FCC PART 95L C-V2X WAIVER REPORT

Applicant:	Cohda Wireless Pty Ltd.
Address:	27 Greenhill Road Wayville SA 5034 Australia

Manufacturer or Supplier	Cohda Wireless Pty Ltd.			
Address	27 Greenhill Road Wayville SA 50	34 Australia		
Product	On board (Transceiver) unit for A	utomotive.		
Brand Name	Cohda Wireless			
Model Name	MK6 OBU			
Series Model	MK6 OBU			
FCC ID	2AEGPMK6OBU			
Date of tests	Sep.25, 2023 ~ Feb. 23, 2024			
The tests have bee	en carried out according to the requi	rements of the following standard:		
KDB511808 DC	01 C-V2X Waiver v01r01,ANSI C63	3.26-2015		
CONCLUSION: Th	e submitted sample was found to <u>C</u>	OMPLY with the test requirement		
	pared by Chao Wu er / Mobile Department	Approved by Peibo Sun Manager / Mobile Department		
Date: Feb. 23, 2024 This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at the provided by and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report. This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at the provide of under the state of the provided by with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and or provided to use the results thereof based upon the information that you provided to unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or oraision caused by our negligence or if you require measurement uncertainty; provided, however, that such notices that be inviting and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of the section of the correctness of the report contents.				

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

TABLE OF CONTENTS

RE	LEASE C	ONTROL RECORD	3
1	SUMMA	RY OF TEST RESULTS	4
	1.2 TES	ASUREMENT UNCERTAINTY ST INSTRUMENTS ST ENVIRONMENT	6
2	GENER	AL INFORMATION	8
	2.2 DES 2.3 GEI 2.4 CO	NERAL DESCRIPTION OF EUT	0 1 2
3.	TEST T	YPES AND RESULTS	3
	3.1.1 3.1.2 3.1.3 3.1.4 3.2 C-V 3.2.1 3.2.2 3.2.3 3.2.4	CUPIED BANDWIDTH1LIMIT OF OCCUPIED BANDWIDTH1TEST PROCEDURES1TEST SETUP1TEST RESULTS1'2X TRANSMIT POWER2LIMITS2TEST PROCEDURES2TEST SETUP2TEST RESULTS2ISSIONS MASK3LIMITS3TEST PROCEDURE3TEST PROCEDURE3TEST PROCEDURE3TEST PROCEDURE3TEST PROCEDURE3TEST RESULTS3TEST RESULTS3TEST RESULTS3TEST RESULTS3TEST RESULTS3TEST RESULTS3TEST RESULTS3TEST RESULTS3	333477799000002
4.	CONCL	USION	3

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QSU2307030110RF12	Original release	Feb. 23, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 95						
No.	Test Description Remark Test result					
1	Occupied bandwidth	Applicable	Compliance			
2	C-V2X Transmit Power	Applicable	Compliance			
3	Emissions Mask	Applicable	Compliance			

*Test Lab Information Reference

Lab :

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Test Report No.: PSU-QSU2307030110RF12

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Average EIRP	±4.70dB
Occupied Channel Bandwidth	±43.58KHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,22	Aug.29,24
Pre-Amplifier	R&S	SCU08F1	101028	Sep.16,22	Sep.15,24
Signal Generator	R&S	SMB100A	182185	Feb.16,22	Fed.15,24
3m Fully-anechoic Chamber	ТDК	9m*6m*6m	HRSW-SZ-EM C-01Chamber	Nov.24,22	Nov.23,25
3m Semi-anechoic Chamber	ТDК	9m*6m*6m	HRSW-SZ-EM C-02Chamber	Nov.24,22	Nov.23,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.25,22	Feb.24,24
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Feb.28,22	Feb.27,24
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,22	Aug.21,24
Biconical Antenna	SCHWARZ	VUBA 9117	69250	Nov.14,22	Nov.13,24
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.23,22	Feb.22,24
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,22	Aug.21,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,22	Feb.22,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.27,22	Jun.26,24
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(C ABLE)	R&S	HF290-NMNM-7.00M	N/A	N/A	N/A
TMC-AMI18843A(C ABLE)	R&S	HF290-NMNM-4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.28,23	Oct.27,23
CABLE	R&S	W13.02	N/A	Oct.27,23	Apr.26,24
CABLE	R&S	W12.14	N/A	Apr.28,23	Oct.27,23
CABLE	R&S	W12.14	N/A	Oct.27,23	Apr.26,24
CABLE	R&S	J12J103539-00-1	SEP-03-20-069		Oct.27,23
CABLE	R&S	J12J103539-00-1	SEP-03-20-069		Apr.26,24
CABLE	R&S	J12J103539-00-1	SEP-03-20-070		Oct.27,23
CABLE	R&S	J12J103539-00-1	SEP-03-20-070		Apr.26,24
Temperature Chamber	votsch	VT4002	E9E660791000	May.31,22	May.30,24

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

NOTE:

- 1. The calibration interval of the above test instruments is 6 months or 24 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Fully-anechoic Chamber.
- 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.3 TEST ENVIRONMENT

Environment Parameter	96~98 kPa Selected Values During Tests			
Relative Humidity	40-60 % RH Ambient			
Value	Temperature(°C)	Voltage(V)		
NTNV	25	12		
LTLV	-20	10.2		
LTHV	-20	13.8		
HTLV	75	10.2		
HTHV	75	13.8		
Remark:				
NV:Normal VoltageLV:Low Extreme Test VoltageHV:High Extreme Test VoltageNT:Normal TemperatureLT:Low Extreme Test TemperatureHT:High Extreme Test TemperatureThe ELIT was tested by adjustable D	re			
The EUT was tested by adjustable DC power supply.				

