

FCC TEST REPORT

(Part 15, Subpart C)

Applicant:	KYOCERA Corporation
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan

Manufacturer or Supplier:	KYOCERA Corporation		
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan		
Product:	Mobile Phone		
Brand Name:	KYOCERA		
Model Name:	EB1217		
FCC ID:	JOYEB1217		
Date of tests:	ts: Oct. 21, 2024~Dec. 05, 2024		
The tests have been carried out according to the requirements of the following standard:			
☑ FCC Part 15, Subpart C, Section 15.247			
🖂 ANSI C63.10-2020			
CONCLUSION: T	CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement		

Prepared by Hanwen Xu

Approved by Peibo Sun Manager / Mobile Department

annen

Engineer / Mobile Department

le: 00

Date: Dec. 05, 2024

Date: Dec. 05, 2024

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauverilas.com/home/aboutus/our-business/cos/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report at http://www.bureauverilas.com/home/aboutus/our-business/cos/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report at http://www.bureauverilas.com/home/aboutus/our-business/cos/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to the rest samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance or this report to notify us of any material error or omission caused by our negligence or if your require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

Test Report No.: PSU-QBJ2409140110RF05 TABLE OF CONTENTS

R	ELE	ASE C	ONTROL RECORD.		5
1	5	SUMM	ARY OF TEST RESL	JLTS	6
	1.1	MEA	SUREMENT UNCE	RTAINTY	7
2	(GENEF	RAL INFORMATION.		
	2.1	GEN	IERAL DESCRIPTIO	N OF EUT	
	2.2	DES	CRIPTION OF TEST	MODES	
	2	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST	11
	2	2.2.2	TEST MODE APPL	ICABILITY AND TESTED CHANNEL DETAIL	11
	2.3	GEN	IERAL DESCRIPTIO	N OF APPLIED STANDARDS	
	2.4	DES	CRIPTION OF SUPP	PORT UNITS	13
3	٦	TEST 1	TYPES AND RESULT	TS	14
	3.1	CON	DUCTED EMISSION	N MEASUREMENT	14
	3	3.1.1	LIMITS OF CONDU	ICTED EMISSION MEASUREMENT	
	3	3.1.2	TEST INSTRUMEN	ITS	
	3	3.1.3	TEST PROCEDUR	ES	
	3	3.1.4	DEVIATION FROM	TEST STANDARD	
	3	3.1.5	TEST SETUP		17
	3	3.1.6	EUT OPERATING (CONDITIONS	17
	3	3.1.7	TEST RESULTS		
	3.2	RAD	DIATED EMISSION A	ND BANDEDGE MEASUREMENT	
	3	3.2.1	LIMITS OF RADIAT	ED EMISSION AND BANDEDGE MEASUREMENT	
	3	3.2.2	TEST INSTRUMEN	ITS	21
	3	3.2.3	TEST PROCEDUR	ES	
	3	3.2.4	DEVIATION FROM	TEST STANDARD	
	3	3.2.5	TEST SETUP		
	3	3.2.6	EUT OPERATING (CONDITIONS	
	3	3.2.7	TEST RESULTS		
	3.3	NUM	IBER OF HOPPING	FREQUENCY USED	
	3	3.3.1	LIMIT OF HOPPING	G FREQUENCY USED	
	3	3.3.2	TEST SETUP		
	3	3.3.3	TEST INSTRUMEN	ITS	
	3	3.3.4	TEST PROCEDUR	ES	
	3	3.3.5	DEVIATION FROM	TEST STANDARD	
	3	3.3.6	TEST RESULTS		
	3.4			CHANNEL	
		rui 7laye :hou) Co	ers High Technology o., Ltd.	Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province	Tel: +86 (0557) 368 1008
					•

Test Report No.: PSU-QBJ2409140110RF05 3.4.1 LIMIT OF DWELL TIME USED 60 3.4.2 TEST SETUP 60 3.4.3 TEST INSTRUMENTS 60 3.4.4 TEST PROCEDURES 60 3.4.5 DEVIATION FROM TEST STANDARD 61 3.4.6 TEST RESULTS 61

	3.4.5	DEVIATION FROM TEST STANDARD	61
	3.4.6	TEST RESULTS	61
3.	5 CHA	NNEL BANDWIDTH	62
	3.5.1	LIMITS OF CHANNEL BANDWIDTH	62
	3.5.2	TEST SETUP	62
	3.5.3	TEST INSTRUMENTS	62
	3.5.4	TEST PROCEDURE	62
	3.5.5	DEVIATION FROM TEST STANDARD	62
	3.5.6	EUT OPERATING CONDITION	63
	3.5.7	TEST RESULTS	63
3.	6 HOP	PING CHANNEL SEPARATION	64
	3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	64
	3.6.2	TEST SETUP	64
	3.6.3	TEST INSTRUMENTS	64
	3.6.4	TEST PROCEDURES	64
	3.6.1	DEVIATION FROM TEST STANDARD	64
	3.6.2	TEST RESULTS	64
3.	7 MAX	IMUM OUTPUT POWER	65
	3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	65
	3.7.2	TEST SETUP	65
	3.7.3	TEST INSTRUMENTS	65
	3.7.4	TEST PROCEDURES	65
	3.7.5	DEVIATION FROM TEST STANDARD	66
	3.7.6	EUT OPERATING CONDITION	66
	3.7.7	TEST RESULTS	66
	3.7.7.1	MAXIMUM PEAK OUTPUT POWER	
	3.7.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	66
3.	8 OUT	OF BAND MEASUREMENT	67
	3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	67
	3.8.2	TEST INSTRUMENTS	67
	3.8.3	TEST PROCEDURE	67

B	UREAU ERITAS Test Report No.: PSU-QBJ2409140110RF05	
4	PHOTOGRAPHS OF THE TEST CONFIGURATION	68
5	MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EL	JT BY THE LAB 69
6	APPENDIX	70
	20DB EMISSION BANDWIDTH	70
	TEST RESULT	70
	TEST GRAPHS	71
	OCCUPIED CHANNEL BANDWIDTH	
	TEST RESULT	
	TEST GRAPHS	77
	MAXIMUM CONDUCTED OUTPUT POWER	82
	TEST RESULT	82
	CARRIER FREQUENCY SEPARATION	83
	TEST RESULT	83
	TEST GRAPHS	
	TIME OF OCCUPANCY	
	TEST RESULT	
	TEST GRAPHS	
	NUMBER OF HOPPING CHANNELS	
	TEST RESULT	
	TEST GRAPHS	
	BAND EDGE MEASUREMENTS	
	TEST RESULT	
	TEST GRAPHS	100
	CONDUCTED SPURIOUS EMISSION	106
	TEST RESULT	106
	TEST GRAPHS	107
	DUTY CYCLE	112
	TEST RESULT	112
	TEST GRAPHS	113

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QBJ2409140110RF05	Original release	Dec. 05, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C		
STANDARD	STANDARD TEST TYPE AND LIMIT	
15.207	AC Power Conducted Emission	Compliance
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Compliance
15.247(a)(1) (iii)	Dwell Time on Each Channel	Compliance
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Compliance
15.247(b)	Maximum Peak Output Power	Compliance
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance
15.247(d)	Out of band Measurement	Compliance
15.203	Antenna Requirement	Compliance

NOTE:

- 1. If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

*Test Lab Information Reference

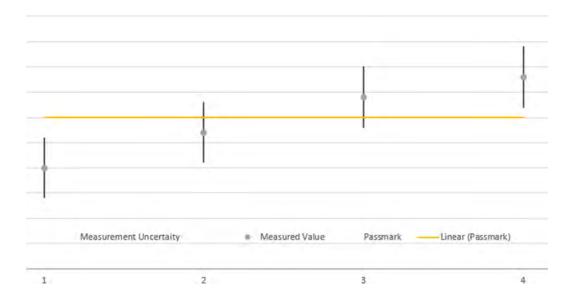
Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.


REAU RITAS Test Report No.: PSU-QBJ2409140110RF05

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Mobile Phone
BRAND NAME*	KYOCERA
MODEL NAME*	EB1217
NOMINAL VOLTAGE*	3.91Vdc (Battery)
MODULATION TECHNOLOGY	FHSS
MODULATION TYPE	GFSK, 8DPSK, π/4 DQPSK
OPERATING FREQUENCY	2402MHz~2480MHz
NUMBER OF CHANNEL	79
MAX. OUTPUT POWER	22.70mW (Max. Measured)
ANTENNA GAIN*	-2.5dBi
ANTENNA TYPE*	IFA Antenna
HW VERSION*	DVT2
SW VERSION*	0.330SR
I/O PORTS*	Refer to user's manual
CABLE SUPPLIED*	N/A

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.
- 5. The detail differences from the Main manufacturer and Secondary manufacturer are as listed

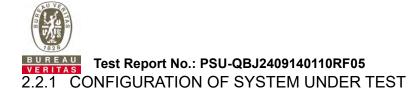
below:		
Description	Main manufacturer	Secondary manufacturer
LCM	ShenZhen LIDE	Wannian Lianchuang Display
	Communications Ltd.	Technology Co. , Ltd.
Audio jack FPC	Shenzhen Xinyu Tengyue	Jiangxi Zhiboxin Technology
	Electronics Co.,Ltd.	Limited Company
MIC	AAC	Gettop
Huarui Zlavers High Technology Tower N Innovation Center 88 Zuvi Road High-tech District Tel: +86 (0557)		

Huarui 7layers High TechnologyTower N, Innovation Center, 88 Zuyi Road, High-tech District,Tel: +86 (0557)(Suzhou) Co., Ltd.Suzhou City, Anhui Province368 1008

Memory	Samsung	Biwin
Radio frequency switch_DFN-6_0.4-	Innowave	Champhill
4.2 GHz_SPDT_GPIO_patch		onamprim

The above materials have only manufacturer differences, and the functions are the same.Other than these changes, other RF performance is the same and does not affect the RF results.

