

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

PART 24 MEASUREMENT REPORT

Applicant Name:

Centum Research & Technology S.L Fonte das Abelleiras S/N Edificio Citexvi 36310 Vigo (Spain)

Date of Testing:

04/05 - 10/09/2024 **Test Report Issue Date:** 11/19/2024 **Test Site/Location:** Element lab., Columbia, MD, USA **Test Report Serial No.:** 1M2402290014-02.2A93U

FCC ID:

2A93U-58450

Applicant Name:

Centum Research & Technology S.L

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification Lifeseeker SAR XL S10 Geolocation System PCS Licensed Transmitter (PCB) 24 ANSI C63.26-2015

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 1 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Spurious Emissions	6
4.0	MEAS		7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power	11
	7.3	Occupied Bandwidth	18
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	21
	7.5	Band Edge Emissions at Antenna Terminal	37
	7.6	Peak-Average Ratio	43
	7.7	Radiated Spurious Emissions Measurements	46
	7.8	Frequency Stability / Temperature Variation	55
8.0	CONC	CLUSION	59

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
© 2024 ELEMENT			V11.1 08/28/2023	

PART 24 MEASUREMENT REPORT

				Ell	Emission	
Mode	Bandwidth	Modulation	Range [MHz]	Max. Power [W]	Max. Power [dBm]	Designator
GSM	N/A	GMSK	1930.2 - 1989.8	0.929	29.68	235KGXW
WCDMA	N/A	Spread Spectrum	1932.4 - 1987.6	1.374	31.38	4M38F9W
LTE Band 25/2	5 MHz	QPSK	1932.5 - 1992.5	1.132	30.54	4M77G7D

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 2 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 5 01 59
© 2024 ELEMENT			V11.1 08/28/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
© 2024 ELEMENT	•		V11.1 08/28/2023	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Centum Geolocation System FCC ID: 2A93U-58450**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 24.

Test Device Serial No.: 213006

2.2 Device Capabilities

This device contains the following capabilities:

This device contains the following capabilities: LTE Bands 26/5, 25/2, 12, 13, 66/4 (with 5MHz operation only), UMTS 850, UMTS 1700, UMTS 1900, UMTS B12, UMTS B13, GSM 850, and GSM1900

LTE operation only supports QPSK modulation.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

The EUT used test software provided by the manufacturer to generate the RF waveforms at maximum (>98%) duty cycle.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version 3.x installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E of EQ
1M2402290014-02.2A93U	04/05 - 10/09/2024	24 Geolocation System	
© 2024 ELEMENT			V11.1 08/28/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]}$ = Measured amplitude level_[dBm] + 107 + Cable Loss_[dB] + Antenna Factor_[dB/m] And EIRP_[dBm] = $E_{[dB\mu V/m]}$ + 20logD - 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 6 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Page 6 01 59	
© 2024 ELEMENT				

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dago 7 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 7 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
N/A	ETS-001	EMC Cable and Switch System	4/2/2024	Annual	4/2/2025	ETS-001
N/A	ETS-002	EMC Cable and Switch System	4/2/2024	Annual	4/2/2025	ETS-002
EMCO	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	4/9/2024	Annual	4/9/2025	MY52350166
Keysight Technologies	N9038A	MXE EMI Receiver	8/30/2023	Annual	8/30/2024	MY51210133
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Sunol Sciences	JB5	Bi-Log Antenna (30M-5GHz)	8/30/2022	Biennial	8/30/2024	A051107
N/A	RF010	SMA-SMA RF Cable	5/21/2024	Annual	5/21/2025	RF010
N/A	WL25-4	WLAN Cable Set (25GHz)	5/21/2024	Annual	5/21/2025	WL25-4

Table 5-1. Test Equipment (04/05 - 06/24/2024)

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Espec	ESX-2CA	Environmental Chamber	9/26/2024	Biennial	9/26/2026	017620
Table 5.2. Test Equipment (10/07 – 10/09/2024)						

Table 5-2. Test Equipment (10/07 – 10/09/2024)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 8 01 59		
© 2024 ELEMENT			V11.1 08/28/2023		

6.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 0 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 9 of 59		
© 2024 ELEMENT			V11.1 08/28/2023		

7.0 TEST RESULTS

7.1 Summary

Company Name:	Centum Research & Technology S.L
FCC ID:	<u>2A93U-58450</u>
FCC Classification:	PCS Licensed Transmitter (PCB)
Mode(s):	GSM/GPRS/EDGE/WCDMA/LTE

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power	2.1046(a), 2.1046(c)	N/A	PASS	Section 7.2
	Equivalent Isotropic Radiated Power	24.232(c)	< 2 Watts max. EIRP	PASS	Section 7.2
JCTED	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.3
CONDI	Conducted Band Edge / Spurious Emissions	2.1051, 24.238(a)	> 43 + 10log10(P[Watts]) at Band Edge and for all out-of- band emissions	PASS	Sections 7.4, 7.5
	Peak-to-Average Ratio	24.232(d)	≤ 13 dB	PASS	Section 7.6
	Frequency Stability	2.1055, 24.235	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
RADIATED	Radiated Spurious Emissions	2.1053, 24.238(a)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter power	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.2.2.

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 10 of 59		
© 2024 ELEMENT			V11.1 08/28/2023		

7.2 Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power

Test Overview

All emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.4.4.1

Test Settings

- 1. Span = 2x to 3x the OBW
- 2. RBW = 1% to 5% of the OBW
- 3. VBW > 3 x RBW
- 4. Number of measurement points per sweep = 1,001
- 5. Sweep time = auto couple
- 6. Detector = RMS
- 7. Trace mode = trace average for continuous emissions
- 8. Output power was measured using the analyzers built-in Channel Power function using the above settings while setting the integration BW approximately equal to the OBW of the signal
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Concession (Arreston)	
KI MI	

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

The applicant has declared the usage of a 6dBi antenna for frequencies shown in this test report. Additionally, the applicant has declared that it will always use a long RF cable with similar path loss as shown in the tables in this section. Thus, there is a net antenna gain used to determine ERP compliance per Part 24.