Test Report No.: PSU-QSU2307030110RF12

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	On board (Tra	On board (Transceiver) unit for Automotive.		
BRAND NAME*	Cohda Wireless			
MODEL NAME*	MK6 OBU			
SERIES MODEL*	MK6 OBU			
NOMINAL VOLTAGE*	12V DC			
EXTREME TEMPERATURE*	-20°C and 75°C			
MODULATION TYPE*	C-V2X BPSK,QPSK,16QAM,64QAM			
OPERATING FREQUENCY*	C-V2X 5895 MHz – 5925 MHz			
ANTENNA GAIN*	C-V2X ANT 0: 5.0 dBi ANT 1: 5.0 dBi			
ANTENNA TYPE*	C-V2X Dipole Antenna			
FCC ID*	2AEGPMK6OBU			
HW VERSION*	Rev 1.0			
SW VERSION*	19.Release.134186			
I/O PORTS*	Refer to user's manual			
CABLE SUPPLIED*	N/A			

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- The EUT incorporates a SISO function. Physically, the EUT provides two transmitters and two receivers. Both ICs share the 2 X C-V2X antenna ports through the use of RF switches and combiners but MK6 does not support MIMO on C-V2X.

MODULATION MODE	TX/RX FUNCTION
BPSK (1/2,3/4)	2TX /2RX
QPSK (1/2,3/4)	2TX /2RX
16QAM (1/2,3/4)	2TX /2RX
64QAM (2/3,3/4)	2TX /2RX

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

List of Accessory:

ACCESSORIES	MANUFACTURER	ANTENNA TYPE	MODEL
2x Antenna for LTE/2G/3G/CDMA	Taoglas	Monopole Antenna	TG.66.0723
1x Antenna for WLAN/BT	Taoglas	Monopole Antenna	GW.05.0E23
1x Antenna for WLAN	Taoglas	Monopole Antenna	GW.05.0E23
2x Antenna for C-V2X	MobileMark	DOM Antenna	MGWG-303
2x Antenna for DSRC	MobileMark	DOM Antenna	MGWG-303
1x Antenna for GNSS	MobileMark	DOM Antenna	MGWG-303

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

2.2 DESCRIPTION OF TEST MODES

Under part 2 subpart J of the Commission rules to permit operation of cellular vehicle-to-everything (C-V2X) technology in the upper 30 megahertz (5895-5925 MHz) of the 5.9 GHz band (5850- 5925 MHz).

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
Occupied bandwidth	25deg. C, 60%RH	12Vdc (host equipment)	Chao Wu
C-V2X Transmit Power	25deg. C, 60%RH	12Vdc (host equipment)	Chao Wu
Emissions Mask	25deg. C, 60%RH	12Vdc (host equipment)	Chao Wu

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standard:

ANSI C63.26-2015

KDB 511808 D01

All tests have been performed and recorded as per the above standard.

2.4 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together without any other necessary accessories or support units.

For test

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	PC	Lenovo	ThinkPad E14	HRSW00024	N/A
2	DC Source	HYELEC	HY3010B	551016	N/A
3	Ethernet	N/A	N/A	N/A	N/A
4	CAN Connector	N/A	N/A	N/A	N/A

NO.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable, 1.0m;
2	PC USB Line: Unshielded, Detachable, 1.0m;
3	CAN Box: Unshielded, Detachable, 1.8m;
4	Ethernet: Unshielded, Detachable, 0.8m;
5	Router: Unshielded, Detachable, 2.0m;

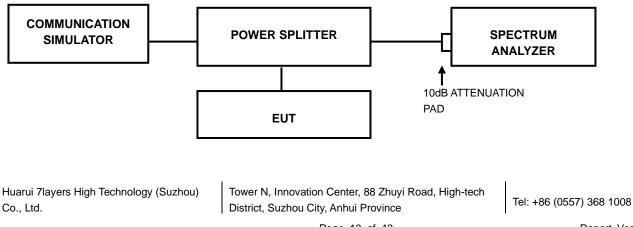
3. TEST TYPES AND RESULTS

3.1 OCCUPIED BANDWIDTH

3.1.1 LIMIT OF OCCUPIED BANDWIDTH

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

3.1.2 TEST PROCEDURES


FOR 99 PERCENT OCCUPIED BANDWIDTH

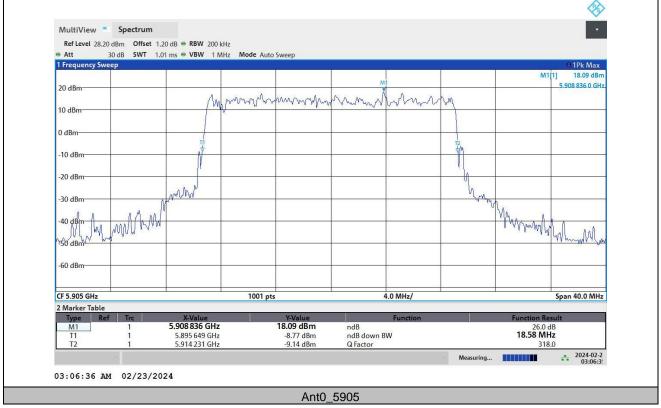
- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 \cdot RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

