

### Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Compliance Laboratory Shenzhen, Guangdong, China.

### FCC PART 15 SUBPART C TEST REPORT

### **FCC PART 15.247**

Report Reference No...... MTEB23080139 -R1

FCC ID.....: A4C-10012A

Compiled by

( position+printed name+signature) .: File administrators Alisa Luo

Supervised by

( position+printed name+signature) .: Test Engineer Sunny Deng

Approved by

( position+printed name+signature) .: Manager Yvette Zhou

Date of issue ...... August 15,2023

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Address .....:

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... RM ACQUISITION LLC

Test specification ....:

Standard ..... FCC Part 15.247

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

### Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ...... GPS Device

Trade Mark .....: RAND MSNALLY

Manufacturer ..... SHEN ZHEN APICAL TECHNOLOGY CO., LTD

Model/Type reference .....: TND750

Listed Models ...... N/A

Modulation Type .....: CCK/DSSS/ OFDM

Operation Frequency...... From 2412 - 2462MHz

DC3.7V by Battery

Rating ...... DC 5V(by Car Charger)

DC 5V (by USB Port)

Hardware version ...... T85-MT8176-MIAN-01B-1

Result .....: PASS

Report No.: MTEB23080139 –R1 Page 2 of 39

# TEST REPORT

Equipment under Test : GPS Device

Model /Type : TND750

Listed Models : N/A

Remark N/A.

Applicant : RM ACQUISITION LLC

Address : 8770 W. Bryn Mawr Avenue, Chicago, Illinois, United States, 60631

Manufacturer : SHEN ZHEN APICAL TECHNOLOGY CO., LTD

Address : 9/F,B Building, Tinghua Unis Infoport, Langshan RD, North district,

Hi-tech Industrial Park, Nanshan, Shenzhen

| Test Result: PASS |
|-------------------|
|-------------------|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# **Contents**

| 1_         | REVISION HISTORY                                    | 4  |
|------------|-----------------------------------------------------|----|
|            |                                                     |    |
| <u>2</u>   | TEST STANDARDS                                      | 5  |
|            |                                                     |    |
| <u>3</u>   | SUMMARY                                             | 6  |
| 3.1        | General Remarks                                     | 6  |
| 3.1<br>3.2 | Product Description                                 | 6  |
| 3.2<br>3.3 | Equipment Under Test                                | 6  |
| 3.4        | Short description of the Equipment under Test (EUT) | 6  |
| 3.5        | EUT operation mode                                  | 6  |
| 3.6        | Block Diagram of Test Setup                         | 7  |
| 3.7        | Test Item (Equipment Under Test) Description*       | 7  |
| 3.8        | Auxiliary Equipment (AE) Description                | 7  |
| 3.9        | Antenna Information*                                | 7  |
| 3.10       | Related Submittal(s) / Grant (s)                    | 7  |
| 3.11       | Modifications                                       | 8  |
| 3.12       | EUT configuration                                   | 8  |
|            |                                                     |    |
| 4          | TEST ENVIRONMENT                                    | 9  |
|            |                                                     |    |
| 4.1        | Address of the test laboratory                      | 9  |
| 4.2        | Test Facility                                       | 9  |
| 4.3        | Environmental conditions                            | 9  |
| 4.4        | Test Description                                    | 10 |
| 4.5        | Statement of the measurement uncertainty            | 10 |
| 4.6        | Equipments Used during the Test                     | 11 |
|            |                                                     |    |
| <u>5</u>   | TEST CONDITIONS AND RESULTS                         | 12 |
|            |                                                     |    |
| 5.1        | AC Power Conducted Emission                         | 12 |
| 5.2        | Radiated Emission                                   | 15 |
| 5.3        | Band Edge Compliance of RF Emission                 | 20 |
| 5.4        | Antenna Requirement                                 | 37 |
|            |                                                     |    |
| <u>6</u>   | TEST SETUP PHOTOS OF THE EUT                        | 38 |
| _          |                                                     |    |
| 7          | PHOTOS OF THE EUT                                   | 39 |

Report No.: MTEB23080139 –R1 Page 4 of 39

# 1 Revision History

| Revision | Issue Date | Revisions     | Revised By |
|----------|------------|---------------|------------|
| 00       | 2023-08-15 | Initial Issue | Alisa Luo  |
|          |            |               |            |
|          |            |               |            |

Report No.: MTEB23080139 –R1 Page 5 of 39

# 2 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

Report No.: MTEB23080139 –R1 Page 6 of 39

# 3 SUMMARY

### 3.1 General Remarks

| Date of receipt of test sample | : | 2023.08.09 |
|--------------------------------|---|------------|
|                                |   |            |
| Testing commenced on           | : | 2023.08.10 |
|                                |   |            |
| Testing concluded on           | : | 2023.08.15 |

# 3.2 Product Description

| Product Name:         | GPS Device                                                                     |
|-----------------------|--------------------------------------------------------------------------------|
| Model/Type reference: | TND750                                                                         |
| Power Supply:         | DC3.7V by Battery DC 5V(by Car Charger) DC 5V (by USB Port)                    |
| Testing sample ID:    | MTYP02084                                                                      |
| WIFI:                 |                                                                                |
| Supported type:       | 802.11b/802.11g/802.11n(H20)/802.11n(H40)                                      |
| Modulation:           | 802.11b: DSSS<br>802.11g/802.11n(H20) /802.11n(H40): OFDM                      |
| Operation frequency:  | 802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz<br>802.11n(H40): 2422MHz~2452MHz |
| Channel number:       | 802.11b/802.11g/802.11n(H20): 11<br>802.11b/802.11g/802.11n(H40): 7            |
| Channel separation:   | 5MHz                                                                           |
| Antenna type:         | PFC Antenna                                                                    |
| Antenna gain:         | 1.61dBi                                                                        |

# 3.3 Equipment Under Test

# Power supply system utilised

| Power supply voltage | : | 0 | 230V / 50 Hz                     | 0 | 120V / 60Hz |
|----------------------|---|---|----------------------------------|---|-------------|
|                      |   | 0 | 12 V DC                          | 0 | 24 V DC     |
|                      |   | • | Other (specified in blank below) |   |             |

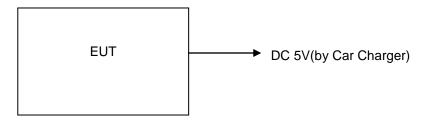
DC 5V (by USB Port)

DC 5V (by USB Port)

# 3.4 Short description of the Equipment under Test (EUT)

This is a GPS Device.

For more details, refer to the user's manual of the EUT.