6. List of Accessory:


ACCESSORIES	BRAND	MODEL	SPECIFICATION
CPU	МТК	MT6835T	N/A
	0.0 mol ling	KM5P9001DM-	N/A
eMMC 1 (=ROM 1)	samsung	B424	
	hissia	BW2A2KZC02-	N/A
eMMC 2 (=ROM 2)	biwin	64G	
DAM 4		KM5P9001DM-	N/A
RAM 1	samsun	B424	
DAMO	hinda	BW2A2KZC02-	N/A
RAM 2	biwin	64G	
Detter			Capacity:3.91Vdc,
Battery	KYOCERA	5AAXBT152	4400mAh/17.3Wh

DUREAU VERITAS 2.2 DESCRIPTION OF TEST MODES

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

79 channels are provided to this EUT:

Please see section 4 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE	APPLICABLE TO				DESCRIPTION		
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION		
-		\checkmark		\checkmark	-		

Where **RE<1G:** Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission **RE≥1G:** Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	39	FHSS	8DPSK	3DH5

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	1DH5
-	0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF05 POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION TYPE	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY		TYPE
-	0 to 78	78	FHSS	π /4-DQPSK	2DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- The following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY MODULATION TYPE		PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH1/DH3/DH5
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH1/2DH3/2DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH1/3DH3/3DH5

TEST CONDITION							
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY				
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu				
RE≥1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu				
PLC	25deg. C, 52%RH	DC 5V By Adapter	Hanwen Xu				
АРСМ	25deg. C, 60%RH	DC 5V By Adapter	Hanwen Xu				

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF05 2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2020

NOTE:

- 1. All test items have been performed and recorded as per the above standards.
- 2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A
2	Earphone	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
0.15 ~ 0.5	Quasi-peak	Average	
0.5 ~ 5 5 ~ 30	66 to 56 56 60	56 to 46 46 50	

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

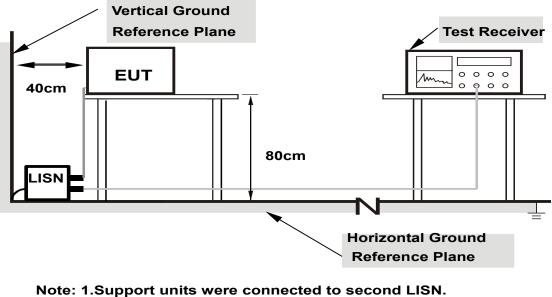
3.1.2 TEST INSTRUMENTS

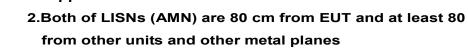
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12 /24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
 NOTE: All modes of operation were investigated and the worst-case emissions are reported.


3.1.4 DEVIATION FROM TEST STANDARD

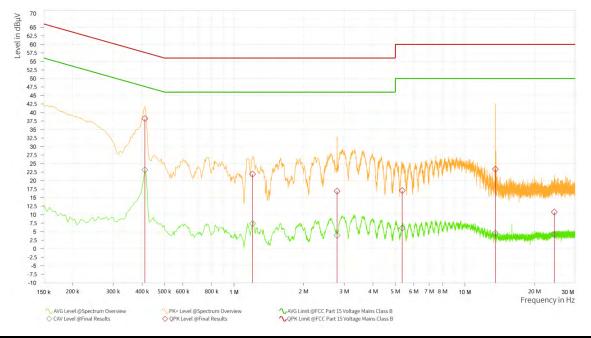
No deviation.

3.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.



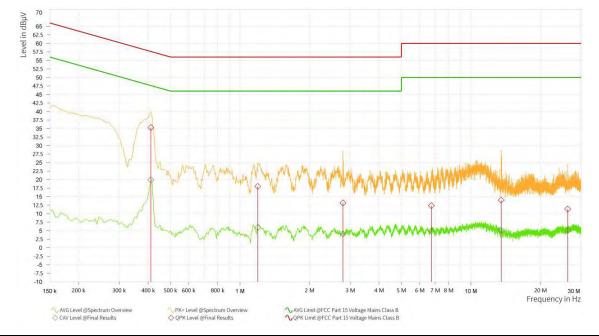
3.1.7 TEST RESULTS

				CON	DUCTED	WORS	T-CASE	DATA				
		JENCY E	150KH	Hz ~ 30M	lHz	& R	ECTOR ESOLUT	ION	ON	Quasi-Peak (QP) / Average (AV), 9 kHz		
INF	PUT	POWER	120Va	ic, 60Hz			ENVIRONMENTAL CONDITIONS				C, 51	%RH
ТΕ	STE	D BY	Hanwe	en Xu								
	Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]		rection dB]	Line	Meas. BW [kHz]
	1	0.411	38.23	57.63	19.40	23.15	47.63	24.47	1	1.76	L1	9.000
	1	1.203	21.92	56.00	34.08	7.40	46.00	38.60	1	1.75	L1	9.000
	1	2.796	16.91	56.00	39.09	3.90	46.00	42.10	1	1.77	L1	9.000
	1	5.352	17.08	60.00	42.92	6.04	50.00	43.96	1	1.79	L1	9.000
	1	13.556	23.38	60.00	36.62	4.60	50.00	45.40	1	1.84	L1	9.000
	1	24.392	10.76	60.00	49.24	4.26	50.00	45.74	1	1.89	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Huarui 7layers High Technology (Suzhou) Co., Ltd.


Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

	EQU NGE	ENCY	150KH	lz ~ 30M	Hz	& R	ECTOR ESOLUT		ON	Quasi-Peak (QP) / Average (AV), 9 kHz		
INF	דטי	POWER	120Va	c, 60Hz			ENVIRONMENTAL CONDITIONS				. C, 51	%RH
TE	STE	DBY	Hanwe	en Xu								
	Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]		rection dB]	Line	Meas. BW [kHz]
	1	0.411	35.31	57.63	22.32	19.94	47.63	27.69	12	2.81	Ν	9.000
	1	1.194	18.01	56.00	37.99	5.92	46.00	40.08	1	2.73	Ν	9.000
	1	2.792	13.14	56.00	42.86	4.08	46.00	41.92	1	2.74	Ν	9.000
	1	6.747	12.37	60.00	47.63	4.98	50.00	45.02	12	2.77	Ν	9.000
	1	13.524	13.98	60.00	46.02	5.13	50.00	44.87	12	2.81	Ν	9.000
	1	26.259	11.35	60.00	48.65	5.13	50.00	44.87	1	2.88	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 7. Emission Level = Correction Factor + Reading Value.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- **3.** As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	ток	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	ток	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna WIDEBANDRADIO COMMUNICATION TESTER	SCHWARZ R&S	HFH2-Z2/Z2E CMW500	100976 169399	Feb.22,24 Jun.19,24	Feb.21,26 Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

NOTE:

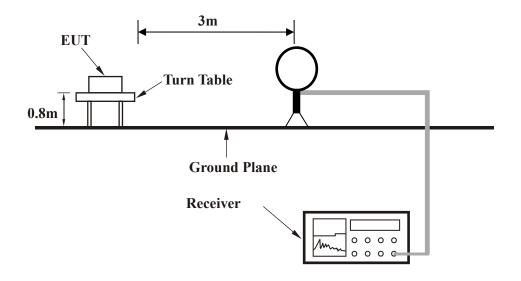
- 1. The calibration interval of the above test instruments is 12/24/36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.2.3 TEST PROCEDURES

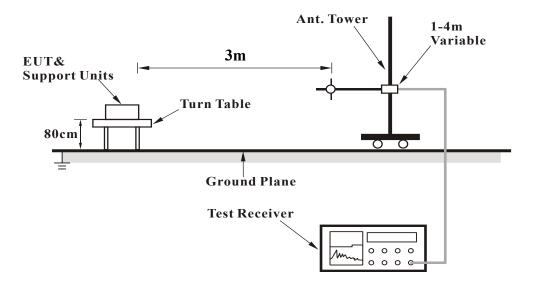
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

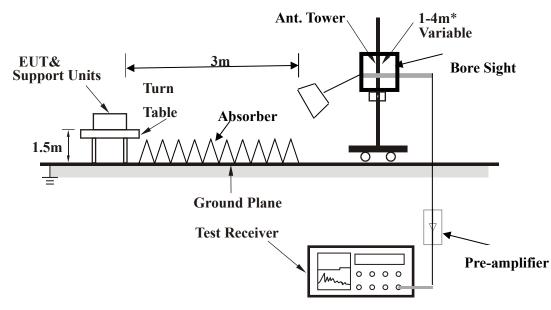

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

NOTE : The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA

н		NEL		Channel 39							
					<u> </u>	DETEC			Quasi-Peak	(QP)	
RI	EQU			30MHz ~ 1G							
		4				DISTAN	CE: HORIZ	ONTAL			
	Rg	Frequency [MHz]	QPK Lev [dBµV/r		QPK Margin [dB]	Correction [dB]	Polarization	Azimut [deg]	h Antenna Height [m]	Meas. BW [kHz]	
	1	32.716	28.43	40.00	11.57	-6.89	H.	4.2	1.00	120.000	
	1	48.576	29.79	40.00	10.21	-3.56	н	359	1.00	120.000	
	1	80.295	23.88	40.00	16.12	-10.89	Н	355.1	2.00	120.000	
	1	181.223	25.58	43.50	17.92	-7.52	Н	155.1	2.00	120.000	
	1	308.293	22.13	46.00	23.87	-1.16	Н	203.7	1.00	120.000	
	1	531.781	26.49	46.00	19.51	2.20	н	203.7	1.00	120.000	
	1. 2. 3. 4.	Correctio Factor(dE The other Margin va	n Facto 3) r emissi		ntenna Fa ere very lo	ctor(dB/m) w against	Correction F + Cable Fa the limit.	•	,	lifier	
	2. 3. 4. ⁵⁵ 50 47.5 45 42.5 45 42.5 40	Correctio Factor(dE The other Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. ⁵⁵ ⁵⁰ ^{47.5} ^{42.5} ^{42.5} ⁴⁰ ^{37.5} ³⁵	Correctio Factor(dE The other Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. ⁵⁵ 42.5 42.5 42.5 40 37.5 35 32.5 30 27.5	Correctio Factor(dE The other Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. 55 50 50 50 50 50 50 50 50 50 50 50 50	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. 55 50 42. 50 50 50 50 50 50 50 50 50 50 50 50 50	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,		
	2. 3. 4. 55 52 32.5 32.5 32.5 32.5 32.5 32.5 32	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. 55 50 55 32. 5 32. 5 32. 5 32. 5 32. 5 30. 22.5 30. 22.5 30. 22.5 5 30. 22.5 5 30. 22.5 5 5 0. 22.5 5 5 0. 22.5 5 5 0. 22.5 5 5 0. 22.5 5 5 0. 22.5 5 5 0. 20.5 5 5 0. 20.5 5 5 5 0. 20.5 5 5 5 20.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,		
	2. 3. 4. 55 50 3225 225 20 27.5 52 5 225 20 20 27.5 5 5 25 5 25 5 25 5 25 5 25 5 5 5 5 5	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	
	2. 3. 4. 55 50 3225 20 17.5 15 10 7.5 5 2.5 0 -2.5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	Correctio Factor(dE Margin va	n Facto 3) r emissi	r(dB/m) = Ar on levels we	ntenna Fa ere very lo	ctor(dB/m) w against	+ Cable Fa	•	,	lifier	