FOR 26dB BANDWIDTH

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 \cdot RBW
- 5. Detector = Peak.
- 6. Trace mode = max hold.
- 7. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

3.1.3 TEST SETUP

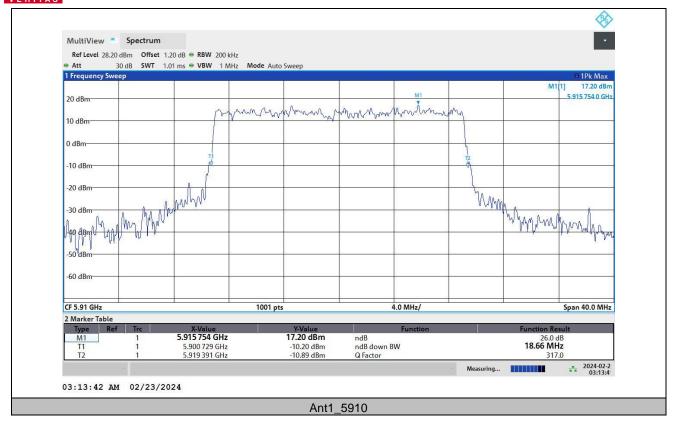
Page 13 of 42

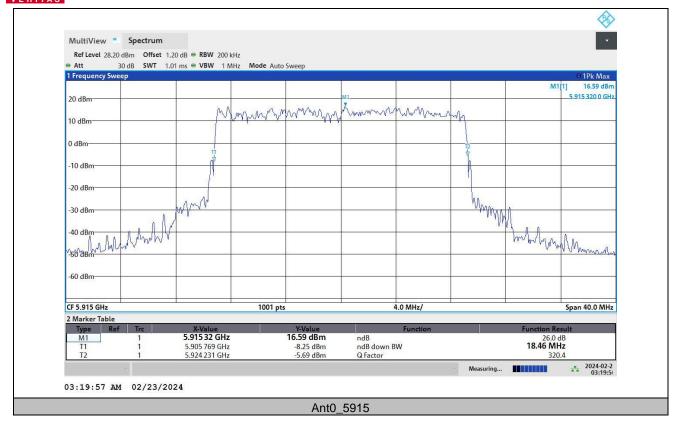

3.1.4 TEST RESULTS

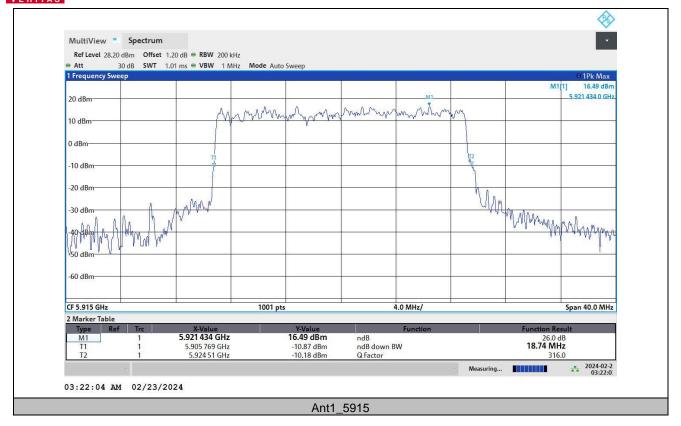
TEST MODE	Channel	Antenna	Occupied Bandwidth (MHz)	26db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	5905	ANT0	17.920	18.58	5895.649	5914.231		PASS
	5905	ANT1	17.843	18.42	5895.769	5914.191		PASS
C VOV	5910	ANT0	17.955	18.70	5900.769	5919.471		PASS
C-V2X	5910	ANT1	17.902	18.66	5900.729	5919.391		PASS
	5915	ANT0	17.873	18.46	5905.769	5924.231		PASS
	5915	ANT1	17.918	18.74	5905.769	5924.510		PASS

TEST GRAPHS




Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province


Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province



Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Occupied Bandwidth

Test Report No.: PSU-QSU2307030110RF12

3.2 C-V2X TRANSMIT POWER

3.2.1 LIMITS

	C-V2	X OBU and RSU Operations	
Frequency Range	Channel Bandwidth	OBU Limits	RSU EIRP Limit
5905-5925 MHz	20 MHz	33 dBm EIRP*; 27dBm EIRP within 5 degrees of horizontal	33 dBm EIRP
	*EIDD (age	vivalant is atranically redicted narrow)	

*EIRP (equivalent isotropically radiated power)

3.2.2 TEST PROCEDURES

According to requirements of 511808 D01 C-V2X Waiver v01r01, OBU Transmit Power Test Procedures :

a. The on-board unit (OBU) EIRP shall not exceed the limits provided in the relevant waiver grant. The EIRP may be calculated from the conducted measurement using antenna test data or the antenna data sheet; however, the antenna data must have sufficient resolution to determine the EIRP in the waiver grant-provided elevation from the horizontal plane.
b. Radiated emission measurements are necessary if there is not sufficient resolution in antenna data to determine compliance. The general test setup is shown in Figure 1. The OBU transmit antenna shall be placed at an elevation of 1.5 meters and oriented such that the main lobe of the antenna is facing parallel to the ground plane. The OBU shall also be configured for testing in a manner that is representative of the actual installation.

c. The measurement antenna may be placed at any test distance provided that it is in the far field of the OBU transmit antenna and at least 3 meters away.