FCC ID: 2A93U-58450		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 11 01 59
© 2024 ELEMENT			1/11 1 08/28/2023

Bandwidth	Channel	Frequency [MHz]	Conducted Power [dBm]	Ant Gain [dBi]	Cable Loss [dBm]	Ant Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	8065	1932.5	33.46	6.00	9.95	-3.95	29.51	0.893	33.01	-3.50
5 MHz	8365	1962.5	34.12	6.00	10.06	-4.06	30.06	1.014	33.01	-2.95
	8665	1992.5	34.69	6.00	10.15	-4.15	30.54	1.132	33.01	-2.47

Table 7-2. Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power (LTE Band 25/2)

Plot 7-1. Conducted Power Output Data (LTE Band 25/2 – Low Channel)

FCC ID: 2A93U-58450		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 12 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-2. Conducted Power Output Data (LTE Band 25/2 - Mid Channel)

Plot 7-3. Conducted Power Output Data (LTE Band 25/2 - High Channel)

FCC ID: 2A93U-58450		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 15 01 59	
© 2024 ELEMENT			V11.1 08/28/2023	

Channel	Frequency [MHz]	Conducted Power [dBm]	Ant Gain [dBi]	Cable Loss [dBm]	Ant Gain [dBi]	EIRP [dBm]	EIRP [Watts]	ERP Limit [dBm]	Margin [dB]
9662	1932.4	35.11	6.00	9.95	-3.95	31.16	1.306	33.01	-1.85
9800	1960.0	35.43	6.00	10.05	-4.05	31.38	1.374	33.01	-1.63
9938	1987.6	35.46	6.00	10.13	-4.13	31.33	1.358	33.01	-1.68

Table 7-3. Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power (WCDMA 1900)

Plot 7-4. Conducted Power Output Data (WCDMA 1900 – Low Channel)

			Approved by:	
FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 14 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

Plot 7-5. Conducted Power Output Data (WCDMA 1900 - Mid Channel)

Plot 7-6. Conducted Power Output Data (WCDMA 1900 – High Channel)

FCC ID: 2A93U-58450		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Fage 15 01 59	
© 2024 ELEMENT			V11.1 08/28/2023	

Channel	Frequency [MHz]	Conducted Power [dBm]	Ant Gain [dBi]	Cable Loss [dBm]	Ant Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
512	1930.2	33.07	6.00	9.94	-3.94	29.13	0.818	33.01	-3.88
661	1960.0	33.73	6.00	10.05	-4.05	29.68	0.929	33.01	-3.33
810	1989.8	33.77	6.00	10.14	-4.14	29.63	0.918	33.01	-3.38

Table 7-4. Transmitter Conducted Output Power/ Equivalent Isotropic Radiated Power (GSM 1900)

Plot 7-7. Conducted Power Output Data (GSM 1900 – Low Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 50				
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Fage 10 01 59				
© 2024 ELEMENT			V11.1 08/28/2023				

Plot 7-8. Conducted Power Output Data (GSM 1900 - Mid Channel)

Plot 7-9. Conducted Power Output Data (GSM 1900 – High Channel)

FCC ID: 2A93U-58450		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Fage 17 01 59	
© 2024 ELEMENT			V11.1 08/28/2023	

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst-case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: 2A93U-58450		Approved by: Technical Manager	
Test Report S/N:	Test Report S/N: Test Dates: EUT Type: 1M2402290014-02.2A93U 04/05 - 10/09/2024 Geolocation System		Page 18 of 59
1M2402290014-02.2A93U			. ugo . o o. oo
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-10. Occupied Bandwidth Plot (LTE Band 25/2)

Plot 7-11. Conducted Power Output Data (WCDMA 1900)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT				
Test Report S/N: Test Dates: EUT Type		EUT Type:	Dogo 10 of 50			
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Page 19 01 59			
© 2024 ELEMENT			V11.1 08/28/2023			

Plot 7-12. Conducted Power Output Data (GSM 1900)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 50				
1M2402290014-02.2A93U	04/05 - 10/09/2024 Geolocation System		Page 20 01 59				
© 2024 ELEMENT			V11.1 08/28/2023				

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 20GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

Per Part 24, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 50			
1M2402290014-02.2A93U	04/05 - 10/09/2024	Page 21 01 59				
© 2024 ELEMENT			1/11 1 08/28/2023			

LTE Band 25/2

🔤 Ke	ysight Spe	trum Analyzer -	Swept SA									
l xi R	L	RF 50	Ω AC	CORREC	SEN	ISE:INT	#Avg Tvp	e: RMS	11:30:35 AI TRAC	M May 24, 2024	F	requency
PAS	SS			PNO: Fast ↔ IFGain:Low	. Trig: Free Atten: 40	Run dB			TYF DE			
10 dl Loa	B/div	Ref 30.00) dBm					M	lkr1 1.92 -28.9	5 0 GHz 12 dBm		Auto Tune
20.0	Trace	1 Pass									97	Center Freq 7.500000 MHz
10.0 0.00											3	Start Freq 0.000000 MHz
-10.0											1.92	Stop Freq 25000000 GHz
-30.0	mgani wata padi ni	an a	والمعاقبة والأشطان والج	feriets and an end of the feri	and national first finger of a	14 John April 1 Sector	ang band der bagen ing mit mit de		ça göşlerini işder yılındığı anyar g	1. 	18 <u>Auto</u>	CF Step 9.500000 MHz Man
-40.0 -50.0												Freq Offset 0 Hz
-60.0												Scale Type
Star #Pe	t 0.030	0 GHz		#VRM	(30 MHz			Sween	Stop 1.9	250 GHz	Log	Lin
MSG	3-044	HAV IVITIZ			- 5.0 Win12			STAT	US	5055 prs)		
											_	

Plot 7-13. Conducted Spurious Plot (LTE Band 25/2 – Low Channel)

Plot 7-14. Conducted Spurious Plot (LTE Band 25/2 – Low Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 50				
1M2402290014-02.2A93U	04/05 - 10/09/2024	4/05 - 10/09/2024 Geolocation System					
© 2024 ELEMENT			1/11 1 08/28/2023				

🔤 Ke	ysight Spe	trum Analyzer - S	wept SA											
l x i r	L	RF 50	Ω AC	CORREC		SENSE	INT	#Avg Typ	e: RMS	01	1:55:28 PM TRAC	May 22, 2024	F	requency
PAS	S			PNO: Fas IFGain:Lo	t⊶⊶ Tri w At	ig: Free R tten: 40 d	lun B				TYP DE			
									N	lkr1 1	5.085	5 0 GHz		Auto Tune
10 dE Log	3/div	Ref 30.00	dBm								-25.3	31 dBm		
	Trace	1 Pass												Center Freq
20.0													15.00	0000000 GHz
10.0														
														Start Freq
0.00													10.00	0000000 GHz
-10.0														
10.0													20.00	Stop Freq
-20.0	<u> </u>						1						20.00	
20.0					and the second				-			-		CF Step
-30.0	Boundary Brites and												1.00 Auto	0000000 GHz Man
-40.0	<u> </u>													
50.0														Freq Offset
-50.0														0 Hz
-60.0														
														Scale Type
Star	t 10.0	00 GHz								S	op 20.	000 GHz	Log	<u>Lin</u>
#Re:	sBW	1.0 MHz		#\	/BW 3.0	MHz		s	weep	25.33	ms (2	0001 pts)		
MSG									ST	ATUS				

Plot 7-15. Conducted Spurious Plot (LTE Band 25/2 – Low Channel)

🔤 Keysight Spectrum Analyzer - Swept SA					
LXI RE 50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	01:56:11 PM May 22, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ IFGain:Low	Atten: 40 dB		DETANNNN	Auto Tuno
10 dB/div Ref 30.00 dBm			M	kr1 1.591 8 GHz -29.383 dBm	Auto Tune
Trace 1 Pass		Ť			Center Freq
20.0					980.000000 MHz
10.0					Start Freq
0.00					30.000000 MHZ
-10.0					Stop Freq
-20.0				4	1.930000000 GHz
-30.0	1.111.111.111.111.111.111.111.111.1111.1111	and the second secon	an a		CF Step 190.000000 MHz
-40.0					<u>Auto</u> Man
-50.0					Freq Offset
					0 Hz
					Scale Type
Start 0.0300 GHz	#\/P\//	2 0 MHz	Swoon	Stop 1.9300 GHz	Log <u>Lin</u>
	#VDVV	5.0 WINZ	sweep	2.427 ms (304 mpts) Js	