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

HAN	NEL		Ch	annel 39		DETEO				
REQL	JENCY R	ANGE	301	MHz ~ 1G	Hz	DETEC	TOR FUNCT)uasi-Peak	(QP)
		ANTE	INN		RITY & TE	EST DISTA	NCE: VERT		T 3 M	
Rg	Frequency [MHz]	QPK Le [dBµV/		QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuti [deg]	h Antenna Height [m]	Meas. BW [kHz]
1	34.947	28.8	2	40.00	11.18	-8.18	v	4.9	1.00	120.000
1	54.978	27.03	3	40.00	12.97	-5.79	v	206	1.00	120.000
1	77.676	26.3	8	40.00	13.62	-11.44	V	206	1.00	120.000
1	199.944	22.8	9	43.50	20.61	-5.70	v	4.9	1.00	120.000
1	381.092	23.9	1	46.00	22.09	1.60	v	355.1	2.00	120.000
1	652.061	27.5	2	46.00	18.48	2.78	v	359.1	1.00	120.000
 1. 2. 3. 4. 	Correction Factor(dl The othe Margin v	on Facto 3) r emiss	or(d sion	B/m) = An	itenna Fa re very lo	ctor(dB/m) w against t	Correction Fa + Cable Fa the limit.	•	,	lifier
2. 3. 4. w/\ntgp ui leavel 47.5 40 37.5	Correctic Factor(dl The othe Margin v	on Facto 3) r emiss	or(d sion	B/m) = An levels we	itenna Fa re very lo	ctor(dB/m) w against t	+ Cable Fa	•	,	lifier
2. 3. 4. w/\/TBP view of the second s	Correction Factor(d) The other Margin v	on Facto 3) r emiss	or(d sion	B/m) = An levels we	itenna Fa re very lo	ctor(dB/m) w against t	+ Cable Fa	•	,	lifier
2. 3. 4. 55 50 40 37.5 30 22.5 30 22.5 20 17.5 12.5 10 7.5 5 5 2.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Correction Factor(dl The other Margin v	on Facto 3) r emiss	or(d sion	B/m) = An levels we	itenna Fa re very lo	ctor(dB/m) w against t level.	+ Cable Fa	•	,	lifier
2. 3. 4. 55 50 42.5 30 37.5 32.5. 30 37.5 22.5 20 17.5. 22.5 20 17.5. 5 5 5 22.5 20 17.5. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Correction Factor(dll The other Margin v	on Facto 3) r emiss	or(d sion	B/m) = An levels we	itenna Fa re very lo	ctor(dB/m) w against t level.	+ Cable Fa	•	,	lifier

ABOVE 1GHz WORST-CASE DATA

			r		BT	_G	FSK		r		
HAN	NEL		тх с	hannel 0			TECTOR		Pea	ık (PK)	
REQI	JENCY RA	NGE	1GHz	z ~ 25GHz		FU	INCTION		Average (AV)		
	Α	NTEN	INA P	OLARITY 8	TEST	DIS	STANCE: H	ORIZON	TAL	AT 3 M	
Rg	Frequency [MHz]		Level JV/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB	in	Correction [dB]	Polarizat	tion	Azimuth [deg]	Antenna Height [m]
5	2,389.000	46	.37	74.00	27.6	3	5.76	Н		257.4	1.00
5	2,395.000	46	.15	74.00	27.8	5	5.80	Н		359.1	1.00
5	2,402.000	10:	3.93				5.85	н		310	1.00
95 92.5 90 87.5 85 82.5 80 77.5 72.5 72.5 70 67.5 65 62.5 60 57.5										Rup	
55 52.5 50 47.5 45 42.5 40 37.5 35		~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~					

Note: All other emissions that greater than 20dB below the limit were not recorded.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,394.000	32.33	54.00	21.67	5.80	H H	21.5	2.00
5	2,395.000	32.34	54.00	21.66	5.80	Н	2	2.00
5	2,402.000	100.78			5.85	Н	264.7	1.00
$\begin{array}{c} 125\\ 117,5\\ 117,5\\ 117,5\\ 117,5\\ 112,$								

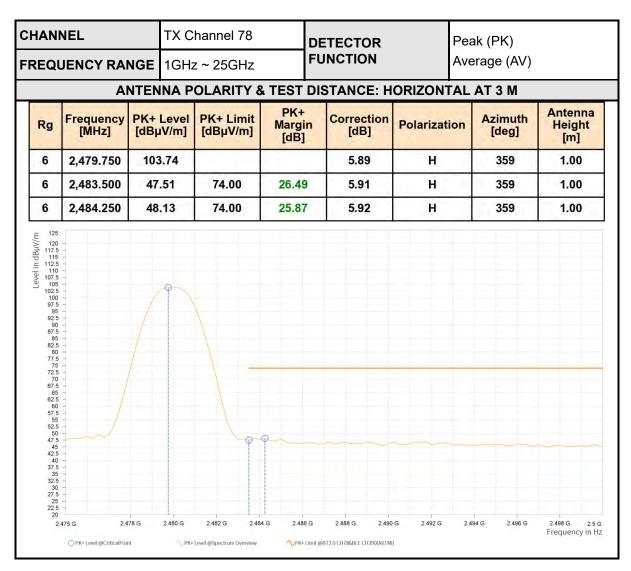
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,355.500	45.58	74.00	28.42	5.60	v	40.3	2.00
5	2,395.000	44.79	74.00	29.21	5.80	v	257.5	1.00
5	2,402.000	92.34			5.85	v	206.2	1.00
$\begin{array}{c} 125\\ 117, 20\\ 117, 20\\ 117, 20\\ 117, 20\\ 117, 20\\ 100, 20\\ $	at (c. 2315 c. 2320 (2356 2306 2345		23006 2355 237	06 23756 2380 228		2400 G 24

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,382.000	31.09	54.00	22.91	5.71	v	359.1	1.00
5	2,395.000	31.01	54.00	22.99	5.80	v	256.7	2.00
5	2,402.000	89.86			5.85	v	256.7	2.00
$\begin{array}{c} 125\\ =& 125\\ \pm& 117.5\\ \pm& 117.5\\ \pm& 117.5\\ \pm& 117.5\\ \pm& 1100\\ \pm& 110$	at G 2315G 2320		2335 G 2340 G 2345	2,2500, 2,2500	2200.0. 226.0. 227			2400 6 24

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

HAN	NEL		TX Cha	annel 39	9	DETEC			Peak (Pł		
REQ	UENCY	RANGE	1GHz ⁄	~ 25GH	Z	FUNCT	ION		Average	(AV)	
		ANTE	NNA PO	LARIT	/ & TES1		NCE: H	ORIZON	TAL AT 3	Μ	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	48.86	74.00	25.14	38.62	54.00	15.38	13.54	н	359.1	1.00
2	7,323.000	53.08	74.00	20.92	42.76	54.00	11.24	18.91	н	2.1	2.00
2.	0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	CriticalPoint	2G OPK+Leve	el @CriticalPoint	3.6	L L L L L L L L L L L L L L L L L L L			8G 9G 10G 8E_WLAN24G_HF_LIMIT	Fr	18 c equency in Hz



Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	50.46	74.00	23.54	40.00	54.00	14.00	13.54	v	359	1.00
2	7,323.000	53.47	74.00	20.53	42.76	54.00	11.24	18.91	V	1.8	2.00
= 8	0										
8 7 72. 7 72. 7 67. 6											
0 72.											
110 67.	5 -										
6 62.											
6	0 —										
57. 5											
5 52.	-				0			φ			
5	0 —						φ				
47.											
42.								0			
4	0 —						φ				
37.							1.000				
3 32.							1				
3											
27.							1 1 2 2 2 2				
2 22.											
22.											
17.							1000-00				
1 12.	5										
12.											
7.	5 -										
	5 -										
2.	5 -					-					
	1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18
	🔿 AVG Level @	CriticalPoint	O PK+ Leve	el @CriticalPoint		/G Limit @FCC_RSE_WI	.AN2.4G_HF_LIMIT	∿PK+ Limit @FCC_R	SE_WLAN2.4G_HF_LIMIT	Fr	equency in H

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor 1.
- 2. Margin value = Limit value – Emission level.
- 3. 2402MHz: Fundamental frequency.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]									
6 6 6	2,479.750 2,483.500 2,484.000	94.00 32.98 33.19	54.00 54.00	21.02 20.81	5.89 5.91 5.92	H H H	359 359 359	1.00 1.00 1.00									
									$\begin{array}{c} 125\\ 117.5\\ 117.5\\ 117.5\\ 117.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 100.$	4756 24	78 6 2400	24826 2484	G 2486 G	2488 G 2490	G 2492G 24	94 G 2496 G	2.498 G 2.51

