SAR EVALUATION REPORT For # SZ DJI TECHNOLOGY CO., LTD 14th floor, West Wing, Skyworth Semiconductor Design Building NO.18 Gaoxin South 4th Ave, Nanshan, Shenzhen, Guangdong, China FCC ID: SS3-GL300K1801 | Report Type: | | Product Type: | | |-----------------|---------------------------|---------------|-----------| | Original Report | | C1 | | | Report Number: | RDG180206002-2 | 20A | | | Report Date: | 2018-03-15 | | | | Reviewed By: | Rocky Xiao
RF Engineer | pocky | xiao | | Prepared By: | No.69 Pulongcun. | 358891 | Oongguan) | This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" | Attestation of Test Results | | | | | | | |-----------------------------|--|----------------------------------|-----------|--|--|--| | | EUT Description | C1 | | | | | | | Tested Model | GL300K | | | | | | EUT
Information | FCC ID | SS3-GL300K1801 | | | | | | | Serial Number | 18020600220 | | | | | | | Test Date | 2018-03-10 ~ 2018-03-14 | | | | | | MOD | Е | Max. SAR Level(s) Reported(W/kg) | Limit | | | | | SDR 2.4GHz | 10g Extremity SAR | 3.05 | | | | | | SDR 5.8GHz | 10g Extremity SAR | 0.88 | | | | | | Wi-Fi 2.4GHz | 10g Extremity SAR | 0.05 | 4.0 W/kg | | | | | Wi-Fi 5.2GHz | 10g Extremity SAR | 0.09 | 4.0 W/Kg | | | | | Wi-Fi 5.8GHz | 10g Extremity SAR | 0.14 | | | | | | Simultaneous | 10g Extremity SAR | 3.26 | | | | | | SDR 2.4GHz | 1g Body SAR | 1.16 | | | | | | SDR 5.8GHz | 1g Body SAR | 0.41 | 1. 6 W/kg | | | | | Wi-Fi 2.4GHz | 1g Body SAR | 0.05 | | | | | | Wi-Fi 5.2GHz | 1g Body SAR | 0.11 | | | | | | Wi-Fi 5.8GHz | 1g Body SAR | 0.16 | | | | | | Simultaneous | 1g Body SAR | 1.46 | | | | | | Applicable Standards | FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEC 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) KDB procedures KDB 447498 D01 General RF Exposure Guidance v06. KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 248227 D01 802 11 Wi-Fi SAR v02r02 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D07 UMPC Mini Tablet v01r02 | | | | | | Report No.: RDG180206002-20A **Note:** This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. SAR Evaluation Report 2 of 61 # **TABLE OF CONTENTS** | DOCUMENT REVISION HISTORY | 4 | |--|----| | EUT DESCRIPTION | 5 | | TECHNICAL SPECIFICATION | 5 | | REFERENCE, STANDARDS, AND GUIDELINES | 6 | | SAR LIMITS | 7 | | FACILITIES | 8 | | DESCRIPTION OF TEST SYSTEM | 9 | | EQUIPMENT LIST AND CALIBRATION | 14 | | EQUIPMENTS LIST & CALIBRATION INFORMATION | 14 | | SAR MEASUREMENT SYSTEM VERIFICATION | 15 | | Liquid Verification | | | SYSTEM ACCURACY VERIFICATIONSAR SYSTEM VALIDATION DATA | | | EUT TEST STRATEGY AND METHODOLOGY | | | TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR. | | | CHEEK/TOUCH POSITION | 24 | | EAR/TILT POSITION | | | TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS TEST DISTANCE FOR SAR EVALUATION | | | SAR Evaluation Procedure | | | CONDUCTED OUTPUT POWER MEASUREMENT | 27 | | TEST PROCEDURE | | | MAXIMUM TARGET OUTPUT POWER | 27 | | TEST RESULTS: | | | SAR EXCLUSION CONSIDERATIONS | | | Antennas Location: Antenna Distance To Edge | | | SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS. | | | SAR MEASUREMENT RESULTS | 36 | | SAR TEST DATA | | | SAR MEASUREMENT VARIABILITY | 54 | | SAR SIMULTANEOUS TRANSMISSION DESCRIPTION | 55 | | SAR PLOTS | 57 | | APPENDIX A MEASUREMENT UNCERTAINTY | 58 | | APPENDIX B CALIBRATION CERTIFICATES | 60 | | APPENDIX C EUT TEST POSITION PHOTOS | 61 | # **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|------------------|-------------------------|------------------|--| | 1.0 | RDG180206002-20A | Original Report | 2018-03-15 | | Report No.: RDG180206002-20A SAR Evaluation Report 4 of 61 # **EUT DESCRIPTION** This report has been prepared on behalf of *SZ DJI TECHNOLOGY CO.*, *LTD* and their product *C1*, Model: *GL300K*, FCC ID: *SS3-GL300K1801*, or the EUT (Equipment under Test) as referred to in the rest of this report. Report No.: RDG180206002-20A All measurement and test data in this report was gathered from production sample serial number: 18020600220 (Assigned by BACL). The EUT was received on 2018-02-23. # **Technical Specification** | Device Type: | Portable | | |---|---|--| | Exposure Category: | Population / Uncontrolled | | | Antonno Tymo(s) | External Antenna for SDR 2.4G/5.8G | | | Antenna Type(s): | Internal Antenna for Wi-Fi 2.4G/5.2G/5.8G | | | Operation Mode: | SDR 2.4G/SDR 5.8G, Wi-Fi 2.4/5.2G/5.8G | | | Accessories: | None | | | | SDR 2.4G: 2403.5~2477.5 MHz | | | | SDR 5.8G: 5728.5~5846.5 MHz | | | Frequency Band: | Wi-Fi 2.4G: 2412~2462 MHz | | | | Wi-Fi 5.2G: 5180~5240 MHz | | | | Wi-Fi 5.8G: 5745~5825 MHz | | | | SDR 2.4G: 21.61 dBm | | | | SDR 5.8G: 18.96 dBm | | | Conducted RF Power: | Wi-Fi 2.4G: 11.54 dBm | | | | Wi-Fi 5.2G: 14.22 dBm | | | | Wi-Fi 5.8G: 12.53 dBm | | | Dimensions (L*W*H): 18.2 cm (L) \times 17.2 cm (W) \times 3.2 cm (H) | | | | Power Source: | 7.4 VDC Rechargeable Battery | | | Normal Operation: | Handheld and Close to Body | | SAR Evaluation Report 5 of 61 ## REFERENCE, STANDARDS, AND GUIDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No.: RDG180206002-20A This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test
configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. SAR Evaluation Report 6 of 61 ## **SAR Limits** #### **FCC** Limit Report No.: RDG180206002-20A | | SAR (W/kg) | | | |--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | #### **CE** Limit | | SAR (W/kg) | | | |--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak
(averaged over any 10 g of
tissue) | 2.0 | 10 | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 4.0W/kg for 10g Extremity SAR and 1.6W/kg for 1g Body SAR applied to the EUT. SAR Evaluation Report 7 of 61 ## **FACILITIES** The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Report No.: RDG180206002-20A The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218,the FCC Designation No.: CN1220. The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D. The test sites and measurement facilities used to collect data are located at: | SAR Lab 1 | ⊠ SAR Lab 2 | |-----------|-------------| |-----------|-------------| SAR Evaluation Report 8 of 61 # **DESCRIPTION OF TEST SYSTEM** These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter: # **DASY5 System Description** The DASY5 system for performing compliance tests consists of the following items: SAR Evaluation Report 9 of 61 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running Win7 professional operating system and the DASY52 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### **DASY5 Measurement Server** The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical Report No.: RDG180206002-20A processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. SAR Evaluation Report 10 of 61 ## **EX3DV4 E-Field Probes** | Frequency | 10 MHz to > 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | |------------------|---| | Directivity | \pm 0.3 dB in TSL (rotation around probe axis)
