WIFI Tri-Band Antenna Flexible Antenna Product Specification # **CONTENTS** - 1. SCOPE - 2. PRODUCT DESCRIPTION - 3. GENERAL SPECIFICATION - 4. ANTENNA PERFORMANCE - 5. MECHANICAL SPECIFICATION - 6. ENVIRONMENTAL SPECIFICATION **Revision History** # 1.0 Scope This Product Specification covers the mechanical, electrical and environmental performances specification for Tri-band WIFI 2.4G/5G/6G Flexible Antenna. # 2.0 Product Description #### 2.1 Product name and Part Number Product Name: Tri-band WIFI Flexible Antenna Product Number: 630810000002 #### 2.2 Description Part of 630810000002 is a dipole and low profile flexible antenna for 2400~2500/5150~5850/5925~7125MHz band application. It's made from Poly-flexible material, has a size form 46.5mm x 12.5mm x 0.15mm and has double-sided adhesive for "peel and stick" easy mounting. It was designed primarily for use with WIFI 5/6/6e modules and devices that require high efficiency and peak gain to deliver best in class throughput for access points, terminals, and routers. #### 2.3 Features - 2400~2500/5150~5850/5925~7125MHz, Linear polarization - Flex size 46.5 x 12.5 x 0.15mm (not contain thickness of solder area) - U.FL / I-PEX MHF 1 compatible connector - Cable OD0.81mm, standard length of cable as 150mm - RoHS Compliant 630810000002 Tri-band WIFI Flexible Antenna Module 3D View #### 2.4 Product Structure Information # #46.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **12.50±0.20 **15.0±0.20 #### 注释: - 1. 不明尺寸参考图档 - 2. 材质:参考图档 - 3. 焊点整洁, 高度不超过1.4mm - 4. 零件标记: 按指定位置 - 5. 需通过HAITONG品质部门要求FPC的各项测试,;盐水喷雾测试 要求48H后产品表面无氧化现象 - 6. 尺寸要求: - 6.1 ST尺寸: 测量最小量为500中选取的任意35个产品的尺寸做CPK分析 - 6.2 *尺寸为重点管控尺寸 - 7. 首批物品: 随机挑选5pcs做全尺寸测量, 报告及物品专递 HAITONG品质部 - 8. 任何用料上的修改必须通过HT工程部门书面同意 - 9. 产品符合RoHS/HF/REACH的要求 - 10. 油墨: 亚光黑色 | 1 | G. 1. 11. L. 0163 | BJ0324_WIFI_MHF1_FPC | 1 | | |---|-------------------|----------------------|---|--| | 2 | G. 1. 22. L. 0068 | BJ0324_WB_MHF1_Cable | 1 | | # 3.0 General Specification | Product name | WIFI T | ri-band Flexible Ante | nna | |-------------------------|---------------------------------|-----------------------|---------------| | Part number | | 630810000002 | | | Frequency | 2400-2500 MHz | 5150-5850 MHz | 5925~7125 MHz | | Polarization | Linear | | | | Operating with matching | | -40°C to 80°C | | | Storage with matching | -40°C to 80°C | | | | RF Power | 2.0 Watts | | | | Impedance with matching | | 50 Ohms | | | Antenna type | | Dipole | | | Connector type | U.FL / I-PEX MHF 1 (Compatible) | | | | Cable diameter | Ø0.81mm | | | | Cable Length | 150mm | | | #### 4.0 Antenna Performance #### 4.1 RF Test Conditions All measurements are done of the antenna mounted on a polyfoam material block of 1.0cm thickness with VNA Agilent E5071C and Over-The-Air (OTA) chamber. All measurements in this document are done with a cable length of 150mm. #### 4.2 Antenna Performance | Description | Equipment | Performance (150mm) | | | |-----------------------------------|-------------|---------------------|------------------|------------------| | Frequency Range | VNA E5071C | 2400-2500
MHz | 5150-5850
MHz | 5925~7125
MHz | | Return Loss | VNA E5071C | <-18 dB | <-10 dB | <-6 dB | | Peak Gain (Max) | OTA Chamber | 2.5 dBi | 2.6 dBi | 2.6 dBi | | Average Total
