≅ BlackBerry Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW Page **1(72)** Author Data **Andrew Becker** Dates of Test June 23 – August 5, 2014 Test Report No RTS-6058-1408-05 Rev 2 L6ARHB120LW ## **SAR Compliance Test Report** **Testing Lab:** BlackBerry RTS Applicant: BlackBerry Limited 2200 University Ave. East 440 Phillip Street Waterloo, Ontario Canada N2L 5R9 Waterloo, Ontario Canada N2K 0A7 Phone: 519-888-7465 Phone: 519-888-7465 Phone: 519-888-746 Fax: 519-746-0189 Fax: 519-888-6906 Web site: www.BlackBerry.com Statement of Compliance: BlackBerry RTS declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. **Device Category:** This BlackBerry® Smartphone is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body. RF Exposure Environment: This device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in, FCC 47 CFR Part 2.1093, FCC 96-326, IEEE Std. C95.1-1992, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in latest FCC OET KDB Procedures, ANSI/IEEE Std. C95.3-2002, IEEE 1528-2013, and RSS 102-issue4- 2010. Daoud Attayi Compliance Systems Analyst II (SAR/HAC) Compliance Lead (Verification and responsible of the Test Report) > Masud S. Attayi Manager, Regulatory Compliance (Approval of the Test Report) RTS is accredited according to EN ISO/IEC 17025 by: 592 | ## BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 2(72) | | |---------------|---------------|--------------------------------|---|-------------|-------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 - | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | Report Issue Date: August 11, 2014 Report was revised to **RTS-6058-1408-05 Rev 2** on September 04, 2014. Updated and referenced to the latest FCC KDB released publication date. Note 1: According to the hardware similarity document, BlackBerry model: RHB121LW has the same conducted power for GSM and WCDMA as RFN81UW. Therefore, RFN81UW conducted power results are used for the bands in common and all the other bands were measured on RHB121LW. Note 2: According to the hardware similarity document, BlackBerry model: RHB121LW has the same RF hardware for 802.11a/n as RHA111LW, however Hotspot mode has different conducted power levels. In addition, 802.11b/g/n & Bluetooth has the same conducted power on both models, but RHB121LW has a modified band pass filter due to supported LTE band 7. Therefore, RHA111LW radiated SAR and conducted power results are used for 802.11a/b/g/n (except 802.11a Hotspot mode) and 802.11a Hotspot mode (conducted/radiated SAR) and 802.11b radiated SAR spot checks were done on RHB121LW. Bluetooth was not spot checked due to extremely low SAR values. $SAR\ Compliance\ Test\ Report\ for\ the\ BlackBerry @$ **Smartphone Model RHB121LW** 3(72) Author Data **Andrew Becker** Test Report No FCC ID: **Contents** **June 23 – August 5, 2014** RTS-6058-1408-05 Rev 2 L6ARHB120LW | 1.0
1.1 | OPERATING CONFIGURATIONS AND TEST CONDITIONS | | |------------|---|----| | 1.2 | ANTENNA DESCRIPTION | | | 1.3 | DEVICE DESCRIPTION | 5 | | 1.4 | BODY WORN ACCESSORIES (HOLSTERS) | | | 1.5 | HEADSET | | | 1.6 | BATTERY | | | 1.7 | PROCEDURE USED TO ESTABLISH TEST SIGNAL | | | 1.8 | HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS | | | 1.0 | 1.8.1 SAR MEASUREMENT PROCEDURES FOR 802.11 A/B/G/N AS PER KDB 248227 D01 V01R02 A | | | | SAR MEASUREMENTS 100 MHZ TO 6 GHZ AS PER KDB 865664 D0 V01 | | | | 1.8.2 SAR MEASUREMENT REQUIREMENTS FOR BLUETOOTH | | | | 1.8.3 SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER | | | | CAPABILITIES AS PER KDB 941225 D06 V01 | 19 | | | 1.8.4 SAR EVALUATION PROCEDURES FOR GSM/(E)GPRS DUAL TRANSFER MODE AS PER KDB | | | | 941225 D04 V01 AND SAR TEST REDUCTION PROCEDURES GSM GPRS EDGE AS PER D | DВ | | | 941225 D03 VO1 | 20 | | | 1.8.5 SAR MEASUREMENT PROCEDURE FOR FAST SAR SCAN AS PER KDB 447498 | 23 | | | 1.8.6 SAR MEASUREMENT PROCEDURES FOR 3G DEVICES | 24 | | | 1.8.7 TEST SEUP INFORMATION FOR WCDMA / HSPDA / HSUPA | | | 1.9 | GENERAL SAR TEST REDUCTION AND EXCLUSION PROCEDURE AS PER KDB 447498 D01 V05 AND | | | | HANDSETS MULTI TRANSMITTERS AND ANT PROCEDURE AS PER 648474 D04 V01 | | | | 1.9.1 SIMULTANEOUS TRANSMISSION ANALYSIS | | | 1.10 | | | | 2.0 | DESCRIPTION OF THE TEST EQUIPMENT | | | 2.1 | SAR MEASUREMENT SYSTEM | | | | 2.1.1 EQUIPMENT LIST | | | 2.2 | DESCRIPTION OF THE TEST SETUP | | | | 2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP | | | | 2.2.2 DASY SETUP | 41 | | | ELECTRIC FIELD PROBE CALIBRATION | | | 3.1 | PROBE SPECIFICATIONS | 41 | | 3.2 | | | | | SAR MEASUREMENT SYSTEM VERIFICATIONSYSTEM ACCURACY VERIFICATION FOR HEAD ADJACENT USE | 44 | | 4.1 | | | | | PHANTOM DESCRIPTIONTISSUE DIELECTRIC PROPERTIES | | | 6.1 | COMPOSITION OF TISSUE SIMULANT | 40 | | 0.1 | 6.1.1 EQUIPMENT | | | 6.2 | ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID | | | 0.2 | 6.2.2 TEST CONFIGURATION | | | | 6.2.3 PROCEDURE | | | 7.0 | SAR SAFETY LIMITS | | | | DEVICE POSITIONING | | | 8.1 | DEVICE HOLDER FOR SAM TWIN PHANTOM | | | 8.2 | DESCRIPTION OF THE TEST POSITIONING | | | 0 | 8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD | 53 | | | 8.2.2 BODY-WORN CONFIGURATION | | | | 8.2.3 LIMB/HAND CONFIGURATION | | | 9.0 | HIGH LEVEL EVALUATION | 56 | | 9.1 | MAXIMUM SEARCH | | | 9.2 | EXTRAPOLATION | 56 | | 9.3 | BOUNDARY CORRECTION | | | 9.4 | PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR | 56 | | 10.0 | MEASUREMENT UNCERTAINTY | 57 | | 11.0 | TEST RESULTS | | | 11.1 | | 60 | | 11.2 | | | | | ACCESSORIES | | | 12 () | REFERENCES | 71 | | *** BlackBo | erry | SAR Compliance
Smartphone Mo | | Test Report for the BlackBerry®
el RHB121LW | | | |---------------|---------------|---------------------------------|------------------------|--|---|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | • | | APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION APPENDIX C1: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION APPENDIX C2: SAR DISTRIBUTION PLOTS - HOT SPOT APPENDIX D: PROBE & DIPOLE CALIBRATION DATA APPENDIX E: PHOTOGRAPHS | ::: BlackBerry | | SAR Compliance
Smartphone Mod | e Test Report for the BlackBer
del RHB121LW | rry® | Page 5(72) | | |----------------|---------------|----------------------------------|--|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### 1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS #### 1.1 Picture of Device Please refer to Appendix E. ## Figure 1.1-1 BlackBerry Smartphone ### 1.2 Antenna description | Type | Internal fixed antenna | |---------------|------------------------------| | Location | Please refer to Figure 1.9-1 | | Configuration | Internal fixed antenna | Table 1.2-1 Antenna description ## 1.3 Device description | Device Model | RHB121LW | | | | | |---|--------------------------------------|--|---|--|--| | FCC ID | L6ARHB120LW | | | | | | | Radiated: 2FFEB30 | Radiated: 2FFEB30D (Rev 1), 2FFEC317 (Rev 2) | | | | | PIN | Conducted: 2FFEB2 | 2E0 (Rev 1) | | | | | Hardware Rev | Rev1-905-00, Rev2 | -905-01 | | | | | Software Version | 10.3.0.686/890/103 | 4 | | | | | Prototype or Production Unit | Production | | | | | | | 1-slot | 2-slots | 3-slots | 4-slots | | | | GSM 850 | EDGE/GPRS | EDGE/GPRS | EDGE/GPRS | | | Mode(s) of Operation | GSM 1900 | 850/1900 | 850/1900 | 850/1900 | | | Nominal maximum | 31.6 | 30.0 | 29.0 | 27.0 | | | conducted RF output power | 28.9 | 28.7 | 26.2 | 25.5 | | | (dBm) | | | | | | | Tolerance in power setting on | ± 0.6 | ± 0.5 | ± 0.5 | ± 0.5 | | | centre channel (dB) | 1.0 | 2.0 | 2.0 | 4.0 | | | Duty cycle | 1:8 | 2:8 | 3:8 | 4:8 | | | Transmitting frequency | 824.2 – 848.8 | 824.2 – 848.8 | 824.2 – 848.8 | 824.2 – 848.8 | | | range (MHz) | 1850.2 – 1909.8 | 1850.2 – 1909.8 | 1850.2 – 1909.8 | 1850.2 – 1909.8 | | | Mode(s) of Operation Nominal maximum | 802.11b | 802.11g | 802.11n | Bluetooth | | | | 20.0 | 19.0 | 17.0 | 10.2 | | | conducted RF output power (dBm) | 20.0 | 19.0 | 17.0 | 10.2 | | | Tolerance in power setting on | | | | | | | centre channel (dB) | ± 2.0 | ± 2.0 | ± 2.0 | ± 0.75 | | | ` / | | | | | | | Duty cycle | 1:1 | 1:1 | 1:1 | N/A | | | Transmitting frequency | - | | - | | | | | 2412-2462 | 1:1
2412-2462 | 1:1
2412-2462 | N/A
2402-2483 | | | Transmitting frequency | - | | - | 2402-2483
802.11a/n | | | Transmitting frequency range (MHz) Mode(s) of Operation | 2412-2462 | 2412-2462 | 2412-2462 | 2402-2483 | | | Transmitting frequency range (MHz) Mode(s) of Operation Nominal maximum | 2412-2462
802.11a/n
(low band) |
2412-2462
802.11a/n
(middle band) | 2412-2462
802.11a/n
(upper band I) | 2402-2483
802.11a/n
(upper band II) | | | Transmitting frequency range (MHz) Mode(s) of Operation Nominal maximum conducted RF output power | 2412-2462
802.11a/n | 2412-2462
802.11a/n | 2412-2462
802.11a/n | 2402-2483
802.11a/n | | | Transmitting frequency range (MHz) Mode(s) of Operation Nominal maximum conducted RF output power (dBm) | 2412-2462
802.11a/n
(low band) | 2412-2462
802.11a/n
(middle band) | 2412-2462
802.11a/n
(upper band I) | 2402-2483
802.11a/n
(upper band II) | | | Transmitting frequency range (MHz) Mode(s) of Operation Nominal maximum conducted RF output power | 2412-2462
802.11a/n
(low band) | 2412-2462
802.11a/n
(middle band) | 2412-2462
802.11a/n
(upper band I) | 2402-2483
802.11a/n
(upper band II) | | | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 6(72) | | |---------------|---------------|---------------------------------|--|-------------|-------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | Duty cycle | 1:1 | 1:1 | 1:1 | 1:1 | |---|--|--|-----------|-----------| | Transmitting frequency range (MHz) | 5180-5240 | 5260-5320 | 5520-5700 | 5745-5825 | | Mode(s) of Operation | HSPA ⁺ / WCDMA
/ UMTS FDD V
(850) | HSPA ⁺ / WCDMA
/ UMTS FDD II
(1900) | NFC | | | Nominal maximum conducted RF output power (dBm) | 24.2 | 23.0 | N/A | | | Tolerance in power setting on centre channel (dB) | ± 0.5 | ± 0.6 | N/A | | | Duty cycle | 1:1 | 1:1 | N/A | | | Transmitting frequency range (MHz) | 824.6 – 846.6 | 1852.4 – 1907.6 | 13.56 | | Table 1.3-1 Test device characterization for U.S. wireless operating modes/bands **Note 1:** The BlackBerry model: RHB121LW also supports GSM/GPRS/EDGE 900/1800 MHz, and UMTS/HSPA⁺ Bands I/VIII, and LTE bands 3/7/8/20 that are operational outside North America only, therefore no data is presented in this report for those bands. **Note 2:** SAR measurements on NFC haven't been conducted, since it is very low power and frequency magnetic field transceiver. SAR probes measure higher frequency/power electric field. **Note 3:** Open loop antenna tuning is used for all transmitters (GSM/WCDMA/LTE) which is equivalent to the static tuning configurations used in traditional handsets that do not have any specific antenna tuning flexibility or additional hardware. | ≅ BlackBe | erry | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW Page 7(72) | | | |) | |---------------|---------------|--|------------------------|-------------|---|---| | Author Data | Dates of Test | | Test Report No FCC ID: | | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | ### 1.4 Body worn accessories (holsters) The device has been tested with the holsters listed below and/or a 15mm manufacturer recommended separation distance. The holster has been designed with the intended device orientation being with the LCD facing the belt clip only. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip. | Number | Holster Type | Part Number | Separation
distance
(mm) | |--------|-------------------------------|---------------|--------------------------------| | 1 | Vertical Holster, Leather | HDW-50678-001 | 20 | | 2 | Vertical Holster, alt Leather | HDW-50677-001 | 20 | Table 1.4.1. Body worn holster #### 1.5 Headset The device was tested with and without the following headset model numbers. 1)HDW-49299-005 #### 1.6 Battery The device was tested with the following Lithium Ion Battery pack. 1)BAT-52961-00x #### 1.7 Procedure used to establish test signal - The device was put into test mode for SAR measurements by placing a call from a Rohde & Schwarz CMU 200 or CMW 500 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. - Software Tool was used to set Wi-Fi to transmit at maximum power and duty cycle for each band, channel, and modulation. - A Rohde & Schwarz CBT Bluetooth Tester was used to establish a connection with the DUT's Bluetooth radio. ### 1.8 Highlights of the FCC OET SAR Measurement Requirements | *** BlackBe | erry | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW Page 8(72) | | | Page 8(72) | | |----------------------|---------------|--|------------------------|-------------|-------------------|--| | Author Data | Dates of Test | | Test Report No FCC ID: | | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ## 1.8.1 SAR Measurement Procedures for 802.11 a/b/g/n as per KDB 248227 D01 v01r02 and SAR Measurements 100 MHz to 6 GHz as per KDB 865664 D0 v01r03 - Repeat measurements when the measured SAR is \geq 0.80 W/kg. If the measured SAR values are < 1.45 W/kg with \leq 20% variation, only one repeated measurement was performed to reaffirm that the results are not expected to have substantial variations. An additional repeated measurement is required only if the measured results are within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. - Maintained dielectric parameter uncertainty to \pm 5.0% of the target values, (although it is very challenging to control/maintain both permittivity and conductivity for 5-6 GHz for all test channels within \pm 5.0% of the target values, some conductivity values were measured slightly higher which resulted in more conservative SAR values. - Liquid depth from SAM ERP or flat phantom was kept at 15 cm. - Probe Requirement: Used SPEAG probe model ET3DV6/ES3DV3 for 2.45 GHz and EX3DV4 for 5-6 GHz SAR testing specs are outlined below: | ET3DV6/ES3DV3 | | | | | |-------------------------------|-------------------------------------|--|--|--| | Probe tip to sensor center | 2.7 mm / 2.0 mm | | | | | Probe tip diameter is | 6.8 mm / 4.0 mm | | | | | Probe calibration uncertainty | < 15 % for f = 2.45 GHz | | | | | Probe calibration range | ± 100 MHz | | | | | EX3D | V4 | | | | | Probe tip to sensor center | 1.0 mm | | | | | Probe tip diameter is | 2.5 mm | | | | | Probe calibration uncertainty | < 15 % for f = 2.45 to $< 6.0 GHz$ | | | | | Probe calibration range | ± 100 MHz | | | | **Table 1.8.1-1 Probe specification requirements** - Area scan resolution was maintained at 10mm (5-6 GHz) - Area scan resolution was maintained at 12mm (2-3 GHz) - Area scan resolution was maintained at 15mm (</= 2 GHz) - \bullet System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band. - Zoom Scan: The following settings were used for the validation and measurement. | ET3DV6 | ES3DV3 | | | | | |--------------------------------------|--------------------------------------|--|--|--|--| | Closest Measurement Point to Phantom | 4.0 mm | | | | | | Zoom Scan (x,y) Resolution | 7.5 mm (≤2 GHz) or 5 mm (2-3 GHz) | | | | | | Zoom Scan (z) Resolution | 5.0 mm | | | | | | Zoom Scan Volume | Minimum 30 x 30 x 30 mm ¹ | | | | | | EX3 | DV4 | | | | | | Closest Measurement Point to Phantom | 2.0 mm | | | | | | Zoom Scan (x,y) Resolution | 4.0 mm (5-6 GHz) | | | | | | Zoom Scan (z) Resolution | 2.0 mm (5-6 GHz) | | | | | | Zoom Scan Volume | Minimum 24 x 24 x 22 mm ¹ | | | | | Table 1.8.1-2 Zoom Scan requirement Note 1: "Auto-extend zoom scan when maxima on boundary" is enabled, which can result in the zoom scan dimensions varying between 30x30x30 to 60x60x30 mm and 24x24x22 to 48x48x22 mm. - Frequency Channel Configuration: 802.11 b/g modes are tested on the highest output power channel. - 802.11a is tested for UNII operations on the highest output power channel of each sub band (low, mid, upper band I, and upper band II). If the highest output power channel has a SAR level that is not 3dB lower than the limit, then the "default test channels" of each sub band must also be tested. The "default channels" for each sub band are [36, 48], [52, 64], [104, 116, 124, and 136], [149, 157, and 165]. - For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ¼ dB higher than those measured at the lowest data rate. - SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels. - SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle, if the SAR level was within 3dB of the limit. - 802.11a does not support channels 52 140 in Hotspot and GO/Direct mode. - Conducted power measurements: | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 10(72) | | |----------------------|---------------|---------------------------------
---|-------------|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | | | 802.1 | 1b/g/n | With 1 | Full 1 | Pow | er Fo | or Nor | th A | meri | ica | | | |------------|-----------|--|--------------------------|------------|--------|------|--|----------|-------|--|----------|-------------|--| | 80 | 2.11b @ | 1Mbps | | 802 | 2.11g | @ 6 | Mbps | | | 802 | 2.11n @ | 6.5 Mbps | | | f
(MHz) | Chan | Max.