# 3.5 EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

Report No.: MTEB23080139 –R1 Page 7 of 39

| Channel | Frequency(MHz) | Channel | Frequency(MHz) |
|---------|----------------|---------|----------------|
| 1       | 2412           | 8       | 2447           |
| 2       | 2417           | 9       | 2452           |
| 3       | 2422           | 10      | 2457           |
| 4       | 2427           | 11      | 2462           |
| 5       | 2432           |         |                |
| 6       | 2437           |         |                |
| 7       | 2442           |         |                |

# 3.6 Block Diagram of Test Setup



# 3.7 Test Item (Equipment Under Test) Description\*

| Short designation | EUT Name | EUT<br>Description | Serial number | Hardware status | Software status |
|-------------------|----------|--------------------|---------------|-----------------|-----------------|
| EUT A             | /        | /                  | /             | /               | /               |
| EUT B             | /        | /                  | /             | /               | /               |
|                   |          |                    |               |                 |                 |

<sup>\*:</sup> declared by the applicant. According to customers information EUTs A and B are the same devices.

# 3.8 Auxiliary Equipment (AE) Description

| AE short designation | EUT Name<br>(if available) | EUT Description | Serial number (if available) | Software (if used) |
|----------------------|----------------------------|-----------------|------------------------------|--------------------|
| AE 1                 | Adapter                    | MDY-08-EH       | 1                            | 1                  |
| AE 2                 | 1                          | 1               | 1                            | 1                  |

# 3.9 Antenna Information\*

| Short designation | Antenna Name | Antenna Type | Frequency<br>Range | Serial number | Antenna Peak<br>Gain |
|-------------------|--------------|--------------|--------------------|---------------|----------------------|
| Antenna 1         |              | PFC Antenna  | 2.4 – 2.5 GHz      |               | 1.61dBi              |
| Antenna 2         |              |              |                    |               |                      |
|                   |              | _            | -                  | _             |                      |

<sup>\*:</sup> declared by the applicant.

# 3.10 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2A33W-D22** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Report No.: MTEB23080139 –R1 Page 8 of 39

# 3.11 Modifications

No modifications were implemented to meet testing criteria.

# 3.12 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- $\ensuremath{\bigcirc}$  supplied by the manufacturer
- Supplied by the lab

| ADAPTER | M/N:          | MDY-08-EH                     |
|---------|---------------|-------------------------------|
|         | Manufacturer: | Xiaomi Communications Co.,Ltd |

Report No.: MTEB23080139 –R1 Page 9 of 39

# 4 TEST ENVIRONMENT

## 4.1 Address of the test laboratory

### Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

# 4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

## A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

### 4.3 Environmental conditions

### Radiated Emission:

| Temperature:          | 24 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 48 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

### AC Main Conducted testing:

| Temperature:          | 24 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### Conducted testing:

| oriaaotoa tootiing.   |              |
|-----------------------|--------------|
| Temperature:          | 24 ° C       |
|                       |              |
| Humidity:             | 45 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

Report No.: MTEB23080139 –R1 Page 10 of 39

## 4.4 Test Description

| FCC PART 15.247                 |                             |      |
|---------------------------------|-----------------------------|------|
| FCC Part 15.207                 | AC Power Conducted Emission | PASS |
| FCC Part 15.109/ 15.205/ 15.209 | Radiated Emissions          | PASS |

#### Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                                                                                                                                                                            | Mode            | Data Rate | Channel |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|---------|
| Maximum Peak Conducted Output Power Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 <sup>th</sup> Harmonic | 11b/DSSS        | 1 Mbps    | 1/6/11  |
|                                                                                                                                                                                       | 11g/OFDM        | 6 Mbps    | 1/6/11  |
|                                                                                                                                                                                       | 11n(20MHz)/OFDM | 6.5Mbps   | 1/6/11  |
|                                                                                                                                                                                       | 11n(40MHz)/OFDM | 6.5Mbps   | 3/6/9   |
|                                                                                                                                                                                       | 11b/DSSS        | 1 Mbps    | 1/11    |
| Band Edge                                                                                                                                                                             | 11g/OFDM        | 6 Mbps    | 1/11    |
| Dana Lago                                                                                                                                                                             | 11n(20MHz)/OFDM | 6.5Mbps   | 1/11    |
|                                                                                                                                                                                       | 11n(40MHz)/OFDM | 6.5Mbps   | 3/9     |

# 4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

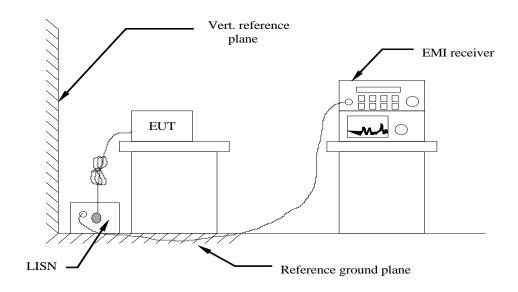
| Test                  | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------|------------|----------------------------|-------|
| Radiated Emission     | 30~1000MHz | 4.10 dB                    | (1)   |
| Radiated Emission     | 1~18GHz    | 4.32 dB                    | (1)   |
| Radiated Emission     | 18-40GHz   | 5.54 dB                    | (1)   |
| Conducted Disturbance | 0.15~30MHz | 3.12 dB                    | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: MTEB23080139 –R1 Page 11 of 39

