

MPE TEST REPORT

Applicant Quectel Wireless Solutions Co., Ltd

FCC ID XMR201910BG95M3

Product LTE Cat M1 & Cat NB2 & EGPRS Module

Brand Quectel

Model BG95-M3, BG95-M3 MINIPCIE

Report No. R2106A0549-M1

Issue Date September 6, 2021

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Yurui Zhao

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

Report No.: R2106A0549-M1

1 Test Laboratory	3
1.1 Notes of the Test Report	3
1.2 Test facility	3
1.3 Testing Location	3
1.4 Laboratory Environment	4
2 Description of Equipment under Test	5
3 Maximum conducted output power (measured) and antenna Gain	6
4 Test Result	8
ANNEX A: The EUT Appearance	13
ANNEX B: Test Setup Photos	14
	15

Report No.: R2106A0549-M1

Test Laboratory

1.1 **Notes of the Test Report**

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

1.3 **Testing Location**

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Fan Guangchang

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

fanguangchang@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5			
Ambient noise is checked and found very low and in compliance with requirement of standards.				

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

Report No.: R2106A0549-M1

Description of Equipment under Test

Client Information

Applicant	Quectel Wireless Solutions Co., Ltd		
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Applicant address	Tianlin Road, Minhang District, Shanghai, China 200233		
Manufacturer	Quectel Wireless Solutions Co., Ltd		
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Manufacturer address	Tianlin Road, Minhang District, Shanghai, China 200233		

General Technologies

Model	odel BG95-M3, BG95-M3 MINIPCIE			
IMEI	BG95-M3: 864475048391303			
IIVICI	BG95-M3 MINIPCIE: 864475048389810			
Hardware Version	R2.1			
Software Version	BG95M3LAR02A03			
Date of Testing:	August 20, 2019 ~ September 5, 2019			

BG95-M3 MINIPCIE (Report No.: R2106A0549-M1) is a variant model of BG95-M3 (Report No.: R2006A0361-M1V1). Test values duplicated from Original for variant. The product only changes PA components. There is no test for variant in this report. The detailed product change description please refers to the Difference Declaration Letter.

3 Maximum conducted output power (measured) and antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band		Burst Tune up Power(dBm)	Division Factors (dB)	Time-Averaged Tune up Power (dBm)
GSM850	GSM	35.000	-9.03	25.97
GSM1900	GSM	32.000	-9.03	22.97

Note:

Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

Band	Maximum Conducted Output Power (dBm)			
	(dBm)	(mW)		
GSM850	25.970	395.367		
GSM1900	22.970	198.153		
LTE Band 2	22.000	158.489		
LTE Band 4	22.000	158.489		
LTE Band 5	22.000	158.489		
LTE Band 12	22.000	158.489		
LTE Band 13	22.000	158.489		
LTE Band 25	22.000	158.489		
LTE Band 26	22.000	158.489		
LTE Band 66	22.000	158.489		
LTE Band 85	22.000	158.489		
NB-IOT Band 2	22.000	158.489		
NB-IOT Band 4	22.000	158.489		
NB-IOT Band 5	22.000	158.489		

NB-IOT Band 12	22.000	158.489
NB-IOT Band 13	22.000	158.489
NB-IOT Band 25	22.000	158.489
NB-IOT Band 66	22.000	158.489
NB-IOT Band 71	22.000	158.489
NB-IOT Band 85	22.000	158.489

Report No.: R2106A0549-M1

Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		127 100
0.000 Q00	(V/m)	(A/m)	(mW/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

⁼ Plane-wave equivalent power density

The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure (mW/cm2)
GSM850	0.566
GSM1900	1.000
LTE Band 2	1.000
LTE Band 4	1.000
LTE Band 5	0.566
LTE Band 12	0.477
LTE Band 13	0.525
LTE Band 25	1.000
LTE Band 26	0.566
LTE Band 66	1.000
LTE Band 85	0.477
NB-IOT Band 2	1.000
NB-IOT Band 4	1.000
NB-IOT Band 5	0.566
NB-IOT Band 12	0.477
NB-IOT Band 13	0.525
NB-IOT Band 25	1.000
NB-IOT Band 66	1.000
NB-IOT Band 71	0.465
NB-IOT Band 85	0.477

