	TEST REPOR	T					
FCC ID :	2BLTACMV201WBQ						
Test Report No::	TCT240511E010	CT240511E010					
Date of issue:	Jul. 29, 2024						
Testing laboratory:	SHENZHEN TONGCE TESTIN						
Testing location/ address:	2101 & 2201, Zhenchang Facto Subdistrict, Bao'an District, She People's Republic of China	ry Renshan Industrial Zone, Fuhai nzhen, Guangdong, 518103,					
Applicant's name: :	EWIC PHILIPPINES INC.						
Address:	BLDG NOS 7&8 S BLK 2 LOT 2 TECHNOPARK ANNEX, BARA Philippines						
Manufacturer's name :	Sharetronic Data Technology C	o., Ltd.					
Address:	Futian District Shenzhen Guang	1209 F12th Yaohuachuagnjian Building No. 6023 Shennan Blvd. Futian District Shenzhen Guangdong P.R.China					
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020						
Product Name::	Smart PTZ Camera						
Trade Mark:	N/A						
Model/Type reference :	Refer to model(s) list of page 4						
Rating(s):	Adapter Information: Model: TPQ-236A050200UW01 Input: AC 100-240V, 50/60Hz, 0 Output: DC 5.0V, 2.0A						
Date of receipt of test item	May 11, 2024						
Date (s) of performance of test:	May 11, 2024 ~ Jul. 29, 2024						
Tested by (+signature) :	Ronaldo LUO	Ronald Wase					
Check by (+signature) :	Beryl ZHAO	Boylengerer					
Approved by (+signature):	Tomsin	omsite st					
General disclaimer:	<u>_</u>						

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	I. General Product Information		
	1.1. EUT description		3
	1.2. Model(s) list	4	ŀ
	1.3. Operation Frequency		5
2.	2. Test Result Summary	<u>()</u>	5
3.	3. General Information	7	,
	3.1. Test environment and mode		7
	3.2. Description of Support Units		3
4.			
	4.1. Facilities	<u>د</u> و)
	4.2. Location)
	4.3. Measurement Uncertainty		
5 .	5. Test Results and Measurement Data)
	5.1. Antenna requirement)
	5.2. Conducted Emission		
	5.3. Maximum Conducted (Peak) Output Power		5
	5.4. Emission Bandwidth	16	5
	5.5. Power Spectral Density		7
	5.6. Conducted Band Edge and Spurious Emiss	sion Measurement18	3
	5.7. Radiated Spurious Emission Measurement	20)
A	Appendix A: Test Result of Conducted Test	I) (I)	
A	Appendix B: Photographs of Test Setup		
Α	Appendix C: Photographs of EUT		
K.			

1. General Product Information

1.1. EUT description

Product Name:	Smart PTZ Camera
Model/Type reference:	CM-V201-WB(QPHI)
Sample Number	TCT240511E009-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing (OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	2.60dBi
Rating(s):	Adapter Information: Model: TPQ-236A050200UW01 Input: AC 100-240V, 50/60Hz, 0.4A Output: DC 5.0V, 2.0A

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Page 3 of 69

Report No.: TCT240511E010

1.2. Model(s) list

No.	Model No.	Tested with
1	CM-V201-WB(QPHI)	
Other models	CM-V201-WB(DPHI), S-CW6111A02, S-CW6112A02, S-CW6110A02, S-CW6211A02, S-CW6212A02, S-CE6211A02, S-CE6212A02, S-CE6210A02, S-CW6241A02, S-CW6242A02, S-CW6311A02, S-CW6312A02, S-CW6214A02, S-CW6244A02, S-CW6411A02, S-CW6511A02, S-CW6111B01, S-CW6112B01, S-CW6211B01, S-CW6212B01, S-CE6211B01, S-CE6212B01, S-CE6210B01, S-CW6241B01, S-CW6243B01, S-CW6114B01, S-CW6214B01, S-CW6244B01, S-CW6111B02, S-CW6112B02, S-CW6211B02, S-CW6212B02, S-CE6211B02, S-CE6212B02, S-CE6210B02, S-CW6241B02, S-CW6243B02, S-CW6114B02, S-CW6214B02, S-CW6241B02, S-CW6243B02, S-CW6114B02, S-CW6214B02, S-CW6241B02, S-CW6111B03, S-CW6112B03, S-CW6211B03, S-CW624212B03, S-CE6211B03, S-CE6212B03, S-CW6211B03, S-CW6241B03, S-CW6243B03, S-CW6114B03, S-CW6214B03, S-CW6241B03, S-CW6111B04, S-CW6112B04, S-CW6211B04, S-CW6241B04, S-CW6243B04, S-CW6112B04, S-CW6214B04, S-CW6241B04, S-CW6243B04, S-CW6114B04, S-CW6214B04, S-CW6244B04, S-CW6111B05, S-CW6112B05,	
	S-CW6211B05, S-CW6212B05, S-CE6211B05, S-CE6212B05, S-CE6210B05, S-CW6241B05, S-CW6243B05, S-CW6114B05, S-CW6214B05, S-CW6244B05, S-CW6111B06, S-CW6112B06, S-CW6211B06, S-CW6212B06, S-CE6211B06, S-CE6212B06, S-CE6210B06, S-CW6241B06, S-CW6243B06, S-CW6114B06, S-CW6214B06, S-CW6244B06, S-CW6101C01, S-CW6111C01, S-CW6103C01, S-CW6113C01, S-CW6101C01, S-CW6111C01, S-CW6103C01, S-CW6113C01, S-CW6104C01, S-CW6114C01, S-CW5211A01, S-CW5311A01, S-CW54104C01, S-CW5511A01, S-CW5213A01, S-CW5313A01, S-CW5413A01, S-CW5513A01, S-CW2201D01, S-CW2201D02, S-CW2202D01, S-CW2202D02, S-CW2212D02 VB(QPHI) is tested model, other models are derivative models. The models are rout, only different on the model names and appearance color. So the test data	
	B(QPHI) can represent the remaining models.	
		Page 4 of 60
		Page 4 of 69

1.3. Operation Frequency

For 802.11b/g/n (HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
N	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Page 5 of 69

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	22.8 °C	22.8 °C
Humidity:	49 % RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	Putty	
Power Level:	4	
Fest Mode:		
Engineering mode:	Keep the EUT in continuous channel and modulations wi	
oolarities were performed. I he EUT continuously worki axis (X, Y & Z) and cor nanipulating interconnectin	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta	modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh
oolarities were performed. I he EUT continuously work axis (X, Y & Z) and cor nanipulating interconnectin rom 1m to 4m in both horiz	During the test, each emission ng, investigated all operating sidered typical configuration	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and con- manipulating interconnecting rom 1m to 4m in both horized Z axis) are shown in Test R We have verified the constru- vere carried out with the EU report and defined as follow	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and con nanipulating interconnectin rom 1m to 4m in both horiz Z axis) are shown in Test R We have verified the constru- vere carried out with the EU eport and defined as follow Per-scan all kind of data ra	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages.	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and con nanipulating interconnectin rom 1m to 4m in both horiz Z axis) are shown in Test R We have verified the constru- vere carried out with the EU eport and defined as follow Per-scan all kind of data ra	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and cor- manipulating interconnection rom 1m to 4m in both horiz Z axis) are shown in Test R We have verified the constru- vere carried out with the EU eport and defined as follow Per-scan all kind of data ra- vas worst case.	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and cor- manipulating interconnection rom 1m to 4m in both horiz Z axis) are shown in Test R We have verified the constru- vere carried out with the EU eport and defined as follow Per-scan all kind of data ra- was worst case. Mode	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test bund the follow list which i Data rate
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and cor- nanipulating interconnectin rom 1m to 4m in both horiz Z axis) are shown in Test R We have verified the constru- vere carried out with the EU eport and defined as follow Per-scan all kind of data ra- vas worst case. Mode 802.11b	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps
bolarities were performed. I he EUT continuously work axis (X, Y & Z) and cor- manipulating interconnectin from 1m to 4m in both horize Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b 802.11g	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 in to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps 6Mbps
bolarities were performed. I the EUT continuously work axis (X, Y & Z) and cor- manipulating interconnectin from 1m to 4m in both horiz (Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case. Mode 802.11b 802.11g	During the test, each emission ng, investigated all operating isidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages. Ution and function in typical of UT in transmitting operation, we s:	n was maximized by: having modes, rotated about all 3 in to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test bund the follow list which i Data rate 1Mbps 6Mbps


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Equipment		jenariuo.		
) / (<u> </u>	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Test Results and Measurement Data 5.