averag
conduct
power
(dBm | ge
ted
r | f
(MHz) | Cha | an | conducted power (dBm) Chan compower power | | | Max. average
conducted
power (dBm) | | | | | 2412 | 1 | 19.4 | | 2412 | 1 | | 10 | 6.6 | 24 | 2412 1 16.4 | | | | | 2437 | 6 | 20.0 | | 2437 | 6 | | 19 | 9.4 | 24 | 37 | 6 | 16.6 | | | 2462 | 11 | 19.3 | | 2462 | 11 | | 1. | 3.2 | 24 | 2462 11 13.1 | | | | | 2472 | 13 | 12.3 | 2.3 2472 13 12.3 2472 13 | | | | | 12.0 | | | | | | | | | 802.11g | 5 | | | | | | į | 802.1 | 1b | | | | Data | | | Chan | nel 6 | | D | ata | | | | Chai | nnel 6 | | | Rate | Mod. | Max. | averag | e conduc | eted | R | ate | Mod | | Max. average conducted | | | | | (Mbps) | | | power | (dBm) | | (M | (bps) | | | | power | power (dBm) | | | 6 | BPSK | | 19 | 0.4 | | | 1 | BPSk | | | 19 | 9.9 | | | 9 | BPSK | | 19 | 0.4 | | | 2 | DQPS | K | | 19 | 9.7 | | | 12 | QPSK | | 18 | 3.2 | | 5 | 5.5 | CCK | - | | 19 | 9.8 | | | 18 | QPSK | | 18 | 3.1 | | | 11 | CCK | - | | 19 | 9.8 | | | 24 | 16-QAN | 1 | 17 | 7.0 | | | | | | | | | | | 36 | 16-QAN | 1 | 17 | 7.0 | | | | | | | | | | | 48 | 64-QAN | 1 | 15 | 5.9 | | | | | | | | | | | 54 | 64-QAN | 1 | 15 | 5.7 | | | | | | | | | | | | | | | | 80 | 2.11 | n | | | | | | | | Doto I | Rate (Mb | ne) | | Mod. | | | | | | Char | nnel 6 | | | | Data 1 | Nate (MD) | μs) | | MIOU. | | | N | Iax. ave | erage | cond | ucted po | ower (dBm) | | | | 6.5 | | | MCS0 | | | | | | 10 | 5.6 | | | | | 13 | | | MCS1 | | | | | | | 5.5 | | | | | 19.5 | | | MCS2 | | | | | | | 5.6 | | | | | 26 | | | MCS3 | | | 15.7 | | | | | | | | | 39 | | | MCS4 | | | 14.7 | | | | | · | | | | 52 | | | MCS5 | | | 14.5 | | | | | | | | | 58.5 | | | MCS6 | | | | | | 1. | 3.6 | | | | | 65 | | | MCS7 | | | | | | 1. | 3.6 | | | Table 1.8.1-3a 802.11 b/g/n modulation type/data rate vs. conducted power at full/maximum power for North America (measured on RHA111LW) | *** BlackBo | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBo
del RHB121LW | erry® | Page 11(72) | |---------------|---------------|--------------------------------|---|-------------|-------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | 80 | 2.11b/g/n V | Vith Full | Pow | er Fo | or O | utside | North A | merica | | | |------------|-----------|--|--------------------------|-------|--------------|-------------------|------------------------------------|------------|-------------|--|--| | 80 | 2.11b @ 1 | Mbps | 802 | 2.11g | @ 6N | Ibps | | 802 | 2.11n @ | 6.5 Mbps | | | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | f
(MHz) | Cha | an | ave
cond
po | ax.
rage
ucted
wer
Bm) | f
(MHz) | Chan | Max. average
conducted
power (dBm) | | | 2412 | 1 | 19.7 | 2412 | 1 | | 19 | 9.2 | 2412 | 1 | 16.6 | | | 2437 | 6 | 20.0 | 2437 | 6 | | 19 | 9.4 | 2437 | 6 | 16.8 | | | 2462 | 11 | 19.7 | 2462 | 11 | 1 | 19 | 9.2 | 2462 | 11 | 16.5 | | | 2472 | 13 | 19.6 | 2472 | 13 | 3 | 19 | 9.1 | 2472 | 13 | 16.4 | | | | | 802.11g | | | | | | 802.1 | 1b | | | | Data | | Ch | Channel 6 Data Channel 6 | | | | | nnel 6 | | | | | Rate | Mod. | | age conduc | cted | Ra | te | Mod | . Ma | x. averaș | ge conducted | | | (Mbps) | | pow | er (dBm) | | (Mb | ps) | | | power (dBm) | | | | 6 | BPSK | | 19.4 | | 1 | | BPSF | | 19.8 | | | | 9 | BPSK | | 19.2 | | 2 | | DQPS | | | 9.4 | | | 12 | QPSK | | 19.2 | | 5.: | | CCK | | | 9.3 | | | 18 | QPSK | | 19.2 | | 11 | 11 CCK | | | 19 | 9.2 | | | 24 | 16-QAM | | 19.2 | | | | | | | | | | 36 | 16-QAM | | 19.3 | | | | | | | | | | 48 | 64-QAM | | 19.2 | | | | | | | | | | 54 | 64-QAM | | 19.2 | | | | | | | | | | | | T | | 80 | 2.11 n | 1 | | | | | | | Data I | Rate (Mbp | os) | Mod. | | | 1 | Mary are | | nnel 6 | ower (dBm) | | | | 6.5 | | MCS0 | | | 10 | iax. ave | | 9.3 | ower (ubiii) | | | | 13 | | MCS1 | | | | | | 9.3
9.3 | | | | | 19.5 | | MCS2 | | | | | | | | | | | 26 | | MCS3 | | 19.4
19.4 | | | | | | | | | 39 | | MCS4 | | | 19.4 | | | | | | | | 52 | | MCS5 | | | 19.3 | | | | | | | | 58.5 | | MCS6 | | | | | | 9.3 | | | | | 65 | | MCS7 | | | | | | 9.4 | | | Table 1.8.1-3b 802.11 b/g/n modulation type/data rate vs. conducted power at full/maximum power for outside North America (measured on RHA111LW) **Note:** 802.11b/g/n has different power levels within and outside of North America due to additional requirements for band edge in North America. Due to this SAR testing was done using these higher conducted values as they will result in more conservative SAR measurements. However, the phone officially operates at the 802.11b power levels listed in table 1.8.1-3a | ∷ BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 12(72) | |------------------|---------------|--------------------------------|---|-------------|-------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | 8 | 02.11b/g/n | With Red | luced | d Pow | ver l | For G(| D/Dire | ct Mode | | |------------|-----------|--|------------------------|-------|----------|-------------------|----------|----------|--|--------------| | 80 | 2.11b @ 1 | | | | @ 6N | | | | 802.11n @ | 6.5 Mbps | | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | f
(MHz) | Cha | | power (MHz) (dBm) | | Chan | Max. average
conducted
power (dBm) | | | 2412 | 1 | 13.3 | 2412 | 1 | | 1. | 3.6 | 2412 1 | | 13.5 | | 2437 | 6 | 13.8 | 2437 | 6 |) | 1. | 3.8 | 2437 | 6 | 13.8 | | 2462 | 11 | 13.5 | 2462 | 11 | 1 | 1. | 3.6 | 2462 | 11 | 13.5 | | 2472 | 13 | NA | 2472 | 13 | 3 | N | ΙA | 2472 | 13 | NA | | | | 802.11g | 11g | | | | | 802 | 2.11b | | | Data | | Ch | Channel 6 Data Channel | | | | | nnel 6 | | | | Rate | Mod. | Max aver | age conduc | rted | Rat | | Mod | . 1 | Aax avera | ge conducted | | (Mbps) | 1,104. | | er (dBm) | ctcu | (Mb | | 1,100 | . . | | r (dBm) | | _ | DDGI | | | | | F ~/ | DDGI | 7 | | | | 6 | BPSK | _ | 13.8 | | 1 | | BPSk | | | 3.8 | | 9 | BPSK | | 13.7 | | 2 | | DQPS | | | 3.8 | | 12 | QPSK | | 13.8 | | 5.5 | | CCK | | | 3.8 | | 18 | QPSK | r | 13.8 | | 11 | | CCK | - | 1 | 3.8 | | 24 | 16-QAM | | 13.8 | | | | | | | | | 36 | 16-QAM | | 13.7 | | | | | | | | | 48
54 | 64-QAM | | 13.7 | | | | | | | | | 54 | 64-QAM | L | 13.8 | 90 | 2.11 n | | | | | | | | | <u> </u> | | 80 | 12.11 fi | 1 | | C | 1 (| | | Data I | Rate (Mbp | os) | Mod. | | | | Acre cre | | nannel 6 | orrow (dDm) | | | 6.5 | | MCS0 | | | IV | ax. av | erage co | 13.8 | ower (dBm) | | | 13 | | MCS1 | | | | | | 13.8 | | | | 19.5 | | MCS2 | | | | | | 13.8 | | | | 26 | | MCS3 | 13.8 | | | | | | | | | 39 | | MCS4 | | | 13.8 | | | | | | | 52 | | MCS5 | | | | | | 13.8 | | | | 58.5 | | MCS6 | | | | | | 13.8 | | | | 65 | | MCS7 | | | | | | 13.8 | | Table~1.8.1-3c~802.11~b/g/n~modulation~type/data~rate~vs.~maximum~average~conducted~power~for~Wi-Fi~Direct/GO~mode~(measured~on~RHA111LW) | | | 802.1 | 1a/n Wit | h Full Po | wer For N | orth | America | a | | | |-------------------------|-----------|---|----------------------------|-------------|---|---|-----------------------------------|------------|-----------------------|--| | 802.11a | (low band |) 6Mbps | 802.1 | 11a (mid ba | nd) 6Mbps | | 802.11a | (upp | er ba | nd I) 6Mbps | | f
(MHz) | Chan c | Max.
average
onducted
power
(dBm) | f
(MHz) | Chan | Max.
averag
conduct
power
(dBm) | ed | f
(MHz) | Ch | ıan | Max.
average
conducted
power
(dBm) | | 5180 | 36 | 13.7 | 5260 | 52 | 15.7 | <u>, </u> | 5500 | 1(| 00 | 13.5 | | 5200 | 40 | 13.7 | 5280 | 56 | 15.7 | | 5520 | |)4 | 19.5 | | 5220 | 44 | 13.6 | 5300 | 60 | 15.6 | | 5540 | | 08 | 19.4 | | 5240 | 48 | 13.5 | 5320 | 64 | 13.3 | | 5560 | | 12 | 19.3 | | | | | | <u> </u> | | | 5580 | | 16 | 19.1 | | | | | | | | | 5600 | | 20 | 19.0 | | | | | | | | | 5620 | | 24 | 19.1 | | | | | | | | | 5640 | | 28 | 18.9 | | | | | | | | | 5660 | | 32 | 18.9 | | | | | | | | | 5680 | 13 | 36 | 18.8 | | | | | | | | | 5700 | | 40 | 14.9 | | | | | | | | | 802.11a (upper band II) 6Mbps | | | | | | | | | | | | f (MHz) 5745 5765 5785 5805 5825 | | 49
53
57 | Max.
average
conducted
power
(dBm)
12.2
16.5
16.4
16.5 | | | | 802 | .11a | 802. | 119 | | 802.11a | 10 | 10 | 802.11a | | | | | : band) | | e band) | (u | pper band | I) | (u | pper band II) | | | | · · | nel 36 | | nel 52 | | Channel 10 | | | Channel 153 | | Data
Rate
(Mbits) | Mod. | Max. a | nverage
ed power
Bm) | Max. a | verage
ed power | N | Iax. averag
ducted po
(dBm) | ge | N | fax. average
ducted
power
(dBm) | | 6 | BPSK | | 3.7 | | 5.7 | | 19.5 | | | 16.5 | | 9 | BPSK | | 3.7 | | 5.7 | | 19.6 | | | 16.4 | | 12 | QPSK | | 3.7 | | 5.8 | | 19.5 | | | 16.4 | | 18 | QPSK | | 3.8 | | 5.8 | | 19.5 | | | 16.4 | | 24 | 16-QAM | | 3.9 | | 5.8 | | 17.7 | | | 15.8 | | 36 | 16-QAM | 13 | 3.8 | | 5.8 | | 17.6 | | | 15.9 | | 48 | 64-QAM | 13 | 3.8 | 15 | 5.7 | | 17.8 | | | 15.7 | | 54 | 64-QAM | 1.13 | 3.9 | 1.5 | 5.6 | 1 | 16.8 | | l | 15.4 | | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 14(72 | | |---------------|---------------|---------------------------------|---|-------------|------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | | 802.11n
(lower band) | 802.11n
(middle band) | 802.11n
(upper band I) | 802.11n
(upper band II) | |------|------------------------------|------------------------------|------------------------------|------------------------------| | | Channel 36 | Channel 52 | Channel 104 | Channel 153 | | Mod. | Max. average conducted power | | | (dBm) | (dBm) | (dBm) | (dBm) | | MCS0 | 13.9 | 16.0 | 15.6 | 12.0 | | MCS1 | 13.6 | 15.7 | 15.6 | 12.0 | | MCS2 | 13.6 | 15.8 | 15.4 | 12.0 | | MCS3 | 13.6 | 15.9 | 15.4 | 11.9 | | MCS4 | 13.6 | 15.8 | 15.5 | 11.9 | | MCS5 | 13.7 | 15.8 | 15.4 | 12.0 | | MCS6 | 13.7 | 15.8 | 15.6 | 12.0 | | MCS7 | 13.9 | 15.8 | 15.6 | 12.0 | Table 1.8.1-4a 802.11 a/n modulation type/data rate vs. conducted power at full power for North America (measured on RHA111LW) | | | 802.11a/n | With F | ull Power | For Outside N | orth Am | erica | | |------------|---------|--|------------|--------------|--|------------|-------------|--| | 802.11a | (low ba | nd) 6Mbps | 802 | .11a (mid ba | nd) 6Mbps | 802.11a | (upper ba | nd I) 6Mbps | | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | | 5180 | 36 | 20.2 | 5260 | 52 | 20.1 | 5500 | 100 | 19.5 | | 5200 | 40 | 20.2 | 5280 | 56 | 20.0 | 5520 | 104 | 19.6 | | 5220 | 44 | 20.2 | 5300 | 60 | 20.0 | 5540 | 108 | 19.4 | | 5240 | 48 | 20.0 | 5320 | 64 | 20.0 | 5560 | 112 | 19.3 | | | | | | | | 5580 | 116 | 19.3 | | | | | | | | 5600 | 120 | 19.0 | | | | | | | | 5620 | 124 | 18.9 | | | | | | | | 5640 | 128 | 18.8 | | | | | | | | 5660 | 132 | 18.7 | | | | | | | | 5680 | 136 | 18.6 | | | | | | | | 5700 | 140 | 18.4 | | | | | | | | 802.11 | a (upper ba | nd II) 6Mbps | | | | | | | | f
(MHz) | Chan | Max.
average
conducted
power
(dBm) | | | | | | | | 5745 | 149 | 16.6 | | | | | | | | 5765 | 153 | 16.6 | | | | | | | | 5785 | 157 | 16.6 | | | | | | | | 5805 | 161 | 16.3 | | | | | | | | 5825 | 165 | 16.4 | | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 15(72) | | |---------------|---------------|---------------------------------|--|-------------|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | T . | | | | | | 2.11a
r band) | 802.11
(middle | | 802.11a
(upper band I | 802.11a
(upper band | 11) | |---------|-----------|-------|------------------|-------------------|---------------------------------------|--------------------------|------------------------|-----| | | | ` ` | nel 36 | Channe | | Channel 104 | Channel 15 | | | Data | 36.3 | | average | Max. ave | | Max. average | | | | Rate | Mod. | | ed power | conducted | | conducted pow | | | | (Mbits) | | | Bm) | | (dBm) | | (dBm) | | | 6 | BPSK | 20.2 | | 20.1 | | 19.6 | 16.6 | | | 9 | BPSK | 20 | 0.2 | 20.0 | | 19.5 | 16.6 | | | 12 | QPSK | 19 | 9.5 | 19.2 | | 18.6 | 16.5 | | | 18 | QPSK | 19 | 9.5 | 19.1 | | 18.6 | 16.5 | | | 24 | 16-QAM | 13 | 8.5 | 18.1 | | 17.6 | 16.5 | | | 36 | 16-QAM | 13 | 8.4 | 18.1 | | 17.6 | 16.5 | | | 48 | 64-QAM | 1 | 7.0 | 17.0 | | 16.7 | 15.4 | | | 54 | 64-QAM | 1 | 7.0 | 16.9 | | 16.6 | 15.5 | | | | 802.1 | 1n | 802 | 2.11n | | 802.11n | 802.11n | | | | (lower l | oand) | (midd | le band) | (up | per band I) | (upper band II | .) | | | Chann | el 36 | Cha | nnel 52 | Channel 104 | | Channel 153 | | | Mod. | Max. av | erage | | average | | x. average | Max. average | | | Miou. | conducted | power | conduct | ted power | cond | ucted power | conducted power | er | | | (dBr | n) | (d | Bm) | | (dBm) | (dBm) | | | MCS0 | 17. | 0 | 1 | .6.9 | | 18.4 | 16.4 | | | MCS1 | 17. | 0 | 1 | 6.7 | | 18.4 | 16.2 | | | MCS2 | 16. | 0 | 1 | 5.7 | | 17.5 | 16.3 | | | MCS3 | 16. | 0 | 1 | 6.0 | | 17.3 | 16.3 | | | MCS4 | 19. | 3 | 1 | 9.1 | | 16.7 | 15.5 | | | MCS5 | 19. | | 1 | 9.2 | | 16.6 | 15.4 | | | MCS6 | 18.5 | | 1 | 8.1 | | 15.5 | 14.2 | | | MCS7 | 18. | 2 | 1 | 7.9 | · · · · · · · · · · · · · · · · · · · | 15.5 | 14.3 | - | Table 1.8.1-4b 802.11 a/n modulation type/data rate vs. conducted power at full power for outside North America (measured on RHA111LW) **Note:** 802.11a/n has different power levels within and outside of North America due to additional requirements for band edge in North America. Due to this SAR testing was done using these higher conducted values as they will result in more conservative SAR measurements. However, the phone officially operates at the 802.11a power levels listed in table 1.8.1-4a | 802. | 802.11a/n With Reduced Power For Hotspot Mode | | | | | | | | |------------|---|------|---|--|-------|--|---|--| | 802.11a | (low ba | nd) | 6Mbps | 802.11 | la (u | pper ba | nd II) 6Mbps | | | f
(MHz) | Chan | co | Max.
average
onducted
power
(dBm) | f
(MHz) | Ó | Chan | Max. average
conducted
power
(dBm) | | | 5180 | 36 | | 15.7 | 5745 | | 149 | 13.7 | | | 5200 | 40 | | 15.6 | 5765 | | 153 | 13.7 | | | 5220 | 44 | | 15.7 | 5785 | | 157 | 13.7 | | | 5240 | 48 | | 15.7 | 5805 | | 161 | 13.8 | | | | | | 5825 | | 165 | 13.8 | | | | | (low | | | | (up | 802.11 a pper band II) Channel 161 | | | | Data Ra | te (Mbit | s) | conduc | Max. average
nducted power
(dBm) | | Max. average
conducted power
(dBm) | | | | | 6 | | | 15.7 | | | 13.8 | | | | 24 | | | 15.8 | | | 13.6 | | | , | 54 | | | 15.8 | | | 13.7 | | | | | 02.1 | | | | 802.11 | | | | | _ ` | | oand) | | | pper bar | | | | | | | el 36 | | (| Channel | 161 | | | Mod. | Mod. Max. average conducted power (dBm) | | Max. average conducted power (dBm) | | | - | | | | MCS0 | | 15. | | 13.7 | | | | | | MCS4 | 15.8 | | | 13.6 | | | | | | MCS7 | | 15. | 7 | 13.6 | | | | | Table 1.8.1-4c 802.11 a/n modulation type/data rate vs. conducted power for Hotspot mode (measured on RHB121LW) Note 1: 802.11a/n Hotspot mode does not support channels 52-140. | | 802.11a/n With Reduced Power For GO/Direct Mode | | | | | | | | | |------------|---|---|---|--------------------------------|--------------|--|--|--|--| | 802.11a | a (low ba | nd) | 6Mbps | 802.11a (upper band II) 6Mbps | | | | | | | f
(MHz) | Chan | co | Max.
verage
nducted
power
(dBm) | f
(MHz) | Chan | Max. average
conducted power
(dBm) | | | | | 5180 | 36 | | 12.5 | 5745 | 149 | 11.8 | | | | | 5200 | 40 | | 12.4 | 5765 | 153 | 16.0 | | | | | 5220 | 44 | | 12.3 | 5785 | 157 | 16.0 | | | | | 5240 | 48 | | 12.2 | 5805 | 161 | 15.9 | | | | | | | | | 5825 | 165 | 11.7 | | | | | | (low | | | 02.11a
er band)
annel 36 | | 802.11 a
(upper band II)
Channel 153 | | | | | Data Ra | ite (Mbit | s) | Max
conduc | . average
cted powe
dBm) | er Ma | Max. average conducted power (dBm) | | | | | | 6 | | | 12.5 | | 16.0 | | | | | | 24 | | | 12.5 | | 15.9 | | | | | | | | | | | | | | | | | 54 | | | 12.5 | | 15.9 | | | | | | | 02.1 | 1n | 12.5 | 80 | 15.9
)2.11n | | | | | | 8 | | 1n
pand) | 12.5 | | | | | | | | 8 (low | er b | | 12.5 | (uppe |)2.11n | | | | | Mod. | (low
Ch
Max
condu | er banne
anne
a av | oand)
el 36
erage
power | | (uppe
Cha |)2.11n
r band II) | | | | | | (low
Ch
Max
condu | er b
ann
a av | el 36
erage
power
n) | | (uppe
Cha |)2.11n
r band II)
nnel 153 | | | | | Mod. | (low
Ch
Max
condu | er banne
anne
a av
cted
dBr | el 36
erage
power
n) | | (uppe
Cha | 02.11n r band II) nnel 153 nducted power (dBm) | | | | Table 1.8.1-4d 802.11 a/n modulation type/data rate vs. conducted power for Wi-Fi GO/Direct mode (measured on RHA111LW) **Note**: 802.11a/n GO/Direct mode does not support channels 52-140. | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 18 (72) | |---------------------------|---------------|---------------------------------|---|---------|---------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker June 23 - | | August 5, 2014 | gust 5, 2014 RTS-6058-1408-05 Rev 2 L6ARHB120LW | | 7 | ## 1.8.2 SAR Measurement Requirements for Bluetooth | Channe
l | Freq
(MHz) | Mode | Conducted Avg.