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	91.15		1 - C - C - C	5.89	v	233.5	1.00
6	2,483.500	44.98	74.00	29.02	5.91	v	355.1	2.00
6	2,491.000	46.23	74.00	27.77	5.96	v	1.7	2.00
$\begin{array}{c} 125\\ 117.6\\ 117.6\\ 117.6\\ 117.6\\ 117.6\\ 117.6\\ 112.5\\ 110.6\\ 110.5\\ 110.$	475 G 24	78 G 2.480 G	2482 G 2484	1.G 2.486 G	2.488 G	6 2.492 G 2.4	P4 G 2.496 G	2486 2.5 Frequency in 1

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	81.14	1 20 10	P. (2000) (2011)	5.89	V	237.1	1.00
6	2,483.500	30.52	54.00	23.48	5.91	v	355.1	2.00
6	2,492.000	30.79	54.00	23.21	5.97	v	359	1.00
$\begin{array}{c} 125\\ 112, 0\\ 117, 15\\ 112, 5\\ 112, 5\\ 112, 5\\ 102, 5\\ 20, 5\\ 102, 5\\ 10$	475 G 24	78G 2480 G	2482 G 2484	4 G 2.486 G	2488 G 2490	6 2492 G 24		2486 2.5 Frequency in l

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

HAN	NEL		ТХ С	hannel 0			TECTOR		Pea	ık (PK)	
REQI	JENCY RAI						INCTION			rage (AV)	
		CR		Land and the second	TEST	-	STANCE: H	ORIZON	TAL	10.2 Juli	Antenna
Rg	Frequency [MHz]	PK+ [dB	Level JV/m]	PK+ Limit [dBµV/m]	Marg [dB]	in	Correction [dB]	Polariza	tion	Azimuth [deg]	Height [m]
5	2,377.000	48	.45	74.00	25.5	5	5.68	Н		359	1.00
5	2,395.000	46	.04	74.00	27.9	6	5.80	H		359	1.00
5	2,402.000	104	4.92				5.85	н		359	1.00
95 92.5 87.55 85.5 82.5 80.7 77.5 72.5 70.5 67.5 60.5 75.5 52.5 52.5 52.5 52.5 52.5 52.5 52											
27.5 25 22.5											

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,393.000	31.88	54.00	22.12	5.79	H H	1	1.00
5	2,395.000	32.01	54.00	21.99	5.80	Н	1	2.00
5	2,402.500	98.65			5.86	н	1	1.00
$\begin{array}{c} 125\\ 117.5\\ 117.5\\ 117.5\\ 110.5\\ 100.$	31G 2315G 2320				2300 G 2365 G 237			2400 G 241

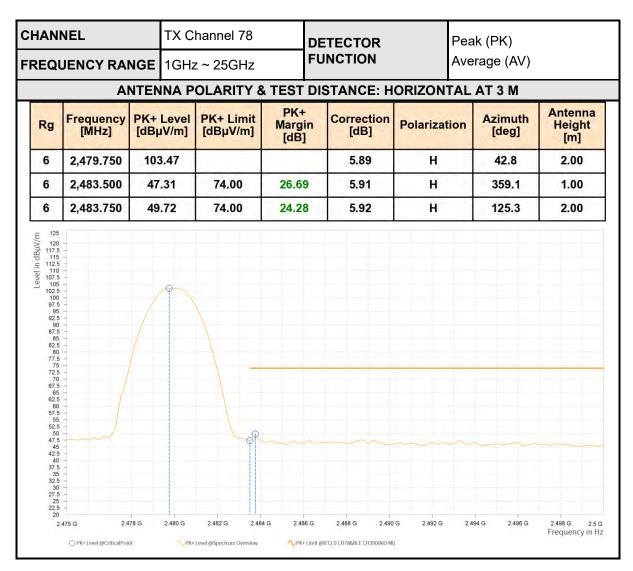
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,385.500	45.71	74.00	28.29	5.74	v	359	2.00
5	2,395.000	44.36	74.00	29.64	5.80	V	6.2	2.00
5	2,402.000	94.03			5.85	v	155.8	1.00
$\begin{array}{c} 125\\ 117, 20\\ 117, 20\\ 117, 20\\ 117, 20\\ 117, 20\\ 100, 20\\ $				G. 250G. 235G	23006 2355 237	06 23756 2380 238		2400 G 241

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,383.000	31.07	54.00	22.93	5.72	v	204.2	2.00
5	2,395.000	30.93	54.00	23.07	5.80	v	154.7	1.00
5	2,402.500	85.60			5.86	v	154.7	1.00
125 117.5 117.5 117.5 117.5 117.5 110.5 115.5 110.5 115.5 110.5 115.5 110.5 115.5 110.5 115.5 110.5 115.5 110.5 110.5 110.5		G 2325 G 2330 G 2	2335 G 2340 G 2345	G. 2350 G. 2355 G	2300 G 2355 G 237		56 2390 6 2395 6	2400 G 24

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

VCY RANGE ANTE uency PK+ Level [dBµV/m] 2.000 48.54 3.000 53.17	_	PK+ Margin [dB] 25.46		FUNCT DISTAI		Correction	Average		Antenna
uency PK+ Level Hz] [dBµV/m] 2.000 48.54	PK+ Limit [dBµV/m] 74.00	PK+ Margin [dB] 25.46	AVG Level	AVG Limit	AVG	Correction			Antenna
Hz] [dBµV/m] 2.000 48.54	[dBµV/m] 74.00	Margin [dB] 25.46					Polarization	Azimuth	Antenna
			-		[dB]	[dB]	Folarization	[deg]	Height [m]
	74.00		37.70	54.00	16.30	13.54	Н	88.9	1.00
	14.00	20.83	42.60	54.00	11.40	18.91	н	359	1.00
					φ φ	φ			
									18.0
		2G SLevel @CriticalPoint		26 36	26 36 46				


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	48.91	74.00	25.09	38.26	54.00	15.74	13.54	v	2.1	2.00
2	7,323.000	53.52	74.00	20.48	42.69	54.00	11.31	18.91	v	0.9	2.00
							÷				
80 75 72.5 70 67.5 65											
75 72.5						in an	in the second se		1 1		
⊑ 70											
0 67.5											
62.5 60											
57.5											
55											
52.5								φ			
50							\bigcirc				
47.5 45											
45								0			
42.0								Y.			
37.5							φ				
35											
32.5											
30											
27.5 25											
25											
20											
17.5											
15											
12.5							- <u>-</u>				
10											
7.5											
5											
2.5						-					
0	1 G		2 G		3 G	4 G	5 G	6G 7G	8G 9G 10G		18

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2441MHz: Fundamental frequency.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	91.23			5.89	Н	42.8	2.00
6	2,483.500	32.23	54.00	21.77	5.91	Н	42.8	2.00
6	2,484.000	32.02	54.00	21.98	5.92	н	42.8	2.00
125 120 110,5 110,5 120		76 5 2480 G	24826 2484	G 2486 G	2485 2490	G 2492 G 24	94 G 2496 G	2.486 2.5

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.750	90.75			5.89	v	355.1	2.00
6	2,483.500	44.87	74.00	29.13	5.91	V	284.3	2.00
6	2,488.250	47.00	74.00	27.00	5.95	v	77.8	1.00
$\begin{array}{c} 125\\ 117.5\\ 107.$	475 G 24	78G 2.480 G	2482 G 2484	G 2486 G	2488 G 2.490	G 2492 G 24	94 G 2.496 G	2498 G 2.5 Frequency in h

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	79.51		• • • • • • • • • • • • • • • • • • •	5.89	V	355.7	2.00
6	2,483.500	30.51	54.00	23.49	5.91	v	284.2	2.00
6	2,492.000	30.78	54.00	23.22	5.97	v	203	2.00
12b 120 117 15 1105 1105 1105 11025 11025 1005 905 9255 900 87.5 805 775.5 700 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 82.5 800 82.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 800 87.5 <		786 2480 G	24826 2484	16 2.486 G	2488 G 2490	G 2492 G 24	94 G 2496 G	2498 G 2,5 Frequency in H

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

IAN	NEL		тх с	hannel 0			TECTOR			ık (PK)	
REQU	JENCY RAI						INCTION			rage (AV)	
	A	NTEN	INA P	OLARITY 8		-	STANCE: H	ORIZON	TAL	AT 3 M	
Rg	Frequency [MHz]		Level IV/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB]	in	Correction [dB]	Polarizat	tion	Azimuth [deg]	Antenna Height [m]
5	2,394.000	46	.37	74.00	27.6	3	5.80	Н		2.5	2.00
5	2,395.000	45	.37	74.00	28.6	3	5.80	Н		359.1	1.00
5	2,402.500	103	3.68				5.86	н		1	2.00
92.5 900 87.5 85 82.5 80 77.5 72.5 705 62.5 62.5 65 65 55 55 55 55 55 52.5 42.5 42.5 42.5 42,5 42,5 42,5 42,5 42,5 42,5 40 47,5 55 55 55 55 55 55 55 55 55 55 55 55 5										·····	
32.5 30 27.5 25											
22.5 20	-										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,394.500	31.11	54.00	22.89	5.80	H H	0.9	2.00
5	2,395.000	31.20	54.00	22.80	5.80	Н	3.6	2.00
5	2,402.000	91.18			5.85	н	3.6	2.00
125 120 1125 120 1125 120 1125 120 1125 120 1125 120 1005 10		3 2356 23906 2	2356 2306 2345	3 23506 2356	230.0.0.235.0.237	06 23756 23806 238	56. 230.6. 235.6	2400 G 241