# 4.6 Equipments Used during the Test

| Item | Equipment                             | Manufacturer     | Model No.       | Serial No. | Firmware versions   | Last Cal.  | Cal. Interval |
|------|---------------------------------------|------------------|-----------------|------------|---------------------|------------|---------------|
| 1.   | L.I.S.N.                              | R&S              | ENV216          | 100093     | /                   | 2023/03/17 | 1 Year        |
| 2    | Three-phase artificial power network  | Schwarzback Mess | NNLK8129        | 8129178    | /                   | 2023/03/17 | 1 Year        |
| 3.   | Receiver                              | R&S              | ESCI            | 100492     | V3.0-10-2           | 2023/03/17 | 1 Year        |
| 4    | Receiver                              | R&S              | ESPI            | 101202     | V3.0-10-2           | 2023/03/17 | 1 Year        |
| 5    | Spectrum analyzer                     | Agilent          | 9020A           | MT-E306    | A14.16              | 2023/03/17 | 1 Year        |
| 6    | Bilong Antenna                        | Sunol Sciences   | JB3             | A121206    | /                   | 2023/03/17 | 1 Year        |
| 7    | Horn antenna                          | HF Antenna       | HF Antenna      | MT-E158    | /                   | 2023/03/17 | 1 Year        |
| 8    | Loop antenna                          | Beijing Daze     | ZN30900B        | /          | /                   | 2023/03/17 | 1 Year        |
| 9    | Horn antenna                          | R&S              | OBH100400       | 26999002   | /                   | 2023/03/17 | 1 Year        |
| 10   | Wireless<br>Communication Test<br>Set | R&S              | CMW500          | /          | CMW-BASE-<br>3.7.21 | 2023/03/17 | 1 Year        |
| 11   | Spectrum analyzer                     | R&S              | FSP             | 100019     | V4.40 SP2           | 2023/03/17 | 1 Year        |
| 12   | High gain antenna                     | Schwarzbeck      | LB-180400KF     | MT-E389    | /                   | 2023/03/17 | 1 Year        |
| 13   | Preamplifier                          | Schwarzbeck      | BBV 9743        | MT-E390    | /                   | 2023/03/17 | 1 Year        |
| 14   | Pre-amplifier                         | EMCI             | EMC051845S<br>E | MT-E391    | /                   | 2023/03/17 | 1 Year        |
| 15   | Pre-amplifier                         | Agilent          | 83051A          | MT-E392    | /                   | 2023/03/17 | 1 Year        |
| 16   | High pass filter unit                 | Tonscend         | JS0806-F        | MT-E393    | /                   | 2023/03/17 | 1 Year        |
| 17   | RF Cable(below1GHz)                   | Times            | 9kHz-1GHz       | MT-E394    | /                   | 2023/03/17 | 1 Year        |
| 18   | RF Cable(above<br>1GHz)               | Times            | 1-40G           | MT-E395    | /                   | 2023/03/17 | 1 Year        |
| 19   | RF Cable<br>(9KHz-40GHz)              | Tonscend         | 170660          | N/A        | /                   | 2023/03/17 | 1 Year        |


Note: The Cal.Interval was one year.

Report No.: MTEB23080139 –R1 Page 12 of 39

# 5 TEST CONDITIONS AND RESULTS

# 5.1 AC Power Conducted Emission

### **TEST CONFIGURATION**



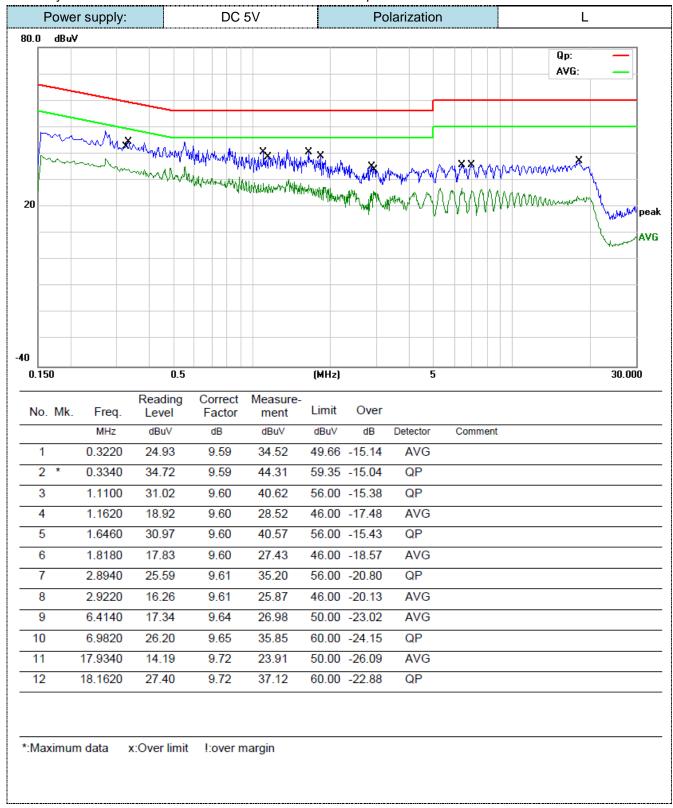
### **TEST PROCEDURE**

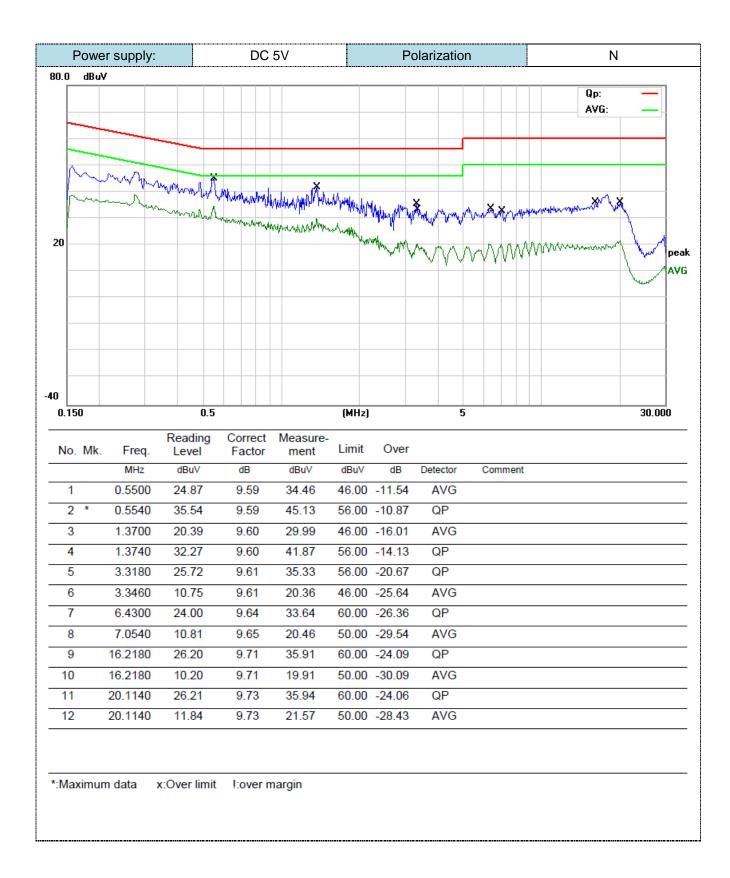
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

### **AC Power Conducted Emission Limit**

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Frequency range (MHz)                            | Limit (dBuV) |           |  |
|--------------------------------------------------|--------------|-----------|--|
| Trequency range (IVII 12)                        | Quasi-peak   | Average   |  |
| 0.15-0.5                                         | 66 to 56*    | 56 to 46* |  |
| 0.5-5                                            | 56           | 46        |  |
| 5-30                                             | 60           | 50        |  |
| * Decreases with the logarithm of the frequency. |              |           |  |