Plot 7-16. Conducted Spurious Plot (LTE Band 25/2 - Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 25 01 59
© 2024 ELEMENT			V11 1 08/28/2023

🔤 Key	sight Spec	trum Analyzer -	Swept SA									- • •
l <mark>XI</mark> RL	-	RF 50	Ω AC	CORREC	SEI	ISE:INT	#Avg Typ	e: RMS	01:56:39 P TRAC	M May 22, 2024 E 1 2 3 4 5 6	Fre	equency
PAS	S			PNO: Fast + IFGain:Low	→ Trig: Free Atten: 40	e Run IdB			TYI Di			
10 dE	3/div	Ref 30.00) dBm						Mkr1 5.81 -27.9	3 0 GHz 62 dBm		Auto Tune
20.0	Trace	1 Pass									C 5.997	enter Freq 500000 GHz
10.0 + 0.00 +											1.995	Start Freq 000000 GHz
-10.0 ·					.1						10.000	Stop Freq 000000 GHz
-30.0		and the second							Yesepelle and the second second		800. <u>Auto</u>	CF Step 500000 MHz Man
-50.0											F	F req Offset 0 Hz
-60.0 -											5	Scale Type
Start #Res	t 1.99: BW 2	GHz		#VB	W 3.0 MHz			weep	Stop 10	.000 GHz 6181 pts)	LOG	Lin
MSG								ST	ATUS	erer proj		

Plot 7-17. Conducted Spurious Plot (LTE Band 25/2 – Mid Channel)

Plot 7-18. Conducted Spurious Plot (LTE Band 25/2 – Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Page 24 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 24 01 59
© 2024 ELEMENT			V11 1 08/28/2023

Keysight Spectrum Analyzer - Swept SA					
LXU RL RF 50Ω AC C	CORREC SI	ENSE:INT #Avg Typ	01:57:52 P e: RMS TRAC	M May 22, 2024	Frequency
PASS	PNO: Fast +++ Trig: Fre IFGain:Low Atten: 4	ee Run 40 dB	TY D		
10 dB/div Ref 30.00 dBm			Mkr1 1.75 -29.5	2 0 GHz 11 dBm	Auto Tune
20.0 Trace 1 Pass					Center Freq 980.000000 MHz
0.00					Start Freq 30.000000 MHz
-10.0					Stop Freq 1.93000000 GHz
-20.0	near and a second s	An Alter State of the	nenegijanjanis provinski filizioni na posistari po	1	CF Step 190.000000 MHz Auto Man
-40.0					Freq Offset 0 Hz
-60.0					Scale Type
Start 0.0300 GHz #Res BM 1.0 MHz	#\/B\\(3.0.MH	7	Stop 1.	9300 GHz	.og <u>Lin</u>
MSG	"vov 5.0 mm		STATUS	(5041 pts)	

Plot 7-19. Conducted Spurious Plot (LTE Band 25/2 – High Channel)

🔤 Key	ysight Spee	ctrum Analyzer - S	wept SA									
l xi Ri	L	RF 50	Ω AC C	DRREC	SEN	ISE:INT	#Avg Typ	e:RMS	11:32:10 A TRA	M May 24, 2024	Freq	uency
PAS	S		I	PNO: Fast ↔ FGain:Low	Atten: 30	dB			D			
10 dE	3/div	Ref 20.00	dBm						Mkr1 2.00 -26.8	0 0 GHz 29 dBm	A	uto i une
10.0	Trace	1 Pass									Ce 6.0000	nter Freq 00000 GHz
0.00 -10.0											S 2.0000	tart Freq 00000 GHz
-20.0 -30.0	1										S 10.0000	Stop Freq 200000 GHz
-40.0 -50.0		~~~~~					ay aliyon a gana gina a sana a sa				800.00 <u>Auto</u>	CF Step 00000 MHz Man
-60.0											Fr	e q Offset 0 Hz
-70.0											So	ale Type
Star #Res	t 2.000 s BW 1) GHz 1.0 MHz		#VBW	/ 3.0 MHz		s	weep	Stop 10 14.01 ms (*	000 GHz	Log	Lin
MSG								ST/	ATUS			

Plot 7-20. Conducted Spurious Plot (LTE Band 25/2 – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 25 01 59
© 2024 ELEMENT			V/11 1 08/28/2023

🔤 Ke	ysight Spe	ctrum Analyzer - S	Swept SA									×
l xi R	L	RF 50	Ω AC	CORREC	SEI	NSE:INT	#Ava Tvp	e: RMS	02:00:12 PM TRAC	May 22, 2024	Frequency	
PAS	S			PNO: Fast ↔	Trig: Free	Run			TYP			
				IFGain:Low	Attent 40	/ub		ML	or1 15 15(Auto Tur	ne
10 di Log	B/div	Ref 30.00	dBm						-25.24	47 dBm		
0	Trace	e 1 Pass				Ĩ					Center Fre	ea
20.0	<u> </u>										15.00000000 GH	Ηz
10.0											Start Fre	ea
0.00											10.000000000 GH	Ηz
0.00												
-10.0	<u> </u>										Stop Fre	ea
											20.000000000 GH	Ηz
-20.0						↓ ¹ —						
-30.0	1				-	<u> </u>		Sec. 1			CF Ste	эp
											1.000000000 GH Auto Ma	-Iz an
-40.0												
											Freg Offs	et
-50.0											0 ł	Ηz
-60.0												
00.0											Scale Typ	be
Star	+ 10.0								Stop 20	000 CH7	Log L	.in
#Re	s BW	1.0 MHz		#VBV	V 3.0 MHz		s	weep 2	25.33 ms (2	0001 pts)	_	
MSG								STAT	US			

Plot 7-21. Conducted Spurious Plot (LTE Band 25/2 - High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	port S/N: Test Dates: EUT Type:		Dago 26 of 50			
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 20 01 59			
© 2024 ELEMENT						

WCDMA PCS

🔤 Kej	ysight Spe	ctrum Analyzer -	Swept SA								_	
l,XI RI	L	RF 5	0Ω AC	CORREC	SEN	ISE:INT	#Ava Tvp	e: RMS	12:24:19 PI TRAC	M May 22, 2024	F	requency
PAS	S			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 40	e Run I dB	0 //		TYF DE			
10 dE	3/div	Ref 30.0	0 dBm					Μ	kr1 1.89 -29.3	2 7 GHz 76 dBm		Auto Tune
20.0	Trace	e 1 Pass									97	Center Freq 7.500000 MHz
10.0												Start Freq
0.00											31	Stop Frog
-20.0										1	1.92	5000000 GHz
-30.0	and the second	and the second	፼፼፼ኯዸ ^፼ ዀዀኯኯኯኯኯ	indone a provinsi fatan da an	ter en fastististe	of a state of the st	****		an ya managata managata ka sa		189 <u>Auto</u>	CF Step 9.500000 MHz Man
-40.0												Freq Offset 0 Hz
-60.0												Scale Type
Star #Re:	t 0.03 s BW	00 GHz 1.0 MHz		#VBW	3.0 MHz			Sweep	Stop 1.9 2.427 ms (9250 GHz 3641 pts)	Log	Lin
MSG								STATU	JS			