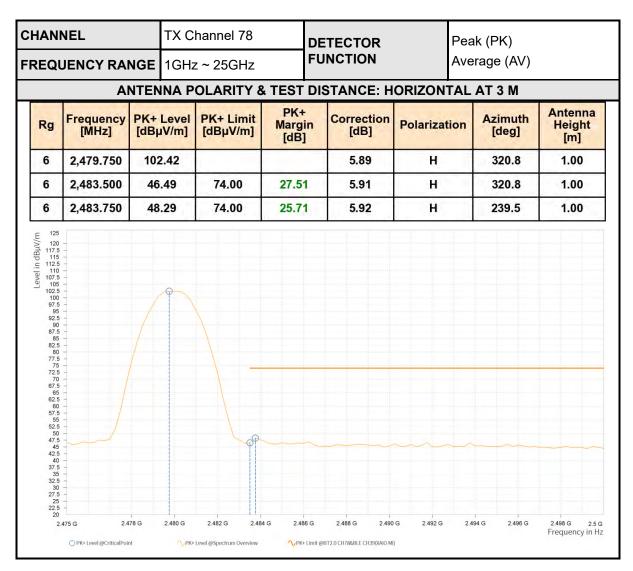
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,373.500	46.16	74.00	27.84	5.66	v	263.4	1.00
5	2,395.000	44.85	74.00	29.15	5.80	v	355.4	1.00
5	2,402.500	93.67			5.86	v	157	1.00
$\begin{array}{c} 125\\ 121\\ 1175\\ 1175\\ 1175\\ 1175\\ 1115\\ 1$	at (c. 2315 c. 2320 (2400 G 24

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
5	2,383.000	30.61	54.00	23.39	5.72	V	353	2.00	
5	2,395.000	30.51	54.00	23.49	5.80	v	158.2	1.00	
5	2,402.000	81.78			5.85	v	158.2	1.00	
125 117.5 117.5 117.5 117.5 110.5 111.5	at (c. 2315 c. 2320)							2400 G 24	

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

IANNEL		TX Cha	annel 39	9		DETECTOR			()			
REQUENCY RANGE			1GHz ~ 25GHz			FUNCTION			Average (AV)			
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	4,882.000	48.02	74.00	25.98	37.76	54.00	16.24	13.54	н	2	2.00	
2	7,323.000	53.79	74.00	20.21	42.80	54.00	11.20	18.91	н	359	2.00	
5 47. 4 42. 4 37.	5 - 5 - 5 - 0 - 5 -						P	0				
3 32. 3 27. 2	0 - 5 - 5 -											
32. 3 27. 2 22. 2 17. 1 12.	0											
32. 3 27. 2 22. 2 17. 1 12. 1 7. 2.	0				36							


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,882.000	48.93	74.00	25.07	38.54	54.00	15.46	13.54	v	269.9	2.00
2	7,323.000	53.14	74.00	20.86	42.73	54.00	11.27	18.91	v	2	2.00
E 88 86 87 87 87 87 87 87 87 87 87 87	5 - 5 -										
2.	5 -										

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

REMARKS:

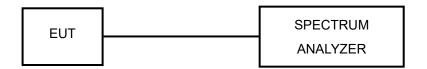
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	90.24			5.89	Н	359.1	1.00
6	2,483.500	31.70	54.00	22.30	5.91	Н	359.1	1.00
6	2,484.000	31.54	54.00	22.46	5.92	н	359.1	1.00
125 117.5 117.5 117.5 117.5 110.5 110.5 100.	475 G 24	78 6 2480 G	24826 2484	G 2486 G	2488 G 2490	G 2492 G 24	94 G 2496 G	2.498 G 2.51

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.500	85.91			5.89	v	155.8	1.00
6	2,483.500	44.94	74.00	29.06	5.91	v	1.4	2.00
6	2,489.500	489.500 49.17		24.83	5.95	v	74.6	1.00
$\begin{array}{c} 125\\ 117, 6\\ 117, 6\\ 117, 6\\ 117, 6\\ 112, 6\\ 11$	4756 24	78.6 2.480.6	2482 G 2484	.G 2.488 G	2.488 G 2.490	G 2.492 G 2.44	94 G 2.496 G	2486 2.5 Frequency in h

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,480.000	74.29		• • • • • • • • • • • • • • • • • • •	5.89	V	169	1.00
6	2,483.500	30.48	54.00	23.52	5.91	v	283	2.00
6	2,492.000	30.79	54.00	23.21	5.97	v	169	1.00
12b 120 117 15 117 15 1100 110 1100 110 1100 110 1100 110 1100 110 1100 100		786 2480 G	24826 2484	16 2.486 G	2.488 G 2.490	G 2492G 24	94 G 2496 G	2498 G 2,5 Frequency in H

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

3.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

3.3.2 TEST SETUP

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Mar.28,24	Mar.27,26
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A03	182185	Mar.29,24	Mar.28,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539- 00-1	SEP-03-20-069	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539- 00-1	SEP-03-20-070	Apr.27,24	Apr.26,25
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsch	VT4002	58566078100050	May.30,24	May.29,26
Power Meter	R&S	NRX	102380	Mar.28,24	Mar.27,26
Power Meter probe	R&S	NRP6A	102942	Mar.28,24	Mar.27,26

NOTE:

- 1. The calibration interval of the above test instruments is 12 /24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.

3.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

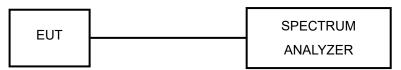
3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Please Refer to Appendix of this test report.

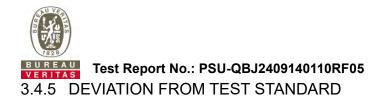


3.4 DWELL TIME ON EACH CHANNEL

3.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 TEST SETUP



3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

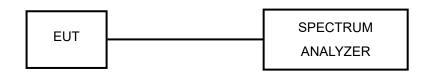
3.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

No deviation.

3.4.6 TEST RESULTS

Please Refer to Appendix of this test report



3.5 CHANNEL BANDWIDTH

3.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.5.5 DEVIATION FROM TEST STANDARD

No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

Please Refer to Appendix of this test report.



3.6 HOPPING CHANNEL SEPARATION

3.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

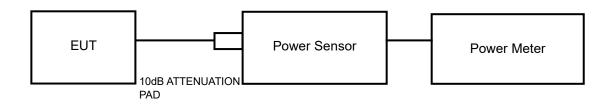
3.6.4 TEST PROCEDURES

- 1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2 Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3 By using the MaxHold function record the separation of two adjacent channels.
- 4 Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5 Repeat above procedures until all frequencies measured were complete.

3.6.1 DEVIATION FROM TEST STANDARD

No deviation.

3.6.2 TEST RESULTS


Please Refer to Appendix of this test report.

3.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

3.7.2 TEST SETUP

3.7.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.7.5 DEVIATION FROM TEST STANDARD No deviation.

3.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.7.7 TEST RESULTS

3.7.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix of this test report.

3.7.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix of this test report.

3.8.1 LIMITS OF OUT OF BAND MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.8.4 DEVIATION FROM TEST STANDARD

No deviation.

3.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.8.6 TEST RESULTS

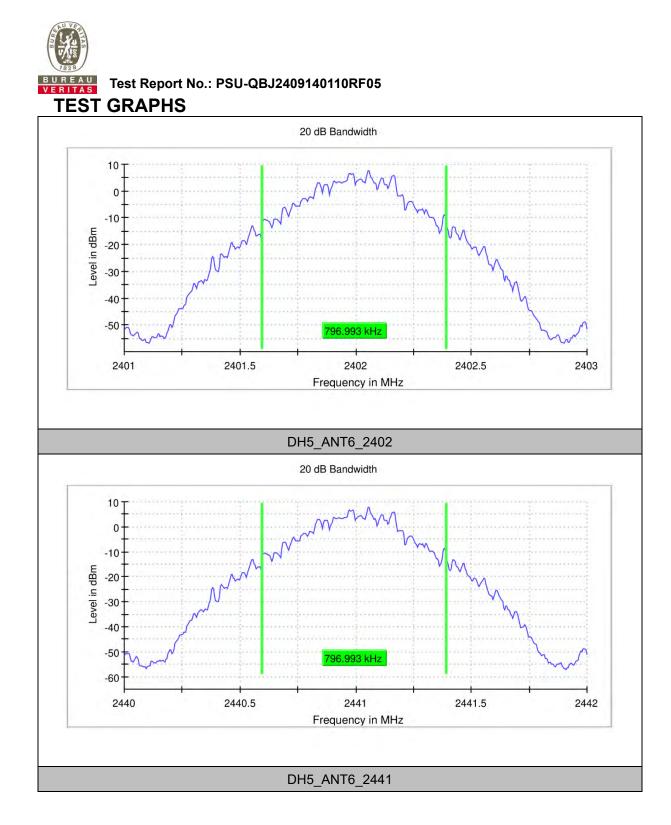
The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

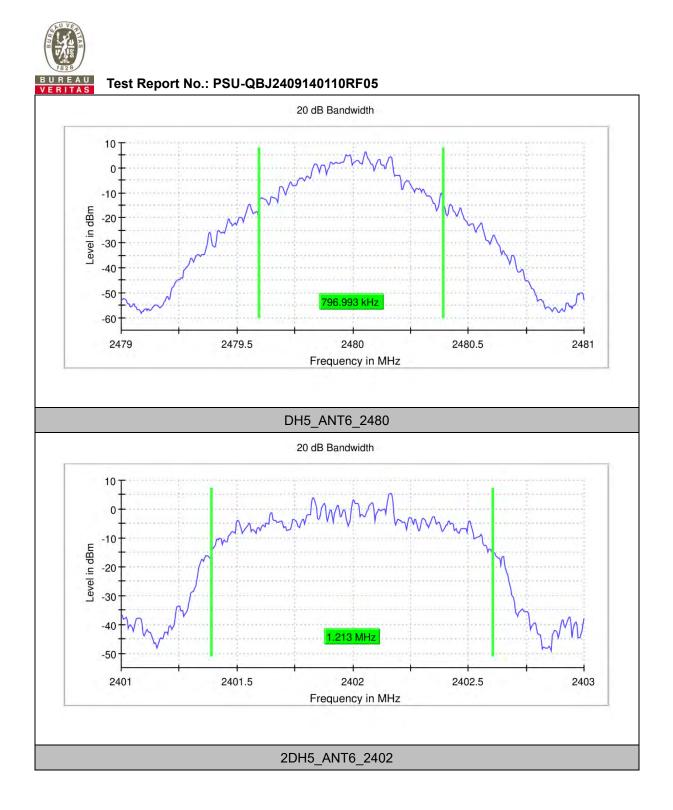
Please Refer to Appendix of this test report.