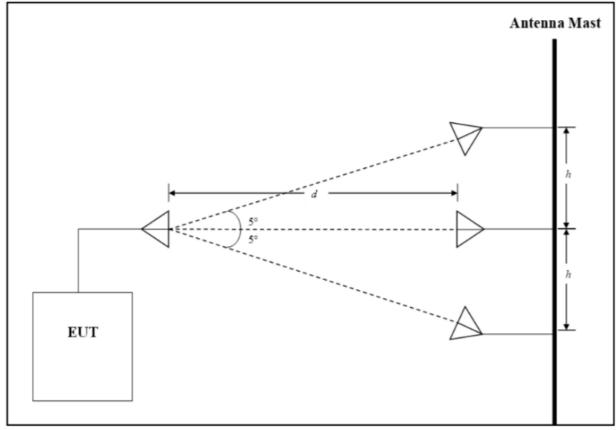


Figure 1. C-V2X OBU Radiated Test Setup Diagram

d. An investigation shall be performed to ensure that the peak antenna gain is being measured. Once determined, the main lobe of the receive measurement antenna shall be configured such that it is boresight or coincident to the main lobe of the transmit antenna.

e. After the peak EIRP is measured, the receive measurement antenna shall be elevated to the appropriate height as provided in the waiver grant relative to the transmit antenna.3 The measurement antenna shall also be rotated up or down such that the transmit antenna remains in the main lobe of the measurement antenna.

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

3.2.3 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.4 TEST RESULTS

Test	Freq.	Antenna		EIRP (d	Bm)	EIRP Limit	
Mode	[MHz]	rotation range	Antenna	Peak Power [dBm]	Avg. Power [dBm]	[dBm]	Verdict
	E00E		ANT0	16.19	13.93	≤27.00	PASS
	5905		ANT1	15.93	12.66	≤27.00	PASS
C-V2X	5910	±5°	ANT0	16.21	13.58	≤27.00	PASS
C-V2X	5910	±Ο	ANT1	15.07	12.39	≤27.00	PASS
	5015		ANT0	16.35	14.21	≤27.00	PASS
	5915		ANT1	15.74	13.78	≤27.00	PASS

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Test Report No.: PSU-QSU2307030110RF12

3.3 EMISSIONS MASK

3.3.1 LIMITS

Frequency Offset (MHz from Channel Edge)	OOBE EIRP Limits for C-V2X Transmissions (dBm/100 kHz)**
0.0	-16.0
1.0	-22.0
10.0	-30.0
20.0	-40.0

C-V2X Out-of-Band Emissions (OOBE) Limits

3.3.2 TEST PROCEDURE

According to requirements 511808 D01 C-V2X Waiver v01r01, An illustration of an emissions mask that may be applicable to RSUs and OBUs can be found in Figure 2.

- a) Mask Test Procedure
 - 1. Connect output of the antenna port to a spectrum analyzer or EMI receiver, with appropriate attenuation, as to not damage the instrumentation.
 - 2. Set the reference level of the measuring equipment in accordance with the general procedures in section 4.2.3 of ANSI C63.26 2016.
 - 3. Measure the power spectral density of the OOBE using the following procedure:
 - 4. Set instrument center frequency to the frequency of channel being measured.
 - 5. Set the span to at least 4 times the OBW.
 - 6. Set resolution bandwidth (RBW) = 100 kHz.
 - 7. Set video bandwidth (VBW) \ge 3 × RBW
 - 8. Number of points in sweep \geq [2 X span / RBW].
 - 9. Sweep time = auto.
 - 10. Detector = power averaging (rms)
 - 11. Trace mode = max hold.
 - 12. Allow trace to fully stabilize.
 - 13. In the case of devices which use multiple-input multiple-output (MIMO) technology, please follow the guidance in 662911 D01 Multiple Transmitter Output v02r01 E) 2) methods a) or c).
 - 14. Use the instrumentation correction factors to account for cable loss and antenna gain since the final result is PSD EIRP. In the case of MIMO devices, please follow the guidance of 662911 D03 MIMO Antenna Gain Measurement v01 in determining aggregate antenna gain.