Plot 7-22. Conducted Spurious Plot (WCDMA PCS – Low Channel)

Plot 7-23. Conducted Spurious Plot (WCDMA PCS – Low Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 27 01 59
© 2024 ELEMENT			V/11 1 08/28/2023

🔤 Keysi	ight Spec	trum Analyzer -	Swept SA									
l <mark>XI</mark> RL		RF 50	Ω AC	CORREC	SEI	VSE:INT	#Avg Tvp	e: RMS	12:25:22 P	M May 22, 2024	Fr	equency
PASS	S			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 40	e Run) dB			TYI Di			
10 dB/	/div	Ref 30.00) dBm					Μ	lkr1 15.16 -25.3	5 0 GHz 00 dBm		Auto Tune
20.0	Trace	1 Pass									(15.00	Center Freq 0000000 GHz
10.0											10.00	Start Freq 0000000 GHz
-10.0						_1					20.00	Stop Freq 0000000 GHz
-30.0											1.00 <u>Auto</u>	CF Step 0000000 GHz Man
-50.0 —											1	F req Offset 0 Hz
-60.0 —												Scale Type
Start #Res	10.00 BW 1	0 GHz		#VBI	N 3.0 MHz		s	ween	Stop 20	.000 GHz	Log	Lin
MSG								ST	ATUS	eee proj		

Plot 7-24. Conducted Spurious Plot (WCDMA PCS - Low Channel)

🔤 Ke	ysight Spectrum Analyzer - Swept S	A				
l,XI R	L RF 50 Ω A	C CORREC	SENSE:INT	#Avg Type: RMS	12:26:28 PM May 22, 2024 TRACE 1 2 3 4 5 6	Frequency
PAS	S	PNO: Fast ↔ IFGain:Low	Atten: 40 dB			Auto Tuno
10 dE	Bidiv Ref 30.00 dBr	n			Mkr1 960.2 MHz -29.227 dBm	Auto Tune
	Trace 1 Pass		ľ			Center Freq
20.0						980.000000 MHz
10.0						Start Freq
0.00						30.000000 MHz
-10.0						
						Stop Freq 1.930000000 GHz
-20.0			1			
-30.0	مان معالم المراجع المان المراجع	ula de la ciencia de la calega d		and and an entering and an an an an and an	ant descentions are an an an and a second	CF Step 190.000000 MHz
-40.0						<u>Auto</u> Man
-50.0						Freq Offset
						0 Hz
-60.0						Scale Type
Star	t 0.0300 GHz				Stop 1.9300 GHz	Log <u>Lin</u>
#Re	s BW 1.0 MHz	#VBW 3	3.0 MHz	Sweep	2.427 ms (3641 pts)	
MSG				STATU	JS	

Plot 7-25. Conducted Spurious Plot (WCDMA PCS - Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Dega 29 of 50					
1M2402290014-02.2A93U	04/05 - 10/09/2024	Page 26 01 59						
© 2024 ELEMENT			V11 1 08/28/2023					

🔤 Keysight Spectrum Analyzer - Swept SA	
IX RL RF 50 Ω AC CORREC SENSE:INT 12:26:54 PM M. #Avg Type: RMS TRACE TRACE TRACE TRACE	ay 22, 2024 Frequency
PASS PNO: Fast ++- Trig: Free Run TYPE	
Mkr1 5.835	6 GHz Auto Tune
10 dB/div Ref 30.00 dBm -27.371	7 dBm
Trace 1 Pass	Center Freg
20.0	5.995000000 GHz
	Start Freq
0.00	1.990000000 GHz
-10.0	Stop Freq
-20.0	10.00000000 GHz
	CF Step 801.000000 MHz
	<u>Auto</u> Man
-40.0	
-50.0	Freq Offset
	0 H2
-60.0	Scale Type
Start 1.990 GHz Stop 10.00 #Res BW 1.0 MHz #VBW 3.0 MHz Sween 14.02 ms (160	00 GHz Log Lin I&1 nts)

Plot 7-26. Conducted Spurious Plot (WCDMA PCS – Mid Channel)

Plot 7-27. Conducted Spurious Plot (WCDMA PCS – Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Dawa 00 of 50					
1M2402290014-02.2A93U	04/05 - 10/09/2024	Page 29 01 59						
© 2024 ELEMENT			V11 1 08/28/2023					

🔤 Kej	ysight Spe	ctrum Analyzer	- Swept SA									
l ,XI R	L	RF	50 Ω AC	CORREC	SEI	ISE:INT	#Ava Tvp	e: RMS	12:27:53 PM TRAC	May 22, 2024	Fr	requency
PAS	S			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 40	e Run I dB	• 11		TYF DE			
10 dE	3/div	Ref 30.0	00 dBm						Mkr1 960 -29.1).2 MHz 28 dBm		Auto Tune
20.0	Trace	e 1 Pass									(980	Center Freq 0.000000 MHz
10.0 0.00											30	Start Freq 0.000000 MHz
-10.0 -20.0											1.93	Stop Freq 0000000 GHz
-30.0	al-bases register	ang the Local Street Street, so		u <mark>laijan ja kyristo</mark> pasta elinette ^{s pas} ta	urgensigete endeler	1 19 ₁₉₋₁ -1	adaman an a	- Kongestal stroker	ný estadoval postava	Al and the Apple (and	190 <u>Auto</u>	CF Step).000000 MHz Man
-50.0												Freq Offset 0 Hz
-60.0												Scale Type
Star	t 0.03	00 GHz						_	Stop 1.9	300 GHz	Log	<u>Lin</u>
#Re	s BW	1.0 MHz		#VBV	V 3.0 MHz			Sweep 2	2.427 ms (3641 pts)		
MSG								STATU	S			

Plot 7-28. Conducted Spurious Plot (WCDMA PCS – High Channel)

Plot 7-29. Conducted Spurious Plot (WCDMA PCS – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT							
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 50						
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 30 of 59						
© 2024 ELEMENT			V11.1 08/28/2023						

🔤 Ke	ysight Spe	trum Analyzer:	- Swept SA									X
l,XI R	L	RF	50Ω AC	CORREC	SEN	SE:INT	#Avg Typ	e: RMS	12:28:42 PI TRAC	May 22, 2024	Frequency	1
PAS	S			PNO: Fast IFGain:Low	Trig: Free	e Run IdB	• • •		TYF De			
10 dE	3/div	Ref 30.0	00 dBm					Mk	r1 15.09 -25.2	1 5 GHz 34 dBm	Auto T	une
20.0	Trace	1 Pass									Center F 15.000000000	Freq GHz
10.0 0.00											Start F 10.000000000	Freq GHz
-10.0 -20.0						_1					Stop F 20.000000000	Freq GHz
-30.0											CF S 1.000000000 <u>Auto</u>	Step GHz Man
-50.0											Freq Of	f fset 0 Hz
-60.0											Scale T	ype
Star #Re:	t 10.00 s BW	00 GHz 1.0 MHz		#V	BW 3.0 MHz		9	weep 2	Stop 20 5.33 ms (2	.000 GHz 0001 pt <u>s</u>)	Log	Lin
MSG								STATI	s			