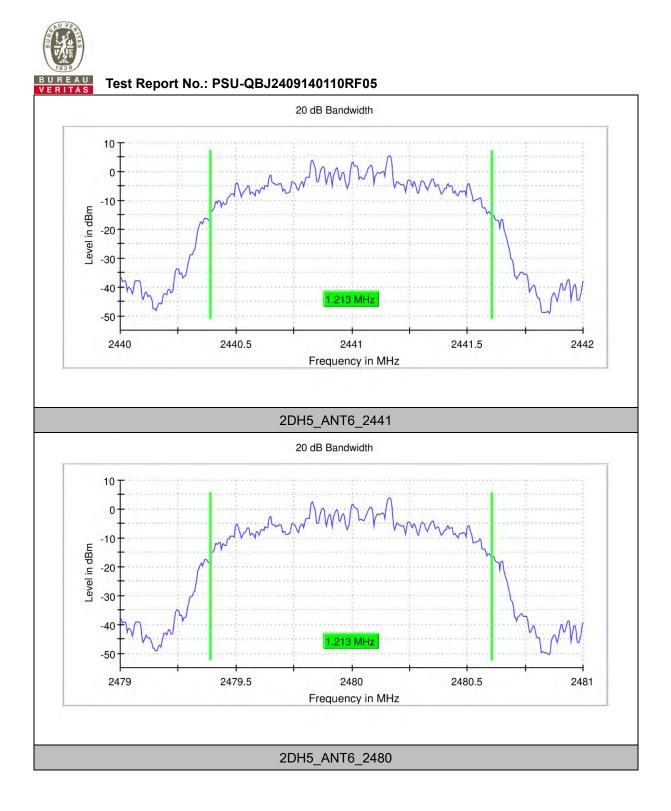
4 PHOTOGRAPHS OF THE TEST CONFIGURATION

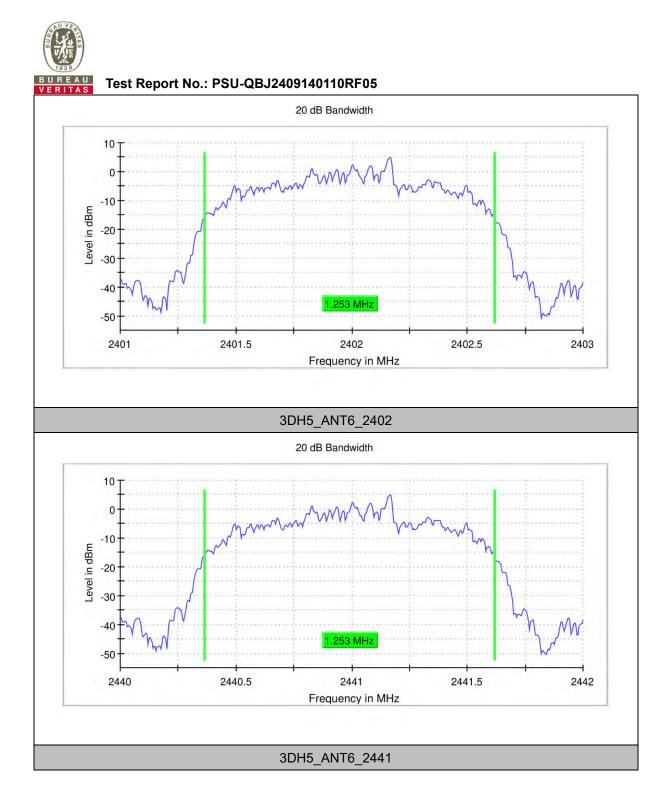
Please refer to the attached file (Test Setup Photo).

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF05 5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

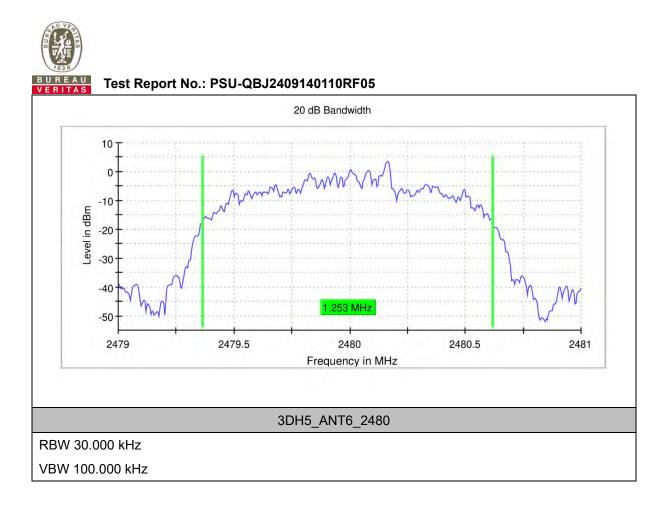

No any modifications are made to the EUT by the lab during the test.