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

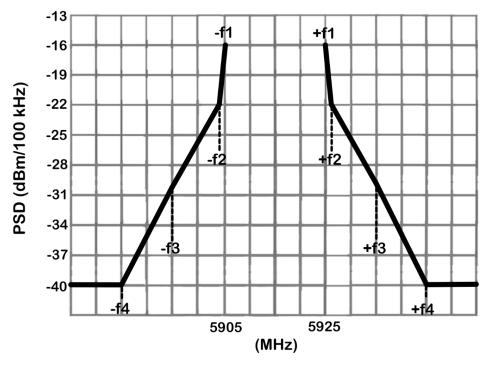
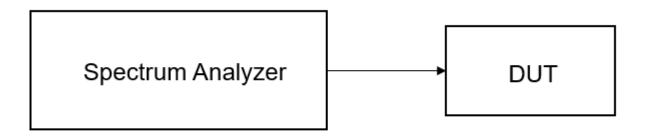
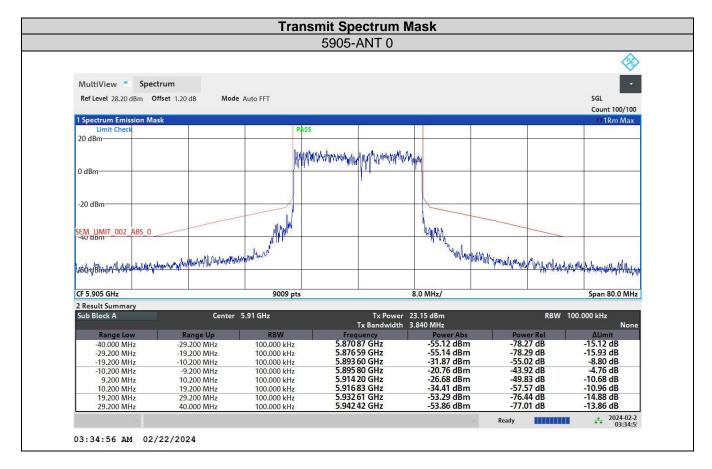



Figure 2. Emissions Mask

- b) Keep in mind, the out-of-band emissions mask is based upon an absolute EIRP value in dBm/100 kHz and not a relative change in amplitude (dBr). Using the measuring equipment limit line function, develop the out-of-band emissions mask based on the emissions limits at the frequency offsets specified in the relevant waiver grant. For example, Figure 2 illustrates the emissions mask for the emissions levels at the frequency offsets described below:
 - 1. +f1 and -f1 is the frequencies at the channel edge with an emissions level of -16 dBm/100 kHz.
 - 2. +f2 and -f2 is a frequency offset of 1 MHz from the channel edge with an emissions level of -22 dBm/100 kHz.
 - 3. +f3 and -f3 is a frequency offset of 10 MHz from the channel edge with an emissions level of -30 dBm/100 kHz.
 - 4. +f4 and -f4 is a frequency offset of 20 MHz from the channel edge with an emissions level of -40 dBm/100 kHz.