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. **E.U.T Antenna:** The WIFI antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 2.60dBi. Antenna 70 60 50 40 30 20 10 mm 09 02 08 06 00 LOL 02 30 20 09 հահահահ

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2020				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46* 🔍		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup: Test Mode:	40cm 40cm 40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m Transmitting Mode	EMI Receiver	AC power		
Test Procedure:	 The E.U.T is connelline impedance staprovides a 500hm/s measuring equipme The peripheral device power through a Licoupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2020 conducted interface 	bilization network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and d for maximum nd the maximum ipment and all o ed according to		

Page 11 of 69

5.2.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

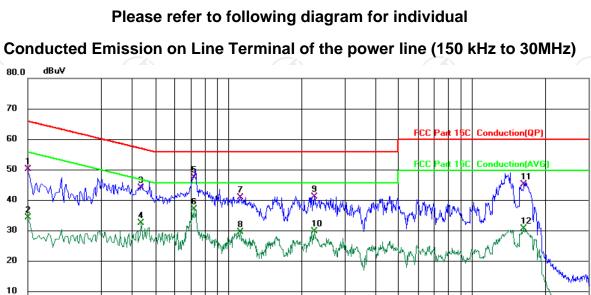
Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025		
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025		
Attenuator	N/A	10dB	164080	Jun. 26, 2025		
Line-5	тст	CE-05	/	Jun. 26, 2025		
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1		
				J.		

beak

AVG

30.000

5.2.3. Test data

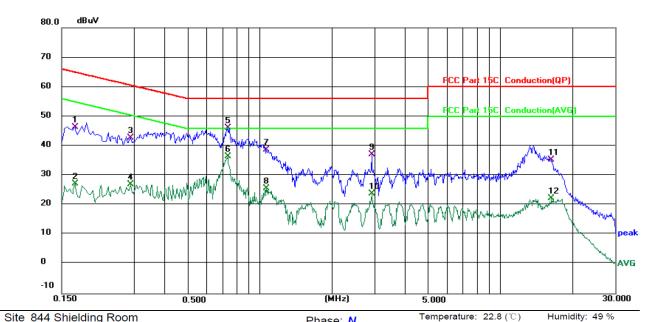

0

-10

0.150

0.500

TCT通测检测 TESTING CENTRE TECHNOLOGY


(MHz)

5.000

Site 844 Shielding Room				Phas	e: L1	mperature: 22.8 (℃)	Humidity: 49 %			
Limit: FCC Part 15C Conduction(QP)						Power	: AC 120	V/60 Hz		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1		0.1500	40.46	10.02	50.48	66.00	-15.52	QP		
2		0.1500	24.69	10.02	34.71	56.00	-21.29	AVG		
3		0.4380	34.92	9.39	44.31	57.10	-12.79	QP		
4		0.4380	23.51	9.39	32.90	47.10	-14.20	AVG		
5	*	0.7219	38.53	9.14	47.67	56.00	-8.33	QP		
6		0.7219	28.20	9.14	37.34	46.00	-8.66	AVG		
7		1.1220	31.18	9.91	41.09	56.00	-14.91	QP		
8		1.1220	20.09	9.91	30.00	46.00	-16.00	AVG		
9		2.2540	31.40	10.08	41.48	56.00	-14.52	QP		
10		2.2540	20.02	10.08	30.10	46.00	-15.90	AVG		
11		16.2820	34.76	10.61	45.37	60.00	-14.63	QP		
12		16.2820	20.36	10.61	30.97	50.00	-19.03	AVG		

Note:

NO	ote:		
	Freq. = Emission frequency in MHz		
	Reading level (dBµV) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement (dBμV) = Reading level (dBμV) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency rang	e 150 kHz to 30MHz.	

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Sile 044	sineiding	RUUIII			Phas	se: N	10		Frannancy. 45 76
Limit: F	CC Part 15	C Conducti	ion(QP)		Powe	r: AC 120	∨/60 Hz		
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBuV	dBu∨	dB	Detector	Comment	
1	0.1700	36.34	10.00	46.34	64.96	-18.62	QP		
2	0.1700	17.32	10.00	27.32	54.96	-27.64	AVG		
3	0.2900	33.04	9.83	42.87	60.52	-17.65	QP		
4	0.2900	17.24	9.83	27.07	50.52	-23.45	AVG		
5	0.7378	36.94	9.09	46.03	56.00	-9.97	QP		
6 *	0.7378	27.30	9.09	36.39	46.00	-9.61	AVG		
7	1.0700	28.86	9.87	38.73	56.00	-17.27	QP		
8	1.0700	15.69	9.87	25.56	46.00	-20.44	AVG		
9	2.9180	27.09	10.10	37.19	56.00	-18.81	QP		
10	2.9180	13.79	10.10	23.89	46.00	-22.11	AVG		
11	16.3140	24.71	10.57	35.28	60.00	-24.72	QP		
12	16.3140	11.66	10.57	22.23	50.00	-27.77	AVG		

Note: 1. Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

 $Measurement (dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

TCT 通测检测 TESTING CENTRE TECHNOLOGY

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b) was submitted only.

Page 14 of 69

5.3. Maximum Conducted (Peak) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

	RF Test Room								
Equipme	ent	Manufacturer	Model	Serial Number	Calibration Due				
Power Ser	nsor	Agilent	8184A	MY41096530	Jun. 26, 2025				
Power Me	eter	Agilent	E4418B	MY45100357	Jun. 26, 2025				

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement: FCC Part15 C Section 15.247 (a)(2) Test Method: KDB 558074 D01 v05r02 Limit: >500kHz Test Setup: Spectrum Analyzer EUT	
Limit: >500kHz Test Setup: Spectrum Analyzer EUT	
Test Setup:	
Spectrum Analyzer	0
Transmitting mode with modulation	
Test Mode: Transmitting mode with modulation	
Test Procedure:1. Set to the maximum power setting and enable th EUT transmit continuously. 2. Make the measurement with the spectrum analy- resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to an accurate measurement. The 6dB bandwidth be greater than 500 kHz. 	er's nake nust
Test Result: PASS	

5.4.2. Test Instruments

4	RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025						
Combiner Box	Ascentest	AT890-RFB	/	/						

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The peak power spectral density shall not be greated than 8dBm in any 3kHz band at any time interval or continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the spar to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Trace mode =max hold. Use the peak marker functior to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

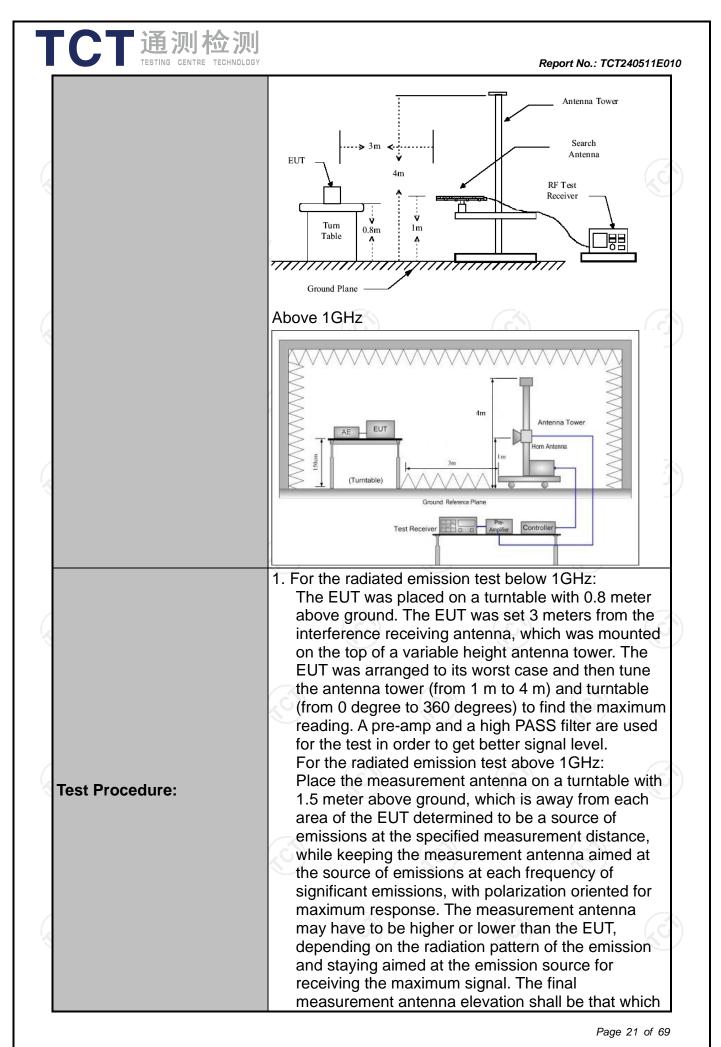
	RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025						
Combiner Box	Ascentest	AT890-RFB	1	/						

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments


			R	F Test Room				
Equipmer	nt	Manufactu	rer	Model	Seria	Number	Calibratio	n Due
Spectrum Ana	lyzer	Agilent		N9020A	MY4	9100619	Jun. 26,	2025
Combiner B	Box	Ascentes	st	AT890-RFB		/	1	
							Dara	e 19 of 6
Hotline: 400-661	1 1 40	Tel: 86-755-2	07671	3339 Fax: 86	755 074	72222 L4	raye tp://www.tct-l	

5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10):2020				
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m	(A	G)			
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	(
	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peak	d))	30kHz	Quasi-peak Value	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		Peak	1MHz	10Hz	Average Value	
	Frequer	ю	Field Strength (microvolts/meter)		Measurement Distance (meters)	
	0.009-0.4	490	2400/F(KHz)	300	
	0.490-1.3	705	24000/F	(KHz)	30	
	1.705-3		30		30	
	30-88		100	3		
	88-210		150	3		
Limit:	216-96		200		3	
	Above 9	60	500		3	
	Frequency		Field Strength (microvolts/meter)		ment ce Detector rs)	
		K	500		Average	
	Above 1GHz	2	5000	3	Peak	
Test setup:	For radiated	emissions stance = 3m Turn table Ground		Pre -,	Computer Amplifier teceiver	

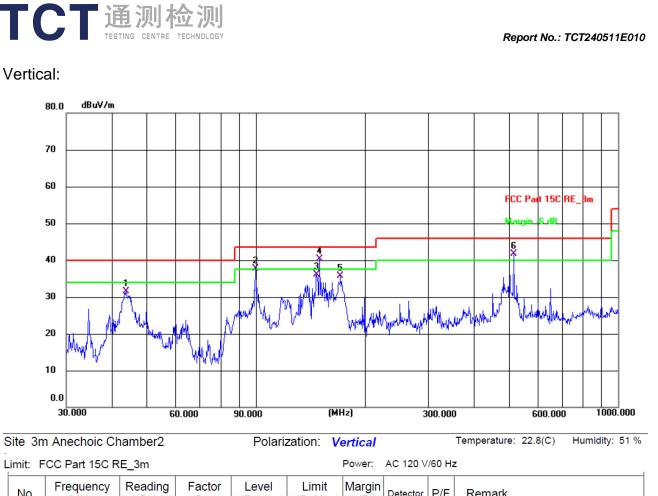
TESTING CENTRE TECHNOLOGY	Report No.: TCT240511E010
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS


5.7.2. Test Instruments

Radiated E	mission Test Sit	e (966)	
Manufacturer	Model	Serial Number	Calibration Due
R&S	ESCI7	100529	Jan. 31, 2025
R&S	FSQ40	200061	Jun. 26, 2025
HP	8447D	2727A05017	Jun. 26, 2025
SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Schwarzbeck	FMZB1519B	00191	Jun. 26, 2028
Schwarzbeck	VULB9163	340	Jun. 28, 2025
Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Schwarzbeck	BBHA 9170	00956	Feb. 02, 202
SKET	RE-03-D	/	Jun. 26, 2025
SKET	RE-03-M	1	Jun. 26, 2025
SKET	RE-03-L	/	Jun. 26, 2025
SKET	RE-04-D		Jun. 26, 2025
SKET	RE-04-M	1	Jun. 26, 2025
SKET	RE-04-L	/	Jun. 26, 2025
Keleto	RE-AM	21	
EZ_EMC	FA-03A2 RE+	1.1.4.2	/
	Manufacturer R&S R&S HP SKET SKET SChwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck SKET SKET SKET SKET SKET SKET SKET	ManufacturerModelR&SESCI7R&SFSQ40HP8447DSKETLNPA_0118G- 45SKETLNPA_1840G- 50SchwarzbeckFMZB1519BSchwarzbeckVULB9163SchwarzbeckBBHA 9120DSchwarzbeckBBHA 9170SKETRE-03-DSKETRE-03-DSKETRE-03-LSKETRE-04-MSKETRE-04-LSKETRE-04-LKeletoRE-AM	Manufacturer Model Number R&S ESCI7 100529 R&S FSQ40 200061 HP 8447D 2727A05017 SKET LNPA_0118G- 45 SK202101210 2 SKET LNPA_1840G- 50 SK202109203 500 Schwarzbeck FMZB1519B 00191 Schwarzbeck VULB9163 340 Schwarzbeck BBHA 9120D 631 Schwarzbeck BBHA 9120D 631 Schwarzbeck BBHA 9170 00956 SKET RE-03-D / SKET RE-03-M / SKET RE-03-M / SKET RE-04-D / SKET RE-04-D / SKET RE-04-L / SKET RE-04-L /

Page 23 of 69

5.7.3. Test Data



Site 3m Anechoic Chamber2

Polarization: Horizontal

imit: F	CC Part 15C R	E_3m				Power: AC 120 V/60 Hz				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	99.8777	56.42	-21.30	35.12	43.50	-8.38	QP	Ρ		
2	137.4201	49.22	-18.21	31.01	43.50	-12.49	QP	Ρ		
3	150.0107	50.77	-17.31	33.46	43.50	-10.04	QP	Ρ		
4	451.1349	52.32	-13.50	38.82	46.00	-7.18	QP	Ρ		
5 *	515.4373	53.83	-11.97	41.86	46.00	-4.14	QP	Ρ		
6	900.1473	40.83	-6.13	34.70	46.00	-11.30	QP	Ρ		

Page 24 of 69

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	43.8119	50.01	-18.60	31.41	40.00	-8.59	QP	Ρ	
2 !	99.8777	58.93	-21.30	37.63	43.50	-5.87	QP	Ρ	
3	147.4036	53.63	-17.51	36.12	43.50	-7.38	QP	Ρ	
4 *	150.0107	57.64	-17.31	40.33	43.50	-3.17	QP	Ρ	
5	171.3925	53.78	-18.01	35.77	43.50	-7.73	QP	Ρ	
6 !	515.4373	53.63	-11.97	41.66	46.00	-4.34	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Highest channel and 802.11b) was submitted only.
 Freq. = Emission frequency in MHz

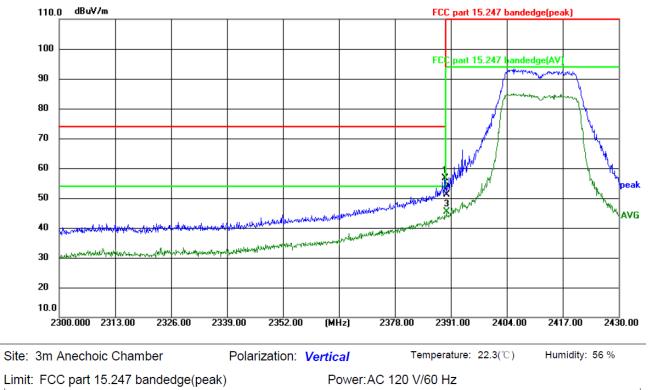
Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

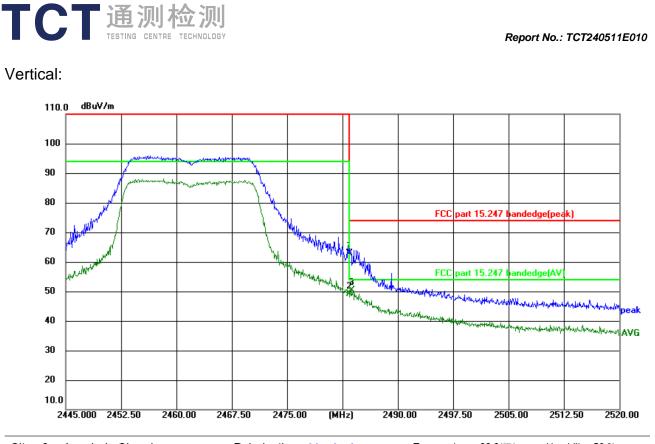
* is meaning the worst frequency has been tested in the test frequency range.


Test Result of Radiated Spurious at Band edges

Page 26 of 69

Vertical:

TCT 通测检测 TESTING CENTRE TECHNOLOGY



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2389.674	72.40	-15.86	56.54	74.00	-17.46	peak	Ρ	
2	2390.000	66.91	-15.86	51.05	74.00	-22.95	peak	Ρ	
3 *	2390.000	61.16	-15.86	45.30	54.00	-8.70	AVG	Ρ	

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11n(HT20) was submitted only.

											0.0 dBuV/m	110
											0	100
	_								Anna an			90
	العمر	andedgelne	oart 15.247 b	FCC				- What has a second sec	~			80
		andedgethe	Jait 13.247 0				William and a				August March	70
		andedae(A)	art 15 247 b	FCC		Huller war	MMMM .	- W				60
		Manueuye(Av	Water State	PCC Muhlipvage	angestad, apply a so	March 100	"Why why have				Hurrighter	50
radio de pe	1484 1.14 1.14 1.14 1.14 1.14 1.14 1.14	anner (1997) and 1997) and 1997	al-attersperior-al-al-e-atter	the welton	-	"White the way	multophierphyer.p					40
												30
												20
2520.	512.50	5.00 25		249	<u>.00</u>		5.00 (MH		0.00 240		.0 2445.000 245	10.
56 %	umidity:		:	50 Hz	20 V/	ver:AC 1	Po		dge(peak)	47 banded	CC part 15.2	IC. 1 S
56 %			Remark	P/F	etector	/argin (dB)	Limit (dBuV/m)	Level (dBuV/m)	Factor (dB/m)	Reading (dBuV)	Frequency (MHz)	0.
56 %				P/F P	etector Deak	fargin (dB) 11.90	Limit (dBuV/m) 74.00	Level (dBuV/m) 62.10	Factor (dB/m) -15.87	Reading (dBuV) 77.97	Frequency (MHz) 2483.500	0.
56 %	umiaity:			P/F	etector	Margin (dB) 11.90	Limit (dBuV/m)	Level (dBuV/m)	Factor (dB/m)	Reading (dBuV)	Frequency (MHz)	0.
56 %				P/F P	etector Deak	fargin (dB) 11.90	Limit (dBuV/m) 74.00	Level (dBuV/m) 62.10	Factor (dB/m) -15.87	Reading (dBuV) 77.97	Frequency (MHz) 2483.500	0.
56 %				P/F P	etector Deak	fargin (dB) 11.90	Limit (dBuV/m) 74.00	Level (dBuV/m) 62.10	Factor (dB/m) -15.87	Reading (dBuV) 77.97	Frequency (MHz) 2483.500	0.
56 %				P/F P	etector Deak	fargin (dB) 11.90	Limit (dBuV/m) 74.00	Level (dBuV/m) 62.10	Factor (dB/m) -15.87	Reading (dBuV) 77.97	Frequency (MHz) 2483.500	0.

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.3(°C) Humidity: 56 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	78.81	-15.87	62.94	74.00	-11.06	peak	Ρ	
2	2483.500	64.90	-15.87	49.03	54.00	-4.97	AVG	Ρ	
3 *	2483.738	66.35	-15.87	50.48	54.00	-3.52	AVG	Ρ	

Power: AC 120 V/60 Hz

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11n(HT20) was submitted only.