Plot 7-30. Conducted Spurious Plot (WCDMA PCS – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT					
Test Report S/N: Test Dates:		EUT Type:	Dega 21 of 50				
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 31 01 59				
© 2024 ELEMENT			V11.1 08/28/2023				

GSM PCS

🔤 Ke	ysight Spe	ctrum Analyzer - S	wept SA								_	
l,XI R	L	RF 50 9	Ω AC (CORREC	SE	NSE:INT	#Avg Tvp	e: RMS	12:16:24 PM TRAC	May 22, 2024	F	requency
PAS	S			PNO: Fast ↔	Trig: Fre	Run			TYP			
				IFGain:Low	Atten: 40	ub .		M	kr1 1 70			Auto Tune
10 di Log	3/div	Ref 30.00	dBm						-20.9	37 dBm		
0	Trace	1 Pass				Ĩ					(Center Freg
20.0											977	7.500000 MHz
10.0												Start Freg
0.00											30	.000000 MHz
-10.0												Stop Freq
										1	1.92	5000000 GHz
-20.0	turrada, b	المعين وساليه أنعاله	ik anatati ka	al a anoma a duta	Alara Manka Alakist	ան հանգանությունները։	Loologi Mittadi	land a distanta	الالد فالعلوفا وأد	ale ditest sectore th		
-30.0	Landigu	differentian platique	Colob-Eb-Hillings		فالمراه التراجي فالم	a substantia da la fa		ath on that all a	Malli Sanata di Abad		10	CF Step
											Auto	9.500000 MHZ Man
-40.0												
50.0												Freq Offset
-50.0												0 Hz
-60.0												
												Scale Type
Star	L 0.03	00 GHz							Stop 1.9	9250 GHz	Log	Lin
#Re	s BW	1.0 MHz		#VBW	/ 3.0 MHz			Sweep 2	2.427 ms (3641 pts)		
MSG								STATU	s			

Plot 7-31. Conducted Spurious Plot (GSM PCS – Low Channel)

Plot 7-32. Conducted Spurious Plot (GSM PCS – Low Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 50					
1M2402290014-02.2A93U	04/05 - 10/09/2024	Page 52 01 59						
© 2024 ELEMENT			V/11 1 08/28/2023					

🔤 Keysight Sp	ectrum Analyzer - Swept SA						- • • •
LXI RL	RF 50 Ω AC	CORREC	SENSE:INT	#Avg Type: RM	12:17:56 PM S TRACE	May 22, 2024 1 2 3 4 5 6	Frequency
PASS	Ref 20.00 dBm	PNO: Fast ↔ IFGain:Low	Atten: 30 dB		Mkr1 19.005 -27.78	5 GHz 0 dBm	Auto Tune
10.0 Trac	e 1 Pass						Center Freq 15.00000000 GHz
-10.0							Start Freq 10.000000000 GHz
-20.0	a bar yan dan sekara ta ana sa an	Mussee af an index and			an a	1 Unio metal Assetting Ny partne mana anti-	Stop Freq 20.000000000 GHz
-40.0	an ann a thu a gur a tha an						CF Step 1.000000000 GHz <u>Auto</u> Man
-60.0							Freq Offset 0 Hz
10.0							Scale Type
Start 10.0 #Res BW	000 GHz 1.0 MHz	#VBW	3.0 MHz	Swee	Stop 20.0 p 25.33 ms (20	000 GHz 0001 pts)	Log <u>Lin</u>
MSG					STATUS		

Plot 7-33. Conducted Spurious Plot (GSM PCS - Low Channel)

Plot 7-34. Conducted Spurious Plot (GSM PCS – Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT						
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 59					
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System						
© 2024 ELEMENT			V11 1 08/28/2023					

🔤 Kej	ysight Spe	trum Analyz	er - Swept SA	4									
l xi Ri	L	RF	50 Ω A	CORR	EC	SE	NSE:INT	#Avg Typ	e: RMS	12:18:58 TR	PM May 22, 2024 ACE 1 2 3 4 5 6	Fr	equency
PAS	S 3/div	Ref 20.	00 dBn	PNC IFGa): Fast ↔ iin:Low	Trig: Fre Atten: 3	e Run 0 dB			Mkr1 6.23 -29.	30 6 GHz 870 dBm		Auto Tune
Log 10.0	Trace	1 Pass										(5.99	Center Freq 5000000 GHz
0.00 -10.0												1.99	Start Freq 0000000 GHz
-20.0 -30.0		la 1911 d e sua e focuel	ulu (l fr	ما الما				http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.h	al ta triat	.u.,	a a constalla la consta	10.00	Stop Freq 0000000 GHz
-40.0 -50.0	angenerangen Angenerangen					a dinambia ana di dinama.		(in constrainty of physical powers				801 <u>Auto</u>	CF Step .000000 MHz Man
-60.0													Freq Offset 0 Hz
-70.0										04		Log	Scale Type
star #Res	t 1.99 s BW	JGHZ 1.0 MHZ			#VBV	V 3.0 MHz		s	weep	Stop 1 14.02 ms (0.000 GHz (16181 pts)	Log	
MSG									ST	ATUS			

Plot 7-35. Conducted Spurious Plot (GSM PCS – Mid Channel)

Plot 7-36. Conducted Spurious Plot (GSM PCS – Mid Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 34 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

Keysight Sp	ectrum Analyzer - 9	Swept SA								-	
LXI RL	RF 50	Ω AC	CORREC		SENSE:INT	#Avg Typ	e: RMS	12:19:52 F TRA	M May 22, 2024 CE 1 2 3 4 5 6	Fred	quency
PASS	Ref 30.00	dBm	PNO: Fas IFGain:Lo	_{st →⊷} Trig: ow Atten	Free Run n: 40 dB		М	kr1 1.30 -20.8	6 2 GHz 86 dBm	Þ	uto Tune
20.0	e 1 Pass									Ce 980.0	e nter Freq 00000 MHz
0.00										9 30.0	Start Freq 00000 MHz
-10.0	sta fitte athe athe atte		وفاريد و	ور به الشرور المراجع الم	ihábah Issin I direkons.			the only letters, have been	a lipe , David Maria	1.9300	Stop Freq 00000 GHz
-30.0		shine to be a surface of			in final de la desentación de la conserva					190.0 <u>Auto</u>	CF Step 00000 MHz Man
-50.0										Fr	r eq Offset 0 Hz
										S	cale Type
Start 0.03 #Res BW	00 GHz 1.0 MHz		#	VBW 3.0 N	Hz		Sweep	Stop 1. 2.427 ms	9300 GHz (3641 pts)	Log	Lin
MSG							STAT	JS			

Plot 7-37. Conducted Spurious Plot (GSM PCS – High Channel)

