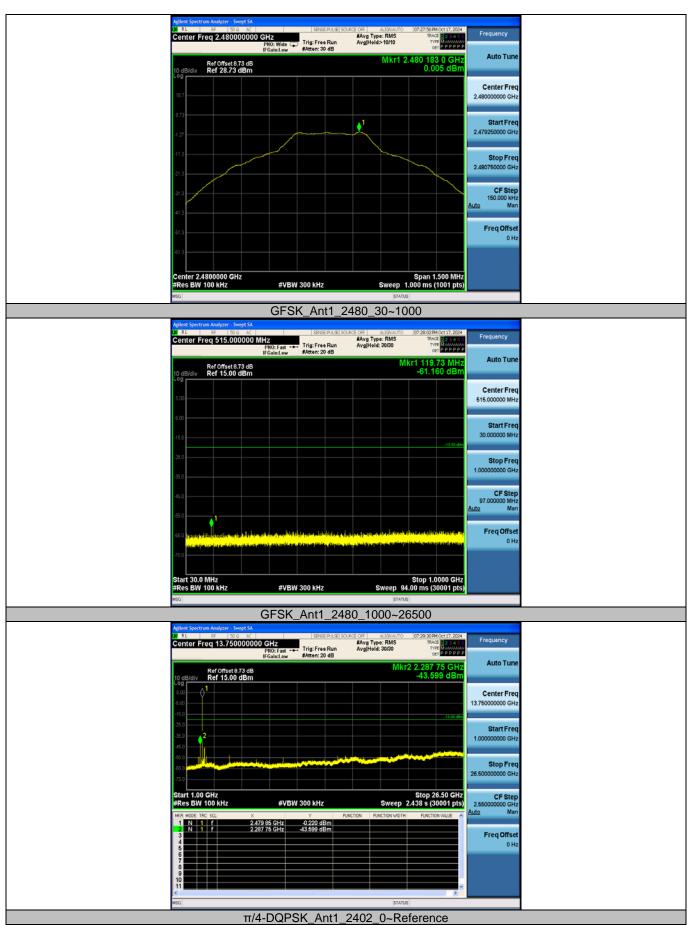
Test Graphs

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

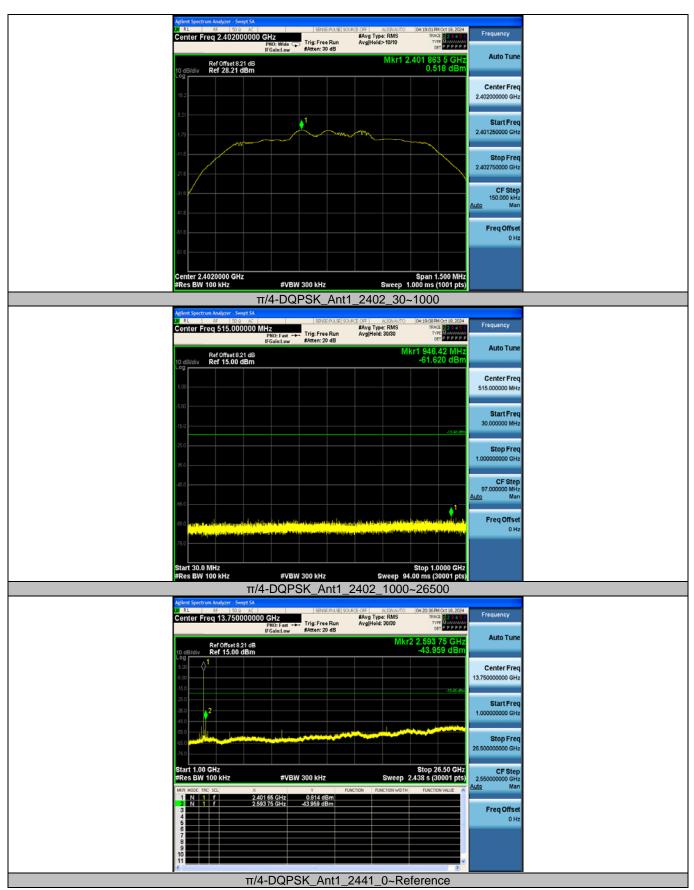
Agilent Spectrum Analyzer - Sw	ent SA		
DI RL RF 500 Center Freq 2.35250	AC SENSE PULSE SO D0000 GHz PNO: Fast C	RCE OFF ALIGNAUTO 04-25:40 PM Oct 18, 2024 #Avg Type: RMS IPAGE 2.3 4 4 4 Avg[Hold>100/100 TYPE P.P.P.P.P	Frequency
Ref Offset 9. 10 dB/dlv Ref 20.00 0	79 dB	Mkr5 2.399 750 GHz -43.806 dBm	Auto Tune
		1 M	Center Freq 2.352500000 GHz
-100 -200 -400		33 da	Start Freq 2.30000000 GHz
60 0 70 0	edmada.antiotexicanoexistexicanotysicrossen	a see a harren andra harren geharren artikari	Stop Freq 2.40500000 GHz
Start 2.30000 GHz #Res BW 100 KHz	#VBW 300 kHz	Stop 2.40500 GHz Sweep 10.07 ms (1001 pts)	CF Step 10.500000 MHz <u>Auto</u> Man
1 N 1 F 2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F 6 N 1 F	2.405 000 GHz -1.140 dBm 2.400 000 GHz -43.864 dBm 2.380 000 GHz -43.874 dBm 2.310 000 GHz -51.584 dBm 2.319 000 GHz -51.584 dBm 2.399 750 GHz -43.806 dBm		Freq Offset 0 Hz
7 9 9 10 11 €			
Agilent Spectrum Analyzer - Sw	π/4-DQPSK_Ant1	_High_Hop_2480	
00 RL RF SO Q Center Freq 2.51000	AC SENSE PULSE SO	RCE OFF ALIGNAUTO 04/25/59 PM Oct 18, 2024 #Avg Type: RMS TRACE 23/34 Avg[Hold>100/100 TYPE TYPE	Frequency
10 dB/div Ref Offset 8.		Mkr4 2.528 08 GHz -49.615 dBm	Auto Tune
100 0.00 100 100/00/07			Center Freq 2.51000000 GHz
			Start Freq 2.47000000 GHz
60.0 60.0 -70.0	and an	ad set of a	Stop Freq 2.55000000 GHz
Start 2.47000 GHz #Res BW 100 kHz wr/ MODE TRC SCL	#VBW 300 kHz	Stop 2.55000 GHz Sweep 7.667 ms (1001 pts)	CF Step 8.000000 MHz <u>Auto</u> Man
	2 474 88 GHz 4, 0,536 dBm 2493 50 GHz 54 344 dBm 2 500 00 GHz 51 738 dBm 2 528 03 GHz 49 615 dBm		Freq Offset 0 Hz
		2	