Transmit Power
(dBm) | |-------------|---------------|------|---| | 0 | 2402 | DH5 | 10.8 | | 39 |
2441 | DH5 | 10.9 | | 78 | 2480 | DH5 | 9.8 | Table 1.8.2-1 Bluetooth peak conducted power measurements (measured on RHA111LW) | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 19(72 | | |---------------|---------------|---------------------------------|--|-------------|------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | # 1.8.3 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities as per KDB 941225 D06 v01r01 Standalone personal wireless routers and handsets with hotspot mode capabilities must address hand-held and other near-body exposure conditions to show SAR compliance. The following procedures are applicable when the overall device length and width are ≥ 9 cm x 5 cm respectively. A test separation of 10 mm is required. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode. The standalone SAR results in each device test orientation must be analyzed for the applicable hotspot mode simultaneous transmission configurations to determine SAR test exclusion and volume scan requirements. Static/fixed power reduction scheme on the following modes/bands have been implemented when Hotspot Mode is enabled or active to comply with body SAR with 10 mm test separation from flat phantom on standalone transmitter and multi-band simultaneous transmission conditions: • 802.11a/b/g/n: back off 6 dB When Hotspot mode is enabled or active, 802.11a channels 52 - 140 are disabled or not supported. Figure 1.8.3-1 Identification of all sides for SAR Testing **Note:** According to FCC guidance, Hotspot SAR testing is not required on any edge that is more than 2.5cm from the transmitting antenna. | ∷ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 20(72 | 2) | |----------------------|---------------|---------------------------------|--|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | Hotspot Sides for SAR Testing | | | | | | | | | |---|-------|------|-----|--------|------|-------|--|--| | Mode | Front | Back | Top | Bottom | Left | Right | | | | GPRS 850/1900, WCDMA/HSPA II/V | Yes | Yes | No | Yes | No | Yes | | | | Bluetooth 2.4GHz/802.11 a/b/g/n (2.4 GHz/5.0 GHz) | Yes | Yes | Yes | No | Yes | No | | | Table 1.8.3-1 Identification of all sides for SAR Testing ## 1.8.4 SAR Evaluation Procedures for GSM/(E)GPRS Dual Transfer Mode as per KDB 941225 D04 v01 and SAR Test Reduction Procedures GSM GPRS EDGE as per DDB 941225 D03 vo1 - The device supports EGPRS/GPRS Multi-slot Class 12, DTM/GPRS Multi-slot Class 11 and DTM/EGPRS Multi-slot Class 10. - CMU200 base station simulator with DTM software option CMU-K44 was used to set device in DTM (CS+PD) mode for testing. However, device could not be connected in DTM 4-slots uplink. - For each slot addition in multi-slot modes (DTM, GPRS, EDGE), there is software power reduction of \approx 3/1/1 dB per slot respectively for GSM 850 and 2/2.5/0.5 dB per slot respectively for GSM 1900. - For head configurations, 1 slot CS, 2/3-slots (PD) and DTM (CS+PD) were evaluated. - For body SAR configurations, 1 slot CS, 2/3/4-slots GPRS (PD) mode were tested. - In EDGE/GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4. - 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg . power was measured lower on those modulation schemes. - Please refer to the conducted power measurements table below: | (| GSM/EDGE | /GPRS/DTM | With Full P | Power | |---------|----------------|--|---|---| | Mode | Freq.
(MHz) | Max burst
averaged
conducted
power (dBm)
CS1 | Max burst
averaged
conducted
power (dBm)
MCS1 | Max burst
averaged
conducted power
(dBm)
MCS5 | | 2-slots | 824.2 | 30.5 | N/A | N/A | | GPRS | 836.8 | 30.2 | N/A | N/A | | 850 MHz | 848.8 | 30.3 | N/A | N/A | | 3-slots | 824.2 | 29.2 | N/A | N/A | | GPRS | 836.8 | 29.4 | N/A | N/A | | 850 MHz | 848.8 | 28.9 | N/A | N/A | | 4-slots | 824.2 | 27.2 | N/A | N/A | | GPRS | 836.8 | 27.4 | N/A | N/A | | 850 MHz | 848.8 | 26.9 | N/A | N/A | | 2-slots | 824.2 | 30.5 | 30.4 | 27.0 | | EDGE | 836.8 | 30.1 | 30.2 | 27.0 | | 850 MHz | 848.8 | 30.1 | 30.2 | 27.1 | | 2-slots | 824.2 | 30.3 | 30.2 | 30.3 | | DTM | 836.8 | 29.9 | 30.3 | 29.8 | | 850 MHz | 848.8 | 29.9 | 29.8 | 29.9 | | 3-slots | 824.2 | 29.2 | 29.0 | 25.1 | | EDGE | 836.8 | 29.3 | 29.1 | 25.2 | | 850 MHz | 848.8 | 29.0 | 29.0 | 25.1 | | Author Data Dates of Test | | SAR Complianc
Smartphone Mo | e Test Report for the BlackBo
del RHB121LW | erry® | Page 21(72 | 2) | |---------------------------|---------------|--------------------------------|---|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 - | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHR120LW | | | | 3-slots | 824.2 | 2 | 9.1 | 2 | 29.0 | | 29.1 | |--------------|----------|-----|----------|---------|-----------|---------|----------| | DTM | 836.8 | 2 | 9.2 | 2 | 29.1 | | 29.2 | | 850 MHz | 848.8 | 2 | 8.8 | 2 | 28.6 | | 28.8 | | 4-slots | 824.2 | 2 | 7.2 | 2 | 27.1 | | 24.1 | | EDGE | 836.8 | 2 | 7.5 | 2 | 27.2 | | 24.0 | | 850 MHz | 848.8 | 2 | 6.9 | 2 | 26.7 | | 23.9 | | 2-slots | 1850.2 | 2 | 9.1 | N/A | | | N/A | | GPRS | 1880.0 | 2 | 9.1 |] | N/A | | N/A | | 1900 MHz | 1909.8 | 2 | 8.8 | 1 | N/A | | N/A | | 3-slots | 1850.2 | 2 | 6.4 |] | N/A | | N/A | | GPRS | 1880.0 | 2 | 6.4 | 1 | N/A | | N/A | | 1900 MHz | 1909.8 | 2 | 6.2 |] | N/A | | N/A | | 4-slots | 1850.2 | 2. | 5.8 |] | N/A | | N/A | | GPRS | 1880.0 | 2. | 5.8 | 1 | N/A | | N/A | | 1900 MHz | 1909.8 | 2. | 5.4 | 1 | N/A | | N/A | | 2-slots | 1850.2 | 2 | 9.2 | 2 | 28.8 | | 25.5 | | EDGE | 1880.0 | 2 | 9.1 | | | | 25.5 | | 1900MHz | 1909.8 | 2 | 9.0 28.5 | | | 25.4 | | | 2-slots | 1850.2 | 2 | 9.1 | 2 | 29.0 | | 28.8 | | DTM | 1880.0 | 2 | 9.1 | 28.9 | | | 28.8 | | 1900MHz | 1909.8 | 2 | 8.8 | 2 | 28.8 | | 28.6 | | 3-slots | 1850.2 | 2 | 6.6 26.7 | | | 24.4 | | | EDGE | 1880.0 | 2 | 6.6 | 2 | 26.7 | | 24.4 | | 1900MHz | 1909.8 | 2 | 6.4 | 2 | 26.5 | | 24.3 | | 3-slots | 1850.2 | 2 | 6.4 | 2 | 26.3 | | 26.3 | | DTM | 1880.0 | 2 | 6.4 | 2 | 26.3 | | 26.1 | | 1900MHz | 1909.8 | 2 | 6.2 | 2 | 26.1 | | 26.1 | | 4-slots | 1850.2 | 2 | 6.0 | 2 | 26.0 | | 23.3 | | EDGE | 1880.0 | 2 | 6.0 | 2 | 26.0 | | 23.3 | | 1900MHz | 1909.8 | 2. | 5.6 | 2 | 25.7 | | 23.1 | | • | | | Max | burst a | veraged o | onducte | ed power | | Mode | Freq. (M | Hz) | | | (dBm | | - | | 1-slot | 824.2 | | | | 32.2 | | | | GSM (CS) | 836.8 | | | | 31.9 | | | | 850 MHz | 848.8 | İ | 32.0 | | | | | | 1-slot | 1850.2 | 2 | 29.3 | | | | | | GSM (CS) 190 | 0 1880.0 |) | 29.2 | | | | | | MHz | 1909.8 | 3 | 29.0 | | | | | | | | | | | | | | 1.8.4-1a GSM/EDGE/GPRS channel vs. conducted power with full/maximum power (measured on RFN81UW) | | GSM/EDGE/GPRS/DTM | | | | | | | | |---------|-------------------|--|--|--|--|--|--|--| | Witl | h Reduced P | Power For H | otspot Mod | le on Rev 1 | | | | | | Mode | Freq.
(MHz) | Max burst
averaged
conducted
power (dBm)
CS1 | Max burst
averaged
conducted
power (dBm
MCS1 | averaged conducted power | | | | | | 2-slots | 824.2 | 27.5 | N/A | N/A | | | | | | GPRS | 836.8 | 27.4 | N/A | N/A | | | | | | 850 MHz | 848.8 | 27.6 | N/A | N/A | | | | | | 3-slots | 824.2 | 26.0 | N/A | N/A | | | | | | GPRS | 836.8 | 26.1 | N/A | N/A | | | | | | 850 MHz | 848.8 | 25.6 | N/A | N/A | | | | | | 4-slots | 824.2 | 24.5 | N/A | N/A | | | | | | GPRS | 836.8 | 24.3 | N/A | N/A | | | | | | 850 MHz | 848.8 | 24.3 | N/A | N/A | | | | | | 2-slots | 824.2 | 27.4 | 27.4 | 26.3 | | | | | | EDGE | 836.8 | 27.3 | 27.4 | 26.3 | | | | | | 850 MHz | 848.8 | 27.5 | 27.5 | 26.2 | | | | | | 2-slots | 824.2 | 27.4 | 27.4 | 26.3 | | | | | | DTM | 836.8 | 27.7 | 27.3 | 26.3 | | | | | | 850 MHz | 848.8 | 27.5 | 27.5 | 26.2 | | | | | | | Mode | | req.
MHz) | Max burst averaged conducted power (dBm) | | | | | | | 1-slot | , | 24.2 | 30.3 | | | | | | G | SM (CS) | 8 | 36.8 | 30.5 | | | | | | 8. | 50 MHz | 8 | 48.8 | 30.0 | | | | | 1.8.4-1b GSM/EDGE/GPRS channel vs. conducted power for hotspot mode power on Rev 1 (measured on RFN81UW) Note: For Rev 2 Hotspot mode transmits at full power as seen in table 1.8.4-1a | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | | | Page 23(72 | | |--|-------------------------------------|--|------------------------|-------------|------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | rew Becker June 23 – August 5, 2014 | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ## 1.8.5 SAR Measurement Procedure for Fast SAR Scan as per KDB 447498 D01 General RF Exposure Guidance v05r02 Fast SAR or area scan based 1-g SAR estimation can be used instead of full SAR measurements as long as the following conditions are fulfilled: - For dipole validation the 1g SAR for the area and zoom scan must
be with $\pm 3\%$ - 1g Measured SAR ≤ 1.2 W/kg - The difference between the zoom and area scan $1g SAR \le 0.1 W/kg$ - A zoom scan is required on the worst case for each configuration of a frequency band. - o For head configuration: A zoom scan is required for <u>each</u> position with $1g SAR \ge 0.8$ and 1 additional zoom scan to cover all the remaining positions. The scan is done on the worst case for the position(s) - Polynomial fit algorithm is utilized. Set in DASY by double clicking the area scan procedure - Area scan is measure at a distance ≤ 4 mm from the phantom surface - A zoom scan is not required for any other purpose - For simultaneous transmission the coordinates for the maxima can be found using the area scan - DASY must not show any error, warning, or alert messages during the scan. - Example: noise in measurement, peak to close to the scan boundary. Peaks are too sharp, etc. - The frequency band being tested is ≤ 3 GHz | ≅ BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 24(72 | | |---------------|---------------|--------------------------------|---|-------------|-------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### 1.8.6 SAR Measurement Procedures for 3G Devices as per KDB 941225 D01 v02 #### WCDMA Handsets #### **Output Power Verification** - Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop. - For Release 6 HSPA/Release 7 HSDPA⁺, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5 and 3GPP TS 34.121. #### **Head SAR Measurements** SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC. #### **Body SAR Measurements** SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than ½ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC. #### Handsets with HSPA Body SAR is not required for handsets with HSPA/HSPA+ capabilities, when the maximum average output of each RF channel with HSPA active is less than ½ dB higher than that measured in 12.2 kbps RMC without HSPA/HSPA+. Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC. #### 1.8.7 Test Seup information for WCDMA / HSPDA / HSUPA #### a) WCDMA RMC In RMC (reference measurement channel) mode the conducted power at 4 different bit rates were measured. They correspond with the used spreading factors as follows: | Bit rate | 12.2 kbit/s | 64 kbit/s | 144 kbit/s | 384 kbit/s | |-----------------------|-------------|-----------|------------|------------| | Spreading factor (SF) | 64 | 16 | 8 | 4 | | ∷ BlackBe | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | | | |--|--|------------------------|----------------|---------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker June 23 – August 5, 2014 | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | · | | In RMC mode only DPCCH and DPDCH are active. As bit rate changes do not influence the relative power of any code channel the measured RMS output power remains on the same level which is set to maximum by TPC (Transmit power control) pattern type 'All 1'. #### b) HSDPA HSDPA adds the HS-DPCCH in uplink as a control channel for high speed data transfer in downlink. In HSDPA mode 4 sub-tests are defined by 3GPP 34.121 according to the following table: | Sub-test | βс | β _d | β _d (SF) | β_c/β_d | β _{hs} ⁽¹⁾ | CM(dB) ⁽²⁾ | |----------|----------------------|----------------------|---------------------|----------------------|--------------------------------|-----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | | 2 | 12/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 12/15 ⁽³⁾ | 24/15 | 1.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$ Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15 Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15 #### Table 1.8.7-1 Sub-tests for UMTS Release 5 HSDPA The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the above table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8$. The variation of the β_c/β_d ratio causes a power reduction at sub-tests 2 - 4. The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK. | Parameter | Value | |----------------------------------|-------------| | Nominal average inf. bit rate | 534 kbit/s | | Inter-TTI Distance | 3 TTI's | | Number of HARQ Processes | 2 Processes | | Information Bit Payload | 3202 Bits | | MAC-d PDU size | 336 Bits | | Number Code Blocks | 1 Block | | Binary Channel Bits Per TTI | 4800 Bits | | Total Available SMLs in UE | 19200 SMLs | | Number of SMLs per HARQ Process | 9600 SMLs | | Coding Rate | 0.67 | | Number of Physical Channel Codes | 5 | Table 1.8.7-2 Settings of required H-Set 1 QPSK acc. to 3GPP 34.121 Author Data | Dates of Test | Test Report No | FCC ID: | Andrew Becker | June 23 - August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW #### c) HSUPA In HSUPA mode additional code channels (E-DPCCH, E-DPDCHn) are added for data transfer in uplink at higher bit rates. 5 sub-tests are defined by 3GPP 34.121 according to the following table : | Sub- | βc | β_d | β _d (SF) | β_c/β_d | β _{hs} ⁽¹⁾ | β_{ec} | $oldsymbol{eta_{ed}}$ | β_{ec} | β_{ed} | CM ⁽²⁾ | MPR | AG ⁽⁴⁾ | E-TFCI | |------|----------------------|----------------------|---------------------|----------------------|--------------------------------|--------------|---|--------------|--------------|-------------------|------|-------------------|--------| | test | | | | | | | | (SF) | (code) | (dB) | (dB) | Index | | | 1 | 11/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 11/15 ⁽³⁾ | 22/15 | 209/225 | 1039/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β_{ed1} :47/15 β_{ed2} :47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 ⁽⁴⁾ | 15/15 ⁽⁴⁾ | 64 | 15/15 ⁽⁴⁾ | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$ Note 2 : CM = 1 for β_o/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 10/15 and β_d = 15/15 Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 14/15 and β_d = 15/15 Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g Note 6 : β_{ed} can not be set directly; it is set by Absolute Grant Value #### Table 1.8.7-3 Subtests for UMTS Release 6 HSUPA To achieve the settings above some additional procedures were defined by 3GPP 34.121. Those have been included in an application note for the CMU200 and were exactly followed: - Test mode connection (BS signal tab): RMC 12.2 kbit/s + HSPA 34.108 with loop mode 1 - HS-DSCH settings (BS signal tab): - FRC with H-set 1 QPSK - ACK-NACK repetition factor = 3 - CQI feedback cycle = 4ms - CQI repetition factor = 2 - HSUPA-specific signalling settings (UE signal tab): - E-TFCI table index = 0 - E-DCH minimum set E-TFCI = 9 - Puncturing limit non-max = 0.84 - max. number of channelisation codes = 2x SF4 - Initial Serving Grant Value = Off - HSDPA and HSUPA Gain factors (UE signal tab) | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | | rry® | Page 27(72) |