Above 1GHz Modulation Type: 802.11b

			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	44.59		0.75	45.34		74	54	-8.66
7236	Н	35.18		9.87	45.05		74	54	-8.95
	Н								
			1						
4824	V	44.74	6	0.75	45.49		74	54	-8.51
7236	V	33.78		9.87	43.65	G`)	74	54	-10.35
	V				<				

			Mi	iddle chann	el: 2437 MI	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	43.84		0.97	44.81		74	54	-9.19
7311	Н	34.09		9.83	43.92		74	54	-10.08
	H				(
			KO.)	X	6			
4874	V	43.82		0.97	44.79		74	54	-9.21
7311	V	34.18		9.83	44.01		74	54	-9.99
	V								ji
				(, c					

			Н	ligh channe	el: 2462 MH	Z				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4924	Н	44.57		1.18	45.75		74	54	-8.25	
7386	Н	34.91		10.07	44.98	<u> </u>	74	54	-9.02	
	Н									
4924	V	44.34		1.18	45.52		74	54	-8.48	
7386	V	35.06		10.07	45.13		74	54	-8.87	
	V			🤍						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		刻脸					Rep	ort No.: TCT24	40511E010
			Μ	odulation T	ype: 802.1 <i>°</i>	lg			
			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.17		0.75	45.92		74	54	-8.08
7236	Н	33.62		9.87	43.49		74	54	-10.51
	Н			V)				
			1			1	1		
4824	V	46.83		0.75	47.58		74	54	-6.42
7236	V	35.50	(&	9.87	45.37		74	54	-8.63
	V		+ <u>/</u> C)	(G`)		(<u>,</u> G)	

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)				
4874	Н	44.92		0.97	45.89		74	54	-8.11				
7311	Н	35.31		9.83	45.14		74	54	-8.86				
	Н												
				6	(
4874	V	43.83		0.97	44.80	<u> </u>	74	54	-9.20				
7311	V	33.69		9.83	43.52		74	54	-10.48				
	V												

(\mathbf{a})		()	F	ligh channe	el: 2462 MH	z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.43		1.18	46.61		74	54	-7.39
7386	н	35.58		10.07	45.65	<u> </u>	74	54	-8.35
	H			/	X	<u> </u>			
4924	V	44.68		1.18	45.86		74	54	-8.14
7386	V	34.80		10.07	44.87		74	54	-9.13
(\mathbf{F})	V	(2 6)		(, (· · · ·		$\mathcal{G}^{\rightarrow}$		(
Mater			/						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加检					Repo	ort No.: TCT24	40511E010
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe	l: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.73		0.75	46.48		74	54	-7.52
7236	Н	34.65		9.87	44.52		74	54	-9.48
	Н			()	····		<u> </u>		
4824	V	45.15		0.75	45.90		74	54	-8.10
7236	N	34.81		9.87	44.68		74	54	-9.32
	V)		<u> </u>			

	Middle channel: 2437 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4874	Н	45.58		0.97	46.55		74	54	-7.45		
7311	Н	33.89		9.83	43.72		74	54	-10.28		
	Н										
4874	V	44.79		0.97	45.76	<u> </u>	74	54	-8.24		
7311	V	34.53		9.83	44.36		74	54	-9.64		
	V										

			h H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	E.	45.19		1.18	46.37		74	54	-7.63
7386	H	35.05		10.07	45.12	<u> </u>	74	54	-8.88
	H			/		<u> </u>			
4924	V	44.95		1.18	46.13		74	54	-7.87
7386	V	34.77		10.07	44.84		74	54	-9.16
$(- \mathbf{G}^{*})$	V	[. 6]		(, ()		$\mathcal{C}^{\rightarrow}$		(

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

ndition	Mode b b g g g n20 n20 n20	Frequency (MHz) 2412 2437 2462 2412 2437 2462 2412 2437 2462		ty Cycle (%) 99.04 99 99.08 100 100 100 100 100 100		tion Factor (dB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
IVNT IVNT IVNT IVNT IVNT IVNT IVNT	b b g g g n20 n20	2412 2437 2462 2412 2437 2462 2412 2412 2437		99.04 99 99.08 100 100 100 100 100		0 0 0 0 0 0 0 0 0 0 0	
IVNT IVNT IVNT IVNT IVNT IVNT	b g g g n20 n20	2462 2412 2437 2462 2412 2437		99.08 100 100 100 100 100		0 0 0 0 0 0 0	
IVNT IVNT IVNT IVNT IVNT	g g n20 n20	2412 2437 2462 2412 2437		100 100 100 100 100		0 0 0 0 0 0	
IVNT IVNT IVNT IVNT	g g n20 n20	2437 2462 2412 2437		100 100 100 100		0 0 0 0	
IVNT IVNT IVNT	g n20 n20	2462 2412 2437		100 100 100		0 0 0	Ś
IVNT IVNT	n20 n20	2412 2437	<u>(</u> C)	100 100		0 0	C)
	n20	2462		100		0	
						Page 3	33 of 69
	4 <u>00-6611</u>	400-6611-140 Tel: 8	400-6611-140 Tel: 86-755-27673	 400-6611-140 C <	 	 ▲ 00-6611-140 ★ 19: 86-755-27673339 ★ 2755-27673332 	

U R 09:27:46 AM Jun 04, 2024 SENSE: PULSE SOURCE OFF ALIGN A Center Freq 2.437000000 GHz Avg Type: Log-Pwr TRACE 1 TYPE V DET P PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 520.0 µs 17.29 dBm Ref Offset 7.22 dB Ref 30.00 dBm 10 dB/di Log <u>F</u> 1 \Diamond^3 Center 2.437000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) #VBW 8.0 MHz FUNCTION WIDTH 17.29 dBm 18.45 dBm 16.18 dBm 520.0 µs 610.0 µs 8.800 ms 1 t 1 t 10

Page 34 of 69

TO/NORF Avg Type: Log-Pwr

Test Graphs Duty Cycle NVNT b 2412MHz

SENSE: PULSE SOURCE OFF 🛕 ALIGN

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB

Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 100.0 ms (10001 pts) FUNCTION FUNCTION WIDTH FUNCTION VALUE STATUS Duty Cycle NVNT b 2437MHz

Report No.: TCT240511E010

09:20:00 AM Jun 04, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N

Mkr1 8.160 ms 16.80 dBm

R

10 dB/div ∟og **r**

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

Ref Offset 6.98 dB Ref 30.00 dBm

()3

	Log			16.29 dBm	No.
1100 100	10.				
Image: space of the space					
Image: Stand Bit Stand Bi					
Span 0 Hz Center 2.452000000 GHz Span 0 Hz Sweep 100.0 ms (1000 pts) N 1 1 1 7580 ms 1022 d Bm N 1 1 1 7580 ms 1022 d Bm Duty Cycle NVDT g 2412MHz Sweep 100.0 ms (1000 pts) N 1 1 1 7580 ms 1022 d Bm Duty Cycle NVDT g 2412MHz Sweep 100.0 ms (100 pts) N 1 1 1 1 1 50.00 ms N 1 1 1 1 1 1 50.00 ms N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Res EW 8 MHz # VEW 8.0 MHz Sweep 100.0 ms (10001 pts) IPH MER TR SIL 7.600 ms 1523 dim FUNCTION WORK FUNCTION WORK IPH MER TR SIL 7.600 ms 1523 dim FUNCTION WORK FUNCTION WORK IPH MER TR SIL 7.600 ms 1523 dim FUNCTION WORK FUNCTION WORK IPH MER TR SIL 16.80 ms 17.00 dBm IPH MER TR SIL FUNCTION WORK IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR SIL IPH MER TR					
Image: None: Inc: Solition: Y Solition: 112:00 dB:m Image: None: Inc: Solition: 112:00 dB:m Image: None: Inc: Solition: None: Image: Image:			#VBW 8.0 MHz	Span 0 Hz Sweep 100.0 ms (10001 pts)	KU KU
Image: Second	мкв				
Image: transport Image: transport Image: transport	3	N 1 t 7.610 N 1 t 15.80	ns 16.25 dBm ns 17.00 dBm		
Image: Status Image: Status Image: Status					
Image: Status Image: Status Image: Status	9				
Duty Cycle NVNT g 2412MHz Image: Spectrum Analyzer - Swept SA Center Freq 2.41200000 GHz Image: Spectrum Analyzer - Swept SA Center Freq 2.41200000 GHz Image: Spectrum Analyzer - Swept SA Center Freq 2.41200000 GHz Image: Spectrum Analyzer - Swept SA Center Freq 2.41200000 GHz Image: Spectrum Analyzer - Swept SA Center Freq 2.41200000 GHz Image: Spectrum Analyzer - Spectrum Center SPECTRUM SA Center SP	<				
Aglient Spectrum Analyzer - Swep 5Al 09491148 User - Organization of the second of	MSG				
Center Freq 2.412000000 GHz Avg Type: Log-Pwr That The Construction of the Construle of the Construction of the Construction		nt Spectrum Analyzer - Swept SA			
Mkr1 50.00 ms 19.86 dBm 10 dB/div Mkr1 50.00 ms 19.86 dBm Colspan="2">Conter 2.4120000000 GHz Span 0 Hz Sweep 100.0 ms (1001 pts) MMR MODE INC SQL Y FUNCTION MOTH FUNCTION VALUE MMR MODE INC SQL Y FUNCTION WOTH FUNCTION VALUE MKR N 1 Span 0 Hz Span 0 Hz Span 0 Hz Sweep 100.0 ms (1001 pts) N N 1 Solspan= 2 Sweep 100.0 ms (1001 pts) MKR N 1 Sweep 100.0 ms (1001 pts) Sweep 100.0 ms (100 pts) Sweep 1	Cei	nter Freq 2.412000000 GHz	Av PNO: Fast 🛶 Trig: Free Run	(NORF 09:49:11 AM Jun 04, 2024 'g Type: Log-Pwr TRACE TYPE TYPE	
Control Contro Control Control		Ref Offeet 6 99 dB	IFGain:Low #Atten: 40 dB	Mkr1 50.00 ms	
100 1			1	19.86 dBm	
100		equal to be a second of the second of the second	aloutelation and an and a second and a second se	downsheepunganty-kipushikikantyaanamyrunyoutyteel	
-300 -300 -400 -300 -500 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -600 -300 -700 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710 -300 -710					
400 Span 0 Hz 600 Span 0 Hz Center 2.412000000 GHz #VBW 8.0 MHz Sweep 100.0 ms (1001 pts) MKR MODE TRC SCL X Y FUNCTION WIDTH 1 1 2 3 4 5 5 5 6 7 8 9 10 1 11 1 10 1 11 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 10 1					
Image: Context 2.412000000 GHz Span 0 Hz Res BW 8 MHz #VBW 8.0 MHz Sweep 100.0 ms (1001 pts) MKR MODEL TRC SCL X Y Function width Function value 1 1 1 2 3 4 4 5 6 6 6 7 4 8 9 9 4 10 4 10 4 10 5	-40.0				
Res BW 8 MHz #VBW 8.0 MHz Sweep 100.0 ms (1001 pts) MKR MODE TRC SEL X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE 1 N 1 t 50.00 ms 19.86 dBm FUNCTION FUNCTION VIDTH FUNCTION VALUE 2 3 - <td></td> <td></td> <td></td> <td></td> <td></td>					
MKR MODE TRC SC Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 t 50.00 ms 19.86 dBm Image: Constraint of the second se			#\/D\A/ Q 0 BAU-	Span 0 Hz	
A Constraint of the second sec	MKR	MODE TRC SCL X	Y FUNCTION FUNCTION WI		
6 7 8 9 10 11 MSG	23	N 1 t 50.00			
8 9 10 11 Msg STATUS	6				
11 Image: Status	8 9				