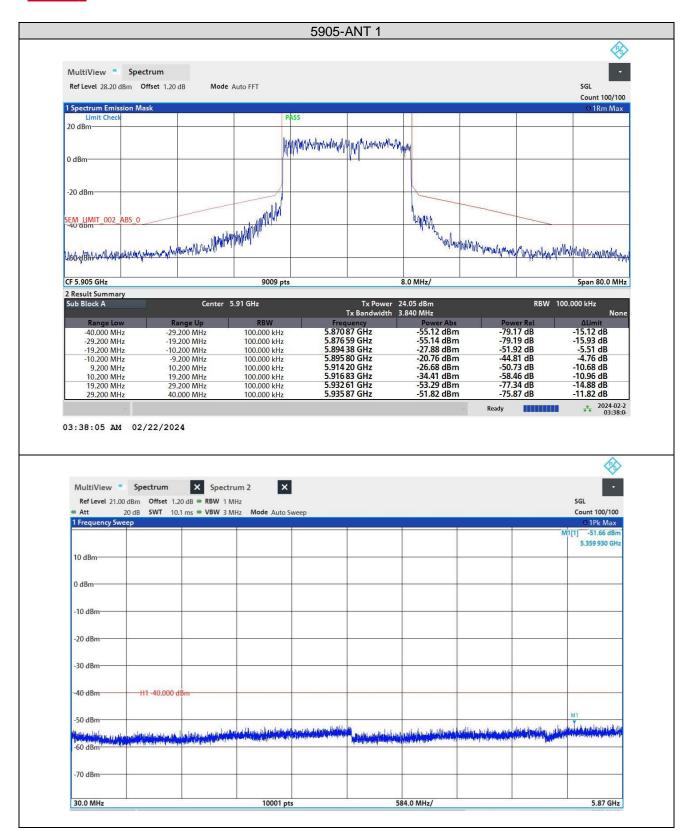
3.3.3 TEST SETUP

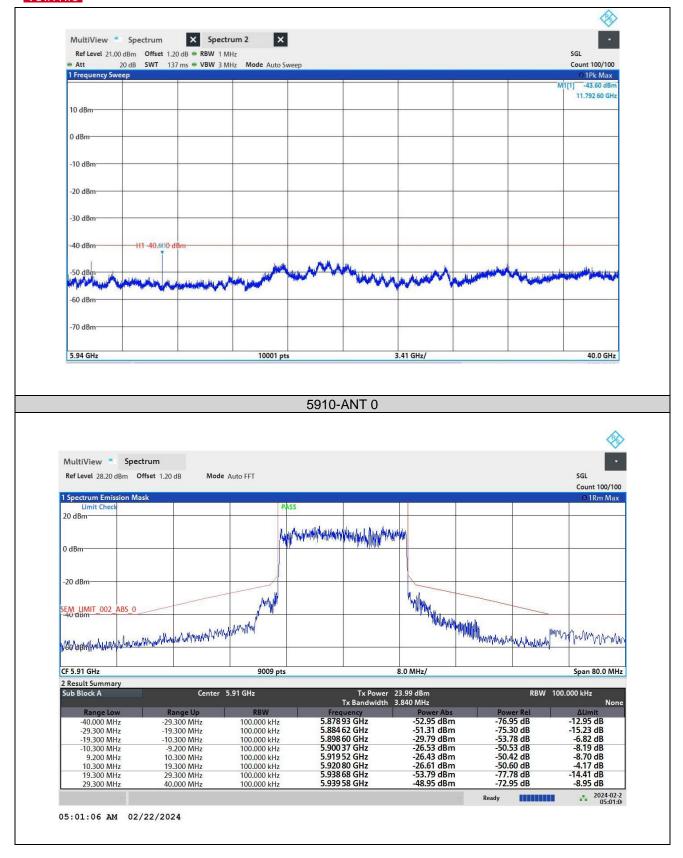

3.3.4 TEST RESULTS

Test Result

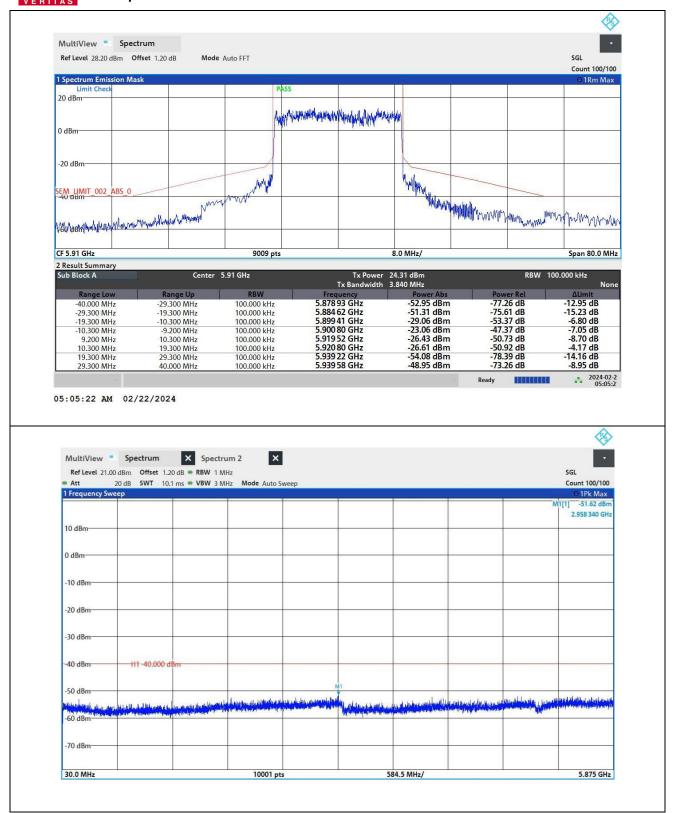
TEST	Frequency	Measurement	t Results [dBc]		
MODE	[MHz]	ANT0	ANT1	Limits [dBc]	Results
	5905	Note	Note	Note	PASS
C-V2X	5910	Note	Note	Note	PASS
	5915	Note	Note	Note	PASS