\pm 0.5 dB in TSL (rotation normal to probe axis) | | Dynamic
Range | 10 μ W/g to > 100 mW/g
Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | Report No.: RDG180206002-20A ## **ES3DV2 E-Field Probes** | Frequency | 10 MHz to > 4 GHz
Linearity: ± 0.2 dB (30 MHz to 4 GHz) | |---------------|--| | Directivity | ± 0.2 dB in TSL (rotation around probe axis)
± 0.3 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 5 μ W/g to > 100 mW/g
Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) | | Dimensions | Overall length: 337 mm (Tip: 10 mm) Tip diameter: 4 mm (Body: 10 mm) Typical distance from probe tip to dipole centers: 4.0 mm | | Application | General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | SAR Evaluation Report 11 of 61 ### **Triple Flat Phantom** The SAM twin phantom is a fiberglass shell phantom with $2mm(\pm~0.2~mm)$ shell thickness . The phantom shell is compatible with SPEAG tissue simulating liquids (sugar and oil based). Use of other liquids may render the phantom warranty void (see note or consult SPEAG support). The phantom table have the size of $100 \times 75 \times 91 \text{ cm}$ (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom. The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) Report No.: RDG180206002-20A A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot. #### **Robots** The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchrony motors; no stepper motors) - Low ELF interference (motor control fields shielded
via the closed metallic construction shields) The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli. #### **Area Scans** Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. #### **Zoom Scan (Cube Scan Averaging)** The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10 mm, with the side length of the 10 g cube is 21.5 mm. SAR Evaluation Report 12 of 61 Report No.: RDG180206002-20A When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis. ## Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. ## Recommended Tissue Dielectric Parameters for Head and Body | Frequency | Head Tissue | | Body Tissue | | |-----------|-------------|---------|-------------|---------| | (MHz) | εr | O'(S/m) | εr | O (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | SAR Evaluation Report 13 of 61 # **EQUIPMENT LIST AND CALIBRATION** # **Equipments List & Calibration Information** | Equipment | Model | S/N | Calibration
Date | Calibration
Due Date | |--------------------------------|---------------|---------------|---------------------|-------------------------| | DASY5 Test Software | DASY52.8 | N/A | NCR | NCR | | DASY5 Measurement Server | DASY5 4.5.12 | 1567 | NCR | NCR | | Data Acquisition Electronics | DAE4 | 772 | 2017/10/9 | 2018/10/8 | | E-Field Probe | ES3DV2 | 3019 | 2017/10/30 | 2018/10/29 | | E-Field Probe | EX3DV4 | 7441 | 2017/11/2 | 2018/11/1 | | Mounting Device | MD4HHTV5 | BJPCTC0152 | NCR | NCR | | Triple Flat Phantom 5.1C | QD 000 P51 CA | 1130 | NCR | NCR | | Dipole,2450 MHz | D2450V2 | 971 | 2015/7/8 | 2018/7/8 | | Dipole,5GHz | D5GHzV2 | 1246 | 2016/11/7 | 2019/11/6 | | Simulated Tissue 2450 MHz Body | TS-2450-B | 1709245002 | Each Time | / | | Simulated Tissue 5250 MHz Body | TS-5250-B | 1701525002 | Each Time | / | | Simulated Tissue 5800 MHz Body | TS-5800-B | 1701580002 | Each Time | / | | Network Analyzer | 8753C | 3033A02857 | 2017/8/31 | 2018/8/31 | | Dielectric assessment kit | 1253 | SM DAK 040 CA | NCR | NCR | | Signal Generator | N5182B | MY51350142 | 2017/5/4 | 2018/5/4 | | Power Meter | EPM-441A | GB37481494 | 2017/12/11 | 2018/12/11 | | Power Amplifier | ZVA-183-S+ | 5969001149 | NCR | NCR | | Directional Coupler | 488Z | N/A | NCR | NCR | | Attenuator | 20dB, 100W | N/A | NCR | NCR | | Attenuator | 3dB, 150W | N/A | NCR | NCR | Report No.: RDG180206002-20A SAR Evaluation Report 14 of 61 # SAR MEASUREMENT SYSTEM VERIFICATION # **Liquid Verification** Report No.: RDG180206002-20A Liquid Verification Setup Block Diagram # **Liquid Verification Results** | Frequency | Liquid | - | Liquid Target | | arget Value | | elta
6) | Tolerance | |-----------|--------------------------------|--------------------|---------------|----------------|-------------|--------------------------|--------------|-----------| | (MHz) | Туре | $\epsilon_{\rm r}$ | O'
(S/m) | ε _r | O'
(S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 2403.5 | Simulated Tissue 2450 MHz Body | 54.382 | 1.909 | 52.76 | 1.91 | 3.07 | -0.05 | ±5 | | 2412 | Simulated Tissue 2450 MHz Body | 54.251 | 1.915 | 52.75 | 1.91 | 2.85 | 0.26 | ±5 | | 2437 | Simulated Tissue 2450 MHz Body | 54.368 | 1.938 | 52.72 | 1.94 | 3.13 | -0.1 | ±5 | | 2441.5 | Simulated Tissue 2450 MHz Body | 53.35 | 1.939 | 52.71 | 1.94 | 1.21 | -0.05 | ±5 | | 2450 | Simulated Tissue 2450 MHz Body | 52.717 | 1.957 | 52.7 | 1.95 | 0.03 | 0.36 | ±5 | | 2462 | Simulated Tissue 2450 MHz Body | 52.022 | 1.977 | 52.68 | 1.97 | -1.25 | 0.36 | ±5 | | 2477.5 | Simulated Tissue 2450 MHz Body | 51.825 | 1.983 | 52.67 | 1.99 | -1.6 | -0.35 | ±5 | ^{*}Liquid Verification above was performed on 2018-03-10. | Frequency | Liquid | Liquid
Parameter Targo | | Target Value | | Delta
(%) | | Tolerance | |-----------|--------------------------------|---------------------------|----------|----------------|----------|--------------------------|--------------|-----------| | (MHz) | Туре | $\epsilon_{ m r}$ | O' (S/m) | ε _r | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 2403.5 | Simulated Tissue 2450 MHz Body | 54.434 | 1.911 | 52.76 | 1.91 | 3.17 | 0.05 | ±5 | | 2412 | Simulated Tissue 2450 MHz Body | 54.368 | 1.923 | 52.75 | 1.91 | 3.07 | 0.68 | ±5 | | 2437 | Simulated Tissue 2450 MHz Body | 54.191 | 1.948 | 52.72 | 1.94 | 2.79 | 0.41 | ±5 | | 2441.5 | Simulated Tissue 2450 MHz Body | 53.407 | 1.955 | 52.71 | 1.94 | 1.32 | 0.77 | ±5 | | 2450 | Simulated Tissue 2450 MHz Body | 52.675 | 1.967 | 52.7 | 1.95 | -0.05 | 0.87 | ±5 | | 2462 | Simulated Tissue 2450 MHz Body | 51.999 | 1.985 | 52.68 | 1.97 | -1.29 | 0.76 | ±5 | | 2477.5 | Simulated Tissue 2450 MHz Body | 51.86 | 1.998 | 52.67 | 1.99 | -1.54 | 0.4 | ±5 | ^{*}Liquid Verification above was performed on 2018-03-11. SAR Evaluation Report 15 of 61 | Frequency | Liquid | Liquid