Duty Cycle NVNT b 2462MHz

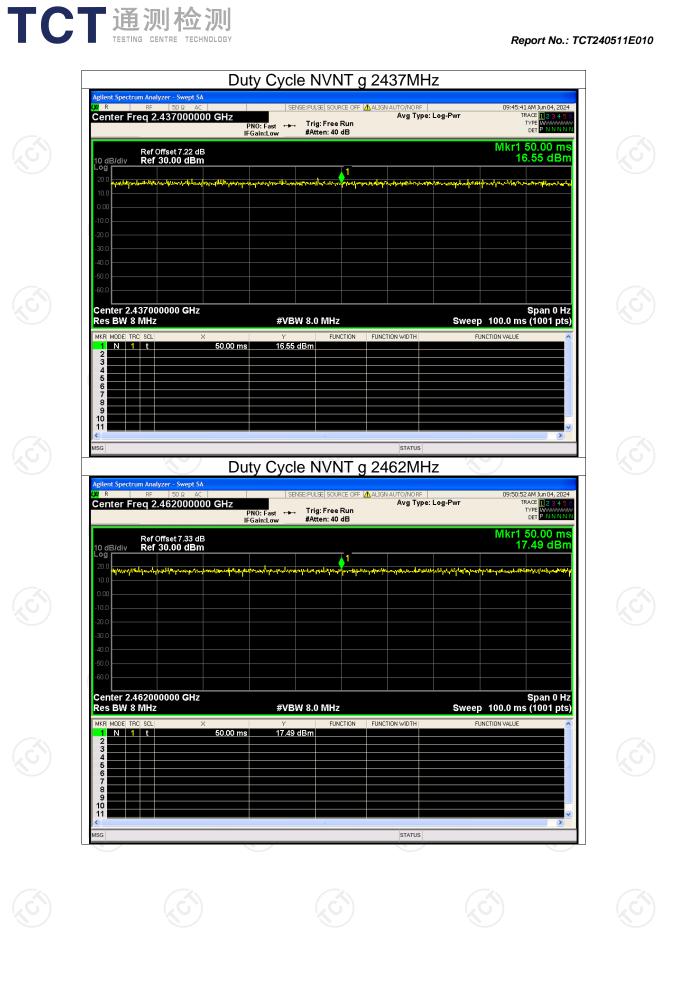
PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF

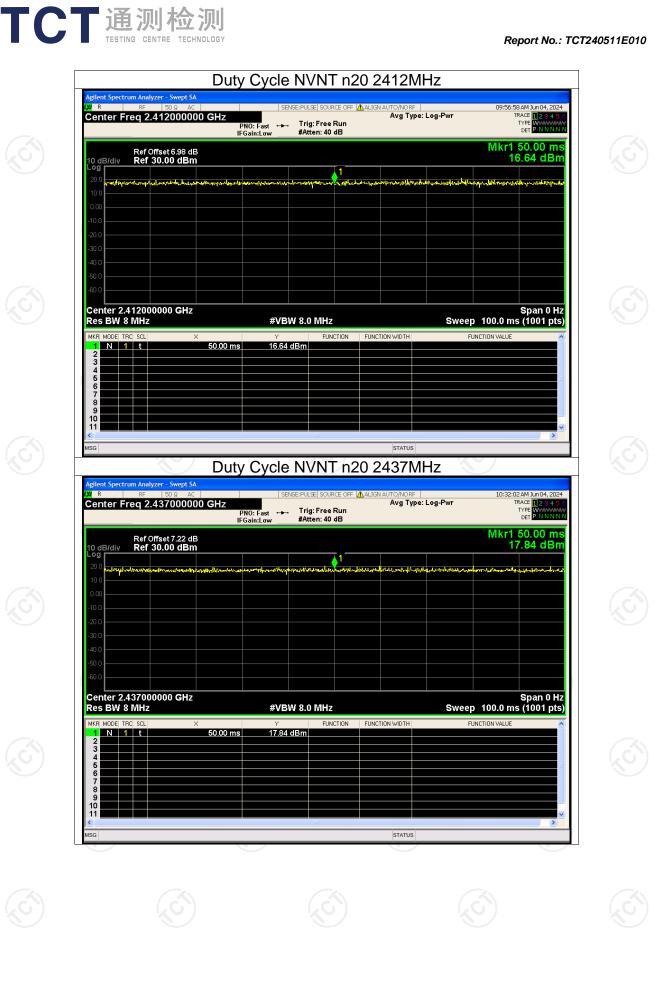
TCT通测检测 TESTING CENTRE TECHNOLOGY

nt Spectrum Analyze

Center Freq 2.462000000 GHz


Ref Offset 7.33 dB

Page 35 of 69


Report No.: TCT240511E010

09:31:32 AM Jun 04, 2024 TRACE 1 2 3 4 5

TYPE WW DET P N Mkr1 7.520

Page 36 of 69

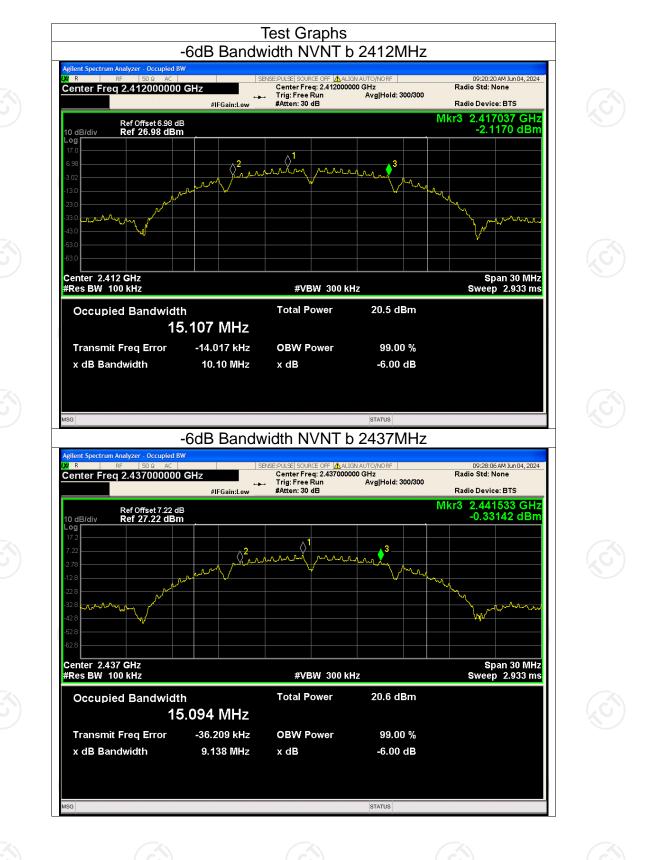
Page 37 of 69

TC	Til	测检测				R	eport No.: TCT2	40511E010
			Duty Cycle	e NVNT n20	0 2462MHz	2		
	LXI R	Analyzer - Swept SA RF 50 Ω AC q 2.462000000 G	GHZ PNO: Fast IFGain:Low	ENSE:PULSE SOURCE OFF A Trig: Free Run #Atten: 40 dB	ALIGN AUTO/NORF	10:36: j-Pwr	22 AM Jun 04, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	
	Log	Ref Offset 7.33 dB Ref 30.00 dBm				1	50.00 ms 6.12 dBm	
	20.0 •••••••••••••••••••••••••••••••••••	-Angloning Archite VII Angeption of Antima	- denskrinsky vernegendskris-septer	าร์หางสถางสร้างเป็นสถางสามารถ	ประกั ¹ รมคาที่ไม่สายที่สายๆแหน่งที่ไม่เกร	adoptivitestend normality and the	uhtaller ang an Anaraberr	
	-20.0							
	-50.0							
	Res BW 8 M	SCL X	Y	FUNCTION	FUNCTION WIDTH	Sweep 100.0 m		
	2 3 4 5 6 7							
	8 9 10 11						×	
	MSG	N.S.		N.	STATUS	N.		
							Page	38 of 69