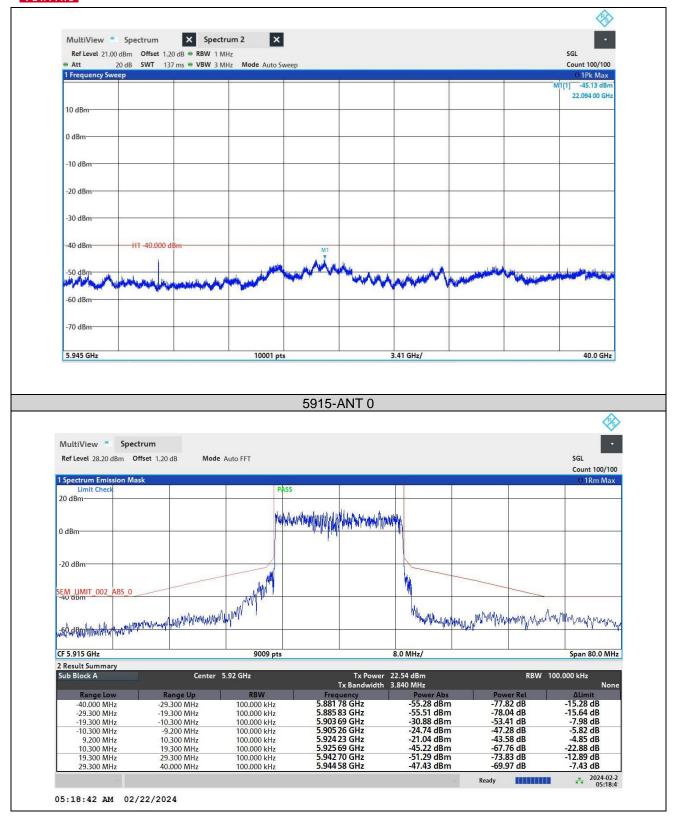
NOTE: Refer to following test plots


Test Graphs

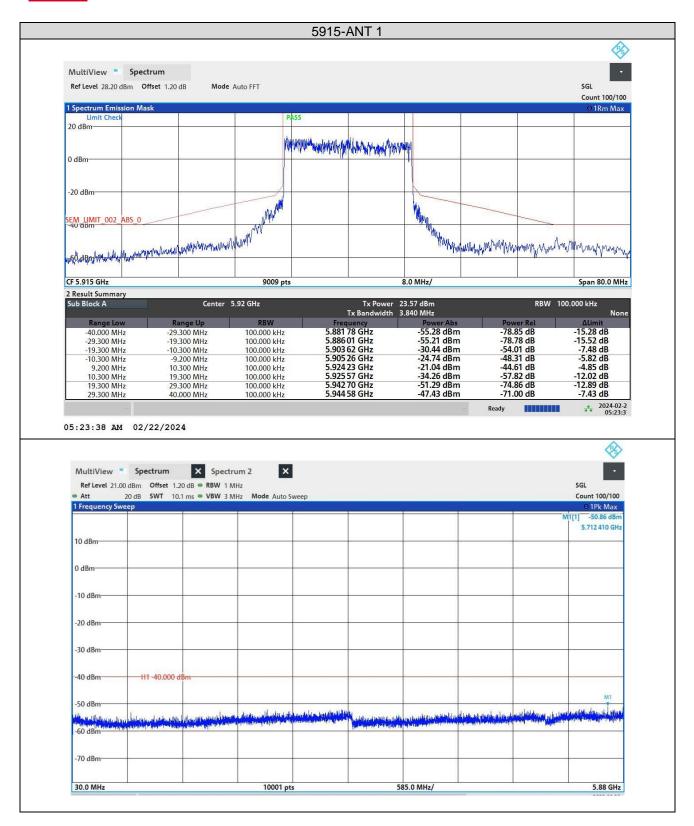


									*
MultiView	-	× Spectru							*
	0 dBm Offset 1.2 20 dB SWT 10.1			weep					SGL Count 100/100
1 Frequency Sw	eep							M	O 1Pk Max 1[1] -50.97 dBm
									5.371 020 GHz
10 dBm									
0 dBm			-		0.0				
-10 dBm					37				
-20 dBm					6				
20.10									
-30 dBm									
-40 dBm	H1 -40.000 dl	3m			-				
F0 10-									M1
-50 dBm		والعاودان والمعادي	di Hanangabala	to and service and	المناجع ومحتاج والمناج		an Silver and the second	and the second state	
-60 dBm	and the second second second second	and the shifted a large houses.	and a second in the second in		Presentine and a part of	Print half with a street of the	In the second second second second	a lot to a lot to a	
70.10									
-70 dBm									
30.0 MHz			10001 pt:	-	51	84.0 MHz/			5.87 GHz
30.0 MHz MultiView Ref Level 21.00	0 dBm Offset 1.20 20 dB SWT 137		um 2 X		51	34.0 MHz/			SGL Count 100/100 O 1Pk Max
30.0 MHz MultiView Ref Level 21.00 Att	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/			SGL Count 100/100
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att Frequency Sw 10 dBm	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/			SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm -10 dBm	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm -10 dBm	0 dBm Offset 1.20 20 dB SWT 137	dB 🗢 RBW 1 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 1.2(20 dB SWT 137 eep	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X		51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att Trequency Sw 0 dBm -10 dBm -20 dBm	0 dBm Offset 1.20 20 dB SWT 137	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X	weep		34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 1.2(20 dB SWT 137 eep	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X	weep	51	34.0 MHz/		M	SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 1.2(20 dB SWT 137 eep	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X	weep		34.0 MHz/			SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 frequency Sw 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offset 1.2(20 dB SWT 137 eep	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X	weep		34.0 MHz/			SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm
30.0 MHz MultiView Ref Level 21.00 Att 1 frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 1.2(20 dB SWT 137 eep	dB ● RBW 1 MH ms ● VBW 3 MH	um 2 X	weep		34.0 MHz/			SGL Count 100/100 O 1Pk Max 1(1) -43.17 dBm