Efficiency. (dB) | OTA Chamber | -2.2 | -3.0 | -2.9 | | Input Impedance | VNA E5071C | | 50 ohms | | Note that the above antenna performance is measured under a similar freespace condition. When implement into the system, the frequency resonant might be off-tune due to the loading of surrounding components especially metal plane. This off-tune can be compensated through matching. The radiation pattern will change due to the surround components as well. #### 4.3 Antenna Gain of Bands | Band | Frequency Range | Peak Gain (dBi) | |------------------------|-----------------|-----------------| | WIFI 2.4G 2400~2500MHz | | 2.5 | | | 5150~5250MHz | 2.1 | | | 5250~5350MHz | 2 | | WIFI 5.0G | 5350~5450MHz | 2.6 | | W1F1 5.0G | 5450~5725MHz | 2.6 | | | 5725~5850MHz | 2.2 | | | 5850~5900MHz | 2.3 | | | 5925~6125MHz | 2.3 | | | 6125~6325MHz | 2.6 | | WIEL 6 OC | 6325~6525MHz | 2.4 | | WIFI 6.0G | 6525~6725MHz | 2.1 | | | 6725~6925MHz | 1.5 | | | 6925~7125MHz | 1.2 | #### **4.4 Return Loss Plot** All measurements in this document are done with cable length of 150mm. Figure 4.3.1 Return Loss of Antenna In Free Space ## 4.5 Efficiency Plot Figure 4.4.1 Efficiency of Antenna at 2400-2500MHz In Free Space Figure 4.4.2 Efficiency of Antenna at 5150-5850MHz In Free Space Figure 4.4.3 Efficiency of Antenna at 5920-7125MHz In Free Space #### 4.6 2D Radiation Pattern #### **Test condition:** ## 4.7 3D Radiation Pattern # 5.0 Mechanical Specification | Description | Test Condition | Test Result | | |-----------------|--|-------------------------------|--| | | 1, Test machine: Max intelligent load tester | | | | Pull Test | 2, Stick the flex antenna on aplastic board, | Pull force >8N | | | | pull cable in axial direction. | | | | | Solder the receptacle connector to the test | | | | Un-mating force | board ,then place the board and plug on | | | | | push-on/pull-off machine, and repeat mating | Un-mating force : 0.5 kgf min | | | (connector) | and un-mating 30 cycles at a speed | | | | | 25±3mm/min. along the mating axis. | | | # 6.0 Environmental Specification | Description | Specification | |-------------------------------|--| | Temperature /Humidity cycling | The device under test is kept for 30 Min. in an environment with a temperature of -40 °C. Kept for 4 Hours in an environment with a temperature of 85 degrees and a relative humidity of 95%. Kept for 2 Hours in an environment with a temperature of 125 degrees and a relative humidity of 95%. The cycle is repeated until a total of 40 cycles have been completed. Hereafter the conditions are stabilized at room temperature. Transfer temperature 8°C per min. Parts should meet RF spec before and after test. No cosmetic problem (No soldering problem; No adhesion problem of glue.) | | Temperature Shock | The device under test at -40 °C ⇔ 80 °C by 100 cycles, Dwell of 30 Min., transition time between Dwell 30 Sec. (~ 61 Min. / cycle) and each item should be measured after exposing them in normal temperature and humidity for 24 Hour. Parts should meet RF spec before and after test. No cosmetic problem (No soldering problem; No adhesion problem of glue.) | | High Temperature | Temperature:80°C, time:48 hours There is no substantial obstruction to air flow across and around the samples, and the samples are not touching each other. Parts should meet RF spec before and after test. No cosmetic problem (No soldering problem; No adhesion problem of glue.) | | Salt mist test | The device under test is exposed to a spray of a 5% (by volume) resolution of NACL in water for 2 hours. Thereafter the device under test is left for 1 week in room temperature at a relative humidity of 95%. The cycle is repeated until a total of 2 cycles have been completed. Here after the conditions are stabilized at room temperature. Parts should meet RF spec before and after test. No visible corrosion. Discoloration accept. | # **Revision History** | Revision | Date | Description | |----------|-----------------|-----------------------------------| | 1.0 | March.22 2022 | First Release | | 2.0 | October.10 2022 | Update with Antenna Gain of Bands | | | | | # Empowering Every **IoT** Device with Our Technology 6540 Lusk Blvd. Suite C166 San Diego CA 92121 service@thundercomm.com +86-10-62662686 # www.thundercomm.com Copyright Thundercomm Technology Co., Ltd. 2019 All right reserved