--|---------------|------------------------|----------------|---------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker June 23 – August 5, 2014 | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | Sub-test | β _c | β _d | $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CC}$ | ΔE-DPCCH * | |----------|----------------|----------------|--|------------| | 1 | 10 | 15 | 8 | 6 | | 2 | 6 | 15 | 8 | 8 | | 3 | 15 | 9 | 8 | 8 | | 4 | 2 | 15 | 8 | 5 | | 5 | 14 | 15 | 8 | 7 | ## * β_{ec} and β_{ed} ratios (relative to β_c and $\beta_d)$ are set by $\Delta E\text{--}DPCCH$ - HSUPA Reference E-TFCIs (UE signal tab > HSUPA gain factors) : | Sub-test | 1, 2, 4, 5 | | | | | | |-------------------------------|------------|----|----|----|----|--| | Number of E-TFCIs | | | 5 | | | | | Reference E-TFCI | 11 | 67 | 71 | 75 | 81 | | | Reference E-TFCI power offset | 4 | 18 | 23 | 26 | 27 | | | Sub-test | | 3 | | | | |-------------------------------|----|----|--|--|--| | Number of E-TFCIs | 2 | | | | | | Reference E-TFCI | 11 | 92 | | | | | Reference E-TFCI power offset | 4 | 18 | | | | - HSUPA-specific generator parameters (BS Signal tab > HSUPA > E-AGCH > AG Pattern) | Sub-test | Absolute Grant Value (AG Index) | |----------|---------------------------------| | 1 | 20 | | 2 | 12 | | 3 | 15 | | 4 | 17 | | 5 | 21 | - Power Level settings (BS Signal tab > Node B-settings): - Level reference : Output Channel Power (lor) - Output Channel Power (lor): -86 dBm - Downlink Physical Channel Settings (BS signal tab) - P-CPICH: -10 dB - S-CPICH: Off - P-SCH: -15 dB - S-SCH: -15 dB - P-CCPCH: -12 dB - S-CCPCH: -12 dB - PICH: -15 dB - AICH: -12 dB - DPDCH: -10 dB - HS-SCCH: -8 dB Document ## SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW Page **28(72)** Author Data Andrew Becker Dates of Test June 23 – August 5, 2014 Test Report No RTS-6058-1408-05 Rev 2 L6ARHB120LW FCC ID: - HS-PDSCH : -3 dB - E-AGCH : -20 dB - E-RGCH/E-HICH - 20 dB - E-RGCH Active : Off The settings above were stored once for each sub-test and recalled before the measurement. To reach maximum output power in HSUPA mode the following procedures were followed: 3 different TPC patterns were defined: Set 1: Closed loop with target power 10 dBm Set 2: Single Pattern + Alternating with binary pattern '11111' for 1 dB steps 'up' Set 3: Single Pattern + Alternating with binary pattern '00000' for 1 dB steps 'down' After recalling a certain HSUPA sub-test the HSUPA E-AGCH graph with E-TFCI event counter is displayed. First, the closed loop command is executed and then the power is increased in 1 dB steps by activating pattern set 2 until the UE decreases the transmitted E-TFCI. At this point set 3 is activated once to reduce the output power to the value at which the original E-TFCI, which is required for the sub-test, appears again. For conducted power measurements the same steps are repeated in the power menu to read out the corresponding maximum RMS output power with the target E-TFCI. For SAR measurements it is useful to switch to Code Domain Power vs. Time display. Here the CMU200 shows relative power values (max. and min.) of each code channel which should roughly correspond to the numerators of the gain factors e.g.: | Sub-test | eta_{c} | β_d | $eta_{\sf hs}$ | $eta_{ m ec}$ | $eta_{\sf ed}$ | |----------|-----------|-----------|----------------|---------------|----------------| | 5 | 15 | 15 | 30 | 24 | 134 | | W | CDMA/UMTS Wit | th Full 1 | Power | | |-------------|--|-----------|-----------|-------------| | | Band | F | TDD V (85 | 50) | | | Channel | 4132 | 4182 | 4233 | | | Freq (MHz) | 826.4 | 836.4 | 846.6 | | Mode | Subtest | | burst ave | 0 | | Rel99 | 12.2 kbps RMC | 24.63 | 24.42 | 24.27 | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 24.69 | 24.37 | 24.33 | | Rel6 HSUPA | 1 | 23.22 | 23.00 | 22.80 | | Rel6 HSUPA | 2 | 22.80 | 22.48 | 22.33 | | Rel6 HSUPA | 3 | 23.70 | 23.38 | 23.26 | | Rel6 HSUPA | 4 | 23.55 | 23.30 | 23.15 | | Rel6 HSUPA | 5 | 21.65 | 21.55 | 21.30 | | Rel7 HSDPA+ | 1 | 22.90 | 22.92 | 22.91 | | Rel7 HSDPA+ | 2 | 22.16 | 22.11 | 22.15 | | Rel7 HSDPA+ | 3 | 21.80 | 21.72 | 22.05 | | Rel7 HSDPA+ | 4 | 21.41 | 21.60 | 22.01 | | | Band | F | DD II (19 | 00) | | | Channel | 9262 | 9400 | 9538 | | | Freq (MHz) | 1852.4 | 1880.0 | 1907.6 | | Mode | Subtest | | burst ave | _ | | Rel99 | 12.2 kbps RMC | 23.10 | 22.95 | 22.98 | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 23.10 | 22.94 | 22.96 | | Rel6 HSUPA | 1 | 22.71 | 22.51 | 22.54 | | Rel6 HSUPA | 2 | 22.41 | 22.20 | 22.11 | | Rel6 HSUPA | 3 | 23.09 | 22.92 | 22.95 | | Rel6 HSUPA | 4 | 23.00 | 22.85 | 22.83 | | Rel6 HSUPA | 5 | 21.20 | 21.00 | 20.95 | | Rel7 HSDPA+ | 1 | 22.60 | 22.81 | 22.81 | | Rel7 HSDPA+ | 2 | 22.05 | 22.04 | 22.10 | | Rel7 HSDPA+ | 3 | 22.48 | 22.41 | 22.32 | | Rel7 HSDPA+ | 4 | 21.25 | 21.10 | 21.20 | Table 1.8.7-4a WCDMA (Rel99) / HSPA/HSPA+ conducted power measurements at full power (measured on RFN81UW) | ≅ BlackB | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackB
del RHB121LW | erry® | Page 30(72) | |---------------|---------------|--------------------------------|--|-------------|-------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker | June 23 - | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | WCDMA/UMTS With Reduced Power For Hotspot Mode On Rev 1 | | | | | | | | | | |---|--|-------|-----------|-------|--|--|--|--|--| | | Band | F | TDD V (85 | 50) | | | | | | | | Channel | 4132 | 4182 | 4233 | | | | | | | | Freq (MHz) | 826.4 | 836.4 | 846.6 | | | | | | | Mode | Subtest | | burst ave | O | | | | | | | Rel99 | 12.2 kbps RMC | 21.15 | 21.00 | 20.80 | | | | | | | Rel99 | 12.2 kbps, Voice,
AMR, SRB 3.4 kbps | 21.08 | 20.95 | 20.80 | | | | | | | Rel7 HSDPA+ | 1 | 20.05 | 19.95 | 19.78 | | | | | | Table 1.8.7-4b WCDMA (Rel99) / HSPA/HSPA+ conducted power measurements on Hotspot mode (measured on RFN81UW) Note: For Rev 2 Hotspot mode transmits at full power as seen in table 1.8.7-4a | Author Data Dates of Test | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 31(72) | | |---------------------------|------------------|---------------------------------|---|-------------|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ## 1.9 General SAR Test Reduction and Exclusion procedure as per KDB 447498 D01 v05r02 and SAR Evaluation Considerations for Wireless Handsets as per 648474 D04 v01r02 #### Standalone SAR test exclusion guidance: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances $$\frac{(mW)}{min.test \, separation \, distance} \times \sqrt{\frac{f}{(GHz)}} \leq 3.0 \quad , \, \text{For 1g SAF}$$ Where: - f_(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation17 - If distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion - The result is rounded to one decimal place for comparison #### Simultaneous Transmission SAR Test exclusion considerations: When the sum of 1-g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. When the sum is greater than the SAR limit, the SAR to peak location separation ratio procedures described below may be applied to determine if simultaneous transmission SAR test exclusion applies. The ratio is determined by: $$\left(\left[SAR1 + SAR2 \right]^{\frac{1.5}{R_{\ell}}} \right) \le 0.04$$ Where: • R_i= the separation distance between the peak SAR locations for the antenna pair (mm) #### Simultaneous Transmission SAR required: • antenna pairs with SAR to antenna separation ratio > 0.04; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition. | ≅ BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 32(72 |) | |---------------------|---------------|---------------------------------|---|-------------|------------|---| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | Figure 1.9-1 Back view of device showing closest distance between antenna pairs #### 1.9.1 Simultaneous Transmission Analysis | Separate Transmitting Antenna | | | | | | | | | |-------------------------------|--|---------------------------|--|--|--|--|--|--| | Separate Antenna | Separate Antenna Technologies Utilized By Each Antenna | | | | | | | | | Antenna 1 | GSM, | WCDMA | | | | | | | | Antenna 2 | Wi-Fi 2.4 GHz, Wi- | -Fi 5.0 GHz, Bluetooth | | | | | | | | | Simultaneous Transmission Con | mbinations | | | | | | | | Configuration | Simultaneous Transmission | Simultaneous Transmission | | | | | | | | Comiguration | (by Antenna) | (by Technology) | | | | | | | | Head | Antenna 1 + Antenna 2 | GSM/WCDMA + Wi-Fi/BT | | | | | | | | Body-Worn | Antenna 1 + Antenna 2 | GSM/WCDMA + Wi-Fi/BT | | | | | | | | Hotspot | Antenna 1 + Antenna 2 | GSM/WCDMA + Wi-Fi/BT | | | | | | | **Table 1.9.1-1 Simultaneous Transmission Scenarios** **Note 1:** BT and Wi-Fi cannot
transmit simultaneously since the design doesn't allow it and they use the same antenna. **Note 2:** 802.11b and 802.11a cannot transmit simultaneously since the design doesn't allow it and they use the same antenna. | Head SAR Values Summation On The Same Test Position | | | | | | | |---|---------------|-------------------|-----------------------|-------------------------------------|----------------------------------|--| | | | Licensed Transm | itters | WiFi | Max Sum 1g
avg. SAR
(W/kg) | | | Test | Configuration | Band | 1g avg. SAR
(W/kg) | 2.4/5.0GHz 1g
avg. SAR
(W/kg) | | | | | | GSM/DTM/EDGE 850 | 0.38 | 0.71 | 1.09 | | | | Right Cheek | UMTS Band V | 0.46 | 0.71 | 1.17 | | | | Night Cheek | GSM/DTM/EDGE 1900 | 0.50 | 0.71 | 1.21 | | | | | UMTS Band II | 0.60 | 0.71 | 1.31 | | | | Right Tilt | GSM/DTM/EDGE 850 | 0.30 | 0.98 | 1.28 | | | | | UMTS Band V | 0.38 | 0.98 | 1.36 | | | | | GSM/DTM/EDGE 1900 | 0.20 | 0.98 | 1.18 | | | Head SAR | | UMTS Band II | 0.39 | 0.98 | 1.37 | | | ricad ortiv | | GSM/DTM/EDGE 850 | 0.52 | 0.63 | 1.15 | | | | Left Cheek | UMTS Band V | 0.67 | 0.63 | 1.30 | | | | Left Officer | GSM/DTM/EDGE 1900 | 0.65 | 0.63 | 1.28 | | | | | UMTS Band II | 1.06 | 0.63 | 1.69 | | | | | GSM/DTM/EDGE 850 | 0.27 | 0.58 | 0.85 | | | | Left Tilt | UMTS Band V | 0.37 | 0.58 | 0.95 | | | | LGIL TIIL | GSM/DTM/EDGE 1900 | 0.24 | 0.58 | 0.82 | | | | | UMTS Band II | 0.32 | 0.58 | 0.90 | | Table 1.9.1-2a Highest Head SAR values and summation on the same test position **Note 1:** If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. **Note 2:** If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated. | Antenna 1 (802.11 a) | Left Head Touch | 0.63 | -3.3 | 307 | -168.1 | | |-----------------------|-----------------------------|------|-------|-------|--------|-------| | Antenna 2 (UMTS II) | Left Head Touch | 1.06 | 63.6 | 251.4 | -172.9 | | | Antenna 2 (Olvirs II) | | | | | | | | | SAR Sum | 1.69 | | | | | | | SAR Sum to the power of 1.5 | 2.20 | | | | | | | Delta [mm] | | -66.8 | 55.6 | 4.8 | | | | closest Distance [mm] | | | | | 87.05 | | | | | | | | | | | Ratio | 0.03 | | | | | Table 1.9.1-2b Head configuration ratio of SAR to peak separation distance for pair of transmitters **Note:** If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required. | ≅BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 34(72 | 2) | |----------------------|------------------|---------------------------------|---|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | | Body-Worn SAR Values Summation On The Same Test Position | | | | | | | | | |-----------|--|--------------------|--------------------------|-------------------------------------|----------------------------------|--|--|--|--| | | | Licensed Transmitt | ers | WiFi | Max Sum 1g
avg. SAR
(W/kg) | | | | | | Test | Configuration | Band | 1g avg.
SAR
(W/kg) | 2.4/5.0GHz 1g
avg. SAR
(W/kg) | | | | | | | | | GSM/DTM/EDGE 850 | 0.68 | 1.05 | 1.73 | | | | | | | 15mm separation device back | UMTS Band V | 0.63 | 1.05 | 1.68 | | | | | | | | GSM/DTM/EDGE 1900 | 0.45 | 1.05 | 1.50 | | | | | | | | UMTS Band II | 0.74 | 1.05 | 1.79 | | | | | | | 15mm separation device front | GSM/DTM/EDGE 850 | 0.54 | 0.06 | 0.60 | | | | | | Body Worn | | UMTS Band V | 0.51 | 0.06 | 0.57 | | | | | | SAR | Tomin separation device from | GSM/DTM/EDGE 1900 | 0.26 | 0.06 | 0.32 | | | | | | | | UMTS Band II | 0.50 | 0.06 | 0.56 | | | | | | | | GSM/DTM/EDGE 850 | 0.57 | 0.73 | 1.30 | | | | | | | Holster device back | UMTS Band V | 0.54 | 0.73 | 1.27 | | | | | | | 1 1013tc1 device back | GSM/DTM/EDGE 1900 | 0.24 | 0.73 | 0.97 | | | | | | | | UMTS Band II | 0.33 | 0.73 | 1.06 | | | | | Table 1.9.1-3a Highest Body-worn SAR values and summation on the same test position **Note 1:** If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. **Note 2:** If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters is required. | ≅ BlackB | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 35(72 | | |---------------|---------------|--------------------------------|---|-------------|------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | Antenna 1 (802.11 a) | 15mm, back | 1.05 | -35.0 | -43.0 | -207 | | |----------------------------|-----------------------------|------|-------|-------|--------|-------| | Antenna 2 (GPRS 850) | 15mm, back | 0.68 | -20.0 | 23.0 | -207.3 | | | Antenna 2 (GPNS 650) | | | | | | | | | SAR Sum | 1.73 | | | | | | | SAR Sum to the power of 1.5 | 2.28 | | | | | | | Delta [mm] | | -15.0 | -66.0 | 0.3 | | | | closest Distance [mm] | | | | | 67.69 | | | | | | | | | | | Ratio | 0.03 | | | | | | Antenna 1 (802.11 a) | 15mm, back | 1.05 | -35.0 | -43.0 | -207 | | | A - L 2 / LINATC \ / \ | 15mm, back | 0.63 | -24.5 | 20.0 | -208.8 | | | Antenna 2 (UMTS V) | | | | | | | | | SAR Sum | 1.68 | | | | | | | SAR Sum to the power of 1.5 | 2.18 | | | | | | | Delta [mm] | | -10.5 | -63.0 | 1.8 | | | | closest Distance [mm] | | | | | 63.90 | | | | | | | | | | | Ratio | 0.03 | | | | | | Antenna 1 (802.11 a) | 15mm, back | 1.05 | -35.0 | -43.0 | -207 | | | A mt a m m = 2 (LINATC II) | 15mm, back | 0.74 | -38.0 | 45.5 | -206.9 | | | Antenna 2 (UMTS II) | | | | | | | | | SAR Sum | 1.79 | | | | | | | SAR Sum to the power of 1.5 | 2.39 | | | | | | | Delta [mm] | | 3.0 | -88.5 | -0.1 | | | | closest Distance [mm] | | | | | 88.56 | | | | | | | | | | | Ratio | 0.03 | | | | | | | - | | | | | | Table 1.9.1-3b Body-worn configuration ratio of SAR to peak separation distance for pair of transmitters **Note:** If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required. | | | _ | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | Page 36(72) | | |---------------|------------------|----------------|--|-------------|---|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | | | Hotspot SAR Values Summation On The Same Test Position | | | | | | | |--|---------------------------------|-----------------------|--------------------------|-------------------------------------|----------------------------------|--| | | | Licensed Transmitters | | WiFi | | | | Test | Configuration | Band | 1g avg.