Parameter Targe | | Target Value | | elta
6) | Tolerance | | |-----------|--------------------------------|---------------------------|----------|-------------------|-------------|--------------------------|--------------|-----| | (MHz) | Туре | $\epsilon_{ m r}$ | O' (S/m) | $\epsilon_{ m r}$ | O'
(S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 5728.5 | Simulated Tissue 5800 MHz Body | 49.394 | 5.955 | 48.30 | 5.92 | 2.27 | 0.59 | ±5 | | 5745 | Simulated Tissue 5800 MHz Body | 49.221 | 6.013 | 48.27 | 5.94 | 1.97 | 1.23 | ±5 | | 5785 | Simulated Tissue 5800 MHz Body | 48.802 | 6.154 | 48.22 | 5.98 | 1.21 | 2.91 | ±5 | | 5786.5 | Simulated Tissue 5800 MHz Body | 48.786 | 6.159 | 48.22 | 5.98 | 1.17 | 2.99 | ±5 | | 5787.5 | Simulated Tissue 5800 MHz Body | 48.776 | 6.163 | 48.22 | 5.99 | 1.15 | 2.89 | ±5 | | 5800 | Simulated Tissue 5800 MHz Body | 48.645 | 6.207 | 48.20 | 6.00 | 0.92 | 3.45 | ±5 | | 5825 | Simulated Tissue 5800 MHz Body | 48.383 | 6.295 | 48.17 | 6.03 | 0.44 | 4.39 | ±5 | | 5846.5 | Simulated Tissue 5800 MHz Body | 48.158 | 6.301 | 48.14 | 6.05 | 0.04 | 4.15 | ±5 | ^{*}Liquid Verification above was performed on 2018-03-12. | Frequency | Liquid | Liquid
Parameter Target | | Target Value | | lta
6) | Tolerance | | |-----------|--------------------------------|----------------------------|----------|-------------------|----------|--------------------------|--------------|-----| | (MHz) | Туре | $\epsilon_{ m r}$ | O' (S/m) | $\epsilon_{ m r}$ | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 5728.5 | Simulated Tissue 5800 MHz Body | 49.512 | 5.935 | 48.30 | 5.92 | 2.51 | 0.25 | ±5 | | 5745 | Simulated Tissue 5800 MHz Body | 49.348 | 6.022 | 48.27 | 5.94 | 2.23 | 1.38 | ±5 | | 5785 | Simulated Tissue 5800 MHz Body | 48.951 | 6.095 | 48.22 | 5.98 | 1.52 | 1.92 | ±5 | | 5786.5 | Simulated Tissue 5800 MHz Body | 48.936 | 6.104 | 48.22 | 5.98 | 1.48 | 2.07 | ±5 | | 5787.5 | Simulated Tissue 5800 MHz Body | 48.926 | 6.109 | 48.22 | 5.99 | 1.46 | 1.99 | ±5 | | 5800 | Simulated Tissue 5800 MHz Body | 48.802 | 6.265 | 48.20 | 6.00 | 1.25 | 4.42 | ±5 | | 5825 | Simulated Tissue 5800 MHz Body | 48.554 | 6.315 | 48.17 | 6.03 | 0.8 | 4.73 | ±5 | | 5846.5 | Simulated Tissue 5800 MHz Body | 48.34 | 6.325 | 48.14 | 6.05 | 0.42 | 4.55 | ±5 | ^{*}Liquid Verification above was performed on 2018-03-13. | Frequency | Liquid | ıid Parameter | | Target Value | | e Delta (%) | | Tolerance | |-----------|--------------------------------|----------------|-------|----------------|-------|-----------------------|-------|-----------| | (MHz) | Туре | E _r | Q | E _r | Q | $\Delta
\epsilon_{r}$ | ΔC | (%) | | | | or | (S/m) | or | (S/m) | | (S/m) | | | 5180 | Simulated Tissue 5250 MHz Body | 48.523 | 5.334 | 49.04 | 5.28 | -1.05 | 1.02 | ±5 | | 5200 | Simulated Tissue 5250 MHz Body | 48.449 | 5.376 | 49.01 | 5.3 | -1.14 | 1.43 | ±5 | | 5240 | Simulated Tissue 5250 MHz Body | 48.375 | 5.381 | 48.96 | 5.35 | -1.19 | 0.58 | ±5 | | 5250 | Simulated Tissue 5250 MHz Body | 48.297 | 5.399 | 48.95 | 5.36 | -1.33 | 0.73 | ±5 | ^{*}Liquid Verification above was performed on 2018-03-14. SAR Evaluation Report 16 of 61 ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. Report No.: RDG180206002-20A The spacing distances in the **System Verification Setup Block Diagram** is given by the following: - a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$ - b) $s = 10 \text{ mm} \pm 0.2 \text{ mm for } 1000 \text{ MHz} < f \le 3000 \text{ MHz};$ - c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3000 \text{ MHz} < f \le 6000 \text{ MHz}$. ## **System Verification Setup Block Diagram** ## **System Accuracy Check Results** | Date | Frequency
Band | Liquid
Type | Input
Power
(mW) | SA | sured
AR
/kg) | Normalized
to 1W
(W/kg) | Target
Value
(W/kg) | Delta
(%) | Tolerance (%) | |------------|-------------------|----------------|------------------------|-----|---------------------|-------------------------------|---------------------------|--------------|---------------| | 2018/03/10 | 2450 MHz | Dody | 100 | 1g | 5.27 | 52.7 | 50.6 | 4.15 | ±10 | | 2018/03/10 | 2430 MHZ | Body | 100 | 10g | 2.49 | 24.9 | 23.9 | 4.18 | ±10 | | 2019/02/11 | 2450 MH- | D - 1 | 100 | 1g | 5.15 | 51.5 | 50.6 | 1.78 | ±10 | | 2018/03/11 | 2450 MHz | Body | y 100 | 10g | 2.37 | 23.7 | 23.9 | -0.84 | ±10 | | 2019/02/12 | 5000 MH- | D. L. | 100 | 1g | 7.91 | 79.1 | 75.4 | 4.91 | ±10 | | 2018/03/12 | 5800 MHz | Body | 100 | 10g | 2.22 | 22.2 | 20.9 | 6.22 | ±10 | | 2019/02/12 | 5000 MH- | D. 1- | 100 | 1g | 7.82 | 78.2 | 75.4 | 3.71 | ±10 | | 2018/03/13 | 5800 MHz | Body | 100 | 10g | 2.19 | 21.9 | 20.9 | 4.78 | ±10 | | 2019/02/14 | 5250 MH- | Dada | 100 | 1g | 8.35 | 83.5 | 77.6 | 7.6 | ±10 | | 2018/03/14 | 5250 MHz | Body | 100 | 10g | 2.28 | 22.8 | 21.7 | 5.07 | ±10 | ^{*}The SAR values above are normalized to 1 Watt forward power. SAR Evaluation Report 17 of 61 # SAR SYSTEM VALIDATION DATA ## System Performance 2450MHz Body 2018/03/10 ## DUT: D2450V2; Type: 2450 MHz; Serial: 971 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.957 \text{ S/m}$; $\varepsilon_r = 52.717$; $\rho = 1000 \text{ kg/m}^3$ Report No.: RDG180206002-20A Phantom section: Center Section #### D ASY5 Configuration: • Probe: ES3DV2 - SN3019; ConvF(4.05, 4.05, 4.05); Calibrated: 2017/10/30; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn772; Calibrated: 2017/10/9 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130 • Measurement SW: DASY52, Version 52.8 (8); Area Scan (61x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 9.66 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.01 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.27 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 9.25 W/kg 0 dB = 9.25 W/kg = 9.66 dBW/kg SAR Evaluation Report 18 of 61 #### System Performance 2450MHz Body 2018/03/11 ## DUT: D2450V2; Type: 2450 MHz; Serial: 971 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.967 \text{ S/m}$; $\varepsilon_r = 52.675$; $\rho = 1000 \text{ kg/m}^3$ Report No.: RDG180206002-20A Phantom section: Center Section #### D ASY5 Configuration: • Probe: ES3DV2 - SN3019; ConvF(4.05, 4.05, 4.05); Calibrated: 2017/10/30; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn772; Calibrated: 