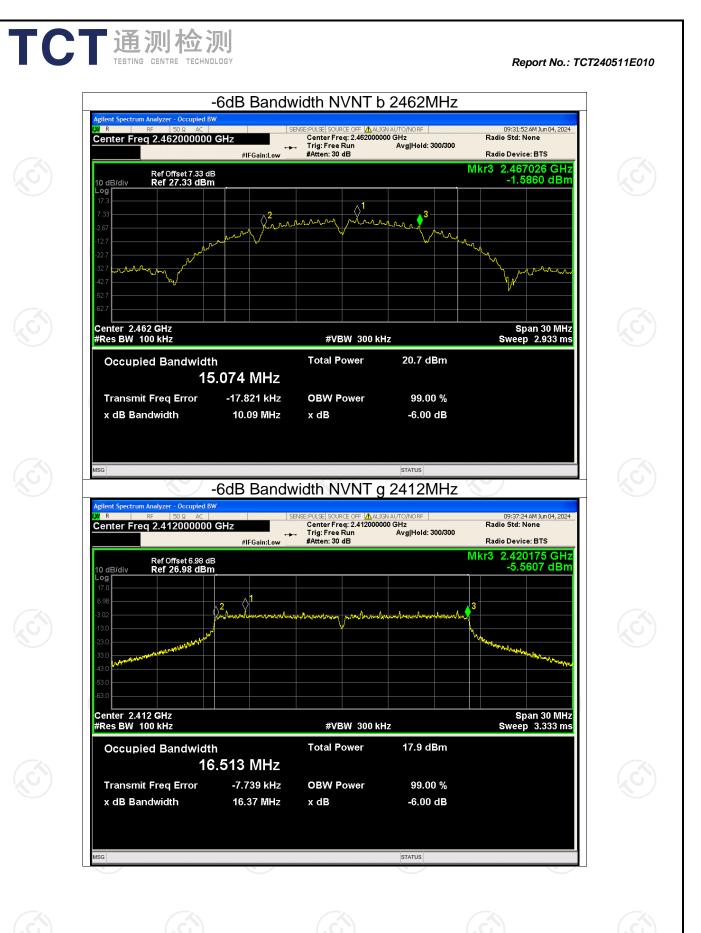
TCT	通测检测
	TESTING CENTRE TECHNOLOGY

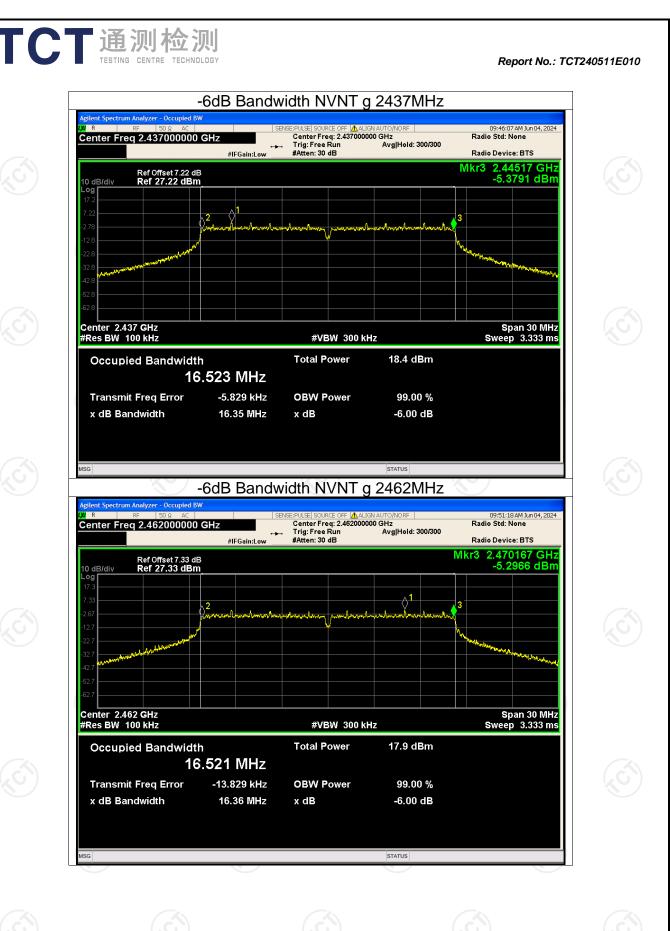
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict		
NVNT	b	2412	12.67	30	Pass		
NVNT	b	2437	13.40	30	Pass		
NVNT	b	2462	13.54	30	Pass		
NVNT	g	2412	11.37	30	Pass		
NVNT	g	2437	12.37	30	Pass		
NVNT	g	2462	11.48	30	Pass		
NVNT	n20	2412	12.50	30	Pass		
NVNT	n20	2437	12.44	30	Pass		
NVNT	n20	2462	11.74	30	Pass		

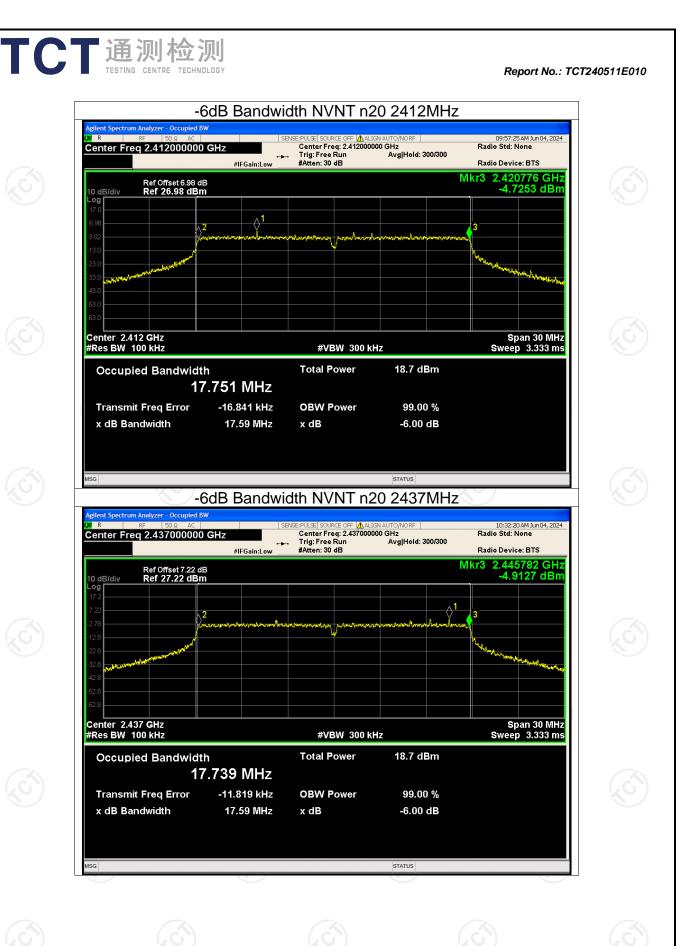
Maximum Conducted (Peak) Output Power



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


-6dB Bandwidth							
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict		
NVNT	b	2412	10.101	0.5	Pass		
NVNT	b	2437	9.138	0.5	Pass		
NVNT	b	2462	10.088	0.5	Pass		
NVNT	g	2412	16.366	0.5	Pass		
NVNT	g	2437	16.351	0.5	Pass		
NVNT	g	2462	16.362	0.5	Pass		
NVNT	n20	2412	17.586	0.5	Pass		
NVNT	n20	2437	17.589	0.5	Pass		
NVNT	n20	2462	17.595	0.5	Pass		
(G)		(\dot{O})	(G)	(G^{*})	(\mathcal{G})		

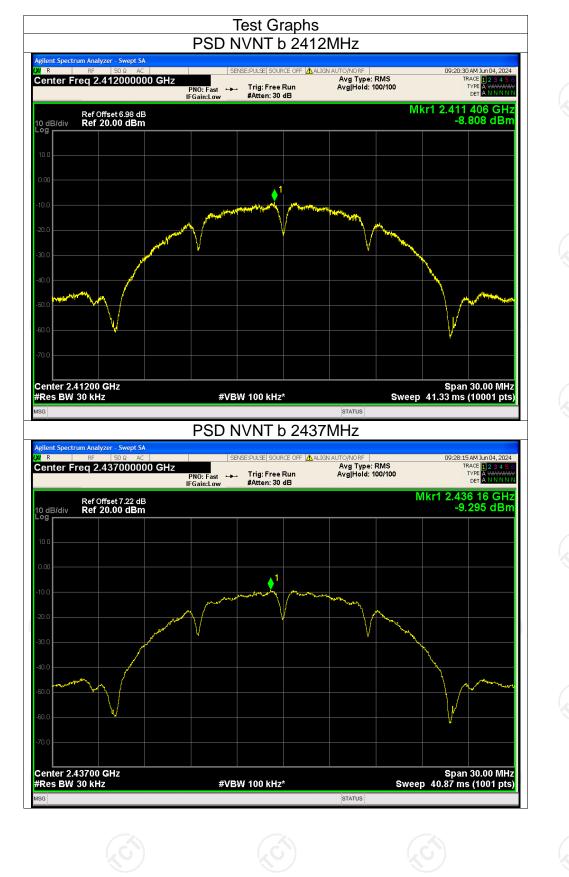




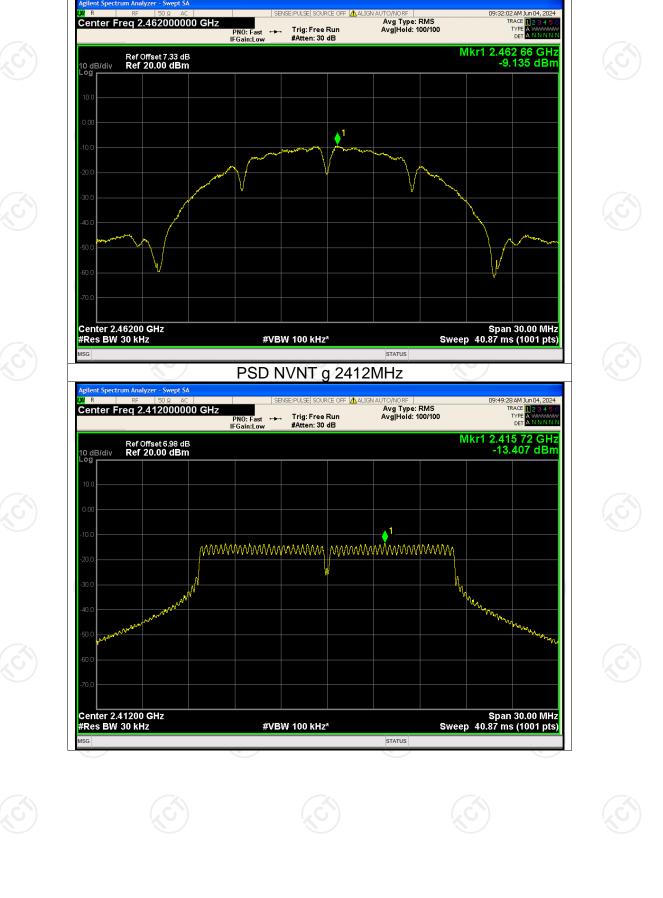
Page 41 of 69

Page 42 of 69

LXV R	n <mark>Analyzer - Occupied BV</mark> RF 50 Ω AC	/	idth NVNT n	LIGN AUTO/NO RF	10:36:5	50 AM Jun 04, 2024	
Center Fre	q 2.462000000	#IFGain:Low	Center Freq: 2.46200 Trig: Free Run #Atten: 30 dB	0000 GHz Avg Hold: 300/300	Radio Std: Radio Devi Mkr3 2.47	ce: BTS	
10 dB/div Log 17.3	Ref Offset 7.33 dE Ref 27.33 dBm				-5.7	7223 dBm	
7.33 -2.67 -12.7	2	nummennet	www.w.how www.w.	atomaranterant marine	3		
-22.7 -32.7	And and the second s				how we wanted	Mahthangaphan Jaw Tatu	
-42.7							
Center 2.4 #Res BW 1	62 GHz 00 kHz		#VBW 300	kHz	S Swee	pan 30 MHz p 3.333 ms	
Occupi	ed Bandwidtl 17	י .738 MHz	Total Power	18.0 dBm			
Transmi x dB Bai	t Freq Error	-10.083 kHz 17.59 MHz	OBW Power x dB	99.00 % -6.00 dB			
MSG			<u></u>	STATUS	<u>x</u> ~7		