SAR
(W/kg) | 2.4/5.0GHz
1g avg. SAR
(W/kg) | Max Sum 1g
avg. SAR
(W/kg) | | | Hotspot
Mode
SAR | | GSM/DTM/EDGE 850 | 0.47 | 0.78 | 1.25 | | | | 10mm separation device back | UMTS Band V | 0.89 | 0.78 | 1.67 | | | | Torrin Separation device back | GSM/DTM/EDGE 1900 | 0.94 | 0.78 | 1.72 | | | | | UMTS Band II | 1.32 | 0.78 | 2.10 | | | | | GSM/DTM/EDGE 850 | 0.30 | 0.14 | 0.44 | | | | 10mm separation device front | UMTS Band V | 0.29 | 0.14 | 0.43 | | | | | GSM/DTM/EDGE 1900 | 0.45 | 0.14 | 0.59 | | | | | UMTS Band II | 1.01 | 0.14 | 1.15 | | | | | GSM/DTM/EDGE 850 | 0.45 | 0.27 | 0.72 | | | | 10mm separation device left | UMTS Band V | 0.41 | 0.27 | 0.68 | | | | Torriiri separation device lett | GSM/DTM/EDGE 1900 | 0.23 | 0.27 | 0.50 | | | | | UMTS Band II | 0.34 | 0.27 | 0.61 | | | | | GSM/DTM/EDGE 850 | 0.22 | 0.03 | 0.25 | | | | 10mm separation device right | UMTS Band V | 0.17 | 0.03 | 0.20 | | | | Tomin Separation device right | GSM/DTM/EDGE 1900 | 0.04 | 0.03 | 0.07 | | | | | UMTS Band II | 0.09 | 0.03 | 0.12 | | | | 10mm separation device bottom | GSM/DTM/EDGE 850 | 0.07 | 0.00 | 0.07 | | | | | UMTS Band V | 0.15 | 0.00 | 0.15 | | | | romini separation device bottom | GSM/DTM/EDGE 1900 | 0.28 | 0.00 | 0.28 | | | | | UMTS Band II | 0.58 | 0.00 | 0.58 | | | | 10mm separation device top | ALL BANDS | 0.00 | 0.23 | 0.23 | | ### Table 1.9.1-4a Highest Hotspot SAR values and summation on the same test position **Note 1:** If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. **Note 2:** If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated. | | | | e Test Report for the BlackBe
del RHB121LW | erry® | Page 37(72 | 2) | |---------------|---------------|----------------|---|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | Antenna 1 (802.11 a) | 10mm, back | 0.78 | -41.0 | -41.0 | -207 | | |-----------------------|-----------------------------|------|-------|-------|--------|-------| | Antenna 2 (UMTS V) | 10mm, back | 0.89 | -29.0 | 33.5 | -209.4 | | | Antenna 2 (Olvii 3 V) | | | | | | | | | SAR Sum | 1.67 | | | | | | | SAR Sum to the power of 1.5 | 2.16 | | | | | | | Delta [mm] | | -12.0 | -74.5 | 2.4 | | | | closest Distance [mm] | | | | | 75.51 | | | Ratio | 0.03 | | | | | | Antenna 1 (802.11 a) | 10mm, back | 0.78 | -41.0 | -41.0 | -207 | | | Antenna 2 (GPRS 1900) | 10mm, back | 0.94 | -32.0 | 45.5 | -206.9 | | | | SAR Sum | 1.72 | | | | | | | SAR Sum to the power of 1.5 | 2.26 | | | | | | | Delta [mm] | | -9.0 | -86.5 | -0.1 | | | | closest Distance
[mm] | | | | | 86.97 | | | Ratio | 0.03 | | | | | | Antenna 1 (802.11 a) | 10mm, back | 0.78 | -41.0 | -41.0 | -207 | | | Antenna 2 (UMTS II) | 10mm, back | 1.32 | -35.0 | 45.5 | -206.9 | | | | SAR Sum | 2.10 | | | | | | | SAR Sum to the power of 1.5 | 3.04 | | | | | | | Delta [mm] | | -6.0 | -86.5 | -0.1 | | | | closest Distance [mm] | | | | | 86.72 | | | Ratio | 0.04 | | | | | Table 1.9.1-4b Hotspot configuration ratio of SAR to peak separation distance for pair of transmitters **Note:** If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required. | ≅BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 38(72) | | |----------------------|---------------|---------------------------------|---|-------------|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ## 1.10 Wi-Fi and Hotspot Mode Power Reductions There can be a fixed power reduction in hotspot mode for certain bands when the mode is enabled. The following bands have a reduced power in Hotspot mode; all other bands continue to transmit at full power. - GSM 850 (Rev 1) - UMTS band V (Rev 1) - 802.11 a/b/g/n Note: GSM 850 and UMTS band V no longer have power reduction for hotspot mode on Rev 2 | **** BlackBerry SAR | | | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | ^{Page} 39(72) | | |---------------------|---------------|----------------|--|-------------|---|------------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | ### 2.0 DESCRIPTION OF THE TEST EQUIPMENT #### 2.1 SAR measurement system SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland. The DASY 52 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Stäubli RX family) with controller and software. - An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC). - A unit to operate the optical surface detector that is connected to the EOC. - The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card. - The functions of the PC plug-in card based on a DSP are to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts. - A computer operating Windows. - DASY52 software version 52.8. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM Twin Phantom enabling testing left-hand and right-hand usage. - The device holder for mobile phones. - Tissue simulating liquid mixed according to the given recipes (see section 6.1). - System validation dipoles allowing for the validation of proper functioning of the system. Figure 2.1-1 System Description | ≅BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 40(72 | 2) | |----------------------|---------------|---------------------------------|---|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | # 2.1.1 Equipment List | Manufacturer Test Equipment | | Model Number | Serial Number | Cal. Due Date
(MM/DD/YY) | |------------------------------------|--|--------------|---------------|-----------------------------| | SCHMID & Partner
Engineering AG | H-tield probe | | 3225 | 01/22/2015 | | SCHMID & Partner
Engineering AG | E-field probe | EX3DV4 | 3548 | 01/17/2015 | | SCHMID & Partner
Engineering AG | Data Acquisition
Electronics (DAE3) | DAE3 | 472 | 03/18/2015 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D835V2 | 446 | 01/07/2015 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D1900V2 | 545 | 01/09/2015 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D2450V2 | 791 | 09/10/2015 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D5000V2 | 1033 | 11/08/2015 | | Agilent Technologies | Signal generator | 8648C | 4037U03155 | 09/25/2015 | | Agilent Technologies | Power meter | E4419B | GB40202821 | 09/25/2015 | | Agilent Technologies | Power sensor | 8481A | MY41095233 | 09/27/2014 | | Agilent Technologies | Power sensor | 8481A | MY41095417 | 09/26/2014 | | Amplifier Research | Amplifier | 5S1G4M3 | 300986 | CNR | | Rohde & Schwarz | Signal generator | SMA 100A | 102106 | 11/28/2014 | | Amplifier Research | Coupler | DC7144 | 300993 | CNR | | CPI Wireless
Solutions | Amplifier | VZC-6961K4 | SK4310E5 | CNR | | Agilent Technologies | Network analyzer | 8753ES | US39174857 | 09/27/2014 | | Agilent Technologies | Power meter | N1911A | MY45100905 | 05/29/2015 | | Agilent Technologies | Power sensor | N1921A | SG45240281 | 12/04/2014 | | Rohde & Schwarz | Wideband
Base Station Simulator | CMW 500 | 136298 | 04/22/2015 | | Rohde & Schwarz | Base Station Simulator | CMU 200 | 109747 | 11/28/2015 | | Rohde & Schwarz | Bluetooth Tester | CBT | 100368 | 11/28/2014 | | Weinschel Corp | 20dB Attenuator | 33-20-34 | BMO697 | CNR | **Table 2.1.1-1 Equipment list** | *** BlackBerry SA. Sm | | _ | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | Page 41(72) | | |-----------------------|------------------|----------------|--|-------------|---|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | | ### 2.2 Description of the test setup Before SAR measurements are conducted, the device and the DASY equipment are setup as follows: #### 2.2.1 Device and base station simulator setup - Power up the device. - Turn on the base station simulator and set the radio channel and power to the appropriate values. - Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device. ## 2.2.2 DASY setup - Turn the computer on and log on to Windows. - Start the DASY software by clicking on the icon located on the Windows desktop. - Mount the DAE unit and the probe. Turn on the DAE unit. - Turn the Robot Controller on by turning the main power switch to the horizontal position - Align the probe by clicking the 'Align probe in light beam' button. - Open a file and configure the proper parameters probe, medium, communications system etc. - Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom. - Start SAR measurements. ### 3.0 ELECTRIC FIELD PROBE CALIBRATION ## 3.1 Probe Specifications SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6 and EX3DV4, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe. | | Probe model ES3DV3 | Probe model EX3DV4 | |---|---------------------|-------------------------| | Property | Data | Data | | Frequency range | 10 MHz – 4 GHz | 10 MHz – 6 GHz | | Linearity | ±0.2 dB | ±0.2 dB | | Directivity (rotation around probe axis) | ±0.2 dB | ±0.3 dB | | Directivity (rotation normal to probe axis) | ±0.3 dB | ±0.5 dB | | Dynamic Range | 5 μW/kg – 100 mW/kg | 10 μW/kg – 100
mW/kg | | Probe positioning repeatability | ±0.2 mm | $\pm 0.2 \text{ mm}$ | | Probe tip to sensor center | 2.0 mm | 1.0 mm | | Probe tip diameter is | 3.9 mm | 2.5 mm | | Probe calibration uncertainty | 12.0 % < 3 GHz | 12.0% < 3 GHz | | - | | 13.1% < 6 GHz | | Probe calibration range | ± 100 MHz | ± 100 MHz | **Table 3.1-1 Probe specifications** | | | | e Test Report for the BlackBe
del RHB121LW | erry® | Page 42(72) | | |---------------|---------------|----------------|---|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### 3.2 Probe calibration and measurement uncertainty The probe had been calibrated with accuracy of $\pm 12.0\%$ (< 3 GHz) and 13.1% (5-6 GHz). The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D
and below: ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^f | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unct.
(k≍2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 6.36 | 6.36 | 6.36 | 0.28 | 1.91 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.05 | 6.05 | 6.05 | 0.49 | 1.38 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 5.24 | 5.24 | 5.24 | 0.69 | 1.23 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 4.97 | 4.97 | 4.97 | 0.73 | 1.21 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.64 | 4.64 | 4.64 | 0.80 | 1.23 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.33 | 4.33 | 4.33 | 0.75 | 1.34 | ± 12.0 % | #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.28 | 6.28 | 6.28 | 0.34 | 1.84 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.09 | 6.09 | 6.09 | 0.62 | 1.32 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 4.93 | 4.93 | 4.93 | 0.48 | 1.57 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 4.84 | 4.84 | 4.84 | 0.50 | 1.59 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.28 | 4.28 | 4.28 | 0.77 | 1.23 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.03 | 4.03 | 4.03 | 0.80 | 1.01 | ± 12.0 % | Table 3.2-1 Probe ES3DV3 SN: 3225 (cal: 1/22/2014) ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. | ≅ BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 43(72 |) | |---------------|---------------|---------------------------------|--|-------------|------------|---| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 2600 | 39.0 | 1.96 | 7.03 | 7.03 | 7.03 | 0.50 | 0.77 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.37 | 5.37 | 5.37 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.94 | 4.94 | 4.94 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.76 | 4.76 | 4.76 | 0.40 | 1.80 | ± 13.1 % | ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^f | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unct.
(k≖2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 2600 | 52.5 | 2.16 | 6.91 | 6.91 | 6.91 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.83 | 4.83 | 4.83 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.33 | 4.33 | 4.33 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.36 | 4.36 | 4.36 | 0.50 | 1.90 | ± 13.1 % | ### Table 3.2-2 Probe EX3DV4 SN: 3548 (cal: 1/17/2014) ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 44(72 | 2) | |----------------------|---------------|---------------------------------|---|-------------|------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### 4.0 SAR MEASUREMENT SYSTEM VERIFICATION Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances. At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency. ### 4.1 System accuracy verification for head adjacent use | f
(MHz) | Limits / Measured
(MM/DD/YYYY) | Scan Type | SAR
1g/10g | - | lectric
meters | Liquid
Temp. | |------------|-----------------------------------|--------------------|---------------|------|-------------------|-----------------| | (MHZ) | | | (W/kg) | ٤r | σ [S/m] | (°C) | | | Measured (07/03/2014) | Area Scan/Fast SAR | 10.1/6.67 | 40.9 | 0.91 | 22.0 | | | Measured (07/03/2014) | Zoom Scan | 10.0/6.56 | 40.9 | 0.91 | 22.0 | | | Measured (07/07/2014) | Area Scan/Fast SAR | 9.62/6.31 | 41.5 | 0.88 | 22.8 | | 835 | Measured (07/07/2014) | Zoom Scan | 9.51/6.26 | 41.5 | 0.88 | 22.8 | | | Measured (07/25/2014) | Area Scan/Fast SAR | 9.89/6.52 | 40.1 | 0.89 | 22.0 | | | Measured (07/25/2014) | Zoom Scan | 9.81/6.43 | 40.1 | 0.89 | 22.0 | | | Recommended Lim | its (Dipole: 446) | 9.39/6.13 | 41.5 | 0.90 | N/A | | | Measured (07/08/2014) | Area Scan/Fast SAR | 40.7/21.2 | 38.6 | 1.39 | 22.7 | | | Measured (07/08/2014) | Zoom Scan | 40.1/21.0 | 38.6 | 1.39 | 22.7 | | 1900 | Measured (07/28/2014) | Area Scan/Fast SAR | 42.1/21.6 | 39.8 | 1.38 | 22.3 | | | Measured (07/28/2014) | Zoom Scan | 41.2/21.4 | 39.8 | 1.38 | 22.3 | | | Recommended Lim | its (Dipole: 545) | 40.2/21.1 | 40.0 | 1.40 | N/A | | | Measured (07/17/2014) | Area Scan/Fast SAR | 55.5/26.1 | 38.4 | 1.88 | 22.0 | | 2450 | Measured (07/17/2014) | Zoom Scan | 54.8/25.6 | 38.4 | 1.88 | 22.0 | | | Recommended Lim | its (Dipole: 791) | 51.6/24.0 | 39.2 | 1.80 | N/A | | | Measured (07/30/2014) | Area Scan/Fast SAR | 81.5/23.1 | 35.1 | 4.76 | 22.3 | | 5200 | Measured (07/30/2014) | Zoom Scan | 85.4/24.8 | 35.1 | 4.76 | 22.3 | | | Recommended Limi | ts (Dipole: 1033) | 79.4/22.6 | 36.0 | 4.66 | N/A | | | Measured (07/30/2014) | Area Scan/Fast SAR | 88.2/24.4 | 34.5 | 5.11 | 22.3 | | 5500 | Measured (07/30/2014) | Zoom Scan | 88.6/25.5 | 34.5 | 5.11 | 22.3 | | | Recommended Limi | ts (Dipole: 1033) | 84.4/23.9 | 35.6 | 4.96 | N/A | | | Measured (07/30/2014) | Area Scan/Fast SAR | 79.6/22.0 | 34.0 | 5.47 | 22.3 | | 5800 | Measured (07/30/2014) | Zoom Scan | 82.6/23.8 | 34.0 | 5.47 | 22.3 | | | Recommended Limi | ts (Dipole: 1033) | 79.4/22.6 | 35.3 | 5.27 | N/A | Table 4.1-1 System accuracy (validation for head adjacent use) | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | 45(72 | 2) | |---------------|---------------|---------------------------------|---|-------------|-------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### 5.0 PHANTOM DESCRIPTION The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table. The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas: Left side head Right side head Flat phantom The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots. The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different
solutions). A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection. Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements. Figure 5.0-1 SAM Twin Phantom | Author Data Author Data Dates of Test | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 46(72) | | |---|------------------|---------------------------------|---|-------------|-------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ## 6.0 TISSUE DIELECTRIC PROPERTIES ### **6.1** Composition of tissue simulant The composition of the brain and muscle simulating liquids are shown in the table below. | INGREDIE | MIXTURE 800-
900MHz | | | MIXTURE 1800-
1900MHz | | MIXTURE 2450
MHz | | E 5 - 6 | |-----------------------|------------------------|-------------|---------|--------------------------|------------|---------------------|------------|--------------| | NT | Brain
% | Muscle
% | Brain % | Muscle
% | Brain
% | Muscle
% | Brain
% | Muscl
e % | | Water | 40.29 | 65.45 | 55.24 | 69.91 | 55.0 | 68.75 | 64 | 64-78 | | Sugar | 57.90 | 34.31 | 0 | 0 | 0 | 0 | 0 | 0 | | Salt | 1.38 | 0.62 | 0.31 | 0.13 | 0 | 0 | 0 | 0 | | HEC | 0.24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bactericide | 0.18 | 0.10 | 0 | 0 | 0 | 0 | 0 | 0 | | DGBE | 0 | 0 | 44.45 | 29.96 | 40.0 | 31.25 | 0 | 0 | | Triton X- | 0 | 0 | 0 | 0 | 5.0 | 0 | 0 | 0 | | Additives
and Salt | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2-3 | | Emulsifiers | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 9-15 | | Mineral Oil | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 11-18 | Table 6.1-1 Tissue simulant recipe ## 6.1.1 Equipment | Manufacturer | Test Equipment | Model Number | Serial
Number | Cal. Due Date
(MM/DD/YY) | |----------------------|----------------------|--------------|------------------|-----------------------------| | Pyrex, England | Graduated Cylinder | N/A | N/A | N/A | | Pyrex, USA | Beaker | N/A | N/A | N/A | | Acculab | Weight Scale | V1-1200 | 018WB2003 | N/A | | IKA Works Inc. | Hot Plate | RC Basic | 3.107433 | N/A | | Dell | PC using GPIB card | GX110 | 347 | N/A | | Agilent Technologies | Dielectric probe kit | HP 85070C | US9936135 | CNR | | Agilent Technologies | Network Analyzer | 8753ES | US39174857 | 09/27/2014 | | Control Company | Digital Thermometer | 23609-234 | 21352860 | 09/30/2014 | Table 6.1.1-1 Tissue simulant preparation equipment | ≅BlackBerry | | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 47(72 | !) | |---------------|---------------|---------------------------------|--|-------------|------------|------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ### **6.1.2** Preparation procedure #### 800-900 MHz liquids - Fill the container with water. Begin heating and stirring. - Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation. - Add Sugar. Stir it well until the sugar is sufficiently dissolved. - Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. #### 1800-2450 MHz liquid - Fill the container with water and place it on hotplate. Begin heating and stirring. - Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation. - Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. ## 6.2 Electrical parameters of the tissue simulating liquid The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below. Recommended limits are adopted from IEEE P1528-2003: "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh | Band | Tissue | Limits / Measured | f | Dielectric | Parameters | Liquid