### **TEST RESULTS**

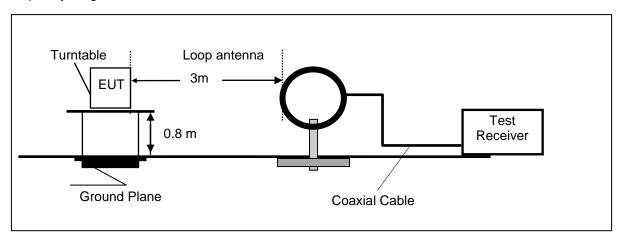

Report No.: MTEB23080139 –R1 Page 13 of 39

### **TEST RESULTS**

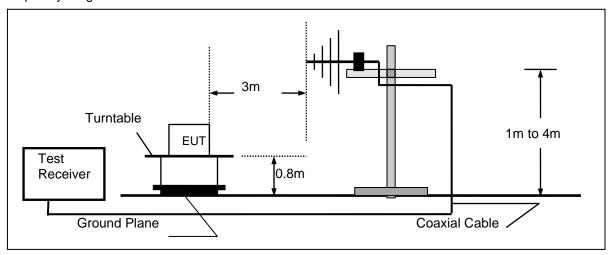
### Remark:

1. WIFI modes were test at 802.11b/802.11g/802.11n (H20) /802.11n (H40) (Low, Middle, and High channel); only the worst result of 802.11b Middle Channel was reported as below:

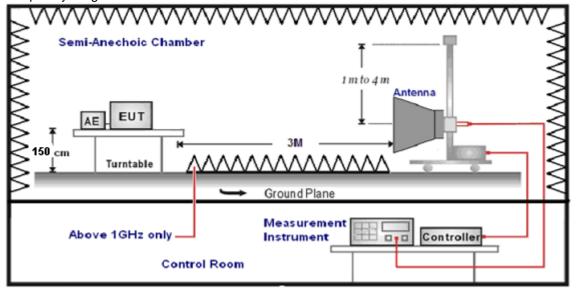





Report No.: MTEB23080139 –R1 Page 15 of 39


# 5.2 Radiated Emission

# **TEST CONFIGURATION**


Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz



Frequency range above 1GHz-25GHz



## **TEST PROCEDURE**

Report No.: MTEB23080139 –R1 Page 16 of 39

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from  $0^{\circ}$  to  $360^{\circ}$  to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

| Test Frequency range           | Test Antenna Type          | Test Distance |
|--------------------------------|----------------------------|---------------|
| 9KHz-30MHz Active Loop Antenna |                            | 3             |
| 30MHz-1GHz                     | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz                     | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz                    | Horn Anternna              | 1             |

7. Setting test receiver/spectrum as following table states:

| Test Frequency range Test Receiver/Spectrum Setting |                                                                                                           | Detector |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|
| 9KHz-150KHz                                         | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | QP       |
| 150KHz-30MHz                                        | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP       |
| 30MHz-1GHz                                          | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP       |
| 1GHz-40GHz                                          | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |

### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

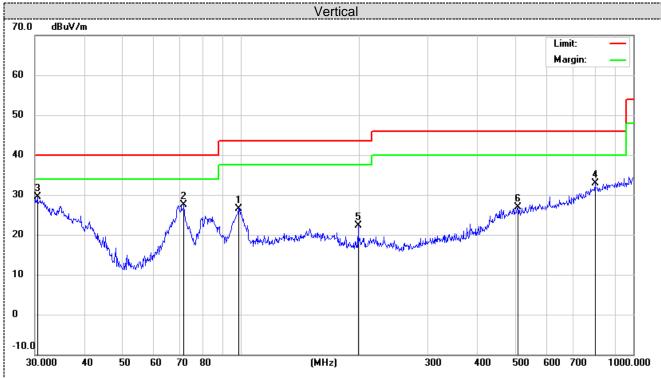
### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

Transd=AF +CL-AG

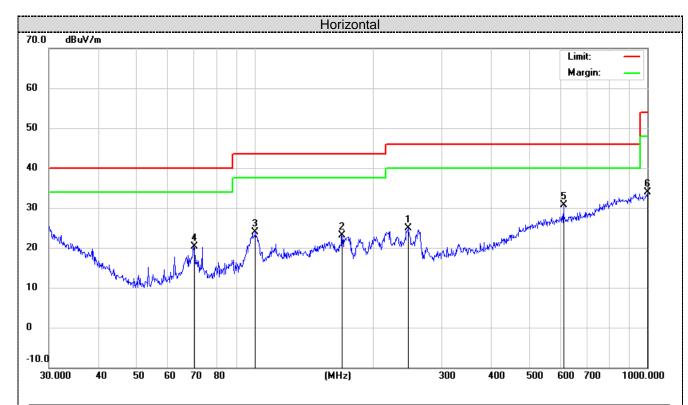
### **RADIATION LIMIT**

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.


The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                    | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |
| Above 960       | 3                    | 54.0                             | 500             |

## Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. 802.11b/802.11g/802.11n (H20)/ 802.11n (H40)all have been tested, only worse case 802.11b mode is reported
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Remark: Result=Reading value+Factor

## For 30MHz-1GHz



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 98.8326  | 13.25            | 13.17             | 26.42            | 43.50  | -17.08 | QP       | 100               | 158             |         |
| 2   |     | 71.8320  | 17.97            | 9.45              | 27.42            | 40.00  | -12.58 | QP       | 100               | 88              |         |
| 3   | *   | 30.4238  | 8.87             | 20.61             | 29.48            | 40.00  | -10.52 | QP       | 100               | 29              |         |
| 4   |     | 798.9797 | 5.04             | 27.87             | 32.91            | 46.00  | -13.09 | QP       | 100               | 254             |         |
| 5   |     | 199.2855 | 7.21             | 15.18             | 22.39            | 43.50  | -21.11 | QP       | 100               | 120             |         |
| 6   |     | 508.2582 | 4.19             | 22.79             | 26.98            | 46.00  | -19.02 | QP       | 100               | 224             |         |
|     |     |          |                  |                   |                  |        |        |          |                   |                 |         |

<sup>\*:</sup>Maximum data x:Over limit !:over margin



| No. | Mk | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |    | 246.8149 | 11.01            | 13.89             | 24.90            | 46.00  | -21.10 | QP       | 200               | 158             |         |
| 2   |    | 166.6514 | 5.94             | 17.08             | 23.02            | 43.50  | -20.48 | QP       | 200               | 114             |         |
| 3   |    | 100.5806 | 10.19            | 13.66             | 23.85            | 43.50  | -19.65 | QP       | 200               | 235             |         |
| 4   |    | 70.0903  | 10.99            | 9.31              | 20.30            | 40.00  | -19.70 | QP       | 200               | 203             |         |
| 5   | *  | 612.0642 | 6.84             | 23.96             | 30.80            | 46.00  | -15.20 | QP       | 200               | 214             |         |
| 6   |    | 1000.000 | 3.98             | 30.00             | 33.98            | 54.00  | -20.02 | QP       | 200               | 98              |         |