2017/10/9 • Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130 • Measurement SW: DASY52, Version 52.8 (8); Area Scan (61x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 9.49 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.54 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.15 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 9.12 W/kg 0 dB = 9.12 W/kg = 9.60 dBW/kg SAR Evaluation Report 19 of 61 # System Performance 5800 MHz Body 2018/03/12 ## DUT: D5GHzV2; Type: 5800 MHz; Serial: SN:1246 Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 6.207$ S/m; $\varepsilon_r = 48.645$; $\rho = 1000$ kg/m³ Report No.: RDG180206002-20A Phantom section: Center Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7441; ConvF(4.35, 4.35, 4.35); Calibrated: 2017/11/2; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn772; Calibrated: 2017/10/9 • Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130 • Measurement SW: DASY52, Version 52.8 (8); Area Scan (81x51x1): Interpolated grid: dx=0.6000 mm, dy=0.6000 mm Maximum value of SAR (interpolated) = 19.5 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 37.12 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.97 dBW/kg SAR Evaluation Report 20 of 61 # System Performance 5800 MHz Body 2018/03/13 ## DUT: D5GHzV2; Type: 5800 MHz; Serial: SN:1246 Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 6.265 \text{ S/m}$; $\varepsilon_r = 48.802$; $\rho = 1000 \text{ kg/m}^3$ Report No.: RDG180206002-20A Phantom section: Center Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7441; ConvF(4.35, 4.35, 4.35); Calibrated: 2017/11/2; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn772; Calibrated: 2017/10/9 • Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130 • Measurement SW: DASY52, Version 52.8 (8); Area Scan (81x51x1): Interpolated grid: dx=0.6000 mm, dy=0.6000 mm Maximum value of SAR (interpolated) = 19.1 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.42 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 18.5 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg SAR Evaluation Report 21 of 61 # System Performance 5250 MHz Body 2018/03/14 ## DUT: D5GHzV2; Type: 5250 MHz; Serial: SN:1246 Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 5.399 \text{ S/m}$; $\varepsilon_r = 48.297$; $\rho = 1000 \text{ kg/m}^3$ Report No.: RDG180206002-20A Phantom section: Center Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7441; ConvF(5.22, 5.22, 5.22); Calibrated: 2017/11/2; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn772; Calibrated: 2017/10/9 • Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130 • Measurement SW: DASY52, Version 52.8 (8); Area Scan (81x51x1): Interpolated grid: dx=0.6000 mm, dy=0.6000 mm Maximum value of SAR (interpolated) = 24.5 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 45.07 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 37.2 W/kg SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg SAR Evaluation Report 22 of 61 #### **EUT TEST STRATEGY AND METHODOLOGY** ## Test Positions for Device Operating Next to a Person's Ear This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth. A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR: Report No.:
RDG180206002-20A SAR Evaluation Report 23 of 61 #### **Cheek/Touch Position** The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established: When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom. Report No.: RDG180206002-20A (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom. For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer. #### **Cheek / Touch Position** #### **Ear/Tilt Position** With the handset aligned in the "Cheek/Touch Position": - 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. - 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability. If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional. SAR Evaluation Report 24 of 61 ## Ear /Tilt 15° Position Report No.: RDG180206002-20A ## Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices #### **Test Distance for SAR Evaluation** For Handheld mode(10g Extremity SAR) the EUT(Equipment Under Test) is set directly against the phantom, the test distance is 0mm; For Close to Body mode(1g Body SAR) the EUT is set 10mm away from the phantom, the test distance is 10mm. SAR Evaluation Report 25 of 61 #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No.: RDG180206002-20A - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 10 mm x 10 mm, and the SAR distribution was determined by integrated grid of 1.0 mm x 1.0 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. SAR Evaluation Report 26 of 61 # CONDUCTED OUTPUT POWER MEASUREMENT ## **Test Procedure** The RF output of the transmitter was connected to the input port of the Power Meter through Connector. # **Maximum Target Output Power** | Mode | Frequency | Max Target | Power(dBm) | |----------------------|-----------|------------|------------| | | (MHz) | Chain 0 | Chain 1 | | CDD 2.4C | 2403.5 | 21.6 | 21.7 | | SDR 2.4G
(1.4MHz) | 2441.5 | 21.6 | 21.7 | | (1.411112) | 2477.5 | 19.5 | 19.5 | | | 2405.5 | 10.8 | 10.8 | | | 2406.5 | 10.8 | 10.8 | | | 2407.5 | 12 | 12 | | | 2408.5 | 12 | 12 | | | 2409.5 | 13 | 13 | | | 2410.5 | 13 | 13 | | | 2411.5 | 13 | 13 | | | 2412.5 | 13 | 13 | | | 2413.5 | 14 | 14 | | | 2414.5 | 15 | 15 | | | 2415.5 | 15 | 14.8 | | | 2416.5 | 16 | 16 | | | 2417.5 | | | | | 2441.5 | 18.8 | 18.8 | | | 2457.5 | | | | SDR 2.4G | 2458.5 | 16.5 | 16.5 | | (10MHz) | 2459.5 | 16.5 | 16.5 | | (10141112) | 2460.5 | 15.5 | 15.5 | | | 2461.5 | 15.5 | 15.5 | | | 2462.5 | 14.5 | 14.5 | | | 2463.5 | 14.5 | 14.5 | | | 2464.5 | 13.5 | 13.5 | | | 2465.5 | 13.5 | 13.5 | | | 2466.5 | 11 | 11.2 | | | 2467.5 | 11 | 11 | | | 2468.5 | 10 | 10 | | | 2469.5 | 10 | 10 | | | 2470.5 | 9 | 9 | | | 2471.5 | 9 | 9 | | | 2472.5 | 7 | 7 | | | 2473.5 | 6 | 6 | | | 2474.5 | 5 | 5 | | | 2475.5 | 4 | 4 | | | 2476.5 | 2 | 2 | | | 2477.5 | -16 | -16 | SAR Evaluation Report 27 of 61 | (MHz) Chain 0 Chain 0 2410.5 4.5 4. 2411.5 6.5 6. 2412.5 7.2 6. 2413.5 8.5 8. 2414.5 8.5 8. 2415.5 8.5 8. 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 2420.5 12.5 12 | in 1 | |---|------| | 2411.5 6.5 6. 2412.5 7.2 6. 2413.5 8.5 8. 2414.5 8.5 8. 2415.5 8.5 8. 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | | | 2412.5 7.2 6. 2413.5 8.5 8. 2414.5 8.5 8. 2415.5 8.5 8. 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | 5 | | 2413.5 8.5 8. 2414.5 8.5 8. 2415.5 8.5 8.