MPE Test Report Report Report No.: R2106A0549-M1

Band	Maximum Conducted Output	ed EIRP Margin1		Power density Limit		Margin2	Final
Ballu	Power (dBm)	(dBm)	(dB)	(mW/cm²)	(dBm)	(dB)	Margin (dB)
GSM850	25.970	40.600	14.630	0.566	34.541	8.571	8.571
GSM1900	22.970	33.000	10.030	1.000	37.013	14.043	10.030
LTE Band 2	22.000	33.000	11.000	1.000	37.013	15.013	11.000
LTE Band 4	22.000	30.000	8.000	1.000	37.013	15.013	8.000
LTE Band 5	22.000	40.600	18.600	0.566	34.541	12.541	12.541
LTE Band 12	22.000	36.920	14.920	0.477	33.798	11.798	11.798
LTE Band 13	22.000	36.920	14.920	0.525	34.214	12.214	12.214
LTE Band 25	22.000	33.000	11.000	1.000	37.013	15.013	11.000
LTE Band 26	22.000	40.600	18.600	0.566	34.541	12.541	12.541
LTE Band 66	22.000	30.000	8.000	1.000	37.013	15.013	8.000
LTE Band 85	22.000	36.920	14.920	0.477	33.798	11.798	11.798
NB-IOT Band 2	22.000	33.000	11.000	1.000	37.013	15.013	11.000
NB-IOT Band 4	22.000	30.000	8.000	1.000	37.013	15.013	8.000
NB-IOT Band 5	22.000	40.600	18.600	0.566	34.541	12.541	12.541
NB-IOT Band 12	22.000	36.920	14.920	0.477	33.798	11.798	11.798
NB-IOT Band 13	22.000	36.920	14.920	0.525	34.214	12.214	12.214
NB-IOT Band 25	22.000	33.000	11.000	1.000	37.013	15.013	11.000
NB-IOT Band 66	22.000	30.000	8.000	1.000	37.013	15.013	8.000
NB-IOT Band 71	22.000	36.920	14.920	0.465	33.687	11.687	11.687
NB-IOT Band 85	22.000	36.920	14.920	0.477	33.798	11.798	11.798

Note: 1. The Maximum allowed antenna gain per Band should be less than or equal to the **Final Margin** which is the allowable maximum gain value to comply with limits for maximum permissible exposure (MPE).

- 2. The Final Margin is determined and selected to the worst-case of Margin1 and Margin2.
- 3. Margin1=EIRP Limit(dBm)-Maximum Conducted Power (dBm). EIRP limit reference standard part22/ part24/part27and part90 for each band, EIRP = ERP + 2.15 (dB).
- 4. Margin2=Power density Limit(dBm)-Maximum Conducted Power (dBm). Power density Limit(dBm): The max. obtained by MPE with 20cm.

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20

cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

$$S = PG / 4 \square R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm²)	Limit Value (mW/cm²)	Conclusion
GSM850	2845.116	0.566	0.566	Pass
GSM1900	1995.262	0.397	1.000	Pass
LTE Band 2	1995.262	0.397	1.000	Pass
LTE Band 4	1000.000	0.199	1.000	Pass
LTE Band 5	2845.116	0.566	0.566	Pass
LTE Band 12	2397.728	0.477	0.477	Pass
LTE Band 13	2638.761	0.525	0.525	Pass
LTE Band 25	1995.262	0.397	1.000	Pass
LTE Band 26	2845.116	0.566	0.566	Pass
LTE Band 66	1000.000	0.199	1.000	Pass
LTE Band 85	2397.728	0.477	0.477	Pass
NB-IOT Band 2	1995.262	0.397	1.000	Pass
NB-IOT Band 4	1000.000	0.199	1.000	Pass
NB-IOT Band 5	2845.116	0.566	0.566	Pass
NB-IOT Band 12	2397.728	0.477	0.477	Pass
NB-IOT Band 13	2638.761	0.525	0.525	Pass
NB-IOT Band 25	1995.262	0.397	1.000	Pass
NB-IOT Band 66	1000.000	0.199	1.000	Pass
NB-IOT Band 71	2337.222	0.465	0.465	Pass
NB-IOT Band 85	2397.728	0.477	0.477	Pass
Note: R = 20cm				
D- 2 4446				

 Π = 3.1416

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

*****END OF REPORT *****

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX C: Product Change Description

The Product Change Description are submitted separately.