<sup>\*:</sup>Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 19 of 39

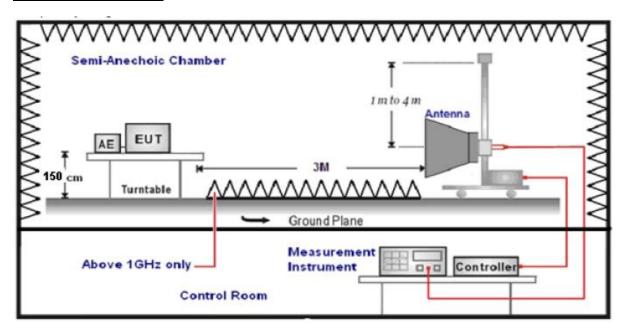
# For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40)all have been tested, only worse case 802.11b mode is reported

| Polar<br>(H/V)   | Frequency | Meter<br>Reading | Antenna<br>Factor | Cable loss | Preamp factor | Emission<br>Level | Limits   | Margin | Detector<br>Type |  |  |  |
|------------------|-----------|------------------|-------------------|------------|---------------|-------------------|----------|--------|------------------|--|--|--|
| (100)            | (MHz)     | (dBuV)           | (dB)              | (dB)       | (dB)          | (dBuV/m)          | (dBuV/m) | (dB)   | 1 3 PC           |  |  |  |
| 802.11b-2412MHz  |           |                  |                   |            |               |                   |          |        |                  |  |  |  |
| V                | 4824      | 54.32            | 30.28             | 7.01       | 36.5          | 55.11             | 74       | 18.89  | PK               |  |  |  |
| V                | 4824      | 42.24            | 30.28             | 7.01       | 36.5          | 43.03             | 54       | 10.97  | AV               |  |  |  |
| Н                | 4824      | 53.29            | 30.28             | 7.01       | 36.5          | 54.08             | 74       | 19.92  | PK               |  |  |  |
| Н                | 4824      | 44.21            | 30.28             | 7.01       | 36.5          | 45                | 54       | 9      | AV               |  |  |  |
| V                | 7236      | 42.51            | 36.59             | 8.91       | 35.3          | 52.71             | 74       | 21.29  | PK               |  |  |  |
| V                | 7236      | 30.49            | 36.59             | 8.91       | 35.3          | 40.69             | 54       | 13.31  | AV               |  |  |  |
| Н                | 7236      | 43.66            | 36.59             | 8.91       | 35.3          | 53.86             | 74       | 20.14  | PK               |  |  |  |
| Н                | 7236      | 31.79            | 36.59             | 8.91       | 35.3          | 41.99             | 54       | 12.01  | AV               |  |  |  |
| 802.11b -2437MHz |           |                  |                   |            |               |                   |          |        |                  |  |  |  |
| V                | 4874      | 56.45            | 30.36             | 7.62       | 36.5          | 57.93             | 74       | 16.07  | PK               |  |  |  |
| V                | 4874      | 42.09            | 30.36             | 7.62       | 36.5          | 43.57             | 54       | 10.43  | AV               |  |  |  |
| Н                | 4874      | 57.56            | 30.36             | 7.62       | 36.5          | 59.04             | 74       | 14.96  | PK               |  |  |  |
| Н                | 4874      | 42.66            | 30.36             | 7.62       | 36.5          | 44.14             | 54       | 9.86   | AV               |  |  |  |
| V                | 7311      | 44.32            | 36.61             | 8.84       | 35.3          | 54.47             | 74       | 19.53  | PK               |  |  |  |
| V                | 7311      | 31.37            | 36.61             | 8.84       | 35.3          | 41.52             | 54       | 12.48  | AV               |  |  |  |
| Н                | 7311      | 42.26            | 36.61             | 8.84       | 35.3          | 52.41             | 74       | 21.59  | PK               |  |  |  |
| Н                | 7311      | 29.22            | 36.61             | 8.84       | 35.3          | 39.37             | 54       | 14.63  | AV               |  |  |  |
|                  |           |                  |                   | 802.11     | b -2462MF     | łz                |          |        |                  |  |  |  |
| V                | 4924      | 53.7             | 30.43             | 7.94       | 36.2          | 55.87             | 74       | 18.13  | PK               |  |  |  |
| V                | 4924      | 42.66            | 30.43             | 7.94       | 36.2          | 44.83             | 54       | 9.17   | AV               |  |  |  |
| Н                | 4924      | 55.82            | 30.43             | 7.94       | 36.2          | 57.99             | 74       | 16.01  | PK               |  |  |  |
| Н                | 4924      | 42.28            | 30.43             | 7.94       | 36.2          | 44.45             | 54       | 9.55   | AV               |  |  |  |
| V                | 7386      | 43.98            | 36.78             | 8.45       | 35.3          | 53.91             | 74       | 20.09  | PK               |  |  |  |
| V                | 7386      | 31.99            | 36.78             | 8.45       | 35.3          | 41.92             | 54       | 12.08  | AV               |  |  |  |
| Н                | 7386      | 41.04            | 36.78             | 8.45       | 35.3          | 50.97             | 74       | 23.03  | PK               |  |  |  |
| Н                | 7386      | 31.54            | 36.78             | 8.45       | 35.3          | 41.47             | 54       | 12.53  | AV               |  |  |  |

### Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.