Temp | | |-------|--------|-----------------------|-------|------------|------------|----------------|--| | (MHz) | Type | (MM/DD/YYYY) | (MHz) | ٤r | σ [S/m] | (°C) | | | | | | 815 | 41.2 | 0.88 | | | | | | | 825 | 41.1 | 0.90 | | | | | | Measured (07/02/2014) | 835 | 40.9 | 0.91 | 22.0 | | | | | | 850 | 40.7 | 0.91 | | | | | | | 865 | 40.6 | 0.93 | | | | | | | 815 | 41.7 | 0.86 | | | | | | Measured (07/07/2014) | 825 | 41.6 | 0.87 | 22.8 | | | 835 | Head | | 835 | 41.5 | 0.88 | | | | 633 | пеац | | 850 | 41.3 | 0.90 | | | | | | | 865 | 41.1 | 0.91 | | | | | | | 815 | 40.4 | 0.87 | | | | | | | 825 | 40.2 | 0.88 | | | | | | Measured (07/25/2014) | 835 | 40.1 | 0.89 | 22.0 | | | | | | 850 | 39.9 | 0.90 | | | | | | | 865 | 39.7 | 0.91 | | | | | | Recommended Limits | 835 | 41.5 | 0.90 | N/A | | | | | | 815 | 57.8 | 0.97 | | |------|----------|--------------------------|------|------|------|--------| | | | Measured (07/02/2014) | 825 | 57.6 | 0.99 | 21.8 | | | | Wiedsured (07/02/2014) | 835 | 57.5 | 1.00 | 21.0 | | | | | 850 | 57.3 | 1.01 | | | | Muscle | | 815 | 53.8 | 0.96 | | | | | Magazza d (07/25/2014) | 825 | 53.7 | 0.97 | 21.4 | | | | Measured (07/25/2014) | 835 | 53.6 | 0.98 | 21.4 | | | | | 850 | 53.4 | 1.00 | | | | | Recommended Limits | 835 | 55.2 | 0.97 | N/A | | | | | 1850 | 38.8 | 1.35 | | | | | Magazina d. (07/08/2014) | 1900 | 38.6 | 1.39 | 22.7 | | | | Measured (07/08/2014) | 1910 | 38.6 | 1.40 | 22.7 | | | | | 1980 | 38.4 | 1.47 | | | | Head | | 1850 | 40.0 | 1.33 | 22.2 | | | | 1 (07/20/2014) | 1900 | 39.8 | 1.38 | | | | | Measured (07/28/2014) | 1910 | 39.8 | 1.39 | 22.3 | | 1900 | | | 1980 | 39.6 | 1.47 | | | | | Recommended Limits | 1900 | 40.0 | 1.40 | N/A | | | | | 1850 | 50.9 | 1.47 | | | | | Measured (07/08/2014) | 1900 | 50.7 | 1.51 | 22.7 | | | | | 1910 | 50.7 | 1.53 | | | | Muscle | | 1850 | 50.9 | 1.47 | | | | | Measured (07/28/2014) | 1900 | 50.8 | 1.53 | 22.2 | | | | | 1910 | 50.8 | 1.54 | 1 | | | | Recommended Limits | 1900 | 53.3 | 1.52 | N/A | | | | | 2410 | 38.5 | 1.84 | | | | | Measured (07/17/2014) | 2450 | 38.4 | 1.88 | 22.0 | | | Head | (0,7,17,201.) | 2480 | 38.3 | 1.91 | | | | | Recommended Limits | 2450 | 39.2 | 1.80 | N/A | | 2450 | | | 2410 | 50.5 | 1.95 | 1,711 | | | | Measured (07/17/2014) | 2450 | 50.4 | 2.00 | 22.0 | | | Muscle | (0,7,17,201.) | 2480 | 50.3 | 2.04 | | | | | Recommended Limits | 2450 | 52.7 | 1.95 | N/A | | | | recommended Emiles | 5180 | 35.1 | 4.75 | 11/11 | | | | Measured (07/30/2014) | 5200 | 35.1 | 4.76 | 22.3 | | | Head | (0//30/2011) | 5280 | 34.9 | 4.86 | 1 22.3 | | | | Recommended Limits | 5200 | 36.0 | 4.66 | N/A | | 5200 | | | 5180 | 47.3 | 5.35 | 11/11 | | | | Measured (07/30/2014) | 5200 | 47.3 | 5.37 | 21.5 | | | Muscle | (0//00/2011) | 5280 | 47.0 | 5.51 | 7 | | | | Recommended Limits | 5200 | 49.0 | 5.30 | N/A | | | | | 5500 | 34.5 | 5.11 | | | | Head | Measured (07/30/2014) | 5600 | 34.4 | 5.22 | 22.3 | | | 11000 | Recommended Limits | 5500 | 35.6 | 4.96 | N/A | | 5500 | | | 5500 | 47.4 | 5.70 | | | | Muscle | Measured (07/30/2014) | 5600 | 47.2 | 5.83 | 21.5 | | | iviuscie | Recommended Limits | 5500 | 48.6 | 5.65 | N/A | | 5000 | TT 1 | | | | | | | 5800 | Head | Measured (07/30/2014) | 5745 | 34.0 | 5.39 | 22.3 | | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | rry® | Page 49(72) | |----------------------|---------------|---------------------------------|--|-------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | | | 5800 | 34.0 | 5.47 | | |--|--------|-----------------------|------|------|------|------| | | | Recommended Limits | 5800 | 35.3 | 5.27 | N/A | | | Muscle | Measured (07/30/2014) | 5745 | 47.0 | 6.06 | 21.5 | | | | | 5800 | 46.9 | 6.12 | 21.5 | | | | Recommended Limits | 5800 | 48.2 | 6.00 | N/A | Table 6.2-1 Electrical parameters of tissue simulating liquid | ≅ BlackB | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBo
del RHB121LW | erry® | Page 50(72) | | |---------------|------------------|---------------------------------|---|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | Figure 6.2.2-1 Test configuration #### 6.2.3 Procedure - 1. Turn NWA on and allow at least 30 minutes for warm up. - 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during
measurements or calibration. - 3. Pour de-ionized water and measure water temperature ($\pm 1^{\circ}$). - 4. Set water temperature in HP-Software (Calibration Setup). - 5. Perform calibration. - 6. Relative permittivity $\varepsilon_r = \varepsilon'$ and conductivity can be calculated from ε'' ($\sigma = \omega \varepsilon_0 \varepsilon''$) - 7. Measure liquid shortly after calibration. - 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container. - 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles. - 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit. - 11. Perform measurements. - 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button. - 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz). | ≅ BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBo
del RHB121LW | erry® | Page 51(72 | 2) | |--|---------------|--------------------------------|---|-------------|-------------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker June 23 – August 5, 2014 | | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | ### 7.0 SAR SAFETY LIMITS | Standards/Guideline | Localized SAR Limit
(W/kg) General public
(uncontrolled) | Localized SAR Limits
(W/kg) Workers
(controlled) | |---------------------|--|--| | ICNIRP Standard | 2.0 (10g) | 10.0 (10g) | | IEEE C95.1 Standard | 1.6 (1g) | 8.0 (1g) | Table 7.0-1 SAR safety limits for Controlled / Uncontrolled environment | Human Exposure | Localized SAR Limits
(W/kg) 10g, ICNIRP
Standard | Localized SAR Limits
(W/kg) 1g, IEEE C95.1
Standard | |--|--|---| | Spatial Average (averaged over the whole | | | | body) | 0.08 | 0.08 | | Spatial Peak (averaged over any X g of | | | | tissue) | 2.00 | 1.60 | | Spatial Peak (hands/wrists/feet/ankles | | | | averaged over 10 g) | 4.00 | 4.00 (10g) | Table 7.0-2 SAR safety limits **Uncontrolled Environments** are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure. **Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | 52(72 | 2) | |---------------|------------------------|---------------------------------|---|-------------|-------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | hor Data Dates of Test | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | r | | ### 8.0 DEVICE POSITIONING #### 8.1 Device holder for SAM Twin Phantom The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Figure 8.1-1 Device Holder - 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp). - 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0°. - 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly). - 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section. - 5. Adjust the device position angles to the desired measurement position. - 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle). | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBer
del RHB121LW | ry® | Page 53(72 | 2) | |--|---------------|---------------------------------|--|-------------|-------------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker June 23 – August 5, 2014 | | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | ## 8.2 Description of the test positioning ### 8.2.1 Test Positions of Device Relative to Head The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom. The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". Figure 8.2.1-1 Handset vertical and horizontal reference lines – fixed case Figure 8.2.1-2 Handset vertical and horizontal reference lines – "clam-shell" SAR Compliance Test Report for the BlackBerry® 54(72) Author Data Andrew Becker Dates of Test June 23 – August 5, 2014 Document SAR Compliance Test Report for the BlackBerry® 54(72) Test Report No RTS-6058-1408-05 Rev 2 L6ARHB120LW ### Definition of the "cheek" position - 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. - 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 8.2.1-1 and 8.2.1-2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1-1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1-2), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets. - 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1-3), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom. - **4)** Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. - 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane). - **6**) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. - 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek). Figure 8.2.1-3 Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. | ## BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 55(72 | 2) | |---------------|---------------|--------------------------------|---|-------------|-------------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 - | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | #### **Definition of the "Tilted" Position** - 1) Repeat steps 1 to 7 from above. - 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom. Figure 8.2.1-4 Phone position 2, "tilted position." The reference points for the right ear (RE),
left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. ### 8.2.2 Body-worn Configuration Body-worn configurations, as shown in appendix E, have been test with the device for RF exposure compliance. The device was tested with a holster and/or a minimum separation distance. The device was tested with 15 mm BLACKBERRY recommended separation distance to allow typical after-market holster to be used. For holster testing the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration. BLACKBERRY body-worn holsters with belt-clip have been designed to maintain ~ 19-20 mm separation distance from body. ## 8.2.3 Limb/Hand Configuration BlackBerry device is not a limb-worn device and hasn't been tested for such a configuration. As per Clause 6.1.4.9 in the IEC/EN 62209-2 standard: "Additional studies remain needed for devising a representative method for evaluating SAR in the hand of hand-held devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure." | | ∷ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 56(7 2 | 2) | |--|------------------|------------------------|---------------------------------|---|---------|--------------------|----| | | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Recker June 23 - August 5, 2014 | | RTS-6058-1408-05 Rev 2 | 1.64 RHR1201 W | | | | | Clause J.2 of the IEC/EN 62209-2 states that testing for compliance for the exposure of the hand is not applicable for devices that are intended to being hand-held to enable use at the ear (see EN 62209-1) or worn on the body when transmitting. In addition, BlackBerry device is not intended to be held in hand at a distance of larger than 200 mm from the head and body during normal use. ### 9.0 HIGH LEVEL EVALUATION #### 9.1 Maximum search The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. ### 9.2 Extrapolation The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values. ### 9.3 Boundary correction The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect. ### 9.4 Peak search for 1g and 10g cube averaged SAR The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm / 22x22x22 with 7.5 / 5 / 4.0 mm resolution in (x,y) and 5mm / 2.mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center. | ∷ BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 57(72 | 2) | |--|---------------|--------------------------------|---|-------------|-------------------|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker June 23 – August 5, 2014 | | | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ## 10.0 MEASUREMENT UNCERTAINTY | DASY5 Uncertainty Budget
(0.3 - 3 GHz range) | | | | | | | | | | | |---|--------------|-------|------------|---------|---------|--------------|--------------|-----------|--|--| | | Uncert. | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | | | Measurement System | | | | | | | | | | | | Probe Calibration | ±6.0% | N | 1 | 1 | 1 | ±6.0 % | ±6.0% | ∞ | | | | Axial Isotropy | $\pm 4.7\%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9 % | ±1.9 % | ∞ | | | | Hemispherical Isotropy | $\pm 9.6 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9 % | ±3.9 % | ∞ | | | | Boundary Effects | ±1.0 % | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6 % | ∞ | | | | Linearity | ±4.7% | R | $\sqrt{3}$ | 1 | 1 | ±2.7 % | ±2.7% | ∞ | | | | System Detection Limits | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6% | ∞ | | | | Modulation Response ^m | $\pm 2.4\%$ | R | √3 | 1 | 1 | ±1.4% | ±1.4% | ∞ | | | | Readout Electronics | $\pm 0.3 \%$ | N | 1 | 1 | 1 | ±0.3 % | ±0.3 % | 00 | | | | Response Time | ±0.8% | R | $\sqrt{3}$ | 1 | 1 | ±0.5 % | ±0.5 % | 00 | | | | Integration Time | ±2.6 % | R | √3 | 1 | 1 | ±1.5 % | ±1.5% | 00 | | | | RF Ambient Noise | ±3.0 % | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | ∞ | | | | RF Ambient Reflections | ±3.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | 00 | | | | Probe Positioner | $\pm 0.4 \%$ | R | $\sqrt{3}$ | 1 | 1 | ±0.2 % | ±0.2 % | 00 | | | | Probe Positioning | $\pm 2.9 \%$ | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | ±1.7 % | ∞ | | | | Max. SAR Eval. | ±2.0 % | R | $\sqrt{3}$ | 1 | 1 | ±1.2 % | ±1.2 % | 00 | | | | Test Sample Related | | | | | | | | | | | | Device Positioning | $\pm 2.9 \%$ | N | 1 | 1 | 1 | ±2.9 % | ±2.9 % | 145 | | | | Device Holder | ±3.6 % | N | 1 | 1 | 1 | ±3.6 % | ±3.6 % | 5 | | | | Power Drift | ±5.0% | R | √3 | 1 | 1 | ±2.9 % | ±2.9 % | ∞ | | | | Power Scaling ^p | ±0% | R | $\sqrt{3}$ | 1 | 1 | ±0.0% | ±0.0% | ∞ | | | | Phantom and Setup | | | | | | | | | | | | Phantom Uncertainty | ±6.1% | R | √3 | 1 | 1 | ±3.5 % | ±3.5 % | ∞ | | | | SAR correction | ±1.9% | R | $\sqrt{3}$ | 1 | 0.84 | ±1.1 % | ±0.9 % | ∞ | | | | Liquid Conductivity (mea.) ^{DAK} | ±2.5% | R | $\sqrt{3}$ | 0.78 | 0.71 | ±1.1 % | ±1.0% | ∞ | | | | Liquid Permittivity (mea.) DAK | ±2.5% | R | $\sqrt{3}$ | 0.26 | 0.26 | ±0.3 % | ±0.4 % | ∞ | | | | Temp. unc Conductivity BB | ±3.4 % | R | $\sqrt{3}$ | 0.78 | 0.71 | ±1.5 % | ±1.4 % | ∞ | | | | Temp. unc Permittivity BB | ±0.4% | R | $\sqrt{3}$ | 0.23 | 0.26 | ±0.1% | ±0.1% | 00 | | | | Combined Std. Uncertainty | | | | | Ì | ±11.2% | ±11.1% | 361 | | | | Expanded STD Uncertainty | | | | | | $\pm 22.3\%$ | $\pm 22.2\%$ | | | | Table 10.0-1 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528-2013. Source: Schmid & Partner Engineering AG. [1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller. | Relative DASY5 Uncertainty Budget for Fast SAR Tests (0.3 - 3 GHz range) | | | | | | | | | | | |--|--------------|-------|------------|---------|---------|---------------|---------------|-----------|--|--| | | Uncert. | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | | | Measurement System | | | | | | | | | | | | Probe Calibration | ±6.0% | N | 1 | 0 | 0 | | | | | | | Axial Isotropy | $\pm 4.7\%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9 % | ±1.9 % | ∞ | | | | Hemispherical Isotropy | $\pm 9.6 \%$ | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9 % | ±3.9 % | ∞ | | | | Boundary Effects | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6 % | 00 | | | | Linearity | $\pm 4.7\%$ | R | $\sqrt{3}$ | 1 | 1 | ±2.7% | ±2.7 % | ∞ | | | | System Detection Limits | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6% | ∞ | | | | Modulation Response | ±2.4% | R | $\sqrt{3}$ | 1 | 1 | ±1.4 % | ±1.4 % | 00 | | | | Readout Electronics | ±0.3% | N | 1 | 0 | 0 | | | | | | | Response Time | ±0.8% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Integration Time | ±2.6% | R | $\sqrt{3}$ | 1 | 1 | ±1.5 % | ±1.5 % | ∞ | | | | RF Ambient Noise | ±3.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | ±1.7 % | 00 | | | | RF Ambient Reflections | ±3.0% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Probe Positioner | $\pm 0.4\%$ | R | $\sqrt{3}$ | 1 | 1 |
±0.2 % | ±0.2 % | 00 | | | | Probe Positioning | ±2.9% | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7 % | 00 | | | | Spatial x-y-Resolution | ±10.0% | R | $\sqrt{3}$ | 1 | 1 | ±5.8 % | ±5.8 % | 00 | | | | Fast SAR z-Approximation | ±7.0% | R | $\sqrt{3}$ | 1 | 1 | ±4.0 % | ±4.0 % | 00 | | | | Test Sample Related | | | | | | | | | | | | Device Positioning | $\pm 2.9\%$ | N | 1 | 1 | 1 | ±2.9 % | ±2.9 % | 145 | | | | Device Holder | ±3.6% | N | 1 | 1 | 1 | ±3.6 % | ±3.6 % | 5 | | | | Power Drift | ±5.0% | R | $\sqrt{3}$ | 1 | 1 | ±2.9 % | ±2.9 % | ∞ | | | | Power Scaling | ±0% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Phantom and Setup | | | | | | | | | | | | Phantom Uncertainty | ±6.1% | R | $\sqrt{3}$ | 1 | 1 | ±3.5 % | ±3.5 % | 00 | | | | SAR correction | ±1.9% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Liquid Conductivity (mea.) | ±2.5% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Liquid Permittivity (mea.) | ±2.5% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Temp. unc Conductivity | ±3.4% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Temp. unc Permittivity | ±0.4% | R | $\sqrt{3}$ | 0 | 0 | | | | | | | Combined Std. Uncertainty | | | | | | ±11.4% | ±11.4% | 748 | | | | Expanded STD Uncertain | nty | | | | | $\pm 22.7 \%$ | $\pm 22.7 \%$ | | | | Table 10.0-2 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528-2013 Source: Schmid & Partner Engineering AG. | DA | SY5 U | ncer
