Appendix No.: SYBH(Z-SAR)007052016-2C ### Appendix C. Calibration Certificate | Table of contents | |-------------------| | ES3DV3- 3168 | | EX3DV4- 3744 | | EX3DV4- 3736 | | DAE4- 851 | | DAE4-1236 | | D750V3-1044 | | D835V2-4d059 | | D1750V2-1123 | | D1900V2-5d091 | | D2450V2-860 | | D2600V2-1021 | | D5GHzV2-1155 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) Certificate No: ES3-3168_Sep15 ## CALIBRATION CERTIFICATE Object ES3DV3 - SN:3168 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 28, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | In | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Primary Standards | ID | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power meter E4419B | GB41293874 | | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | 1975 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference 30 dB Attenuator | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | Reference Probe ES3DV2 | | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | DAE4 | SN: 660 | 14-3ai-15 (No. B/L+ 000_00115) | | | | 100 | Check Date (in house) | Scheduled Check | | Secondary Standards | ID | | In house check: Apr-16 | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Oct-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check. Oct-13 | Calibrated by: Name Function Signature Laboratory Technician Meur Cyriceurg Approved by: Katja Pokovic Technical Manager Issued: September 30, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: ES3-3168_Sep15 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL NORMx,y,z ConvF DCP CF A. B. C. D Polarization o Polarization 9 Connector Angle sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal tissue simulating liquid sensitivity in free space modulation dependent linearization parameters φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe ES3DV3 SN:3168 Manufactured: Calibrated: October 8, 2008 September 28, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) **Basic Calibration Parameters** | Basic Calibration Para | | s v | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|-----------|---------------------| | | Sensor X | Sensor Y | Selisoi 2 | Contract Activities | | Norm $(\mu V/(V/m)^2)^A$ | 1.13 | 1.07 | 1.02 | ± 10.1 % | | | 102.5 | 96.6 | 94.4 | | | DCP (mV) ^B | 102.0 | | | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc (k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-----------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 197.0 | ±3.5 % | | 0 | CVV | Y | 0.0 | 0.0 | 1.0 | | 183.0 | | | | | 7 | 0.0 | 0.0 | 1.0 | | 186.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 6.52 | 6.52 | 6.52 | 0.43 | 1.60 | ± 12.0 % | | 850 | 41.5 | 0.92 | 6.32 | 6.32 | 6.32 | 0.38 | 1.62 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.16 | 6.16 | 6.16 | 0.28 | 1.99 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.32 | 5.32 | 5.32 | 0.80 | 1.14 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.13 | 5.13 | 5.13 | 0.80 | 1.13 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 4.82 | 4.82 | 4.82 | 0.66 | 1.32 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.55 | 4.55 | 4.55 | 0.80 | 1.23 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.48 | 4.48 | 4.48 | 0.80 | 1.30 | ± 12.0 % | $^{^{\}text{C}}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) c | Parameter De Relative Permittivity | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |-----------|------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 6.39 | 6.39 | 6.39 | 0.44 | 1.61 | ± 12.0 % | | 850 | 55.2 | 0.99 | 6.24 | 6.24 | 6.24 | 0.38 | 1.77 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.23 | 6.23 | 6.23 | 0.56 | 1.37 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.95 | 4.95 | 4.95 | 0.46 | 1.60 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.74 | 4.74 | 4.74 | 0.60 | 1.41 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.52 | 4.52 | 4.52 | 0.80 | 1.22 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.35 | 4.35 | 4.35 | 0.72 | 1.17 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.23 | 4.23 | 4.23 | 0.80 | 1.15 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) September 28, 2015 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ES3DV3- SN:3168 September 28, 2015 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid September 28, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3168 ### **Other Probe Parameters** | Julie 1 1000 i didilictoro | | |---|------------| | Sensor Arrangement | Triangular | | Connector Angle (°) | 138.