Report No.: MTEB23080139 –R1 Page 20 of 39

## 5.3 Band Edge Compliance of RF Emission

#### **TEST REQUIREMENT**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

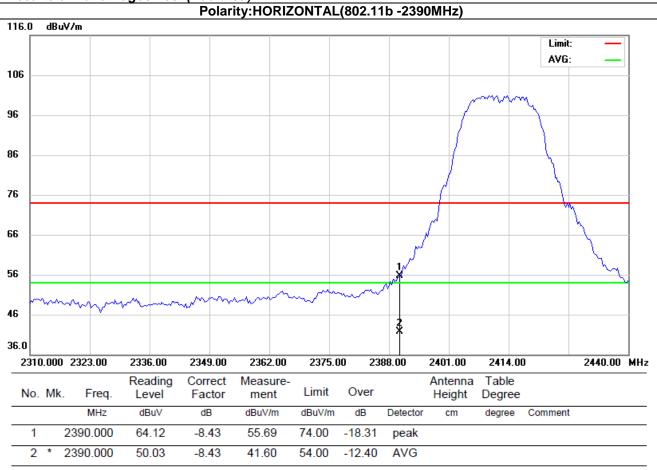
### **TEST CONFIGURATION**



### **TEST PROCEDURE**

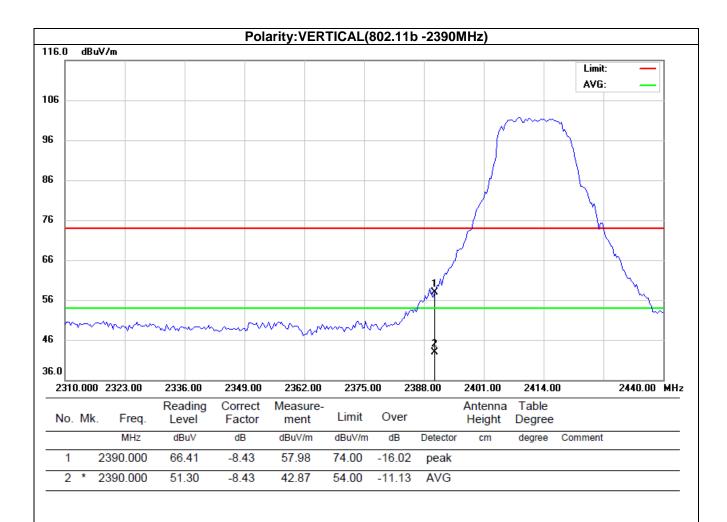
- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting                                                                            | Detector |
|----------------------|-----------------------------------------------------------------------------------------------------------|----------|
| 1GHz-40GHz           | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |


### LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)


Report No.: MTEB23080139 –R1 Page 21 of 39

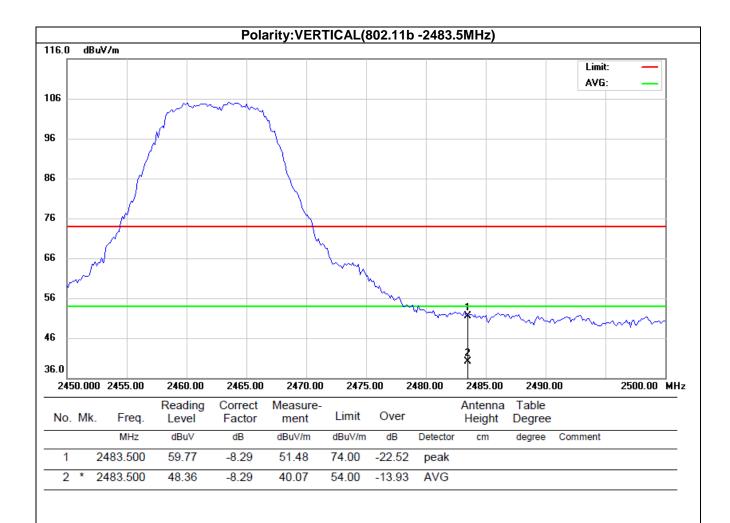





\*:Maximum data x:Over limit !:over margin

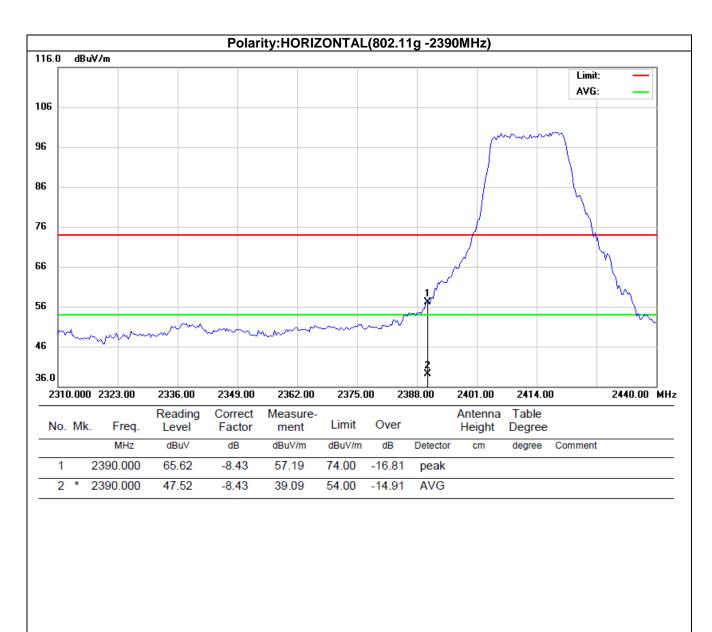
Report No.: MTEB23080139 –R1 Page 22 of 39




<sup>\*:</sup>Maximum data x:Over limit !:over margin

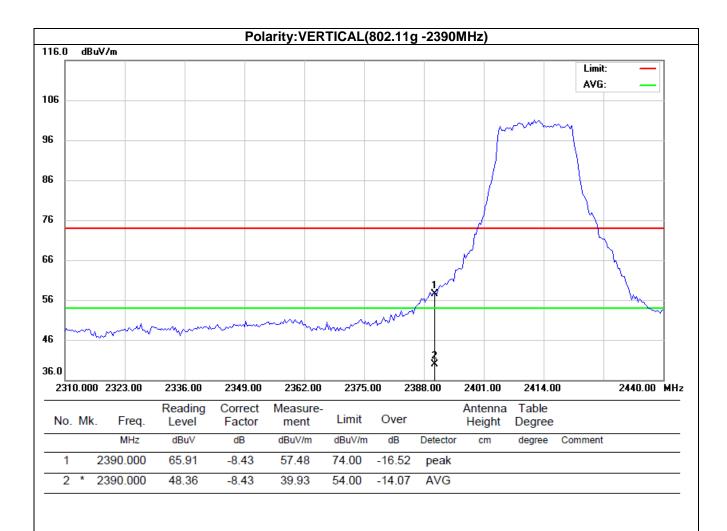
Report No.: MTEB23080139 –R1 Page 23 of 39




\*:Maximum data x:Over limit !:over margin

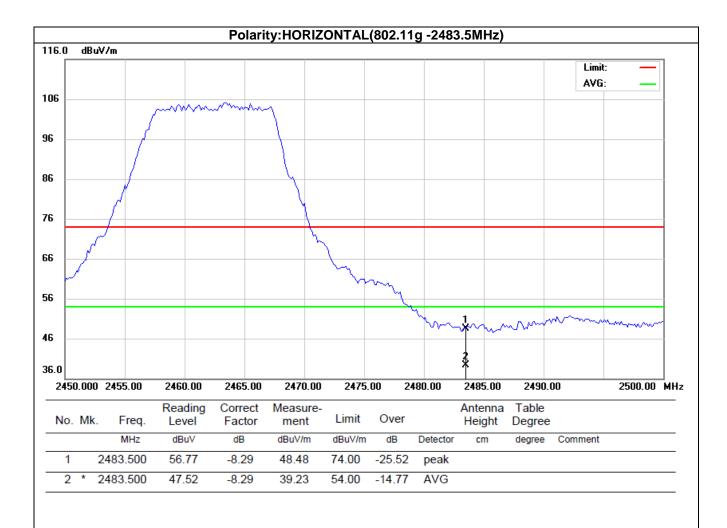
Report No.: MTEB23080139 –R1 Page 24 of 39