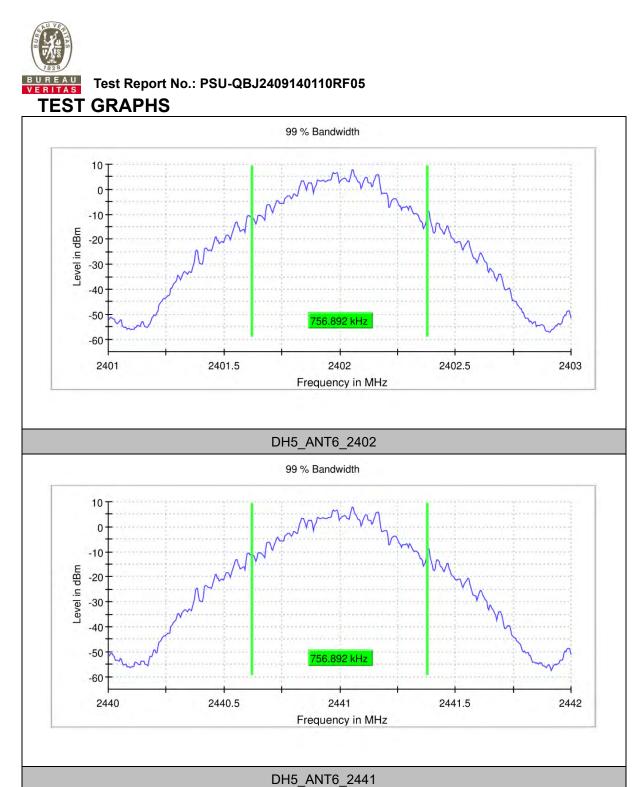


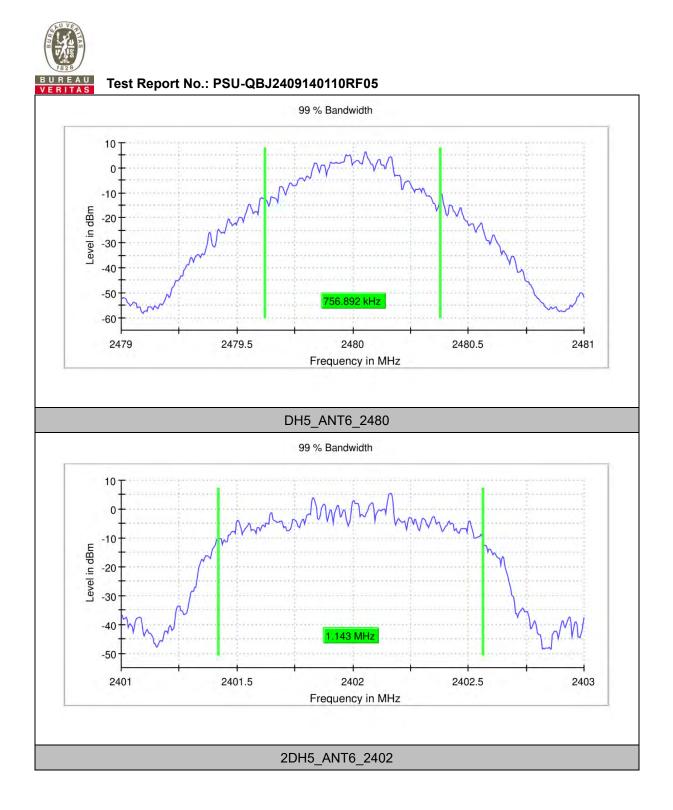

20DB EMISSION BANDWIDTH

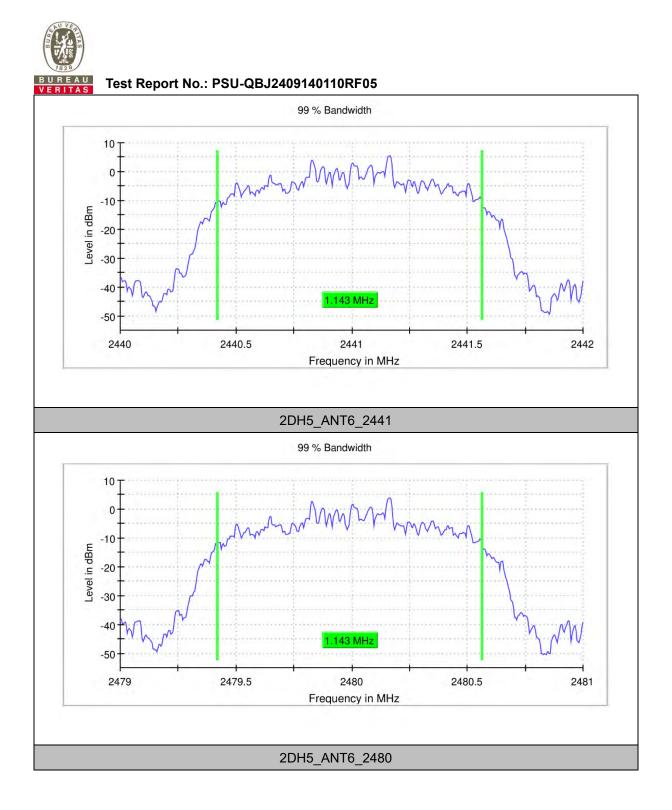

TEST RESULT

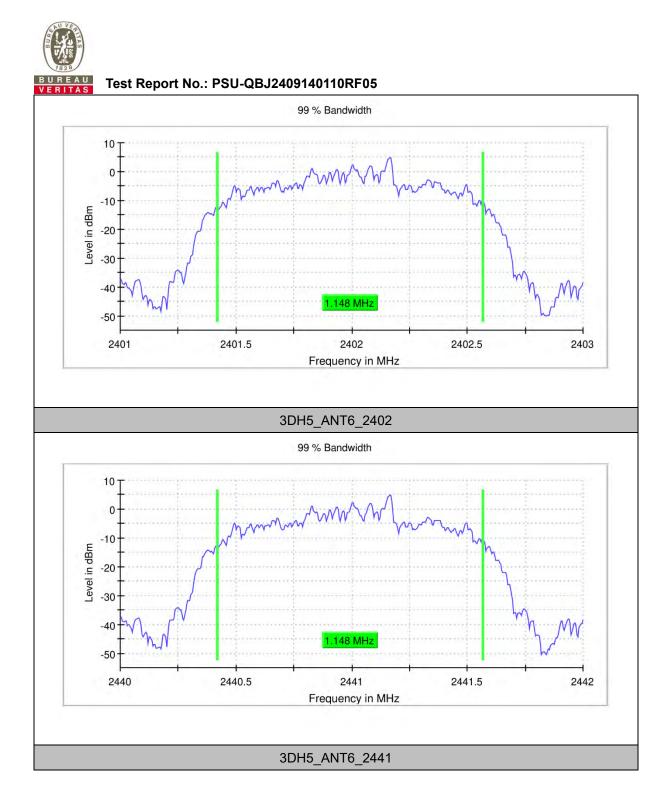
TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.797	2401.596	2402.393		PASS
DH5	ANT6	2441	0.797	2440.596	2441.393		PASS
		2480	0.797	2479.596	2480.393		PASS
		2402	1.213	2401.391	2402.604		PASS
2DH5	ANT6	2441	1.213	2440.391	2441.604		PASS
		2480	1.213	2479.391	2480.604		PASS
		2402	1.253	2401.366	2402.619		PASS
3DH5	ANT6	2441	1.253	2440.366	2441.619		PASS
		2480	1.253	2479.366	2480.619		PASS

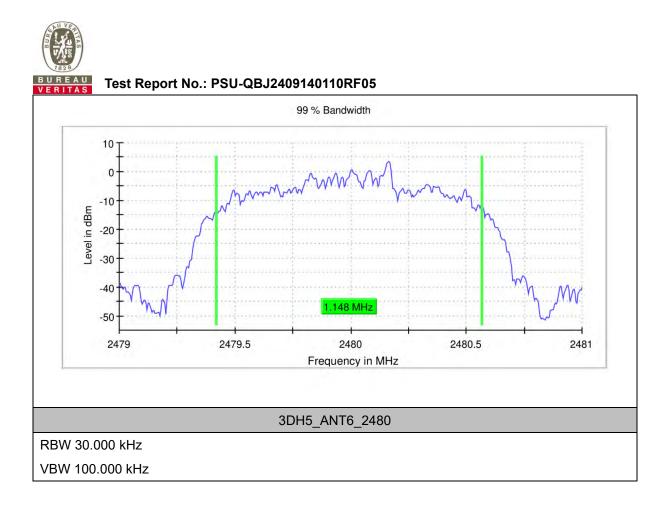


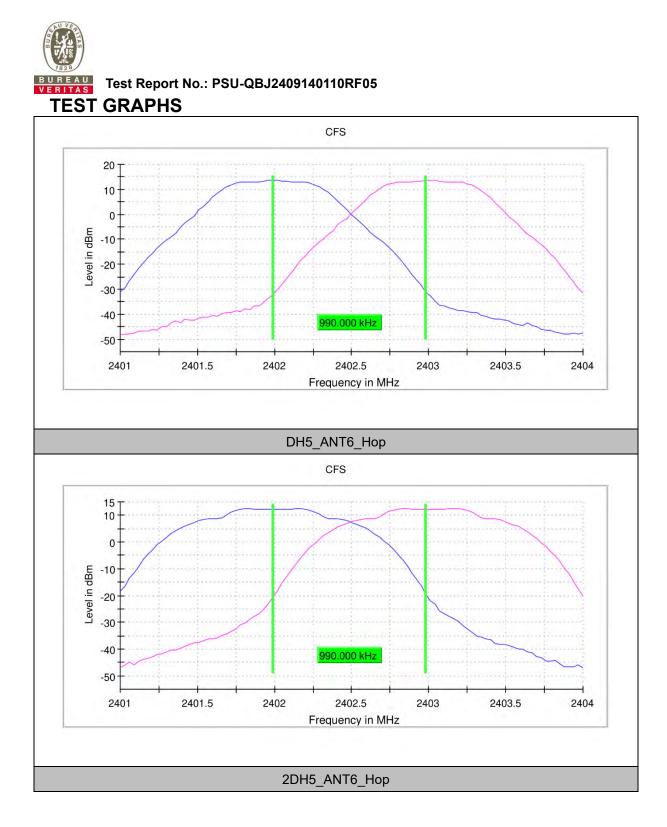

ct, Tel: +86 (0557) 368 1008

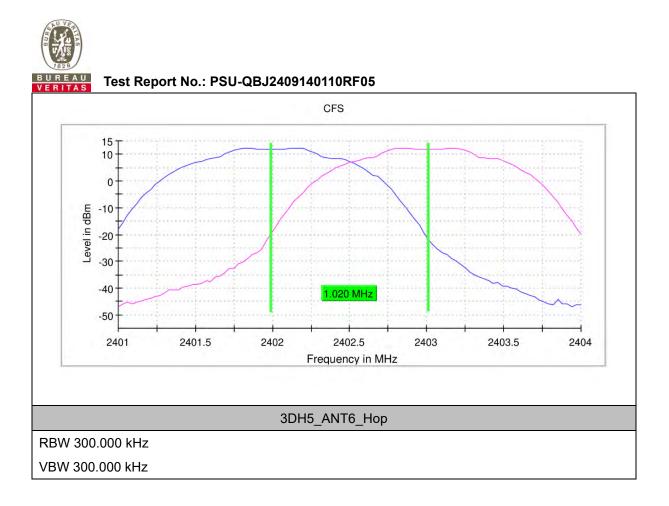





OCCUPIED CHANNEL BANDWIDTH

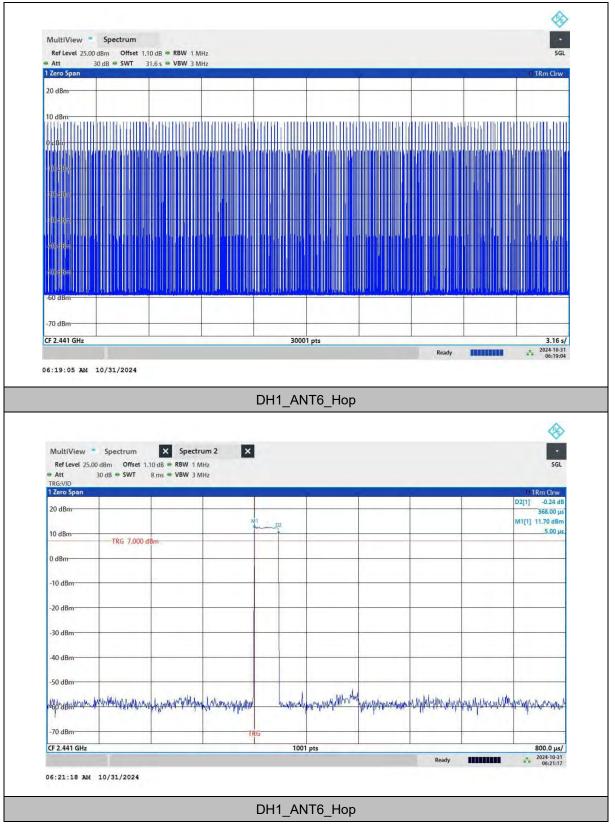

TestMode	Antenna	Channel	ОСВ	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
			[MHz]				
		2402	0.757	2401.622	2402.379		PASS
DH5	ANT6	2441	0.757	2440.622	2441.379		PASS
		2480	0.757	2479.622	2480.379		PASS
		2402	1.143	2401.421	2402.564		PASS
2DH5	ANT6	2441	1.143	2440.421	2441.564		PASS
		2480	1.143	2479.421	2480.564		PASS
		2402	1.148	2401.421	2402.569		PASS
3DH5	ANT6	2441	1.148	2440.421	2441.569		PASS
		2480	1.148	2479.421	2480.569		PASS


BUREAU
VERITASTest Report No.: PSU-QBJ2409140110RF05MAXIMUM CONDUCTED OUTPUT POWER

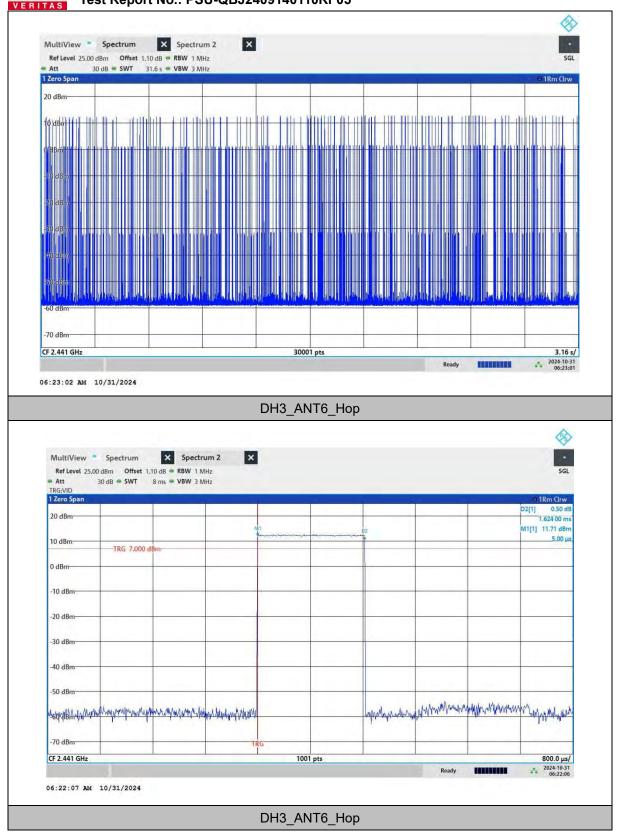

		Frequency	Average	Peak	Peak	Conducted	
TestMode	Antenna	[MHz]	power	Power	Powert	Limit	Verdict
			[dBm]	[dBm]	[mw]	[dBm]	
		2402	13.28	13.31	21.43	≤30.00	PASS
DH5	Ant6	2441	13.53	13.56	22.70	≤30.00	PASS
		2480	13.49	13.53	22.54	≤30.00	PASS
		2402	9.72	11.53	14.22	≤30.00	PASS
2DH5	Ant6	2441	9.95	9.96	9.91	≤30.00	PASS
		2480	9.93	11.25	13.34	≤30.00	PASS
		2402	9.50	11.30	13.49	≤30.00	PASS
3DH5	Ant6	2441	9.72	9.77	9.48	≤30.00	PASS
		2480	9.70	11.07	12.79	≤30.00	PASS