2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | 5 | | 2414.5 8.5 8. 2415.5 8.5 8. 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | | | 2415.5 8.5 8. 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | | | 2416.5 9.5 9. 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | | | 2417.5 10.5 10 2418.5 11.5 10 2419.5 11.2 11 | | | 2418.5 11.5 10
2419.5 11.2 11 | | | 2419.5 11.2 11 | | | | | | 2420.5 12.5 12 | | | 2421.5 12.5 12 | | | 2421.5 12.5 12
2422.5 12.5 12 | | | 2422.5 12.5 12
2423.5 13.5 13 | | | 2423.3 13.5 13
2424.5 13.5 13 | | | 2424.5 13.5 13
2425.5 14.5 13 | | | 2425.5 14.5 15 | | | 2427.5 14.5 13 | | | 2428.5 15.5 15 | | | 2429.5 15.5 15 | | | 2430 5 16.5 1 | | | SDR 2.4G 2431.5 16.5 12 | | | (20MHz) 2432.5 | • | | | | | 2441.5 18.6 19 | .2 | | | | | 2443.5 | | | 2444.5 16.5 16 | .8 | | 2445.5 16.5 1 | | | 2446.5 15.5 15 | | | 2447.5 15.5 10 | 6 | | 2448.5 14.5 14 | | | 2449.5 14.5 14 | | | 2450.5 13.5 13 | | | 2451.5 13.5 13 | | | 2452.5 12.2 12
2452.5 12.5 12.5 | | | 2453.5 12.5 12 | | | 2454.5 11 11
2455.5 11 11 | | | 2455.5 11 11
2456.5 11.2 11 | | | 2456.5 11.2 11
2457.5 10 10 | | | | | | 2458.5 10 10
2459.5 9.2 9. | | SAR Evaluation Report 28 of 61 | Test mode | Frequency | Max Target | Power(dBm) | |-----------------|-----------|------------|------------| | | (MHz) | Chain 0 | Chain 1 | | | 2460.5 | 9.5 | 9.5 | | | 2461.5 | 8.5 | 8.5 | | | 2462.5 | 8 | 8.5 | | | 2463.5 | 8 | 8.5 | | | 2464.5 | 8 | 8.5 | | SDR 2.4G | 2465.5 | 7 | 7.5 | | | 2466.5 | 7 | 7.5 | | (20MHz) | 2467.5 | 7 | 7.5 | | | 2468.5 | 5 | 5.5 | | | 2469.5 | 1 | 1.5 | | | 2470.5 | -1 | -1 | | | 2471.5 | -1 | -1 | | | 2472.5 | -7 | -6 | | Wi-Fi 2.4G | 2412 | 11.5 | 11.6 | | (802.11b) | 2437 | 11.5 | 11.6 | | | 2462 | 11.5 | 11.6 | | Wi-Fi 2.4G | 2412 | 10 | 10 | | | 2437 | 10.6 | 10.8 | | (802.11g) | 2462 | 10 | 10 | | Wi-Fi 2.4G | 2412 | 9 | 9.5 | | (802.11n HT20) | 2437 | 10.7 | 10.5 | | (802.1111 H120) | 2462 | 9 | 9.5 | | SDR 5.8G | 5728.5 | 19 | 19 | | | 5786.5 | 19 | 19 | | (1.4MHz) | 5846.5 | 19 | 19 | | SDR 5.8G | 5730.5 | 19 | 19 | | | 5787.5 | 19 | 19 | | (10MHz) | 5844.5 | 19 | 19 | | SDR 5.8G | 5735.5 | 18.8 | 18.8 | | | 5787.5 | 18.8 | 18.8 | | (20MHz) | 5839.5 | 18.8 | 18.8 | | Wi-Fi 5.2G | 5180 | 10 | 10 | | (802.11a) | 5200 | 13.5 | 14.5 | | (002.114) | 5240 | 13 | 13.8 | | Wi-Fi 5.2G | 5180 | 9.5 | 9.8 | | (802.11n HT20) | 5200 | 13.5 | 14.5 | | (502.11111120) | 5240 | 13.5 | 14 | | Wi-Fi 5.8G | 5745 | 11.5 | 12.6 | | (802.11a) | 5785 | 11.5 | 12.6 | | (002.114) | 5825 | 11.5 | 12.6 | | Wi-Fi 5.8G | 5745 | 11.5 | 12.5 | | (802.11n HT20) | 5785 | 11 | 12 | | (002.11111120) | 5825 | 11 | 12 | SAR Evaluation Report 29 of 61 # **Test Results:** ## **SDR 2.4G:** | | | Max Averag | e Conducted | | |--------|-----------|------------|-------------|--| | | | Output | | | | Mode | Frequency | (dE | | | | | (MHz) | ` | , | | | | | Chain 0 | Chain 1 | | | | 2403.5 | 21.52 | 21.55 | | | 1.4MHz | 2441.5 | 21.59 | 21.61 | | | | 2477.5 | 19.16 | 19.29 | | | | 2405.5 | 10.62 | 10.63 | | | | 2406.5 | 10.65 | 10.62 | | | | 2407.5 | 11.73 | 11.73 | | | | 2408.5 | 11.82 | 11.69 | | | | 2409.5 | 12.73 | 12.73 | | | | 2410.5 | 12.65 | 12.63 | | | | 2411.5 | 12.68 | 12.78 | | | | 2412.5 | 12.73 | 12.65 | | | | 2413.5 | 13.87 | 13.71 | | | | 2414.5 | 14.83 | 14.79 | | | | 2415.5 | 14.93 | 14.69 | | | | 2416.5 | 15.86 | 15.82 | | | | 2417.5 | 18.75 | 18.76 | | | | 2441.5 | 18.69 | 18.69 | | | | 2456.5 | 17.46 | 18.36 | | | | 2457.5 | 17.24 | 17.26 | | | | 2458.5 | 16.19 | 16.13 | | | 10MHz | 2459.5 | 16.18 | 16.22 | | | IUMITZ | 2460.5 | 15.37 | 15.35 | | | | 2461.5 | 15.41 | 15.22 | | | | 2462.5 | 14.25 | 14.16 | | | | 2463.5 | 14.26 | 14.22 | | | | 2464.5 | 13.09 | 13.23 | | | | 2465.5 | 13.06 | 13.15 | | | | 2466.5 | 10.87 | 10.99 | | | | 2467.5 | 10.73 | 10.96 | | | | 2468.5 | 9.63 | 9.95 | | | | 2469.5 | 9.68 | 9.92 | | | | 2470.5 | 8.81 | 8.94 | | | | 2471.5 | 8.76 | 8.93 | | | | 2472.5 | 6.67 | 6.76 | | | | 2473.5 | 5.48 | 5.87 | | | | 2474.5 | 4.56 | 4.78 | | | | 2475.5 | 3.53 | 3.83 | | | | 2476.5 | 1.45 | 1.78 | | | | 2477.5 | -16.99 | -16.8 | | SAR Evaluation Report 30 of 61 | Mode | Frequency
(MHz) | Output | ge Conducted
t Power
Bm) | | |-------|--------------------|----------------|--------------------------------|--| | | | Chain 0 | Chain 1 | | | | 2410.5 | 4.16 | 4.36 | | | | 2411.5 | 6.05 | 6.26 | | | | 2412.5 | 6.98 | 6.56 | | | | 2413.5 | 7.96 | 8.38 | | | | 2414.5 | 7.93 | 8.25 | | | | 2415.5 | 8.01 | 8.27 | | | | 2416.5 | 9.18 | 9.41 | | | | 2417.5 | 10.17 | 10.53 | | | | 2418.5 | 11.1 | 10.47 | | | | 2419.5 | 11.15 | 11.52 | | | | 2420.5 | 12.39 | 12.48 | | | | 2421.5 | 12.39 | 12.43 | | | | 2422.5 | 12.28 | 12.47 | | | | 2423.5 | 13.41 | 13.56 | | | | 2424.5 | 13.4 | 13.57 | | | | 2425.5 | 14.44 | 14.7 | | | | 2426.5 | 14.27 | 14.55 | | | | 2427.5 | 14.28 | 14.58 | | | | 2428.5
2429.5 | 15.39
15.48 | 15.68
15.62 | | | | 2429.5 | 16.49 | 16.77 | | | 20MHz | 2430.5 | 16.49 | 16.77 | | | | 2431.5 | 18.43 | 18.63 | | | | 2441.5 | 18.55 | 19.03 | | | | 2442.5 | 18.41 | 18.83 | | | | 2443.5 | 17.42 | 17.79 | | | | 2444.5 | 16.21 | 16.76 | | | | 2445.5 | 16.23 | 16.86 | | | | 2446.5 | 15.14 | 15.68 | | | | 2447.5 | 15.09 | 15.71 | | | | 2448.5 | 14.08 | 14.63 | | | | 2449.5 | 13.98 | 14.56 | | | | 2450.5 | 13.24 | 13.52 | | | | 2451.5 | 13.14 | 13.51 | | | | 2452.5 | 11.99 | 12.36 | | | | 2453.5 | 12.12 | 12.27 | | | | 2454.5 | 10.85 | 11.2 | | | | 2455.5 | 10.97 | 11.38 | | | | 2456.5 | 10.92 | 11.19 | | | | 2457.5 | 9.86 | 10.26 | | | | 2458.5 | 9.82 | 10.15 | | | | 2459.5 | 8.9 | 9.29 | | SAR Evaluation Report 31 of 61 | Test mode | Frequency (MHz) | Max Average Conducte Output Power (dBm) | | | |-----------|-----------------|---|---------|--| | | | Chain 0 | Chain 1 | | | | 2460.5 | 9.11 | 9.44 | | | | 2461.5 | 8.13 | 8.26 | | | | 2462.5 | 7.82 | 8.23 | | | | 2463.5 | 7.8 | 8.19 | | | | 2464.5 | 7.83 | 8.28 | | | | 2465.5 | 6.85 | 7.19 | | | 20MHz | 2466.5 | 6.8 | 7.22 | | | | 2467.5 | 6.78 | 7.2 | | | | 2468.5 | 4.68 | 5.18 | | | | 2469.5 | 0.67 | 1.05 | | | | 2470.5 | -1.31 | -1.04 | | | | 2471.5 | -1.45 | -1.06 | | | | 2472.5 | -7.38 | -6.96 | | Note: The Duty Cycle for SDR 2.4G is 100%. ## **Wi-Fi 2.4G:** | Mode | Channel | Frequency | Data | Maximum Conducted Average