- 6 GH | | | udge | | | | |---|--------------|----------------|------------|---------|---------|---------------|---------------|-----------| | | Uncert. | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | Measurement System | 10 22 07 | ** | | 4 | 4 | 10 22 07 | 105507 | | | Probe Calibration | ±6.55 % | N | 1 | 1 | 1 | ±6.55 % | ±6.55% | 00 | | Axial Isotropy | ±4.7% | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9% | ±1.9% | 00 | | Hemispherical Isotropy | ±9.6% | R | √3 | 0.7 | 0.7 | ±3.9% | ±3.9 % | 00 | | Boundary Effects | ±2.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.2 % | ±1.2% | 00 | | Linearity | ±4.7% | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.7\%$ | ±2.7 % | ∞ | | System Detection Limits | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6 % | ±0.6% | 00 | | Modulation Response ^m | $\pm 2.4 \%$ | R | √3 | 1 | 1 | $\pm 1.4 \%$ | ±1.4 % | ∞ | | Readout Electronics | $\pm 0.3\%$ | N | 1 | 1 | 1 | $\pm 0.3 \%$ | ±0.3 % | 00 | | Response Time | $\pm 0.8\%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 0.5 \%$ | ±0.5 % | ∞ | | Integration Time | $\pm 2.6\%$ | R | √3 | 1 | 1 | ±1.5 % | ±1.5 % | ∞ | | RF Ambient Noise | $\pm 3.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 1.7 \%$ | ±1.7 % | ∞ | | RF Ambient Reflections | $\pm 3.0 \%$ | R | $\sqrt{3}$ | 1 | 1 | ±1.7 % | ±1.7 % | ∞ | | Probe Positioner | $\pm 0.8\%$ | R | $\sqrt{3}$ | 1 | 1 | ±0.5 % | ±0.5 % | ∞ | | Probe Positioning | $\pm 6.7\%$ | R | $\sqrt{3}$ | 1 | 1 | $\pm 3.9 \%$ | ±3.9 % | ∞ | | Max. SAR Eval. | ±4.0% | R | $\sqrt{3}$ | 1 | 1 | $\pm 2.3 \%$ | ±2.3 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | $\pm 2.9 \%$ | N | 1 | 1 | 1 | $\pm 2.9 \%$ | ±2.9 % | 145 | | Device Holder | ±3.6 % | N | 1 | 1 | 1 | ±3.6 % | ±3.6 % | 5 | | Power Drift | ±5.0% | R | √3 | 1 | 1 | $\pm 2.9 \%$ | ±2.9 % | ∞ | | Power Scaling ^p | ±0% | R | $\sqrt{3}$ | 1 | 1 | ±0.0% | ±0.0% | 00 | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | ±6.6% | R | √3 | 1 | 1 | ±3.8 % | ±3.8 % | ∞ | | SAR correction | ±1.9% | R | $\sqrt{3}$ | 1 | 0.84 | ±1.1% | ±0.9 % | 00 | | Liquid Conductivity (mea.) ^{DAK} | ±2.5% | R | $\sqrt{3}$ | 0.78 | 0.71 | ±1.1% | ±1.0% | 00 | | Liquid Permittivity (mea.) DAK | ±2.5% | R | $\sqrt{3}$ | 0.26 | 0.26 | ±0.3 % | ±0.4 % | 00 | | Temp. unc Conductivity BB | ±3.4 % | R | $\sqrt{3}$ | 0.78 | 0.71 | ±1.5 % | ±1.4% | 00 | | Temp. unc Permittivity BB | R | $\sqrt{3}$ | 0.23 | 0.26 | ±0.1% | ±0.1% | 00 | | | Combined Std. Uncertainty | | | | | İ | ±12.3 % | ±12.2 % | 748 | | Expanded STD Uncertainty | | | | | | $\pm 24.6 \%$ | $\pm 24.5 \%$ | | Table 10.0-3 Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528-2013. Source: Schmid & Partner Engineering AG. | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBo
del RHB121LW | erry® | Page 60 (72) | |---------------|---------------|---------------------------------|---|-------------|---------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | ### 11.0 TEST RESULTS ### 11.1 SAR Measurement results at highest power measured against the head | | Measured/Extrapolated SAR Values - Head - GSM/EDGE/DTM 850 MHz | | | | | | | | | | | | | |----------|--|-------|----------------|--------------|---------------|------------|--------------|----------|--|--|--|--|--| | Channel | Freq. | Time | Position | Cond. Output | t Power (dBm) | Power | 1g SAR | (W/Kg) | | | | | | | Chamilei | (MHz) | Slots | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | | 128 | 824.2 | 1 | Right Cheek | | | | | | | | | | | | 190 | 836.6 | 1 | Right Cheek | 32.2 | 31.9 | 0.09 | 0.23 | 0.25 | | | | | | | 251 | 848.8 | 1 | Right Cheek | | | | | | | | | | | | 190 | 836.6 | 2 | Right Cheek | | | | | | | | | | | | 190 | 836.6 | 3 | Right Cheek | 29.5 | 29.2 | -0.26 | 0.35 | 0.38 | | | | | | | 190 | 836.6 | 3 | Right 15° Tilt | 29.5 | 29.2 | -0.20 | 0.28 | 0.30 | | | | | | | 190 | 836.6 | 1 | Left Cheek | 32.2 | 31.9 | 0.07 | 0.39 | 0.42 | | | | | | | 190 | 836.6 | 2 | Left Cheek | 30.5 | 29.9 | -0.02 | 0.44 | 0.51 | | | | | | | 128 | 824.2 | 3 | Left Cheek | 29.5 | 29.1 | -0.06 | 0.47 | 0.52 | | | | | | | 190 | 836.6 | 3 | Left Cheek | 29.5 | 29.2 | 0.33 | 0.45 | 0.48 | | | | | | | 251 | 848.8 | 3 | Left Cheek | 29.5 | 28.8 | -0.04 | 0.41 | 0.48 | | | | | | | 190 | 836.6 | 3 | Left 15° Tilt | 29.5 | 29.2 | 0.09 | 0.25 | 0.27 | | | | | | Table 11.1-1 SAR results for GSM/EDGE/DTM 850 head configuration (measured on RHB121LW) **Note 1:** If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10° (|Power Drift (dB)| / 10) Note 2: Only Middle channel was tested when 1g reported SAR \leq 0.8 W/Kg or 3dB lower than the limit. Note 3a: For Fast SAR a zoom scan is required for each head position with 1g measured SAR \geq 0.8 W/Kg and one additional zoom scan to cover all the remaining head positions. The scan is done on the worst case for the position(s) **Note 3b:** For Fast SAR the technique cannot be utilized when 1g measured SAR \geq 1.2 W/Kg, an error message occurs, or difference between the zoom and area scan 1g SAR \geq 0.1 W/kg for that configuration. **Note 4:** A 2^{nd} scan is required when 1g measured SAR ≥ 0.8 W/Kg. A 3^{rd} scan is required when the 1g measured SAR ≥ 1.45 W/Kg or the 2^{nd} scan SAR differs more than 20%. A 4^{th} scan is required when the 1g measured SAR ≥ 1.50 W/Kg or the previous measurements differ more than 20%. | ∷ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | rry® | Page 61(72) | | |------------------|---------------|---------------------------------|---|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | · | | | | М | easured/Extrap | olated SAR Val | ues - Head - WC | DMA FDD | V 850 MHz | | |----------|-------|----------------|----------------|-----------------|------------|--------------|----------| | Channel | Freq. | Position | Cond. Output | t Power (dBm) | Power | 1g SAR | (W/Kg) | | Chamilei | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 4132 | 826.4 | Right Cheek | | | | | | | 4182 | 836.4 | Right Cheek | 24.6 | 24.4 | -0.03 | 0.44 | 0.46 | | 4233 | 846.6 | Right Cheek | | | | | | | 4182 | 836.4 | Right 15° Tilt | 24.6 | 24.4 | -0.01 | 0.36 | 0.38 | | 4132 | 826.4 | Left Cheek | 24.7 | 24.6 | 0.11 | 0.56 | 0.57 | | 4182 | 836.4 | Left Cheek | 24.6 | 24.4 | -0.04 | 0.62 | 0.65 | | 4233 | 846.6 | Left Cheek | 24.5 | 24.3 | 0.04 | 0.64 | 0.67 | | 4182 | 836.4 | Left 15° Tilt | 24.6 | 24.4 | -0.01 | 0.35 | 0.37 | Table 11.1-2 SAR results for WCDMA FDD V head configuration (measured on RHB121LW) | | | Measu | red/Extrapolate | d SAR Values - | Head - GSM/E | OGE/DTM 1 | 900 MHz | | |------------|------------|-------|-----------------|----------------|---------------|------------|--------------|----------| | Channel | Freq. Time | | Position | Cond. Output | t Power (dBm) | Power | 1g SAR | (W/Kg) | | Cilalillei | (MHz) | Slots | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 661 | 1880.0 | 1 | Right Cheek | 29.5 | 29.2 | -0.01 | 0.27 | 0.29 | | 661 | 1880.0 | 2 | Right Cheek | 29.2 | 29.1 | -0.16 | 0.49 | 0.50 | | 661 | 1880.0 | 3 | Right Cheek | 26.7 | 26.4 | -0.01 | 0.35 | 0.38 | | 661 | 1880.0 | 2 | Right 15° Tilt | 29.2 | 29.1 | -0.05 | 0.20 | 0.20 | | 661 | 1880.0 | 1 | Left Cheek | 29.5 | 29.2 | 0.20 | 0.40 | 0.43 | | 512 | 1850.2 | 2 | Left Cheek | 29.2 | 29.1 | -0.01 | 0.64 | 0.65 | | 661 | 1880.0 | 2 | Left Cheek | 29.2 | 29.1 | 0.13 | 0.58 | 0.59 | | 810 | 1909.8 | 2 | Left Cheek | 29.2 | 28.8 | -0.04 | 0.41 | 0.45 | | 661 | 1880.0 | 3 | Left Cheek | 26.7 | 26.4 | -0.14 | 0.48 | 0.51 | | 661 | 1880.0 | 2 | Left 15° Tilt | 29.1 | 29.1 | -0.06 | 0.24 | 0.24 | Table 11.1-3 SAR results for GSM/EDGE/DTM 1900 head configuration (measured on RHB121LW) | | Measured/Extrapolated SAR Values - Head - WCDMA FDD II 1900 MHz | | | |
| | | | | | | |----------|---|----------------|--------------|---------------|------------|--------------|----------|--|--|--|--| | Channel | Freq. | Position | Cond. Output | t Power (dBm) | Power | 1g SAR | (W/Kg) | | | | | | Chamilei | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | 9262 | 1852.4 | Right Cheek | | | | | | | | | | | 9400 | 1880.0 | Right Cheek | 23.5 | 22.95 | 0.05 | 0.53 | 0.60 | | | | | | 9538 | 1907.6 | Right Cheek | | | | | | | | | | | 9400 | 1880.0 | Right 15° Tilt | 23.5 | 22.95 | 0.00 | 0.34 | 0.39 | | | | | | 9262 | 1852.4 | Left Cheek | 23.6 | 23.10 | 0.05 | 0.88 | 0.99 | | | | | | 9400 | 1880.0 | Left Cheek | 23.5 | 23.95 | -0.10 | 0.84 | 0.76 | | | | | | 9538 | 1907.6 | Left Cheek | 23.5 | 22.98 | 0.09 | 0.94 | 1.06 | | | | | | 9400 | 1880.0 | Left 15° Tilt | 23.5 | 23.95 | -0.11 | 0.35 | 0.32 | | | | | | 9538 | 1907.6 | Left Cheek 2nd | 23.5 | 22.98 | 0.15 | 0.91 | 1.03 | | | | | Table 11.1-4 SAR results for WCDMA FDD II head configuration (measured on RHB121LW) | Smartphone Mod | | e Test Report for the BlackBe
del RHB121LW | rry® | Page 62(72 |) | | |----------------|---------------|---|------------------------|-------------------|---|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 _ | August 5 2014 | RTS-6058-1408-05 Rev 2 | I 64 RHR120I W | | | | Me | asured/Ex | | | | | | | |----------|-----------|----------------|--------------|----------|------------|--------------|----------| | Channel | Freq. | Position | Cond. Output | 1g SAR | (W/Kg) | | | | Chamilei | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 1 | 2412.0 | Right Cheek | 21.7 | 19.7 | 0.04 | 0.33 | 0.52 | | 6 | 2437.0 | Right Cheek | 22.0 | 20.0 | -0.01 | 0.36 | 0.57 | | 11 | 2462.0 | Right Cheek | 21.7 | 19.7 | 0.04 | 0.34 | 0.54 | | 6 | 2437.0 | Right 15° Tilt | 22.0 | 20.0 | 0.04 | 0.32 | 0.51 | | 1 | 2412.0 | Left Cheek | | | | | | | 6 | 2437.0 | Left Cheek | 22.0 | 20.0 | 0.01 | 0.23 | 0.36 | | 11 | 2462.0 | Left Cheek | | | | | | | 6 | 2437.0 | Left 15° Tilt | 22.0 | 20.0 | 0.02 | 0.29 | 0.46 | Table 11.1-5a results for Wi-Fi/WLAN/802.11b head configuration (measured on RHA111LW) Note: SAR measurements were performed on the highest output power channel | Measure | d/Extrapol | | | | | | | |---------|------------|----------------|--------------|----------|------------|--------------|----------| | Channal | Freq. | Docition | Cond. Output | Power | 1g SAR | (W/Kg) | | | Channel | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 1 | 2412.0 | Right Cheek | | | | | - | | 6 | 2437.0 | Right Cheek | 22.0 | 20.0 | -0.03 | 0.42 | 0.67 | | 11 | 2462.0 | Right Cheek | | | | | | | 6 | 2437.0 | Right 15° Tilt | | | | | | | 1 | 2412.0 | Left Cheek | | | | | | | 6 | 2437.0 | Left Cheek | 22.0 | 20.0 | 0.12 | 0.28 | 0.44 | | 11 | 2462.0 | Left Cheek | | | | | • | | 6 | 2437.0 | Left 15° Tilt | 22.0 | 20.0 | 0.08 | 0.32 | 0.51 | Table 11.1-5b Spot check results for Wi-Fi/WLAN/802.11b head configuration (measured on RHB121LW) **Note:** RHB121LW has a modified band pass filter due to LTE band 7 so a spot check was done on the worst case SAR from RHA111LW | Mea | sured/Extr | rapolated SAR \ | /alues - Head - | Bluetooth 2450 | MHz | | | |---------|------------|-----------------|--------------------------|----------------|------------|--------------|-----------| | Channel | Freq. | Position | Cond. Output Power (dBm) | | Power | 1g S/ | AR (W/Kg) | | Channel | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 0 | 2402.0 | Right Cheek | | | | | | | 39 | 2441.0 | Right Cheek | 10.95 | 10.9 | 0.17 | 0.03 | 0.03 | | 78 | 2480.0 | Right Cheek | | | | | | | 39 | 2441.0 | Right 15° Tilt | 10.95 | 10.9 | 0.18 | 0.03 | 0.03 | | 0 | 2402.0 | Left Cheek | | | | | | | 39 | 2441.0 | Left Cheek | 10.95 | 10.9 | 0.72 | 0.02 | 0.02 | | 78 | 2480.0 | Left Cheek | | | | | | | | | Left 15° Tilt | | | | | | Table 11.1-6 SAR results for Bluetooth head configuration (measured on RHA111LW) Note 1: SAR measurements were performed on the highest output power channel Note 2: Spot checks were not done on RHB121LW due to the extremely low SAR of Bluetooth | Me | asured/Ex | trapolated SAR | Values - Head | · 802.11a 5000 N | ЛНz | | | |---------|-----------|----------------|---------------|------------------|------------|--------------|----------| | Channel | Freq. | Position | Cond. Output | t Power (dBm) | Power | 1g SAR | (W/Kg) | | Channel | (MHz) | Position | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 36* | 5180.0 | Right Cheek | 21.0 | 20.2 | 0.05 | 0.48 | 0.58 | | 48* | 5240.0 | Right Cheek | | | | | | | 52* | 5260.0 | Right Cheek | 21.0 | 20.1 | 0.29 | 0.58 | 0.71 | | 56 | 5280.0 | Right Cheek | 21.0 | 20.0 | 0.04 | 0.19 | 0.24 | | 60 | 5300.0 | Right Cheek | | | | | | | 64* | 5320.0 | Right Cheek | 21.0 | 20.0 | -0.19 | 0.11 | 0.14 | | 104* | 5520.0 | Right Cheek | 21.0 | 19.6 | -0.12 | 0.46 | 0.63 | | 116* | 5580.0 | Right Cheek | | | | | | | 124* | 5620.0 | Right Cheek | | | | | | | 136* | 5680.0 | Right Cheek | | | | | | | 149* | 5745.0 | Right Cheek | | | | | | | 153 | 5765.0 | Right Cheek | 18.6 | 16.6 | 0.08 | 0.28 | 0.44 | | 157* | 5785.0 | Right Cheek | | | | | | | 165* | 5825.0 | Right Cheek | | | | | | | 52* | 5260.0 | Right 15° Tilt | 21.0 | 20.1 | 0.03 | 0.80 | 0.98 | | 64* | 5320.0 | Right 15° Tilt | 21.0 | 20.0 | 0.02 | 0.13 | 0.16 | | 104* | 5520.0 | Right 15° Tilt | 21.0 | 19.6 | -0.05 | 0.56 | 0.77 | | 36* | 5180.0 | Left Cheek | 21.0 | 20.2 | -0.33 | 0.52 | 0.63 | | 48* | 5240.0 | Left Cheek | | | | | | | 52* | 5260.0 | Left Cheek | 21.0 | 20.1 | 0.36 | 0.50 | 0.62 | | 56 | 5280.0 | Left Cheek | | | | | | | 64* | 5320.0 | Left Cheek | | | | | | | 104* | 5520.0 | Left Cheek | 21.0 | 19.6 | 0.28 | 0.44 | 0.61 | | 116* | 5580.0 | Left Cheek | | | | | | | 124* | 5620.0 | Left Cheek | | | | | | | 136* | 5680.0 | Left Cheek | | | | | | | 149* | 5745.0 | Left Cheek | | | | | | | 153 | 5765.0 | Left Cheek | 18.6 | 16.6 | 0.11 | 0.40 | 0.63 | | 157* | 5785.0 | Left Cheek | | | | | | | 165* | 5825.0 | Left Cheek | | | | | | | 52* | 5260.0 | Left 15° Tilt | 21.0 | 20.1 | 0.24 | 0.47 | 0.58 | Table 11.1-7 SAR results for 802.11a head configuration (measured on RHA111LW) **Note 1:** SAR measurements were performed on the highest output power channel for each sub band. **Note 2:** "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit. The default channels were tested on the sub band with the highest measured SAR on the worst case position even if SAR is less than half the limit. | ≅ BlackBe | erry | | R Compliance Test Report for the BlackBerry® 64(7 artphone Model RHB121LW | | Page 64(72) | | |---------------|---------------|----------------|---|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | ### 11.2 SAR measurement results at highest power measured against the body using accessories | | Me | asured | l/Extrapola | ated SAR Value | s - Hotspot/Bod | ly-Worn Rev 1 - | GSM/EDGE | E/GPRS 850 MH | Z | |-----|-------|--------|------------------|----------------|-----------------|-----------------|------------|---------------|----------| | | Freg. | Time | spacing | Side Facing | Cond. Output | Power (dBm) | Power | 1g SAR | (W/Kg) | | Ch. | (MHz) | Slots | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | | Hotspot Config | juration | | | | | 128 | 824.2 | 1 | 1.0 | Back | 30.9 | 30.3 | -0.06 | 0.39 | 0.45 | | 190 | 836.6 | 1 | 1.0 | Back | 30.9 | 30.5 | -0.03 | 0.37 | 0.41 | | 251 | 848.8 | 1 | 1.0 | Back | 30.9 | 30.0 | 0.00 | 0.35 | 0.43 | | 190 | 836.6 | 2 | 1.0 | Back | 27.8 | 27.4 | 0.01 | 0.27 | 0.30 | | 190 | 836.6 | 3 | 1.0 | Back | 26.1 | 26.1 | 0.02 | 0.29 | 0.29 | | 190 | 836.6 | 4 | 1.0 | Back | 24.8 | 24.3 | 0.04 | 0.26 | 0.29 | | 128 | 824.2 | 1 | 1.0 | Front | 30.9 | 30.3 | -0.06 | 0.26 | 0.30 | | 128 | 824.2 | 1 | 1.0 | Left | 30.9 | 30.3 | 0.00 | 0.39 | 0.45 | | 128 | 824.2 | 1 | 1.0 | Right | 30.9 | 30.3 | -0.01 | 0.19 | 0.22 | | 128 | 824.2 | 1 | 1.0 | Bottom | 30.9 | 30.3 | 0.02 | 0.06 | 0.07 | | | | | 1.0 | +HS | | | | | | | | | | | В | ody-Worn Conf | figuration | | | | | 128 | 824.2 | 1 | 1.5 | Back | 32.2 | 32.2 | -0.05 | 0.64 | 0.64 | | 190 | 836.6 | 1 | 1.5 | Back | 32.2 | 31.9 | -0.17 | 0.63 | 0.68 | | 251 | 848.8 | 1 | 1.5 | Back | 32.2 | 32.0 | -0.03 | 0.55 | 0.58 | | 190 | 836.6 | 2 | 1.5 | Back | 30.5 | 30.2 | -0.07 | 0.54 | 0.58 | | 190 | 836.6 | 3 | 1.5 | Back | 29.5 | 29.4 | -0.03 | 0.65 | 0.67 | | 190 | 836.6 | 4 | 1.5 | Back | 27.5 | 27.4 | 0.01 | 0.51 | 0.52 | | 190 | 836.6 | 1 | 1.5 | Front | 32.2 | 31.9 | 0.05 | 0.50 | 0.54 | | 190 | 836.6 | 1 | Holster | Back | 32.2 | 31.9 | -0.01 | 0.53 | 0.57 | Table 11.2-1a SAR results for GSM/EDGE/GPRS 850 body-worn and Hotspot configurations on Rev 1 (measured on RHB121LW) **Note 1:** If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * $10^{(10)}$ (|Power Drift (dB)| / $10^{(10)}$ **Note 2:** Only Middle channel was tested when 1g reported SAR \leq 0.8 W/Kg or 3dB lower than the limit. **Note 3a:** For Fast SAR a zoom scan is required for each head position with 1g measured SAR \geq 0.8 W/Kg and one additional zoom scan to cover all the remaining head positions. The scan is done on the worst case for the position(s) **Note 3b:** For Fast SAR the technique cannot be utilized when 1g measured SAR \geq 1.2 W/Kg, an error message occurs, or