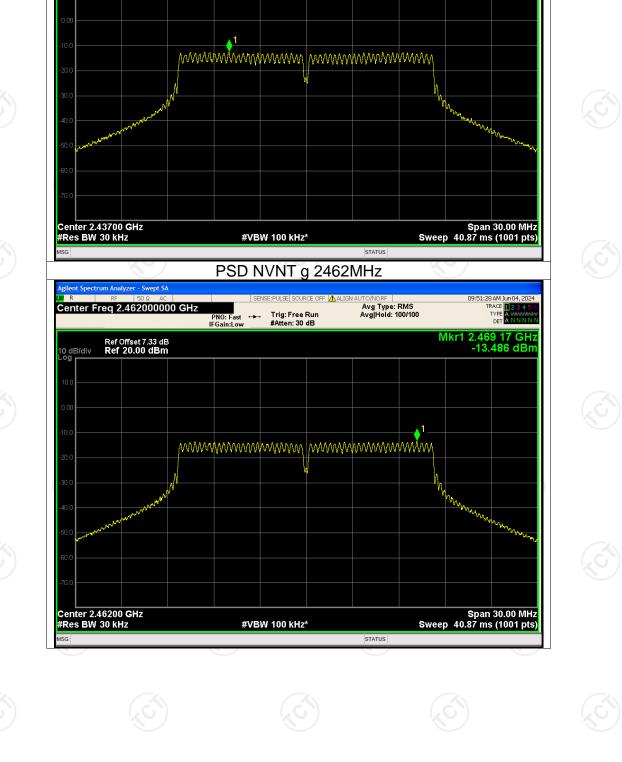

ТСТ	通测检测
	TESTING CENTRE TECHNOLOGY

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-8.81	-18.81	6 8	Pass
NVNT	b	2437	-9.30	-19.30	8	Pass
NVNT	b	2462	-9.14	-19.14	8	Pass
NVNT	g	2412	-13.41	-23.41	8	Pass
NVNT	g	2437	-12.64	-22.64	8 ()	Pass
	g	2462	-13.49	-23.49	8	Pass
NVNT	n20	2412	-12.11	-22.11	8	Pass
NVNT	n20	2437	-12.34	-22.34	8	Pass
O NVNT	n20	2462	-13.57	-23.57	6 8	Pass


Maximum Power Spectral Density Level

Note: Result[dBm/3kHz] = Result[dBm/30kHz] +10log(3kHz/30kHz)

Page 47 of 69

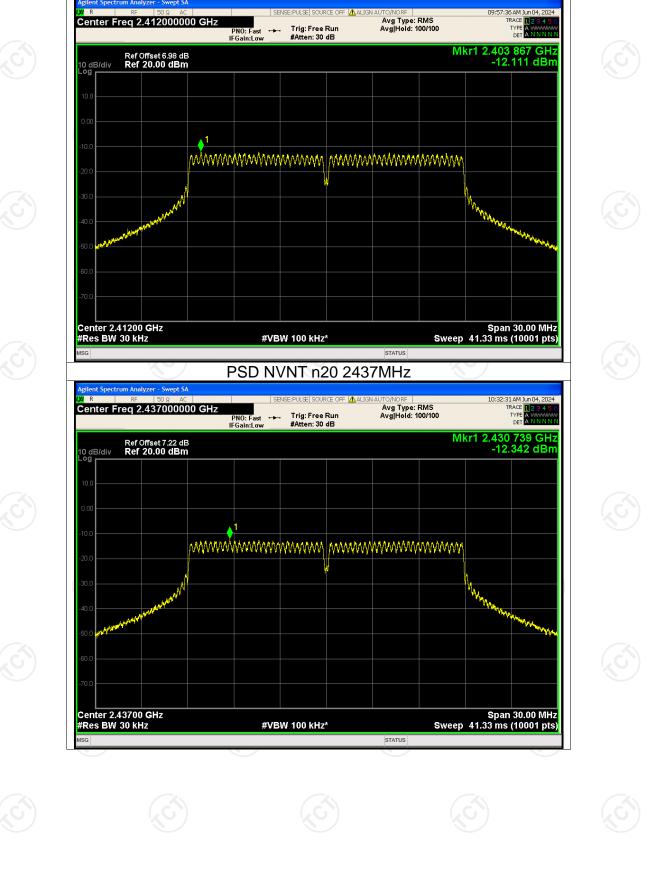


PSD NVNT b 2462MHz

09:32:02 AM Jun 04, 2024 TRACE 1 2 3 4 5

gilent Spectrum Analyzer - Swept SA

Center Freq 2.462000000 GHz



PSD NVNT g 2437MHz gilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: RMS Trig: Free Run Avg[Hold: 100/100 09:48:15 AM Jun 04, 2024 TRACE 1 2 3 4 5 Center Freq 2.437000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.431 99 GHz -12.640 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240511E010

Page 49 of 69

PSD NVNT n20 2412MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

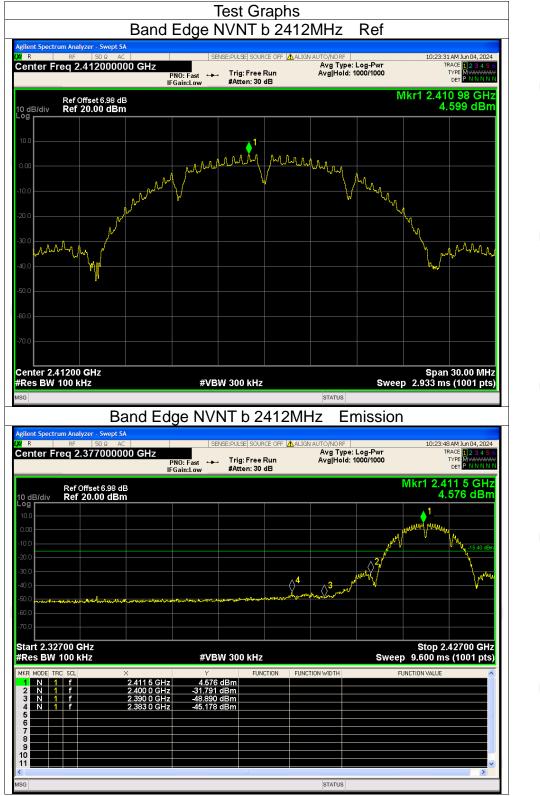
gilent Spectrum Analyzer - Swept SA

36 AM Jun 04, 2024 TRACE 1 2 3 4 5

Report No.: TCT240511E010

Agilent Spectrum Analyzer - Swep M R RF 50 Ω Center Freq 2.462000	AC SENSE:PUL	sej source off <u>A</u> aligN auto/Norf Avg Type: RM g: Free Run Avg Hold: 100/1	10:37:01 AM Jun 04, 202- S TRACE 1 2 3 4 5 00 TYPE A VILLON DET A NINNI	
Ref Offset 7.33 10 dB/div Ref 20.00 dE		en: 30 dB	Mkr1 2.467 61 GH -13.565 dBn	2
0.00				
-10.0		www.www.www.	www.	
-30.0	wh	V	Mun -	G
-40.0			WWWWWWWW	R
-60.0				
Center 2.46200 GHz #Res BW 30 kHz	#VBW 10		Span 30.00 MH Sweep 40.87 ms (1001 pts	Z))
MSG	<u>)</u>	STATUS	N.C.	

Band Edge						
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	b	2412	-49.77	-20	Pass	
NVNT	b	2462	-50.57	-20	Pass	
NVNT	g	2412	-46.15	-20	Pass	
NVNT	g	2462	-45.97	-20	Pass	
NVNT	n20	2412	-44.27	-20	Pass	
NVNT	n20	2462	-45.35	-20	Pass	


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page	52	of	69
------	----	----	----

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 53 of 69

TCT通测检测 Band Edge NVNT b 2462MHz

man

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

mmmm

Center Freq 2.462000000 GHz

10 dB/div

10 11

ISG

Ref Offset 7.33 dB Ref 20.00 dBm Report No.: TCT240511E010

59 AM JU TRACE

Mkr1 2.462 48 GHz 4.760 dBm

Ref

MMM

SENSE:PULSE| SOURCE OFF |▲ ALIGN AUTO/NORF | Avg Type: Log-Pwr -→ Trig: Free Run Avg|Hold: 1000/1000

MMA

MM

Page 54 of 69

STATUS

Page 56 of 69

Stop 2.54700 GHz Sweep 9.600 ms (1001 pts)

FUNCTION VALUE

 \Diamond^3

FUNCTION

FUNCTION WIDTH

 $\ominus^{\underline{a}}$

#VBW 300 kHz

0.874 dBm -45.121 dBm -49.536 dBm -45.121 dBm

GHz 2 483 5 GH

لياب اسان

Start 2.44700 GHz #Res BW 100 kHz

N 1 f N 1 f N 1 f

SENSE:PULSE| SOURCE OFF |▲ ALIGN AUTO/NORF | Avg Type: Log-Pwr -→ Trig: Free Run Avg|Hold: 1000/1000 10:16:00 AM Jun 04, 2024 TRACE 1 2 3 4 5 Center Freq 2.462000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.466 98 GHz 0.848 dBm Ref Offset 7.33 dB Ref 20.00 dBm 10 dB/div 1 monther montounder water and and any have the Maryan www yhwww. Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts)