Plot 7-38. Conducted Spurious Plot (GSM PCS – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 35 of 59	
© 2024 ELEMENT			V11 1 08/28/2023	

Keysight Spectrum Analyzer - Swept SA						
LXI RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	12:20:36 PM Ma TRACE	y 22, 2024	Frequency
PASS	PNO: Fast +++ Trig:	Free Run				
	IFGain:Low Aller	1. 30 GB		kr4 40 744 A		Auto Tune
10 dB/div Ref 20.00 dBm				-27.419	dBm	
Trace 1 Pass		Ĭ				Center Freg
10.0						15.000000000 GHz
0.00						Start Fred
10.0						10.000000000 GHz
-10.0						
-20.0						Stop Fred
					♦'	20.000000000 GHz
-30.0	a la superiori del program per Uno de Califa de Los securos e	Trapper and the second s	المراجع الشائعة ع _{اما} والترار الشناء فتحولكا أيا	n daga berten era finiskeren daga filmense An sek den storen direkter era sek filmen	Contraction of the	
aligned in a statistic sector in the sector						CF Step
-40.0						1.00000000 GHz
-50.0						<u>dito</u> Mari
						Freq Offset
-60.0						0 Hz
70.0						
-70.0						Scale Type
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 M	Hz	Sween	Stop 20.00 25.33 ms (200	01 pfs)	
MSG			STAT	TUS	or peo/	

Plot 7-39. Conducted Spurious Plot (GSM PCS – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 36 01 59
© 2024 ELEMENT			V11.1 08/28/2023

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW ≥ 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

Per 24.238(b) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: 2A93U-58450	PART 24 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 37 01 59
© 2024 ELEMENT			V11.1 08/28/2023

LTE Band 25/2

Plot 7-40. Lower Band Edge Plot (LTE Band 25/2 - Low Channel)

Plot 7-41. Upper Band Edge Plot (LTE Band 25 – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	10/09/2024 Geolocation System			
© 2024 ELEMENT			1/11 1 08/28/2023		

Plot 7-42. Upper Extended Band Edge Plot (LTE Band 25 – High Channel)

Plot 7-5. Upper Band Edge Plot (LTE Band 2 – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 39 of 59	
© 2024 ELEMENT			V11 1 08/28/2023	

Plot 7-43. Upper Extended Band Edge Plot (LTE Band 2 – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 50	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 40 of 59	
© 2024 ELEMENT			V11.1 08/28/2023	

WCDMA PCS

Keysight Spectrum Analyzer - Swept SA 03:50:04 PM May 21, 2024 Frequency #Avg Type: RMS TRACE 1 2 3 4 5 TYPE Trig: Free Run PNO: Fast +++ IFGain:Low PASS #Atten: 36 dB Auto Tune Mkr1 1.929 985 GHz -25.28 dBm Ref 26.00 dBm 10 dB/div Trace 1 Pass **Center Freq** 1.930000000 GHz Start Freq 1.922500000 GHz Stop Freq 1.937500000 GHz mound CF Step 1.500000 MHz Auto Man **Freq Offset** 0 Hz Scale Type Center 1.930000 GHz #Res BW 100 kHz Span 15.00 MHz Sweep 1.867 ms (1001 pts) Lin Log #VBW 300 kHz STATUS

Plot 7-44. Lower Band Edge Plot (WCDMA PCS – Low Channel)

Plot 7-45. Upper Band Edge Plot (WCDMA PCS – High Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 41 01 59
© 2024 ELEMENT			V11.1 08/28/2023

GSM PCS

Plot 7-46. Lower Band Edge Plot (GSM PCS - Low Channel)

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 42 01 59
© 2024 ELEMENT			V11.1 08/28/2023

7.6 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.3.4

Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 45 01 59
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-49. PAR Plot (WCDMA PCS)

FCC ID: 2A93U-58450		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 af 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 44 01 59
© 2024 ELEMENT			V11 1 08/28/2023

Plot 7-50. PAR Plot (GSM PCS)

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dago 45 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 45 01 59		
© 2024 ELEMENT			V11.1 08/28/2023		

7.7 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into a 50 ohm termination. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 1MHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points \geq 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: 2A93U-58450		Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 50			
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 46 of 59			
© 2024 ELEMENT V11.1 08/28/202						

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup >1 GHz

FCC ID: 2A93U-58450		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 47 01 59
© 2024 ELEMENT			V11.1 08/28/2023

Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) This unit was tested while powered by a 48VDC power source.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 46 01 59		
© 2024 ELEMENT	•		V11.1 08/28/2023		

Bandwidth (MHz):	5								
Frequency (MHz):	Hz): 1932.5								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3865.00	Н	-	-	-77.79	12.37	41.58	-53.67	-13.00	-40.67
5797.50	Н	171	187	-75.32	14.50	46.18	-49.08	-13.00	-36.08
7730.00	Н	168	191	-74.41	17.91	50.50	-44.76	-13.00	-31.76
9662.50	Н	-	-	-77.24	20.65	50.41	-44.84	-13.00	-31.84
11595.00	Н	-	-	-80.29	22.48	49.19	-46.07	-13.00	-33.07
13527.50	Н	-	-	-80.88	25.33	51.45	-43.80	-13.00	-30.80
15460.00	Н	-	-	-80.77	24.86	51.09	-44.17	-13.00	-31.17

Table 7-6. Radiated Spurious Data (LTE Band 25) – Low Channel

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 40 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 49 of 59		
© 2024 ELEMENT			V11 1 08/28/2023		

Bandwidth (MHz):	5
Frequency (MHz):	1962.5

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3925.00	Н	-	-	-77.69	12.58	41.89	-53.37	-13.00	-40.37
5887.50	Н	171	174	-74.36	15.09	47.73	-47.53	-13.00	-34.53
7850.00	Н	-	-	-77.67	18.85	48.18	-47.08	-13.00	-34.08
9812.50	Н	171	180	-74.88	21.64	53.76	-41.50	-13.00	-28.50
11775.00	Н	-	-	-79.87	23.18	50.31	-44.95	-13.00	-31.95
13737.50	Н	-	-	-80.61	26.01	52.40	-42.86	-13.00	-29.86
15700.00	Н	-	-	-80.90	24.79	50.89	-44.37	-13.00	-31.37
17662.50	Н	-	-	-80.28	31.71	58.43	-36.82	-13.00	-23.82