BUREAU VERITAS Test Report No.: PSU-QBJ2409140110RF05 CARRIER FREQUENCY SEPARATION

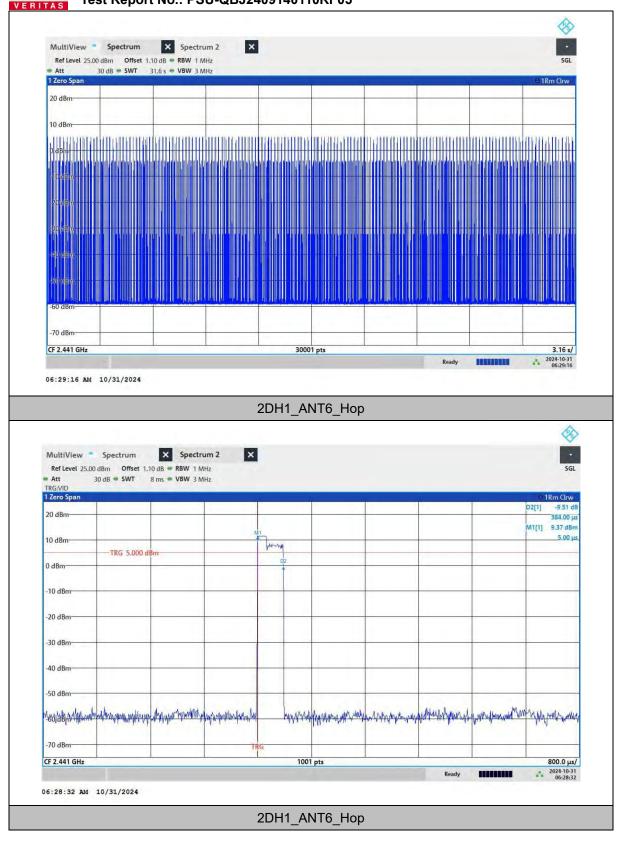
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	ANT6	Нор	0.990	≥0.5313	PASS
2DH5	ANT6	Нор	0.990	≥0.8087	PASS
3DH5	ANT6	Нор	1.020	≥0.8353	PASS



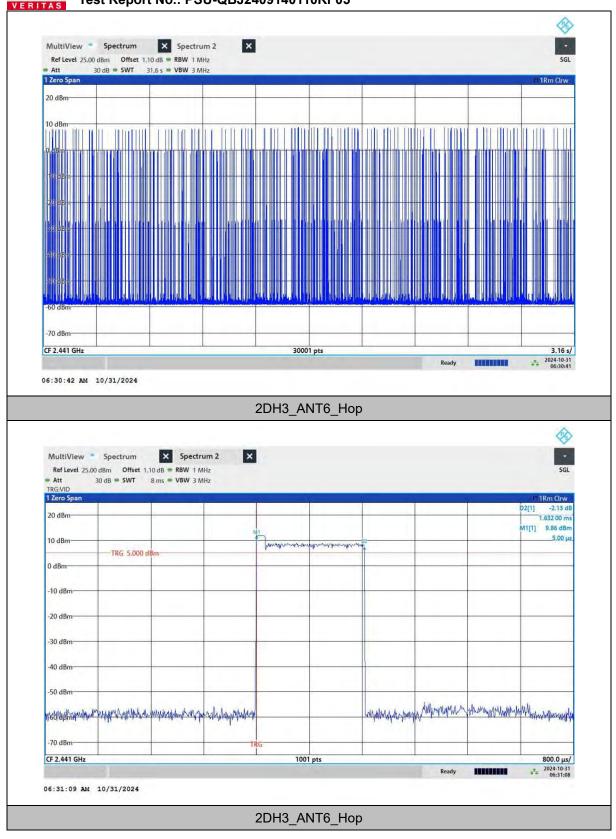
TIME OF OCCUPANCY


TestMode	Antenna	Channel	BurstWidth	TotalHops	Result[s]	Limit[s]	Verdict
restivioue	Antenna	Channel	[ms]	[Num]	Resultsj	ւուովեյ	Verdict
DH1	ANT6	Нор	0.368	225	0.083	≤0.4	PASS
DH3	ANT6	Нор	1.624	156	0.253	≤0.4	PASS
DH5	ANT6	Нор	2.872	102	0.293	≤0.4	PASS
2DH1	ANT6	Нор	0.384	239	0.092	≤0.4	PASS
2DH3	ANT6	Нор	1.632	149	0.243	≤0.4	PASS
2DH5	ANT6	Нор	2.888	108	0.312	≤0.4	PASS
3DH1	ANT6	Нор	0.376	237	0.089	≤0.4	PASS
3DH3	ANT6	Нор	1.632	163	0.266	≤0.4	PASS
3DH5	ANT6	Нор	2.888	104	0.300	≤0.4	PASS

TEST GRAPHS



VERITAS


Test Report No.: PSU-QBJ2409140110RF05

20.10			1.		20 m				
20 dBm									
10 dBm									
0 dBm 🕂								111111111111	
-10 dBm									
20.dBm									
-30.dBm									
SUdom									
-40 d Bm									
S0 dBm	A1. 2010 August 1								
-60 dBm	entering and diver	ulfelin och men for the	for adda a fuller to a	a cold a materia	appelling to see of the	enter el 100 - stat al 110 a	anilla contrar. Actual.	Collisian some raffie	CONCERNENCIAL OF
-70 dBm							-		
CF 2.441 GHz	-		1	3000	01 pts				3.16 s/
							Ready		2024-10-31 06:25:54
	10/21/2024								
06:25:55 A	4 10/31/2024								
06:25:55 A	4 10/31/2024			DH5 AN	NT6 Hop				
06:25:55 AU	4 10/31/2024			DH5_AN	NT6_Hop				~
06:25:55 AN	4 10/31/2024			DH5_AN	NT6_Hop				\$
		X Spectr	um 2 🗙	DH5_AM	NT6_Hop				\$
MultiView Ref Level 25.0	Spectrum 0 dBm Offset 1.	10 dB - RBW 1 N	1Hz	DH5_AN	NT6_Hop		_		SGL
MultiView Ref Level 25.0 Att TRG-VID	Spectrum	10 dB - RBW 1 N	1Hz	DH5_AN	NT6_Hop				
MultiView Ref Level 25.0 Att IRG-VID I Zero Span	Spectrum 0 dBm Offset 1.	10 dB - RBW 1 N	1Hz	DH5_AN	NT6_Hop				O 1Rm Clrw D2[1] 0.25 dB
MultiView Ref Level 25.0 Att TRG-VID	Spectrum 0 dBm Offset 1.	10 dB - RBW 1 N	1Hz	DH5_AN	NT6_Hop		02		O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.0 Att IRG-VID I Zero Span	Spectrum 0 dBm Offset 1.	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	NT6_Hop		D2		0 1Rm Clrw D2[1] 0.25 dB 2.872 00 ms
MultiView Ref Level 25.0 Att TRG-VID I Zero Span 20 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	NT6_Hop		02		O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.01 Att RG:VID I Zero Span 20 dBm 10 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	NT6_Hop				O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Att TRG:VID 20 dBm 10 dBm 0 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	NT6_Hop		D2		O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Att TRG-VID I Zero Span 20 dBm 10 dBm 0 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	NT6_Hop				O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Att TRG:VID 20 dBm 10 dBm 0 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	VT6_Hop				O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Att TRG-VID Zero Span 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz		NT6_Hop				O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Aft IZero Span 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB ≕ RBW 1 N 8 ms ≕ VBW 3 N	1Hz	DH5_AN	VT6_Hop				O 1Rm Claw D2[1] 0.25 dE 2.872 00 ms M1[1] 12.26 dBm
MultiView Ref Level 25.00 Att Res-VID Zero Span Z0 dBm D dBm O dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	Spectrum 0 dBm Offset 1. 30 dB = SWT TRG 7.000 d	10 dB = RBW 1 M 8 ms = VBW 3 M	HH2 HH2	DH5_AN	NT6_Hop				О 1Rm Claw D2[1] 0.25 dt 2.872 00 m М1[1] 12.26 dBr 5.00 µ
MultiView Ref Level 25.00 Att Res-VID Zero Span Z0 dBm D dBm O dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	Spectrum 0 dBm Offset 1, 30 dB = SWT	10 dB = RBW 1 M 8 ms = VBW 3 M	HH2 HH2	DH5_AN	VT6_Hop			Y WARMAN MAR MARY	О 1Rm Claw D2[1] 0.25 dt 2.872 00 m М1[1] 12.26 dBr 5.00 µ
MultiView Ref Level 25.00 Att Reg-VID Zero Span 20 dBm 20 dBm 0 dBm	Spectrum 0 dBm Offset 1. 30 dB = SWT TRG 7.000 d	10 dB = RBW 1 M 8 ms = VBW 3 M			NT6_Hop				О 1Rm Claw D2[1] 0.25 dt 2.872 00 m М1[1] 12.26 dBr 5.00 µ