Band Edge NVNT g 2462MHz

Ref

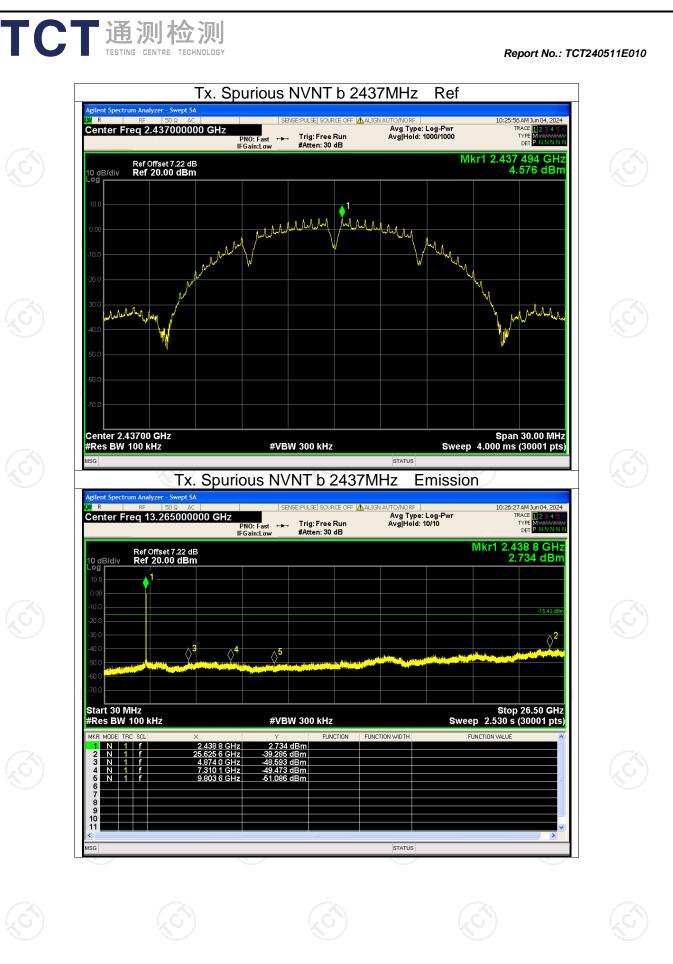
gilent Spectr

Band Edge NVNT n20 2462MHz Ref gilent Spect SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 10:38:05 AM Jun 04, 2024 TRACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N Center Freq 2.462000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.455 73 GHz 0.529 dBm Ref Offset 7.33 dB Ref 20.00 dBm 10 dB/div 1 mentrin untrent martinger berger month and marine and marked Whyle w.hwh Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n20 2462MHz Emission ZZAM. TRACE U F SENSE:PULSE | SOURCE OFF | 🛕 ALIGN / 2 AM Jun 04, 202 Center Freq 2.497000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.454 5 GHz 0.434 dBm Ref Offset 7.33 dB Ref 20.00 dBm 10 dB/di Log **[** 4. 1. 4 .1 (\$)²⁴ \Diamond^3 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE 0.434 dBm -45.453 dBm -50.613 dBm -44.823 dBm N 1 f N 1 f N 1 f GHz 2 484 1 GH 10 11 STATUS ISG

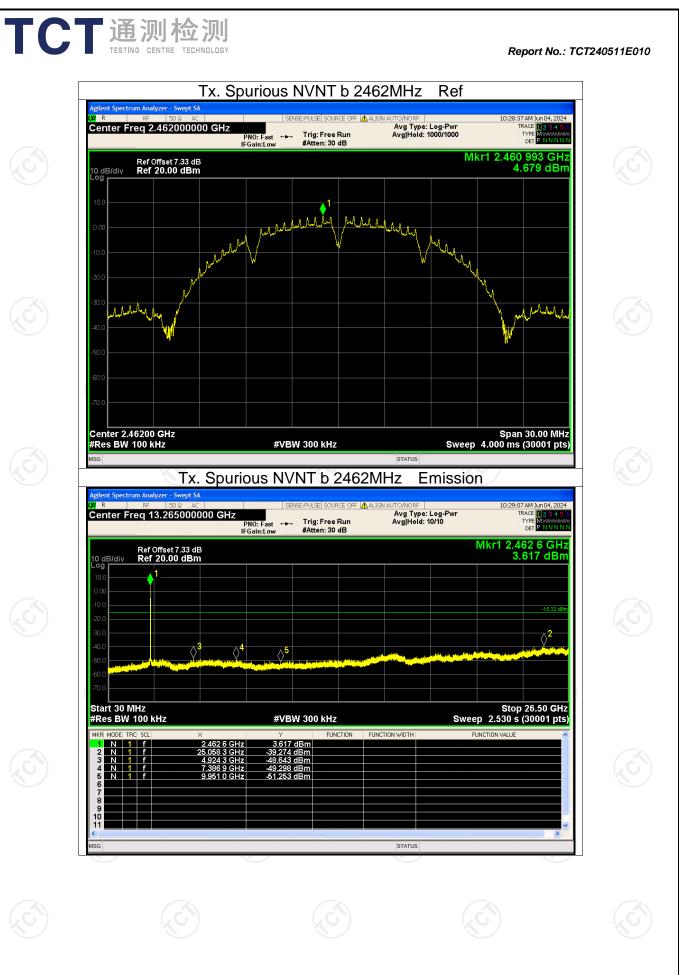
Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-44.77	-20	Pass
NVNT	b	2437	-43.86	-20	Pass
NVNT	b	2462	-43.95	-20	Pass
NVNT	g	2412	-40.51	-20	Pass
NVNT	g	2437	-40.09	-20	Pass
NVNT	g	2462	-50.03	-20	Pass
NVNT 🖉	n20	2412	-41.37	-20	Pass
NVNT 🔍	n20	2437	-40.64	-20	Pass
NVNT	n20	2462	-49.84	-20	Pass

Page	59	of	69


Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Hotline: 400-6611-140

TCT通测检测 TESTING CENTRE TECHNOLOGY


10

Report No.: TCT240511E010

50.865

Page 61 of 69

Page 62 of 69

Tx. Spurious NVNT g 2412MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 63 of 69

Report No.: TCT240511E010

Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 64 of 69

Tx. Spurious NVNT n20 2412MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Ø

million bour marine marine

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

mentumbershandmentar

10 dB/div

Center Freq 2.412000000 GHz

Ref Offset 6.98 dB Ref 20.00 dBm Report No.: TCT240511E010

Page 66 of 69

10:05:07 AM Jun 04, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Mkr1 2.405 730 GHz 1.278 dBm

Ref

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

FCT 通测检测 TESTING CENTRE TECHNOLOGY

gilent Sp

10 dB/div

Center Freq 2.437000000 GHz

Ref Offset 7.22 dB Ref 20.00 dBm

hat

R

Tx. Spurious NVNT n20 2437MHz

waterman

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

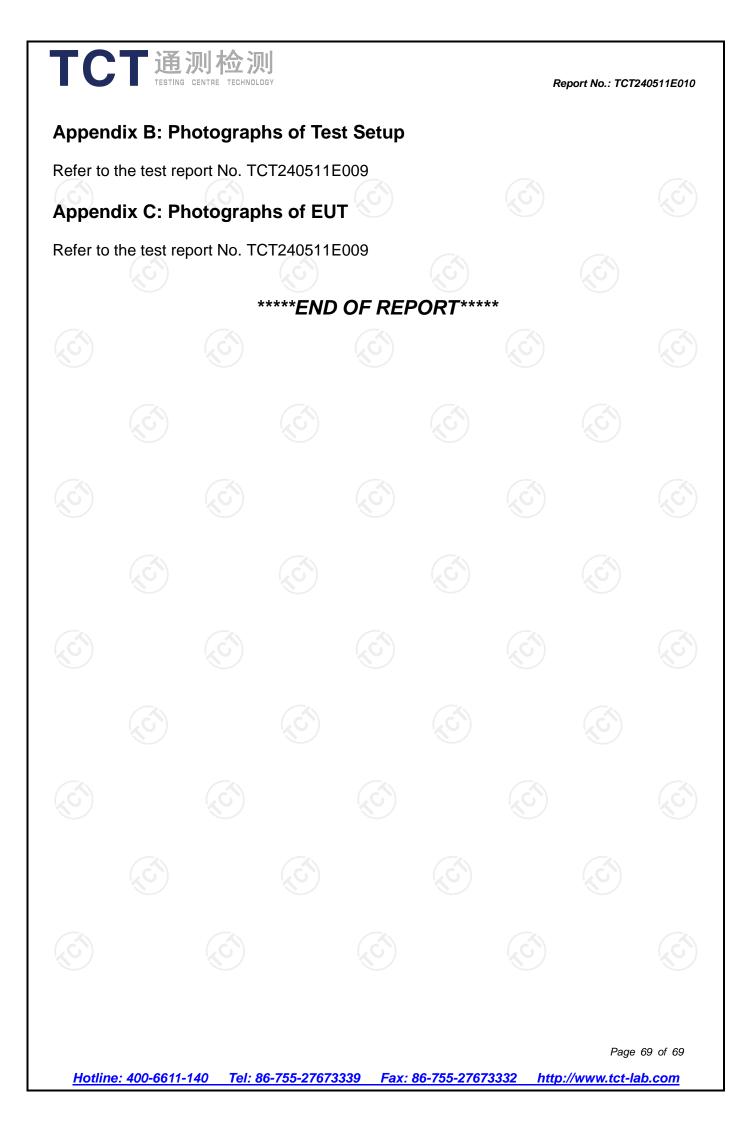
ø

montember

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

wanter interesting of a set from the set

Report No.: TCT240511E010


52 AM Jun 04, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Mkr1 2.431 983 GHz 1.149 dBm

Ref

Page 67 of 69

Page 68 of 69