	Spectrum	Spectrur						SGL
Att 20	dB SWT 10.1 m			weep				Count 100/100
1 Frequency Swee	P						N	O 1Pk Max
								2.700 020 GH
10 dBm								
0 dBm								
-10 dBm								
20.10								
-20 dBm								
-30 dBm								
-40 dBm	H1 -40.000 dBm	-					 	
-50 dBm				MI				a half at a start
-60 dBm	stollabush a haun and		المناجع المعسل في التي الكاني ودينا عليه المدينا بإسلام الإير ودي		Label fell, frequence	a dad an harden findheide sond		and the state of the second state
-60 dBm								
70.45								
-70 dBm						2		
20.0 MU			10001			84.5 MHz/		5.875 GH
30.0 MHz			10001 pts		5	o n .J WIHZ/		5.8/5 GH
MultiView Ref Level 21.00 d	Spectrum	Spectru						SGL SGL
Ref Level 21.00 d	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep				Count 100/100
Ref Level 21.00 d	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 © 1Pk Max
Ref Level 21.00 c	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Swee	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm	dBm Offset 1.20 d D dB SWT 137 m	B 🗢 RBW 1 MHz	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	3Bm Offset 1.20 d 0 dB SWT 137 m p	B • RBW 1 MHa	2	veep			N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm	dBm Offset 1.20 d D dB SWT 137 m	B • RBW 1 MHa	2				N	Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	3Bm Offset 1.20 d 0 dB SWT 137 m p	B • RBW 1 MHa	z Mode Auto Sv					Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	3Bm Offset 1.20 d 0 dB SWT 137 m p	B • RBW 1 MHa	2					Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	z Mode Auto Sv					Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	z Mode Auto Sv			winner		Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	z Mode Auto Sv					Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	z Mode Auto Sv		www			Count 100/100 O 1Pk Max 1[1] -43.29 dBr
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	Z Mode Auto Su					Count 100/100 0 1Pk Max 1[1] -43.29 dBr 11.820 60 GH
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	z Mode Auto Sv			3.41 GHz/		Count 100/100 0 1Pk Max 1[1] -43.29 dBr 11.820 60 GH
Ref Level 21.00 d Att 20 1 Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	IBm Offset 1.20 d 0 dB SWT 137 m p H1 -40.000 dBm	B • RBW 1 MHa	Z Mode Auto Su					Count 100/100 0.1Pk Max 1(1) -43.29 dBr 11.820 60 GH



Ref level 21.00	Spectrum	Spectr							SGL
			1Hz Mode Auto S	weep					Count 100/100
1 Frequency Sw			-	r		19 J	1	1	O 1Pk Max
								N	11[1] -50.98 dBn 5.454 460 GH
10 dBm									
TO UDIN									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	H1 -40.000 dl	Bm							
									M1
-50 dBm			بعيدان وريا	. I. a sette Beaulaipillis Ma				males whited a la	unald same and a
-60 dBm	the Republic Providence	A REAL PROPERTY OF THE PARTY OF		And build and an able of the last state	The Manha Basa Basa Barana	the state of the s		The second s	and the band over the term
-60 dBm									
70.10									
-70 dBm									
30.0 MHz			10001 pt	s	5	85.0 MHz/			5.88 GHz
		_							\$
MultiView		× Spect							\$
Ref Level 21.00	dBm Offset 1.20) dB 🗢 RBW 1 M	IHz						SGL
Ref Level 21.00	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M							SGL Count 100/100 0 1Pk Max
Ref Level 21.00	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					Ň	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att <u>1 Frequency Swe</u>	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 0 1Pk Max
Ref Level 21.00	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swa 10 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att <u>1 Frequency Swe</u>	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swa 10 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att <u>1 Frequency Swd</u> 10 dBm 0 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					N	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att <u>1 Frequency Swd</u> 10 dBm 0 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz						SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swi 10 dBm 0 dBm -10 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					N	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swi 10 dBm 0 dBm -10 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					h	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swi 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 1.20 20 dB SWT 137) dB 🗢 RBW 1 M	IHz					N	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Swi 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 1.20 20 dB SWT 137	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep				N	SGL Count 100/100 01Pk Max 11[1] -43.57 dBn
Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 1.2(20 dB SWT 137 20 dB SWT 137	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep				N	SGL Count 100/100 0 1Pk Max 11[1] -43.57 dBn 11.845 20 GH
Ref Level 21.00 Att 1 Frequency Swi 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 1.2(20 dB SWT 137 Sep H11-40.000 dl	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep					SGL Count 100/100 O 1Pk Max 11(1) -43.57 dBn 11.845 20 GH
Ref Level 21:00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	0 dBm Offset 1.2(20 dB SWT 137 20 dB SWT 137	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep					SGL Count 100/100 O 1Pk Max 11(1) -43.57 dBn 11.845 20 GH
Ref Level 21.00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 1.2(20 dB SWT 137 Sep H11-40.000 dl	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep					SGL Count 100/100 O 1Pk Max 11(1) -43.57 dBn 11.845 20 GH
Ref Level 21:00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 1.2(20 dB SWT 137 Sep H11-40.000 dl	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep					SGL Count 100/100 O 1Pk Max 11(1) -43.57 dBn 11.845 20 GH
Ref Level 21:00 Att 1 Frequency Sw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	0 dBm Offset 1.2(20 dB SWT 137 Sep H11-40.000 dl	D dB ● RBW 1 M ms ● VBW 3 M	IHz	weep					SGL Count 100/100 O 1Pk Max 11(1) -43.57 dBn 11.845 20 GH

Test Report No.: PSU-QSU2307030110RF12

O 1Pk Max M1[1] -44.55 dBr 7.439 50 GH
Herein and a stand and and and and and and and and and

Conclusion

According to the requirements of KDB Publication 511808 D01, The Lab supplemented the C-V2X test. This OBU device applies for C-V2X waivers is FCC compliant.

--END---