difference between the zoom and area scan 1g SAR \geq 0.1 W/kg for that configuration. Note 4: A 2nd scan is required when 1g measured SAR ≥ 0.8 W/Kg. A 3rd scan is required when the 1g measured SAR ≥ 1.45 W/Kg or the 2nd scan SAR differs more than 20%. A 4th scan is required when the 1g measured SAR ≥ 1.50 W/Kg or the previous measurements differ more than 20%. **Note 5:** Device was tested with 15 mm BLACKBERRY recommended separation distance to allow typical aftermarket holster to be used. **Note 6:** For Hot Spot mode any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing. | ≅ BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 65(72) |) | |----------------------|---------------|---------------------------------|---|-------------|--------------------|---| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | r | | | | Measured/Extrapolated SAR Values - Hotspot/Body-Worn Rev 2 - GSM/EDGE/GPRS 850 MHz | | | | | | | | | | | | | |-----|--|-------|------------------|-------------|----------------|-------------|------------|--------------|----------|--|--|--|--| | | Frea. | Time | spacing | Side Facing | Cond. Output | Power (dBm) | Power | 1g SAR | (W/Kg) | | | | | | Ch. | (MHz) | Slots | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | | | | | | Hotspot Config | juration | | | | | | | | | 128 | 824.2 | 1 | 1.0 | Back | 32.2 | 32.2 | -0.03 | 0.41 | 0.41 | | | | | | 190 | 836.6 | 1 | 1.0 | Back | 32.2 | 31.9 | 0.01 | 0.44 | 0.47 | | | | | | 251 | 848.8 | 1 | 1.0 | Back | 32.2 | 32.0 | 0.00 | 0.38 | 0.40 | | | | | Table 11.2-1b SAR results for GSM/EDGE/GPRS 850 body-worn and Hotspot configurations on Rev2 (measured on RHB121LW) **Note:** There is no longer power reduction on Hotspot mode for Rev 2, so a spot check was done on the worst case position from Rev 1 to find the highest SAR measurements. | | Mea | sured/Extr | apolated SAR \ | /alues - Hotspo | t/Body-Worn Re | v 1 - WCDI | MA FDD V 850 M | lHz | |------|-------|------------------|----------------|-----------------|----------------|------------|----------------|----------| | | Freq. | spacing | Side Facing | Cond. Output | Power (dBm) | Power | 1g SAR | (W/Kg) | | Ch. | (MHz) | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | Hotspot Co | nfiguration | | | | | 4132 | 826.4 | 1.0 | Back | 21.7 | 21.2 | -0.01 | 0.33 | 0.37 | | 4182 | 836.4 | 1.0 | Back | 21.6 | 21.0 | 0.06 | 0.33 | 0.38 | | 4233 | 846.6 | 1.0 | Back | 21.5 | 20.8 | 0.03 | 0.32 | 0.38 | | 4182 | 836.4 | 1.0 | Front | 21.6 | 21.0 | 0.06 | 0.25 | 0.29 | | 4182 | 836.4 | 1.0 | Left | 21.6 | 21.0 | 0.08 | 0.36 | 0.41 | | 4182 | 836.4 | 1.0 | Right | 21.6 | 21.0 | 0.01 | 0.15 | 0.17 | | 4182 | 836.4 | 1.0 | Bottom | 21.6 | 21.0 | 0.03 | 0.13 | 0.15 | | | | 1.0 | +HS | | | | | 0.00 | | | | | | Body-Worn C | onfiguration | | | | | 4132 | 826.4 | 1.5 | Back | 24.7 | 24.6 | 0.00 | 0.59 | 0.60 | | 4182 | 836.4 | 1.5 | Back | 24.6 | 24.4 | 0.04 | 0.60 | 0.63 | | 4233 | 846.6 | 1.5 | Back | 24.5 | 24.3 | -0.10 | 0.58 | 0.61 | | 4182 | 836.4 | 1.5 | Front | 24.6 | 24.4 | -0.07 | 0.49 | 0.51 | | 4182 | 836.4 | Holster | Back | 24.6 | 24.4 | -0.16 | 0.52 | 0.54 | Table 11.2-2a SAR results for WCDMA FDD V body-worn and Hotspot configurations on Rev 1 (measured on RHB121LW) | *** BlackBe | erry | SAR Compliance
Smartphone Mo | e Test Report for the BlackBe
del RHB121LW | erry® | Page 66(72) | |---------------------------|---------------|---------------------------------|---|-------------|--------------------| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | Andrew Becker June 23 - | | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | Mea | sured/Extr | apolated SAR \ | /alues - Hotspo | t/Body-Worn Re | ev 2 - WCDI | MA FDD V 850 M | Hz | |------|-------|------------------|----------------|-----------------|--------------------------|---------------------|----------------|----------| | | Freq. | spacing | Side Facing | Cond. Output | Cond. Output Power (dBm) | | 1g SAR (W/Kg) | | | Ch. | (MHz) | (cm)/
holster | Phantom | Declared | Measured | Power
Drift (dB) | Extrapolated | Reported | | | | | | Hotspot Co | nfiguration | | | | | 4132 | 826.4 | 1.0 | Back | 24.7 | 24.6 | 0.01 | 0.86 | 0.88 | | 4182 | 836.4 | 1.0 | Back | 24.6 | 24.4 | -0.01 | 0.85 | 0.89 | | 4233 | 846.6 | 1.0 | Back | 24.5 | 24.3 | 0.00 | 0.81 | 0.85 | | 4182 | 836.4 | 1.0 | Front | | | | | 0.00 | | 4182 | 836.4 | 1.0 | Left | | | | | 0.00 | | 4182 | 836.4 | 1.0 | Right | | | | | 0.00 | | 4182 | 836.4 | 1.0 | Bottom | | | | | 0.00 | | 4132 | 826.4 | 1.0 | Back 2nd | 24.7 | 24.6 | 0.00 | 0.83 | 0.85 | Table 11.2-2b SAR results for WCDMA FDD V body-worn and Hotspot configurations on Rev 2 (measured on RHB121LW) **Note:** There is no longer power reduction on Hotspot mode for Rev 2, so a spot check was done on the worst case position from Rev 1 to find the highest SAR measurements. | | | Measur | red/Extrap | olated SAR Val | ues - Hotspot/B | ody-Worn - GSI | M/EDGE/GF | PRS 1900 MHz | | |-----|--------|--------|------------------|----------------|-----------------------|----------------|------------|--------------|----------| | | Freg. | Time | spacing | Side Facing | | Power (dBm) | Power | 1g SAR | (W/Kg) | | Ch. | (MHz) | Slots | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | | Hotspot Config | uration | | | | | 661 | 1880.0 | 1 | 1.0 | Back | 29.5 | 29.2 | -0.08 | 0.43 | 0.46 | | 512 | 1850.2 | 2 | 1.0 | Back | 29.2 | 29.1 | 0.04 | 0.84 | 0.86 | | 661 | 1880.0 | 2 | 1.0 | Back | 29.2 | 29.1 | -0.24 | 0.83 | 0.85 | | 810 | 1909.8 | 2 | 1.0 | Back | 29.2 | 28.8 | -0.05 | 0.86 | 0.94 | | 661 | 1880.0 | 3 | 1.0 | Back | 26.7 | 26.4 | -0.19 | 0.59 | 0.63 | | 661 | 1880.0 | 4 | 1.0 | Back | 26.0 | 25.8 | 0.10 | 0.63 | 0.66 | | 661 | 1880.0 | 2 | 1.0 | Front | 29.0 | 29.1 | 0.12 | 0.46 | 0.45 | | 661 | 1880.0 | 2 | 1.0 | Left | 29.0 | 29.1 | 0.00 | 0.24 | 0.23 | | 661 | 1880.0 | 2 | 1.0 | Right | 29.0 | 29.1 | -0.12 | 0.04 | 0.04 | | 661 | 1880.0 | 2 | 1.0 | Bottom | 29.0 | 29.1 | 0.00 | 0.29 | 0.28 | | 810 | 1909.8 | 2 | 1.0 | Back 2nd | 29.0 | 28.8 | -0.13 | 0.85 | 0.89 | | | | | 1.0 | +HS | | | | | | | | | | | В | ody-Worn Conf | iguration | | | | | 661 | 1880.0 | 1 | 1.5 | Back | 29.5 | 29.2 | 0.25 | 0.22 | 0.24 | | 512 | 1850.2 | 2 | 1.5 | Back | 29.2 | 29.1 | -0.07 | 0.39 | 0.40 | | 661 | 1880.0 | 2 | 1.5 | Back | 29.2 | 29.1 | -0.04 | 0.40 | 0.41 | | 810 | 1909.8 | 2 | 1.5 | Back | 29.2 | 28.8 | 0.00 | 0.41 | 0.45 | | 661 | 1880.0 | 3 | 1.5 | Back | 26.7 | 26.4 | -0.15 | 0.32 | 0.34 | | 661 | 1880.0 | 4 | 1.5 | Back | 26.0 | 25.8 | -0.13 | 0.35 | 0.37 | | 661 | 1880.0 | 2 | 1.5 | Front | 29.2 | 29.1 | 0.12 | 0.25 | 0.26 | | 661 | 1880.0 | 2 | Holster | Back | 29.2 | 29.1 | 0.05 | 0.23 | 0.24 | Table 11.2-3 SAR results for GSM/EDGE/GPRS 1900 body-worn and Hotspot configurations (measured on RHB121LW) | | | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | Page 67(72) | | |---------------|---------------|--|------------------------|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | | | | Measured/ | Extrapolated SAR \ | /alues - Hotspot | :/Body-Worn - W | CDMA FDI | O II 1900 MHz | | |------|--------|------------------|--------------------|----------------------|-----------------|------------|---------------|----------| | | Freq. | spacing | Side Facing | Cond. Outpu | t Power (dBm) | Power | 1g SAR | (W/Kg) | | Ch. | (MHz) | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | Hotspot Confi | guration | | | | | 9262 | 1852.4 | 1.0 | Back | 23.6 | 23.10 | 0.08 | 1.18 | 1.32 | | 9400 | 1880.0 | 1.0 | Back | 23.5 | 22.95 | 0.02 | 1.09 | 1.24 | | 9538 | 1907.6 | 1.0 | Back | 23.5 | 22.98 | 0.09 | 1.16 | 1.31 | | 9400 | 1880.0 | 1.0 | Front | 23.5 | 22.95 | 0.01 | 0.89 | 1.01 | | 9400 | 1880.0 | 1.0 | Left | 23.5 | 22.95 | -0.02 | 0.30 | 0.34 | | 9400 | 1880.0 | 1.0 | Right | 23.5 | 22.95 | 0.02 | 0.08 | 0.09 | | 9400 | 1880.0 | 1.0 | Bottom | 23.5 | 22.95 | 0.17 | 0.51 | 0.58 | | 9262 | 1852.4 | 1.0 | Back 2nd | 23.6 | 23.10 | 0.06 | 1.16 | 1.30 | | 9262 | 1852.4 | 1.0 | Front | 23.6 | 23.10 | 0.13 | 0.77 | 0.86 | | 9538 | 1907.6 | 1.0 | Front | 23.5 | 22.98 | 0.14 | 0.74 | 0.83 | | | | | | Body-Worn Cor | nfiguration | | | | | 9262 | 1852.4 | 1.5 | Back | 23.6 | 23.10 | 0.04 | 0.64 | 0.72 | | 9400 | 1880.0 | 1.5 | Back | 23.5 | 22.95 | -0.06 | 0.59 | 0.67 | | 9538 | 1907.6 | 1.5 | Back | 23.5 | 22.98 | 0.04 | 0.66 | 0.74 | | 9400 | 1880.0 | 1.5 | Front | 23.5 | 22.95 | 0.05 | 0.44 | 0.50 | | 9400 | 1880.0 | Holster | Back | 23.5 | 22.82 | 0.03 | 0.28 | 0.33 | Table 11.2-4 SAR results for WCDMA FDD II body-worn and Hotspot configurations (measured on RHB121LW) | ∷ BlackBe | erry | SAR Complianc
Smartphone Mo | e Test Report for the BlackB
del RHB121LW | erry® | Page 68(72) | | |------------------|---------------|--------------------------------|--|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | | М | easured/ | Extrapolat | ed
SAR Values | - Hotspot/Body | -Worn - 802.11b 2 | 450 MHz | | | |-----|----------|------------------|---------------|----------------|-------------------|------------|--------------|----------| | | Freq. | spacing | Side Facing | Cond. Outpu | t Power (dBm) | Power | 1g SAR | (W/Kg) | | Ch. | (MHz) | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | | | Hotspot | Configuration | | | | | 1 | 2412 | 1.0 | Back | 21.7 | 19.7 | 0.03 | 0.31 | 0.49 | | 6 | 2437 | 1.0 | Back | 22.0 | 20.0 | 0.06 | 0.38 | 0.60 | | 11 | 2462 | 1.0 | Back | 21.7 | 19.7 | 0.01 | 0.36 | 0.57 | | 6 | 2437 | 1.0 | Front | 22.0 | 20.0 | 0.12 | 0.09 | 0.14 | | 6 | 2437 | 1.0 | Left | 22.0 | 20.0 | 0.00 | 0.15 | 0.24 | | 6 | 2437 | 1.0 | Right | 22.0 | 20.0 | 0.07 | 0.02 | 0.03 | | 6 | 2437 | 1.0 | Тор | 22.0 | 20.0 | 0.03 | 0.14 | 0.22 | | 6 | 2437 | 1.0 | Bottom | | | | | | | | | 1.0 | +HS | | | | | | | | | | | Body-Wor | n Configuration | | | | | 1 | 2412 | 1.5 | Back | 21.7 | 19.7 | 0.01 | 0.14 | 0.22 | | 6 | 2437 | 1.5 | Back | 22.0 | 20.0 | 0.06 | 0.16 | 0.25 | | 11 | 2462 | 1.5 | Back | 21.7 | 19.7 | 0.07 | 0.16 | 0.25 | | 6 | 2437 | 1.5 | Front | 22.0 | 20.0 | 0.01 | 0.04 | 0.06 | | 6 | 2437 | Holster | Back | 22.0 | 20.0 | 0.06 | 0.09 | 0.14 | Table 11.2-5a SAR results for Wi-Fi/WLAN/802.11b body-worn and Hotspot configurations (measured on RHA111LW) Note: SAR measurements were performed on the highest output power channel | | Eroa | spacing | Side Facing | Cond. Output Power (dBm) | | Power | 1g SAR (W/Kg) | | | | |-----------------------|----------------|------------------|-------------|--------------------------|------------------|------------|---------------|----------|--|--| | Ch. | h. Freq. (MHz) | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | | | Hotspot Configuration | | | | | | | | | | | | 1 | 2412 | 1.0 | Back | | | | | | | | | 6 | 2437 | 1.0 | Back | 22.0 | 20.0 | -0.09 | 0.40 | 0.63 | | | | 11 | 2462 | 1.0 | Back | | | | | | | | | | | | | Body-Wo | rn Configuration | | | | | | | 1 | 2412 | 1.5 | Back | | | | | | | | | 6 | 2437 | 1.5 | Back | 22.0 | 20.0 | -0.04 | 0.18 | 0.29 | | | | 11 | 2462 | 1.5 | Back | | | | | | | | Table 11.2-5b SAR spot check results for Wi-Fi/WLAN/802.11b body-worn and Hotspot configurations (measured on RHB121LW) **Note:** RHB121LW has a modified band pass filter due to LTE band 7 so a spot check was done on the worst case SAR from RHA111LW | *** BlackBerry | | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | Page 69(72) | | |----------------|---------------|--|------------------------|-------------|--------------------|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | 7 | | | Me | asured/ | Extrapolate | 2450 MHz | | | | | | | | |-----|-------------------------|-----------------------------|--------------------------|--------------------------|----------|-------------|---------------|----------|--|--| | | Freq. | spacing
(cm)/
holster | Side Facing -
Phantom | Cond. Output Power (dBm) | | Power Drift | 1g SAR (W/Kg) | | | | | Ch. | (MHz) | | | Declared | Measured | (dB) | Extrapolated | Reported | | | | | Hotspot Configuration | | | | | | | | | | | 0 | 2402 | 1.0 | Back | | | | | | | | | 39 | 2441 | 1.0 | Back | 10.95 | 10.9 | -0.12 | 0.03 | 0.03 | | | | 78 | 2480 | 1.0 | Back | | | | | | | | | | Body-Worn Configuration | | | | | | | | | | | 39 | 2441 | 1.5 | Back | 10.95 | 10.9 | -0.19 | 0.01 | 0.01 | | | Table 11.2-6 SAR results for Bluetooth body-worn and Hotspot configurations (measured on RHA111LW) Note 1: SAR measurements were performed on the highest output power channel Note 2: Spot checks were not done on RHB121LW due to the extremely low SAR of Bluetooth | N | Measure | ed/Extrapo | | | | | | | |------|----------------|------------------|-------------|-------------|----------------|------------|---------------|----------| | Ch. | Freq.
(MHz) | spacing | Side Facing | Cond. Outpu | ut Power (dBm) | Power | 1g SAR (W/Kg) | | | | | (cm)/
holster | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 36* | 5180 | 1.0 | Back | 16.0 | 15.7 | 0.13 | 0.39 | 0.42 | | 40 | 5200 | 1.0 | Back | | | | | | | 44 | 5220 | 1.0 | Back | | | | | | | 48* | 5240 | 1.0 | Back | | | | | | | 149* | 5745 | 1.0 | Back | 15.7 | 13.7 | 0.18 | 0.28 | 0.44 | | 153 | 5765 | 1.0 | Back | | | | | | | 157* | 5785 | 1.0 | Back | 15.7 | 13.7 | 0.03 | 0.49 | 0.78 | | 161 | 5805 | 1.0 | Back | | | | | | | 165* | 5825 | 1.0 | Back | 15.7 | 13.8 | 0.15 | 0.30 | 0.46 | | 157* | 5785 | 1.0 | Front | 15.7 | 13.7 | -0.11 | 0.02 | 0.03 | | 157* | 5785 | 1.0 | Left | 15.7 | 13.7 | -0.11 | 0.13 | 0.21 | | 157* | 5785 | 1.0 | Right | | | | | | | 157* | 5785 | 1.0 | Тор | 15.7 | 13.7 | 0.36 | 0.23 | 0.36 | | ???? | ???? | 1.0 | +HS | | | | | | Table 11.2-7 SAR results for 802.11a Hotspot configuration (measured on RHB121LW) **Note 1:** Testing was done on RHB121LW instead of RHA111LW because RHB1211LW has different power reduction levels in hotspot mode. Note 2: SAR measurements were performed on the highest output power channel for each sub band. **Note 3:** "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit. The default channels were tested on the sub band with the highest measured SAR on the worst case position even if SAR is less than half the limit. | ≅BlackBerry | | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | Page 70(72 | 2) | | |-------------|--------|--|----------------|------------------------|-------------------|----|--| | Author Data | | Dates of Test | | Test Report No | FCC ID: | | | | Andrew F | Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | | Me | easured | /Extrapola | | | | | | | |------|---------|-----------------------------|-------------|-------------|----------------|------------|-------------------|----------| | | Freq. | spacing
(cm)/
holster | Side Facing | Cond. Outpu | ut Power (dBm) | Power | 1g SAR (W/Kg) | | | Ch. | (MHz) | | Phantom | Declared | Measured | Drift (dB) | Extrapolated | Reported | | 36* | 5180 | 1.5 | Back | 21.0 | 20.2 | -0.05 | 0.82 | 0.99 | | 40 | 5200 | 1.5 | Back | | | | | | | 44 | 5220 | 1.5 | Back | | | | | | | 48* | 5240 | 1.5 | Back | 21.0 | 20.0 | 0.10 | 0.14 | 0.18 | | 52* | 5260 | 1.5 | Back | 21.0 | 20.1 | 0.09 | 0.63 | 0.78 | | 56 | 5280 | 1.5 | Back | | | | | | | 60 | 5300 | 1.5 | Back | | | | | | | 64* | 5320 | 1.5 | Back | | | | | | | 104* | 5520 | 1.5 | Back | 21.0 | 19.6 | 0.20 | 0.50 | 0.69 | | 116* | 5580 | 1.5 | Back | | | | | | | 124* | 5620 | 1.5 | Back | | | | | | | 136* | 5680 | 1.5 | Back | | | | | | | 149* | 5745 | 1.5 | Back | 18.6 | 16.6 | 0.22 | 0.23 | 0.36 | | 153 | 5765 | 1.5 | Back | 18.6 | 16.6 | -0.01 | 0.66 | 1.05 | | 157* | 5785 | 1.5 | Back | 18.6 | 16.6 | -0.17 | 0.65 | 1.03 | | 161 | 5805 | 1.5 | Back | | | | | | | 165* | 5825 | 1.5 | Back | 18.4 | 16.4 | 0.55 | 0.25 | 0.40 | | 153 | 5765 | 1.5 | Front | 18.6 | 16.6 | -0.21 | 0.03 | 0.05 | | 153 | 5765 | Holster | Back | 18.6 | 16.6 | 0.00 | 0.46 | 0.03 | | 103 | 3703 | เวบเรเยโ | Dack | 10.0 | 10.0 | 0.00 | 0. 4 0 | 0.73 | Table 11.2-8 SAR results for 802.11a body-worn configuration (measured on RHA111LW) Note 1: SAR measurements were performed on the highest output power channel for each sub band. **Note 2:** "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit. The default channels were tested on the sub band with the highest measured SAR on the worst case position even if SAR is less than half the limit. | ≅BlackBerry | | SAR Compliance
Smartphone Mo | Page 71(72 | 2) | | | |---------------|------------------|---------------------------------|------------------------|-------------|---|--| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | , | | ### 12.0 REFERENCES - [1] IEEE 1528-2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. - [2] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave. - [3] IEEE C95.1-1992, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. - [4] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation. - [5] DASY5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG. - [6] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz. - [7] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields. - [8] FCC 47 CRF Part 2.1093, Radiofrequency radiation exposure evaluation: portable devices. June 18, 2014. - [9] FCC OET SAR measurement 100 MHz to 6 GHz, KDB 865664 D01 v01r03, February 07, 2014. - [10] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, KDB 248227 D01 v01r02, May, 2007. - [11] FCC OET SAR Evaluation Considerations for Wireless Handsets, KDB 648474 D04 v01r02, December 4, 2013. - [12] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, KDB 941225 D03 vo1, December, 2008. - [13] FCC OET SAR Test Procedure for Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode, KDB 941225 D04 v01,
January 27, 2010. - [14] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, KDB 447498 D01 v05r02, February 07, 2014. - [15] FCC OET SAR Measurements Procedures for 3G Devices, KDB 941225 D01 v02, October, 2007. - [16] FCC OET SAR Evaluation Procedure for Portable Devices with Wireless Router capability, KDB 941225 D06 Hot Spot SAR v01r01, May 28, 2013. - [17] FCC OET RF Exposure Compliance Reporting and Documentation Considerations, KDB 865664 D02 v01r01, May 28, 2013. - [18] FCC OET SAR Guidance SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced, KDB 941225 D02 HSPA and 1x Advanced v02r02, May 28, 2013. | *** BlackBe | erry | SAR Compliance Test Report for the BlackBerry® Smartphone Model RHB121LW | | | | 2) | |----------------------|---------------|--|------------------------|-------------|--|----| | Author Data | Dates of Test | | Test Report No | FCC ID: | | | | Andrew Becker | June 23 – | August 5, 2014 | RTS-6058-1408-05 Rev 2 | L6ARHB120LW | | | [19] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz). [20] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and body-mount wireless communication devices – Human Models, instrumentation, and procedures - part 2 - procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). [21] EN 50566:2013, Product standard to demonstrate compliance of radio frequency fields from handheld and body-mounted wireless communication devices used by the general public (30 MHz — 6 GHz).