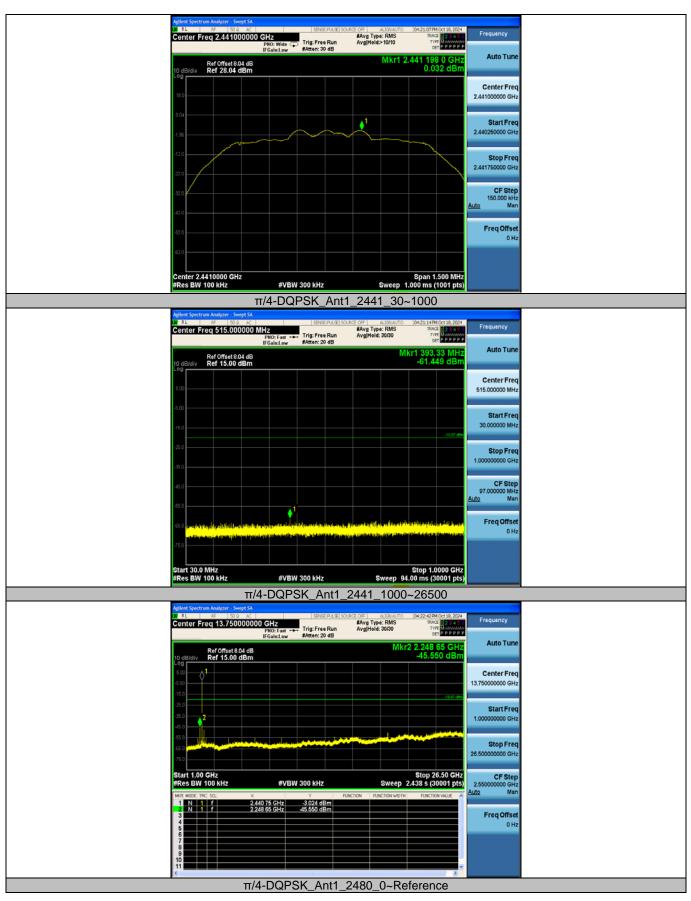
Appendix G: Conducted Spurious Emission

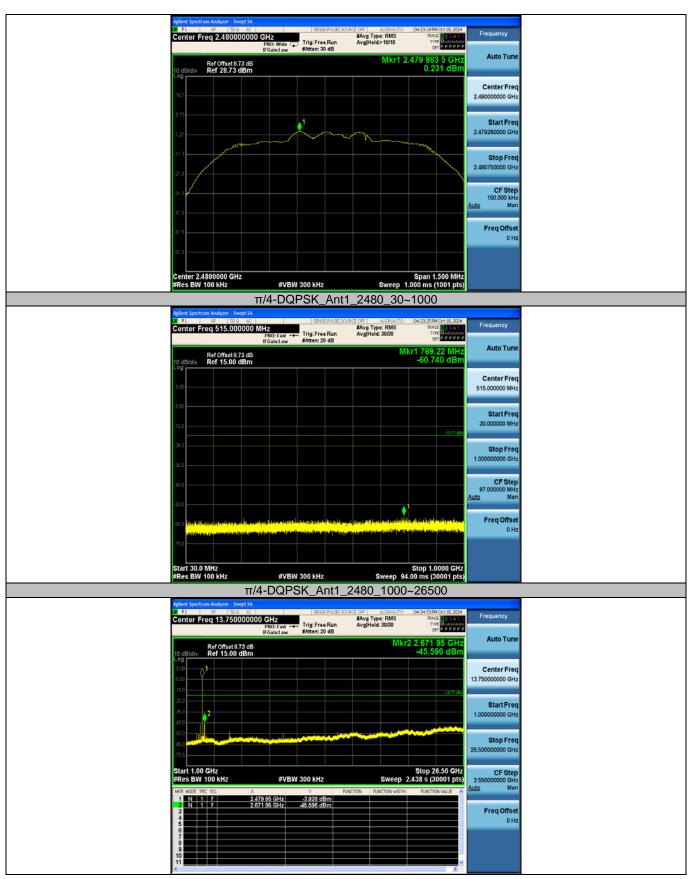
Test Graphs



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com







----End of Report----