Output Power (dBm) | | | | |------------------|---------|-----------|-------|---|---------|-------|--| | | Channel | (MHz) | Rate | Chain 0 | Chain 1 | Total | | | | Low | 2412 | | 11.23 | 11.54 | 14.4 | | | 802.11b | Middle | 2437 | 1Mbps | 11.35 | 11.37 | 14.37 | | | | High | 2462 | | 10.96 | 11.12 | 14.05 | | | | Low | 2412 | | 9.82 | 9.98 | 12.91 | | | 802.11g | Middle | 2437 | 6Mbps | 10.55 | 10.62 | 13.6 | | | | High | 2462 | | 8.91 | 8.69 | 11.81 | | | 002.11 | Low | 2412 | | 8.75 | 9.11 | 11.94 | | | 802.11 n
HT20 | Middle | 2437 | MCS0 | 10.58 | 10.46 | 13.53 | | | | High | 2462 | | 8.96 | 8.63 | 11.81 | | # **SDR 5.8G:** | Mode | Channel | Frequency
(MHz) | Max Average Conducted
Output Power (dBm) | | | | |---------|---------|--------------------|---|---------|--|--| | | | (WIIIZ) | Chain 0 | Chain 1 | | | | | Low | 5728.5 | 17.97 | 17.95 | | | | 1.4 MHz | Middle | 5786.5 | 18.92 | 18.96 | | | | | High | 5846.5 | 18.64 | 18.53 | | | | | Low | 5730.5 | 17.99 | 18.16 | | | | 10 MHz | Middle | 5787.5 | 18.88 | 18.93 | | | | | High | 5844.5 | 18.31 | 18.32 | | | | | Low | 5735.5 | 18.36 | 18.09 | | | | 20 MHz | Middle | 5787.5 | 18.61 | 18.67 | | | | | High | 5839.5 | 18.54 | 18.17 | | | Note: The Duty Cycle for SDR 5.8G is 100%. SAR Evaluation Report 32 of 61 # Wi-Fi 5.2G(5150-5250MHz): | Mode | Channel | Frequency | Data | Maximum Conducted
Average Output Power (dBm) | | | | |-----------|---------|-----------|-------|---|-------|-------|--| | | Chamier | (MHz) | Rate | Total | | | | | | Low | 5180 | | 9.45 | 9.76 | 12.62 | | | 802.11a | Middle | 5200 | 6Mbps | 13.37 | 14.22 | 16.83 | | | | High | 5240 | | 12.89 | 13.51 | 16.22 | | | | Low | 5180 | | 9.19 | 9.67 | 12.45 | | | 802.11n20 | Middle | 5200 | MCS0 | 13.37 | 14.21 | 16.82 | | | | High | 5240 | | 12.93 | 13.82 | 16.41 | | Report No.: RDG180206002-20A ## Wi-Fi 5.8G(5725-5850MHz): | Mode | Channel | Frequency | Data | Maximum Conducted Average
Output Power (dBm) | | | | |-----------|---------|-----------|-------|---|---------|-------|--| | | Channel | (MHz) | Rate | Chain 0 | Chain 1 | Total | | | | Low | 5745 | | 11.41 | 12.53 | 15.02 | | | 802.11a | Middle | 5785 | 6Mbps | 11.16 | 12.24 | 14.74 | | | | High | 5825 | | 10.97 | 12.08 | 14.57 | | | | Low | 5745 | | 11.09 | 12.37 | 14.79 | | | 802.11n20 | Middle | 5785 | MCS0 | 10.86 | 11.99 | 14.47 | | | | High | 5825 | | 10.43 | 11.52 | 14.02 | | SAR Evaluation Report 33 of 61 # SAR EXCLUSION CONSIDERATIONS #### **Antennas Location:** Report No.: RDG180206002-20A ## Antenna Distance To Edge | Antenna Distance To Edge(mm) | | | | | | | | | | |---------------------------------------|-----|-----|----|----|----|-----|--|--|--| | Mode Left Right Back Front Top Bottom | | | | | | | | | | | SDR 2.4G/5.8G Chain 0 | 41 | 120 | 24 | 20 | <5 | 165 | | | | | SDR 2.4G/5.8G Chain 1 | 120 | 41 | 24 | 20 | <5 | 165 | | | | | Wi-Fi 2.4G/5G Chain 0 | 58 | 73 | 20 | 23 | 15 | 155 | | | | | Wi-Fi 2.4G/5G Chain 1 | 95 | 55 | 22 | 23 | 15 | 155 | | | | **Note:** The display screen may prevent the EUT touch the phantom for front setup position, for sufficiently conservative consideration, the display screen was removed during SAR testing. SAR Evaluation Report 34 of 61 ## SAR test exclusion for the EUT edge considerations | SAR Test Exclusion for the EUT Edges Considerations | | | | | | | | | |---
-----------|-----------|----------|----------|----------|-----------|--|--| | Mode Left | | Right | Back | Тор | Front | Bottom | | | | SDR 2.4G Chain 0 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | SDR 2.4G Chain 1 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | SDR 5.8G Chain 0 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | SDR 5.8G Chain 1 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 2.4G Chain 0 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 2.4G Chain 1 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 5.2G Chain 0 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 5.2G Chain 1 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 5.8G Chain 0 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | | Wi-Fi 5.8G Chain 1 | Exclusion | Exclusion | Required | Required | Required | Exclusion | | | Report No.: RDG180206002-20A #### Note: **Required:** Per KDB 941225 D07-The distance to Edge is less than 25mm, testing is required. **Exclusion:** Per KDB 941225 D07-The distance to Edge is more than 25 mm, testing is not required. SAR Evaluation Report 35 of 61 # SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. # **SAR Test Data** ## **Environmental Conditions** | Temperature: | Temperature: 22.2-23.5℃ | | 22.3-23.1℃ | 22.4-23.4℃ | 22.4-23.5℃ | |--------------------|--------------------------------|------------|------------|------------|------------| | Relative Humidity: | Relative Humidity: 46% 45% | | 47% | 49% | 50% | | ATM Pressure: | 101.6 kPa | 101.1 kPa | 101.3 kPa | 101.1 kPa | 100.9 kPa | | Test Date: | 2018/03/10 | 2018/03/11 | 2018/03/12 | 2018/03/13 | 2018/03/14 | Testing was performed by Gaochao Gong, Sam Liang, William Ye. ## SDR 2.4G Chain 0: | EUT | Bandwidth | Enggueney | Max.