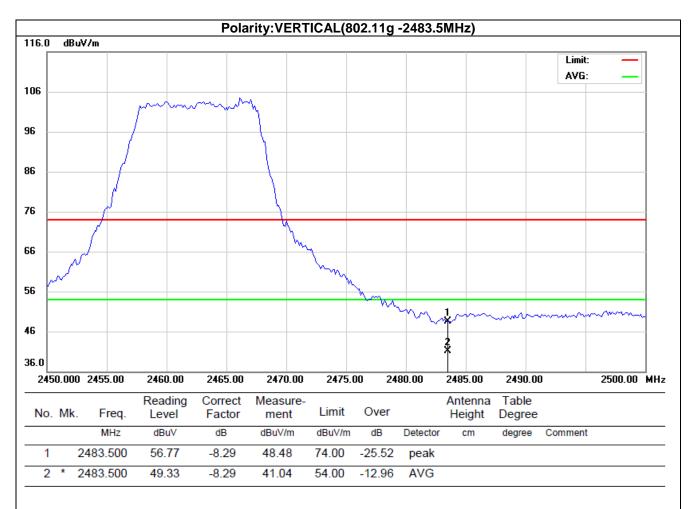

\*:Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 25 of 39



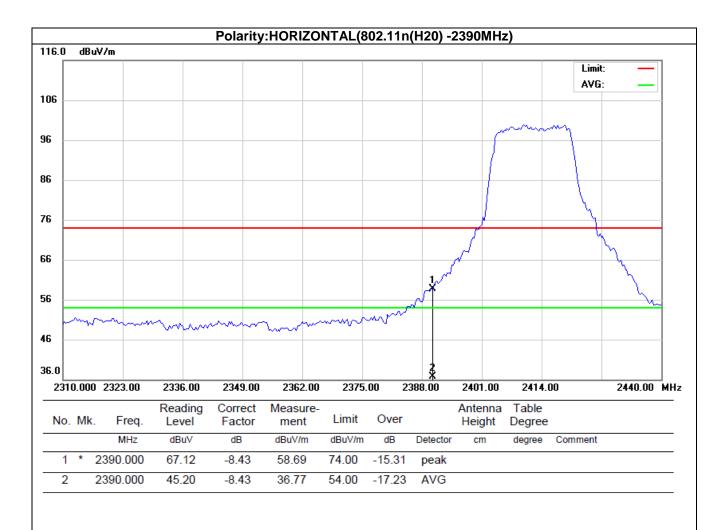

<sup>\*:</sup>Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 26 of 39



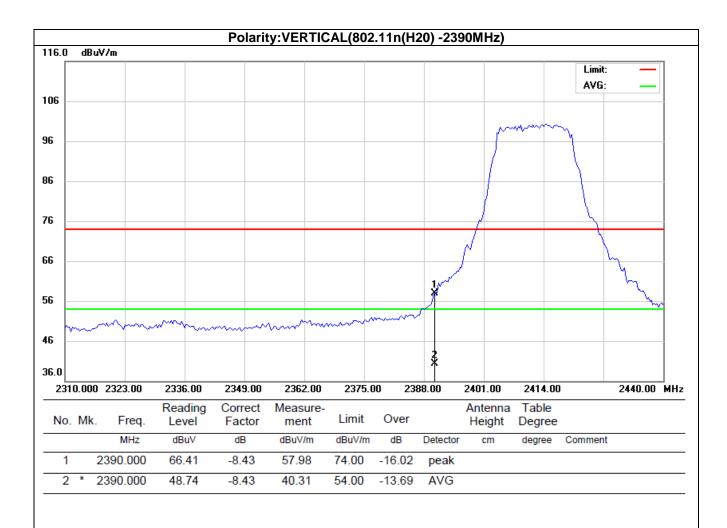

\*:Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 27 of 39



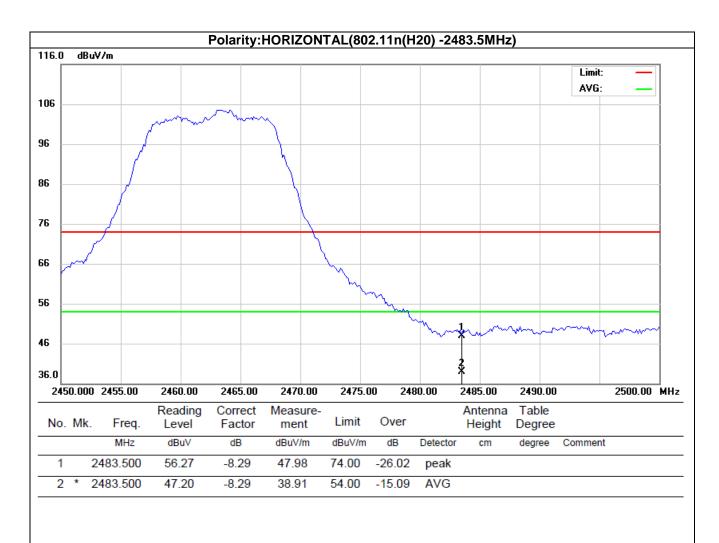

<sup>\*:</sup>Maximum data x:Over limit !:over margin



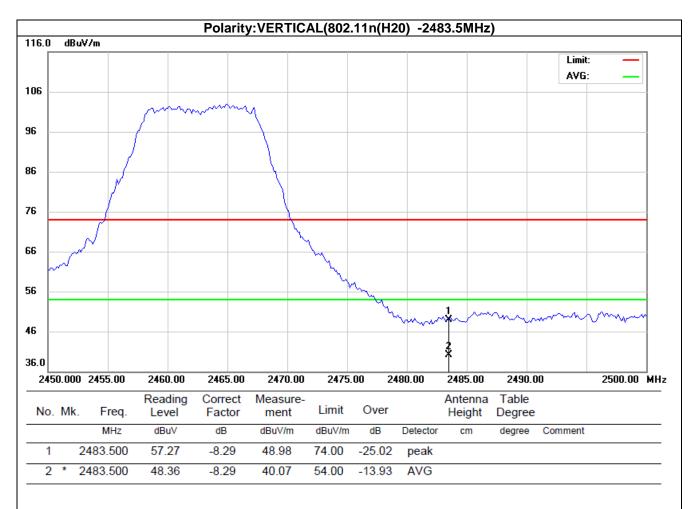

\*:Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 29 of 39

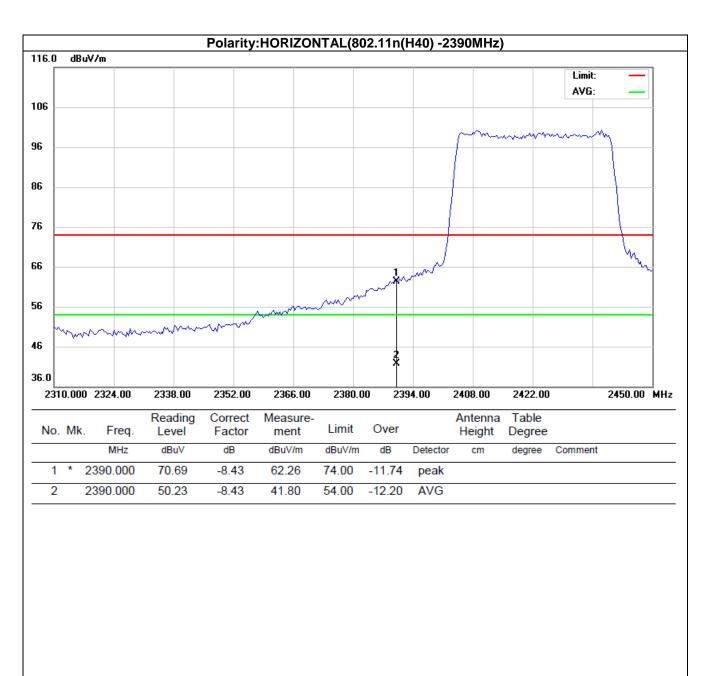



<sup>\*:</sup>Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 -R1 Page 30 of 39




\*:Maximum data x:Over limit !:over margin

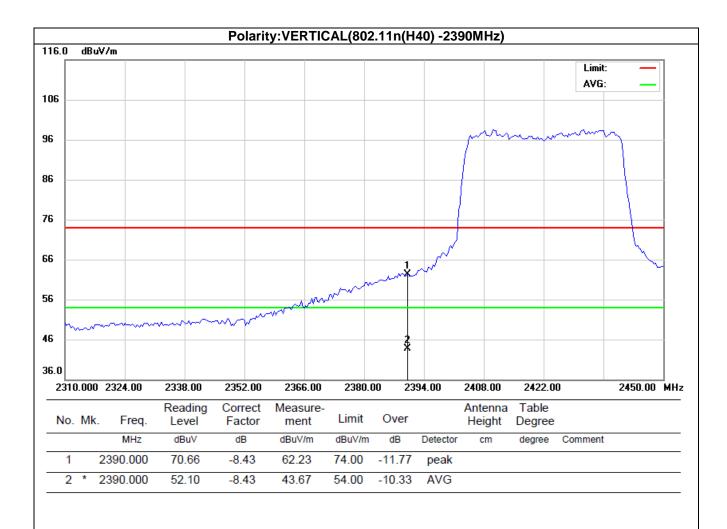

Report No.: MTEB23080139 –R1 Page 31 of 39



\*:Maximum data x:Over limit !:over margin

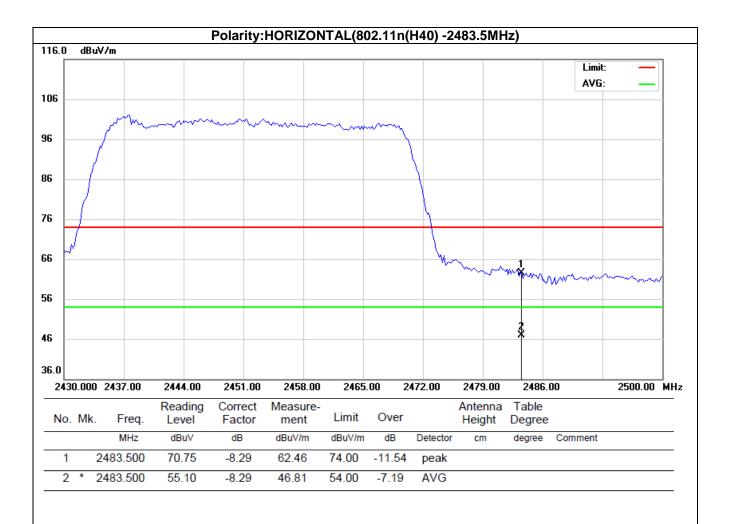


<sup>\*:</sup>Maximum data x:Over limit !:over margin



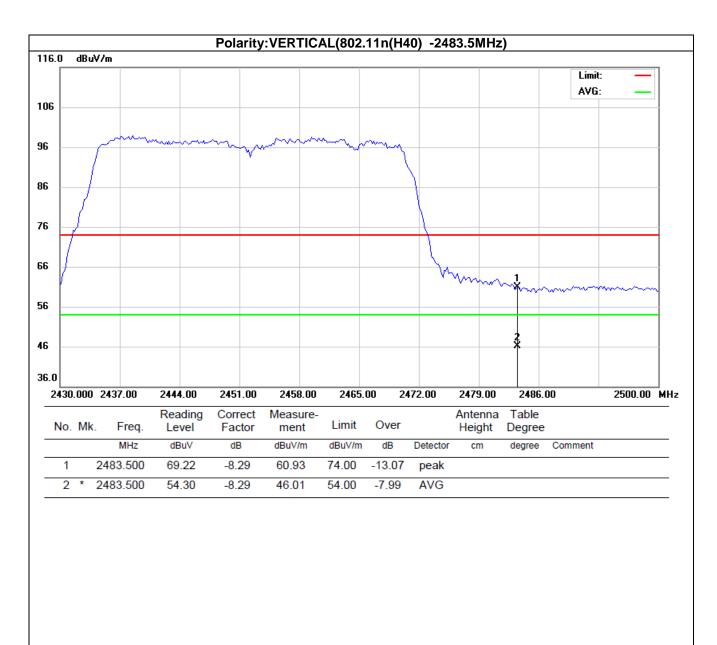

\*:Maximum data

x:Over limit


!:over margin

Report No.: MTEB23080139 –R1 Page 34 of 39




<sup>\*:</sup>Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 –R1 Page 35 of 39



<sup>\*:</sup>Maximum data x:Over limit !:over margin

Report No.: MTEB23080139 -R1 Page 36 of 39



\*:Maximum data

x:Over limit

!:over margin

Report No.: MTEB23080139 –R1 Page 37 of 39

# 5.4 Antenna Requirement

## Standard Applicable

### For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

## FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


### **Test Result:**

The directional gains of antenna used for transmitting is 2dBi, and the antenna is an Internal antenna with ipex connector connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

# 6 Test Setup Photos of the EUT







Report No.: MTEB23080139 -R1 Page 39 of 39

| 7 Photos of | oft | h e | ΕU | Τ |
|-------------|-----|-----|----|---|
|-------------|-----|-----|----|---|

See related photo report.