Table 7-7. Radiated Spurious Data (LTE Band 25) – Mid Channel

Bandwidth (MHz):	5
Frequency (MHz):	1992.5

Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
Н	-	-	-78.29	12.87	41.58	-53.67	-13.00	-40.67
Н	167	153	-74.04	15.68	48.64	-46.62	-13.00	-33.62
Н	-	-	-76.71	19.34	49.63	-45.62	-13.00	-32.62
Н	-	-	-78.32	21.58	50.26	-45.00	-13.00	-32.00
Н	165	152	-76.64	23.65	54.01	-41.24	-13.00	-28.24
Н	-	-	-79.68	26.37	53.69	-41.57	-13.00	-28.57
Н	-	-	-79.72	23.21	50.49	-44.76	-13.00	-31.76
Н	-	-	-79.62	33.29	60.67	-34.59	-13.00	-21.59
	Ant. Pol. [H/V] H H H H H H H	Ant. Pol. [H/V] Antenna Height [cm] H - H 167 H - H 167 H - H - H - H - H 165 H - H - H - H - H - H -	Ant. Pol. [H/V]Antenna Height [cm]Turntable Azimuth [degree]HH167153HH167152HH165152HHHHHHHHHHHHHH	Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] H - - - 129 H 167 153 -74.04 H - - - - H - - - - - H - <t< td=""><td>Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] H - -78.29 12.87 H 167 153 -74.04 15.68 H - - 76.71 19.34 H - - -76.32 21.58 H 165 152 -76.64 23.65 H - - -79.68 26.37 H - - -79.72 23.21 H - - -79.62 33.29</td><td>Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/M] Field Strength [dBµV/m] H - -78.29 12.87 41.58 H 167 153 -74.04 15.68 48.64 H - - -76.71 19.34 49.63 H - - -78.32 21.58 50.26 H 165 152 -76.64 23.65 54.01 H - - -79.68 26.37 53.69 H - - -79.72 23.21 50.49 H - - -79.62 33.29 60.74</td><td>Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dB/V/m] EIRP Spurious Emission Level [dBm] H - -78.29 12.87 41.58 -53.67 H 167 153 -74.04 15.68 48.64 -46.62 H - - 76.71 19.34 49.63 -45.62 H - - -78.32 21.58 50.26 -45.00 H 165 152 -76.64 23.65 54.01 -41.24 H - - -79.68 26.37 53.69 -41.57 H - - -79.72 23.21 50.49 -44.76 H - - -79.62 33.29 50.67 -34.59</td><td>Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] EIRP Spurious Emission Level [dBm] Limit [dBm] H - - 78.29 12.87 41.58 -53.67 -13.00 H 167 153 -74.04 15.68 48.64 -46.62 -13.00 H - - -76.71 19.34 49.63 -45.62 -13.00 H - - 776.71 19.34 49.63 -45.62 -13.00 H - - 776.74 21.58 50.26 -45.00 -13.00 H - - -76.64 23.65 54.01 -41.24 -13.00 H - - -79.68 26.37 53.69 -41.57 -13.00 H - - -79.72 23.21 50.49 -44.76 -13.00 H - - -79.62 32.99 60.67 -34.59</td></t<>	Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] H - -78.29 12.87 H 167 153 -74.04 15.68 H - - 76.71 19.34 H - - -76.32 21.58 H 165 152 -76.64 23.65 H - - -79.68 26.37 H - - -79.72 23.21 H - - -79.62 33.29	Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/M] Field Strength [dBµV/m] H - -78.29 12.87 41.58 H 167 153 -74.04 15.68 48.64 H - - -76.71 19.34 49.63 H - - -78.32 21.58 50.26 H 165 152 -76.64 23.65 54.01 H - - -79.68 26.37 53.69 H - - -79.72 23.21 50.49 H - - -79.62 33.29 60.74	Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dB/V/m] EIRP Spurious Emission Level [dBm] H - -78.29 12.87 41.58 -53.67 H 167 153 -74.04 15.68 48.64 -46.62 H - - 76.71 19.34 49.63 -45.62 H - - -78.32 21.58 50.26 -45.00 H 165 152 -76.64 23.65 54.01 -41.24 H - - -79.68 26.37 53.69 -41.57 H - - -79.72 23.21 50.49 -44.76 H - - -79.62 33.29 50.67 -34.59	Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] EIRP Spurious Emission Level [dBm] Limit [dBm] H - - 78.29 12.87 41.58 -53.67 -13.00 H 167 153 -74.04 15.68 48.64 -46.62 -13.00 H - - -76.71 19.34 49.63 -45.62 -13.00 H - - 776.71 19.34 49.63 -45.62 -13.00 H - - 776.74 21.58 50.26 -45.00 -13.00 H - - -76.64 23.65 54.01 -41.24 -13.00 H - - -79.68 26.37 53.69 -41.57 -13.00 H - - -79.72 23.21 50.49 -44.76 -13.00 H - - -79.62 32.99 60.67 -34.59

Table 7-8. Radiated Spurious Data (LTE Band 25) – High Channel

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 50 01 59		
© 2024 ELEMENT			V11.1 08/28/2023		

Mode:		WCDMA RMC							
Frequency (MHz):	Frequency (MHz): 1960								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
576.00	V	150	232	-102.21	36.98	41.77	-55.63	-13.00	-42.63

Table 7-9. Radiated Spurious Data (WCDMA 1900) – Below 1 GHz

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
© 2024 ELEMENT			V11.1 08/28/2023	

Mode:	WCDMA RMC
Frequency (MHz):	1932.4

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3864.80	Н	-	-	-77.68	11.93	41.25	-54.01	-13.00	-41.01
5797.20	Н	148	189	-70.04	14.78	51.74	-43.52	-13.00	-30.52
7729.60	Н	-	-	-77.94	18.69	47.75	-47.51	-13.00	-34.51
9662.00	Н	142	195	-73.16	19.96	53.80	-41.46	-13.00	-28.46
11594.40	Н	-	-	-80.34	22.20	48.86	-46.40	-13.00	-33.40
13526.80	Н	-	-	-80.86	24.51	50.65	-44.61	-13.00	-31.61
15459.20	Н	-	-	-80.69	28.25	54.56	-40.70	-13.00	-27.70

Table 7-10. Radiated Spurious Data (WCDMA 1900) – Low Channel

Mode:	WCDMA RMC
Frequency (MHz):	1960

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3920.00	Н	-	-	-75.85	11.94	43.09	-52.17	-13.00	-39.17
5880.00	Н	132	167	-70.07	14.83	51.76	-43.50	-13.00	-30.50
7840.00	Н	133	175	-74.28	18.48	51.20	-44.06	-13.00	-31.06
9800.00	Н	132	176	-71.25	21.10	56.85	-38.41	-13.00	-25.41
11760.00	Н	132	169	-76.27	22.16	52.89	-42.37	-13.00	-29.37
13720.00	Н	-	-	-78.93	24.51	52.58	-42.68	-13.00	-29.68
15680.00	Н	-	-	-78.47	26.85	55.38	-39.88	-13.00	-26.88
17640.00	Н	-	-	-78.71	25.47	53.76	-41.50	-13.00	-28.50

Table 7-11. Radiated Spurious Data (WCDMA 1900) – Mid Channel

Mode:		WCDMA RMC							
Frequency (MHz):		1987.6							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3975.20	Н	-	-	-78.40	12.20	40.80	-54.46	-13.00	-41.46
5962.80	Н	394	176	-73.24	14.78	48.54	-46.72	-13.00	-33.72
7950.40	Н	-	-	-79.14	18.65	46.51	-48.75	-13.00	-35.75
9938.00	Н	394	176	-76.71	21.11	51.40	-43.86	-13.00	-30.86
11925.60	Н	-	-	-80.05	22.79	49.74	-45.52	-13.00	-32.52
13913.20	Н	-	-	-80.65	24.63	50.98	-44.28	-13.00	-31.28
15900.80	Н	-	-	-81.03	27.21	53.18	-42.07	-13.00	-29.07