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mn | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) Certificate No: EX3-3744_Jul15 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3744 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 24, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | 72 Y 22 | ID. | Cal Date (Certificate No.) | Scheduled Calibration | |---|--|-----------------------------------|------------------------| | Primary Standards | ID | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power meter E4419B | GB41293874 | | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference 30 dB Attenuator | CONTRACTOR AND ADDRESS OF THE PARTY P | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | Reference Probe ES3DV2 | SN: 3013 | | Jan-16 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan 10 | | | 10 | Check Date (in house) | Scheduled Check | | Secondary Standards | ID | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | RF generator HP 8648C | US3642U01700 | | In house check: Oct-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check. Oct-13 | Calibrated by: Calibrated by: Claudio Leubler Function Laboratory Technician Signature Laboratory Technician Katja Pokovic Technical Manager Issued: July 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3744_Jul15 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point DCP CF A, B, C, D ConvF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ o rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. Certificate No: EX3-3744_Jul15 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3744 Manufactured: Calibrated: March 26, 2010 July 24, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) **Basic Calibration Parameters** | Dasic Calibration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.48 | 0.50 | 0.42 | ± 10.1 % | | DCP (mV) ^B | 99.8 | 100.2 | 100.2 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc (k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-----------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 154.2 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 156.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 143.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 9.44 | 9.44 | 9.44 | 0.40 | 0.91 | ± 12.0 % | | 850 | 41.5 | 0.92 | 8.77 | 8.77 | 8.77 | 0.21 | 1.52 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.84 | 7.84 | 7.84 | 0.46 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.54 | 7.54 | 7.54 | 0.42 | 0.80 | ± 12.0 % | | 2150 | 39.7 | 1.53 | 7.32 | 7.32 | 7.32 | 0.37 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.84 | 6.84 | 6.84 | 0.38 | 0.89 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.68 | 6.68 | 6.68 | 0.46 | 0.85 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.87 | 6.87 | 6.87 | 0.46 | 0.98 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Parameter De Relative Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.01 | 9.01 | 9.01 | 0.37 | 0.94 | ± 12.0 % | | 850 | 55.2 | 0.99 | 8.82 | 8.82 | 8.82 | 0.34 | 1.08 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.45 | 7.45 | 7.45 | 0.43 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.24 | 7.24 | 7.24 | 0.50 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.77 | 6.77 | 6.77 | 0.38 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.65 | 6.65 | 6.65 | 0.30 | 0.95 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.16 | 6.16 | 6.16 | 0.44 | 1.03 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz July 24, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3744 ### **Other Probe Parameters** | | Triangular | |---|------------| | Sensor Arrangement | | | Connector Angle (°) | 71.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-3736_Apr16 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3736 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: April 26, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | | |--|--|-----------------------------------|------------------------|--|--| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | | | | | | | | | | Secondary Standards ID | | Check Date (in house) | Scheduled Check | | | | Power meter E4419B | 9B SN: GB41293874 06-Apr-16 (No. 217-02285/02284) In house check: Jun-16 | | In house check: Jun-16 | | | | Power sensor E4412A | ower sensor E4412A SN: MY41498087 06-Apr-16 (No. 217-02285) In h | | In house check: Jun-16 | | | | Power sensor E4412A SN: 000110210 | | 06-Apr-16 (No. 217-02284) | In house check: Jun-16 | | | | RF generator HP 8648C SN: US3642U01700 | | 04-Aug-99 (in house check Apr-13) | In house check: Jun-16 | | | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Calibrated by: Calibrated by: Claudio Leubler Claudio Leubler Expressed by: Katja Pokovic Technical Manager Issued: April 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty cycle) of the R CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3736_Apr16 Page 2 of 11 EX3DV4 - SN:3736 April 26, 2016 # Probe EX3DV4 SN:3736 Calibrated: Manufactured: February 15, 2010 Calibrated: April 26, 2016 April 26, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) #### **Basic Calibration Parameters** | Market Restaurant | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.39 | 0.40 | 0.38 | ± 10.1 % | | DCP (mV) ^B | 102.3 | 109.8 | 102.3 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [±]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 201.5 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 189.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 206.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.