Meas. | Max.
Rated | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | |--------------------------|-----------|-----------|---------------|---------------|--------------------------------|--------------|---------------|------------------|------| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | 11 | | 2403.5 | / | / | / | / | / | / | / | | Handheld-Back (0mm) | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | 0.130 | 0.13 | 0.13 | 1# | | (omm) | | 2477.5 | / | / | / | / | / | / | / | | Handheld-Back | | 2403.5 | / | / | / | / | / | / | / | | (0mm) | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | < 0.01 | 0.01 | 0.01 | / | | Antenna Fold | | 2477.5 | / | / | / | / | / | / | / | | | 1.4 | 2403.5 | 21.52 | 21.6 | 1.019 | 2.98 | 3.037 | 3.05 | 2# | | | | 2441.5 | 21.59 | 21.6 | 1.002 | 2.97 | 2.976 | 2.98 | 3# | | | | 2477.5 | 19.16 | 19.5 | 1.081 | 2.03 | 2.194 | 2.20 | 4# | | 11 11 11 11 11 | 10 | 2405.5 | / | / | / | / | / | / | / | | Handheld-Top
(0mm) | | 2441.5 | 18.69 | 18.8 | 1.026 | 1.8 | 1.847 | 1.85 | 5# | | (Ollill) | | 2477.5 | / | / | / | / | / | / | / | | | | 2410.5 | / | / | / | / | / | / | / | | | 20 | 2441.5 | 18.55 | 18.6 | 1.012 | 1.19 | 1.204 | 1.21 | 6# | | | | 2472.5 | / | / | / | / | / | / | / | | Handheld-Front | | 2403.5 | / | / | / | / | / | / | / | | (0mm)
(Remove display | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | 0.133 | 0.133 | 0.13 | 7# | | (Remove display screen) | | 2477.5 | / | / | / | / | / | / | / | Test Date:2018/03/10 Report No.: RDG180206002-20A SAR Evaluation Report 36 of 61 | EUT | Bandwidth | Engguenav | Max.
Meas. | Max.
Rated | 1 g | SAR (W | //kg), Lin | nit=1.6W/kg | 5 | |-----------------------------|-----------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|------| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | 2403.5 | / | / | / | / | / | / | / | | Close to Body-Back (10mm) | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | 0.154 | 0.154 | 0.15 | 8# | | (1011111) | | 2477.5 | / | / | / | / | / | / | / | | Close to Body-Back | | 2403.5 | / | / | / | / | / | / | / | | (10mm) | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | < 0.01 | 0.01 | 0.01 | / | | Antenna Fold | | 2477.5 | / | / | / | / | / | / | / | | | | 2403.5 | 21.52 | 21.6 | 1.019 | 1.01 | 1.029 | 1.04 | 9# | | | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | 1.08 | 1.082 | 1.09 | 10# | | | | 2477.5 | 19.16 | 19.5 | 1.081 | 0.913 | 0.987 | 0.99 | 11# | | | | 2405.5 | / | / | / | / | / | / | / | | Close to Body-Top
(10mm) | 10 | 2441.5 | 18.69 | 18.8 | 1.026 | 0.685 | 0.703 | 0.70 | 12# | | (1011111) | | 2477.5 | / | / | / | / | / | / | / | | | | 2410.5 | / | / | / | / | / | / | / | | | 20 | 2441.5 | 18.55 | 18.6 | 1.012 | 0.621 | 0.628 | 0.63 | 13# | | | | 2472.5 | / | / | / | / | / | / | / | | Close to Body-Front | | 2403.5 | / | / | / | / | / | / | / | | (10mm)
(Remove display | 1.4 | 2441.5 | 21.59 | 21.6 | 1.002 | 0.154 | 0.154 | 0.15 | 14# | | screen) | | 2477.5 | / | / | / | / | / | / | / | #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. For modes that peak SAR is too low to evaluate, a SAR value 0.01W/kg is considered as their Scaled SAR. - 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 37 of 61 #### Wi-Fi 2.4G Chain 0: | EUT | Bandwidth | Fraguency | Max.
Meas. | Max.
Rated | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | | |--------------------------|-----------|-----------|---------------|---------------|--------------------------------|--------------|---------------|------------------|------|--| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | H 11 11 D 1 | 802.11b | 2412 | / | / | / | / | / | / | / | | | Handheld-Back (0mm) | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.012 | 0.012 | 0.01 | 15# | | | (omm) | 802.11b | 2462 | / | / | / | / | / | / | / | | | | 802.11b | 2412 | 11.23 | 11.5 | 1.064 | 0.031 | 0.033 | 0.03 | 16# | | | Handheld-Top
(0mm) | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.045 | 0.047 | 0.05 | 17# | | | (omin) | 802.11b | 2462 | 10.96 | 11.5 | 1.132 | 0.039 | 0.044 | 0.04 | 18# | | | Handheld-Front | 802.11b | 2412 | / | / | / | / | / | / | / | | | (0mm)
(Remove display | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.015 | 0.016 | 0.02 | 19# | | | screen) | 802.11b | 2462 | / | / | / | / | / | / | / | | Test Date:2018/03/10 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g SAR (W/kg), Limit=1.6W/kg | | | | | | | |-----------------------------|---------|-----------|---------------|---------------|-------------------------------|--------------|---------------|------------------|------|--|--| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | | 802.11b | 2412 | / | / | / | / | / | / | / | | | | Close to Body-Back (10mm) | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.011 | 0.011 | 0.01 | 20# | | | | (10mm) | 802.11b | 2462 | / | / | / | / | / | / | / | | | | | 802.11b | 2412 | 11.23 | 11.5 | 1.064 | 0.023 | 0.024 | 0.02 | 21# | | | | Close to Body-Top
(10mm) | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.035 | 0.036 | 0.04 | 22# | | | | (10mm) | 802.11b | 2462 | 10.96 | 11.5 | 1.132 | 0.023 | 0.026 | 0.03 | 23# | | | | Close to Body-Front | 802.11b | 2412 | / | / | / | / | / | / | / | | | | (10mm)
(Remove display | 802.11b | 2437 | 11.35 | 11.5 | 1.035 | 0.012 | 0.012 | 0.01 | 24# | | | | screen) | 802.11b | 2462 | / | / | / | / | / | / | / | | | Test Date:2018/03/10 #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. - 4. KDB 248227 D01-SAR measurement is not required for 2.4 GHz OFDM(801.11g/n20) when the highest reported SAR for DSSS(802.11b) is \leq 1.2 W/kg, and the output power for DSSS is not less than that for OFDM. SAR Evaluation Report 38 of 61 | EUT | Bandwidth | Frequency | Max.