Table 7-12. Radiated Spurious Data (WCDMA 1900) – High Channel

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
© 2024 ELEMENT			V11.1 08/28/2023	

Mode:		GPRS 1 Tx Slot							
Frequency (MHz):		1930.2							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3860.40	Н	-	-	-75.51	12.36	43.85	-51.40	-13.00	-38.40
5790.60	Н	187	244	-67.66	14.52	53.86	-41.40	-13.00	-28.40
7720.80	Н	200	248	-72.66	18.01	52.35	-42.91	-13.00	-29.91
9651.00	Н	200	250	-76.91	20.67	50.76	-44.49	-13.00	-31.49
11581.20	Н	-	-	-78.52	22.63	51.11	-44.15	-13.00	-31.15
13511.40	Н	-	-	-79.28	25.33	53.05	-42.21	-13.00	-29.21
15441.60	Н	-	-	-78.95	24.99	53.04	-42.22	-13.00	-29.22
17371.80	Н	-	-	-78.72	28.68	56.96	-38.30	-13.00	-25.30

Table 7-13. Radiated Spurious Data (GSM 1900) - Low Channel

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
© 2024 ELEMENT			V11 1 08/28/2023	

Mode:	GPRS 1 Tx Slot
Frequency (MHz):	1960

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3920.00	Н	-	-	-75.86	12.55	43.69	-51.56	-13.00	-38.56
5880.00	Н	129	173	-65.08	14.95	56.87	-38.39	-13.00	-25.39
7840.00	Н	131	191	-76.50	18.75	49.25	-46.01	-13.00	-33.01
9800.00	Н	155	176	-73.84	21.53	54.69	-40.57	-13.00	-27.57
11760.00	Н	152	191	-76.71	23.32	53.61	-41.65	-13.00	-28.65
13720.00	Н	-	-	-78.86	25.78	53.92	-41.34	-13.00	-28.34
15680.00	Н	-	-	-78.65	24.31	52.66	-42.60	-13.00	-29.60
17640.00	Н	-	-	-78.71	31.40	59.69	-35.57	-13.00	-22.57

Table 7-14. Radiated Spurious Data (GSM 1900) – Mid Channel

Mode:	GPRS 1 Tx Slot
Frequency (MHz):	1989.8

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
3979.60	Н	-	-	-76.38	12.88	43.50	-51.75	-13.00	-38.75
5969.40	Н	249	162	-67.10	15.59	55.49	-39.77	-13.00	-26.77
7959.20	Н	247	177	-73.21	19.34	53.13	-42.13	-13.00	-29.13
9949.00	Н	-	-	-77.28	21.75	51.47	-43.79	-13.00	-30.79
11938.80	Н	240	178	-70.40	23.66	60.26	-35.00	-13.00	-22.00
13928.60	Н	-	-	-78.80	26.32	54.52	-40.74	-13.00	-27.74
15918.40	Н	-	-	-79.19	23.47	51.28	-43.97	-13.00	-30.97
17908.20	Н	-	-	-79.07	33.37	61.30	-33.96	-13.00	-20.96

Table 7-15. Radiated Spurious Data (GSM 1900) – High Channel

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 54 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 54 of 59		
© 2024 ELEMENT			V11.1 08/28/2023		

7.8 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: 2A93U-58450		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dago 55 of 50
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Fage 55 01 59
© 2024 ELEMENT			V11.1 08/28/2023

LTE Band 25/2							
	Operating F	-requency (Hz):	1,962,5	00,000			
	Ref.	Voltage (VDC):	28.	00			
Voltage (%)	Power (VDC)	Temp ([°] C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	1,962,501,451	2,446	0.0001246		
		- 20	1,962,501,380	2,375	0.0001210		
		- 10	1,962,499,194	189	0.0000096		
		0	1,962,499,172	167	0.0000085		
100 %	28.0	+ 10	1,962,499,133	128	0.0000065		
		+ 20 (Ref)	1,962,499,005	0	0.0000000		
		+ 30	1,962,499,168	163	0.0000083		
		+ 40	1,962,498,667	-338	-0.0000172		
		+ 50	1,962,498,401	-604	-0.0000308		
85 %	23.8	+ 20	1,962,499,316	311	0.0000158		
110 %	32.2	+ 20	1,962,499,337	332	0.0000169		

Table 7-16. LTE Band 25 Frequency Stability Data

Plot 7-57. LTE Band 25 Frequency Stability Chart

FCC ID: 2A93U-58450		PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
			144 4 00/00/0000	

WCDMA PCS							
	Operating F	Frequency (Hz):	1,960,0	00,000			
	Ref.	Voltage (VDC):	28.	00			
Voltage (%)	Power (VDC)	Temp ([°] C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	1,959,997,613	-2,298	-0.0001172		
		- 20	1,959,999,827	-84	-0.0000043		
		- 10	1,960,001,435	1,524	0.0000778		
		0	1,960,000,398	487	0.0000248		
100 %	28.0	+ 10	1,959,999,994	83	0.0000042		
		+ 20 (Ref)	1,959,999,911	0	0.0000000		
		+ 30	1,959,999,981	70	0.000036		
		+ 40	1,959,999,848	-63	-0.0000032		
		+ 50	1,959,998,783	-1,128	-0.0000576		
85 %	23.8	+ 20	1,959,999,069	-842	-0.0000430		
110 %	32.2	+ 20	1,959,999,940	29	0.0000015		

Table 7-17. WCDMA 1900 Frequency Stability Data

Plot 7-58. WCDMA 1900 Frequency Stability Chart

FCC ID: 2A93U-58450		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 59	
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System		
			144 4 00/00/0000	

GSM/GPRS PCS							
	Operating F	Frequency (Hz):	1,960,0	00,000]		
	Ref.	Voltage (VDC):	28.	00]		
Voltage (%)	Power (VDC)	Temp ([°] C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	1,960,000,676	-562	-0.0000287		
		- 20	1,960,001,031	-207	-0.0000106		
		- 10	1,960,000,603	-635	-0.0000324		
		0	1,960,000,867	-371	-0.0000189		
100 %	28.0	+ 10	1,960,000,833	-405	-0.0000207		
		+ 20 (Ref)	1,960,001,238	0	0.0000000		
		+ 30	1,960,000,643	-595	-0.0000304		
		+ 40	1,960,001,537	299	0.0000153		
		+ 50	1,960,002,915	1,677	0.0000856		
85 %	23.8	+ 20	1,960,001,713	475	0.0000242		
110 %	32.2	+ 20	1,960,001,446	208	0.0000106		

Table 7-18. GSM 1900 Frequency Stability Data

Plot 7-59. GSM 1900 Frequency Stability Chart

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	10/09/2024 Geolocation System			
© 2024 ELEMENT			V11 1 08/28/2023		

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Centum Geolocation System FCC ID: 2A93U-58450** complies with all the requirements of Part 24 of the FCC rules.

FCC ID: 2A93U-58450		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dago 50 of 50		
1M2402290014-02.2A93U	04/05 - 10/09/2024	Geolocation System	Page 59 of 59		
© 2024 ELEMENT			V11.1 08/28/2023		