Meas. | Max.
Rated | 10 g | g SAR (V | V/kg), Lir | nit=4.0W/k | g | |-------------------------|-----------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|------| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | II 11 11 D 1 | | 5728.5 | / | / | / | / | / | / | / | | Handheld-Back (0mm) | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.075 | 0.076 | 0.08 | 25# | | (OHIII) | | 5846.5 | / | / | / | / | / | / | / | | Handheld-Back | | 5728.5 | / | / | / | / | / | / | / | | (0mm) | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | < 0.01 | 0.01 | 0.01 | / | | Antenna Fold | | 5846.5 | / | / | / | / | / | / | / | | | | 5728.5 | 17.97 | 19 | 1.268 | 0.693 | 0.879 | 0.88 | 26# | | | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.727 | 0.741 | 0.74 | 27# | | | | 5846.5 | 18.64 | 19 | 1.086 | 0.639 | 0.694 | 0.69 | 28# | | | | 5730.5 | / | / | / | / | / | / | / | | Handheld-Top
(0mm) | 10 | 5787.5 | 18.88
| 19 | 1.028 | 0.537 | 0.552 | 0.55 | 29# | | (Ollilli) | | 5844.5 | / | / | / | / | / | / | / | | | | 5735.5 | / | / | / | / | / | / | / | | | 20 | 5787.5 | 18.61 | 18.8 | 1.045 | 0.513 | 0.536 | 0.54 | 30# | | | | 5839.5 | / | / | / | / | / | / | / | | Handheld-Front | | 5728.5 | / | / | / | / | / | / | / | | (0mm) | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.078 | 0.079 | 0.08 | 31# | | (Remove display screen) | | 5846.5 | / | / | / | / | / | / | / | Report No.: RDG180206002-20A SAR Evaluation Report 39 of 61 | EUT | Dandwidth | Engguenav | Max.
Meas. | Max.
Rated | 1 g | SAR (W | //kg), Lin | nit=1.6W/kg | ; | |---------------------------|--------------------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|------| | Position | Bandwidth
(MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | 5728.5 | / | / | / | / | / | / | / | | Close to Body-Back (10mm) | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.085 | 0.087 | 0.09 | 32# | | (Tollilli) | | 5846.5 | / | / | / | / | / | / | / | | Close to Body-Back | | 5728.5 | / | / | / | / | / | / | / | | (10mm) | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | < 0.01 | 0.01 | 0.01 | / | | Antenna Fold | | 5846.5 | / | / | / | / | / | / | / | | | | 5728.5 | 17.97 | 19 | 1.268 | 0.191 | 0.242 | 0.24 | 33# | | | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.399 | 0.407 | 0.41 | 34# | | | | 5846.5 | 18.64 | 19 | 1.086 | 0.188 | 0.204 | 0.20 | 35# | | | | 5730.5 | / | / | / | / | / | / | / | | Close to Body-Top (10mm) | 10 | 5787.5 | 18.88 | 19 | 1.028 | 0.286 | 0.294 | 0.30 | 36# | | (Tollilli) | | 5844.5 | / | / | / | / | / | / | / | | | | 5735.5 | / | / | / | / | / | / | / | | | 20 | 5787.5 | 18.61 | 18.8 | 1.045 | 0.303 | 0.317 | 0.32 | 37# | | | | 5839.5 | / | / | / | / | / | / | / | | Close to Body-Front | | 5728.5 | / | / | / | / | / | / | / | | (10mm)
(Remove display | 1.4 | 5786.5 | 18.92 | 19 | 1.019 | 0.080 | 0.082 | 0.08 | 38# | | screen) | | 5846.5 | / | / | / | / | / | / | / | #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. For modes that peak SAR is too low to evaluate, a SAR value 0.01W/kg is considered as their Scaled SAR. - 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 40 of 61 ## Wi-Fi 5.2G Chain 0: | EUT | | Frequency | Max.
Meas. | Max.
Rated | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | | | |-------------------------|---------|-----------|---------------|---------------|--------------------------------|--------------|---------------|------------------|------|--|--| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | W # 11 D 1 | 802.11a | 5180 | / | / | / | / | / | / | / | | | | Handheld-Back (0mm) | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.060 | 0.062 | 0.06 | 39# | | | | (OIIIII) | 802.11a | 5240 | / | / | / | / | / | / | / | | | | ** " 11.5 | 802.11a | 5180 | 9.45 | 10 | 1.135 | 0.080 | 0.091 | 0.09 | 40# | | | | Handheld-Top
(0mm) | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.081 | 0.083 | 0.08 | 41# | | | | (Ollilli) | 802.11a | 5240 | 12.89 | 13 | 1.026 | 0.086 | 0.088 | 0.09 | 42# | | | | Handheld-Front | 802.11a | 5180 | / | / | / | / | / | / | / | | | | (0mm) | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.073 | 0.075 | 0.08 | 43# | | | | (Remove display screen) | 802.11a | 5240 | / | / | / | / | / | / | / | | | Test Date: 2018/03/14 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g SAR (W/kg), Limit=1.6W/kg | | | | | | |---------------------------|---------|-----------|---------------|---------------|-------------------------------|--------------|---------------|------------------|------|--| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | 802.11a | 5180 | / | / | / | / | / | / | / | | | Close to Body-Back (10mm) | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.069 | 0.071 | 0.07 | 44# | | | (1011111) | 802.11a | 5240 | / | / | / | / | / | / | / | | | | 802.11a | 5180 | 9.45 | 10 | 1.135 | 0.086 | 0.098 | 0.10 | 45# | | | Close to Body-Top (10mm) | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.091 | 0.094 | 0.09 | 46# | | | (10mm) | 802.11a | 5240 | 12.89 | 13 | 1.026 | 0.090 | 0.092 | 0.09 | 47# | | | Close to Body-Front | 802.11a | 5180 | / | / | / | / | / | / | / | | | (10mm)
(Remove display | 802.11a | 5200 | 13.37 | 13.5 | 1.03 | 0.038 | 0.039 | 0.04 | 48# | | | screen) | 802.11a | 5240 | / | / | / | / | / | / | / | | Test Date: 2018/03/14 ## Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction ΔSAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 41 of 61 ## Wi-Fi 5.8G Chain 0: | EUT | | Frequency | Max.
Meas. | Max.
Rated | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | | | |--------------------------|---------|-----------|---------------|---------------|--------------------------------|--------------|---------------|------------------|------|--|--| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | H 11 11 D 1 | 802.11a | 5745 | / | / | / | / | / | / | / | | | | Handheld-Back (0mm) | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.082 | 0.089 | 0.09 | 49# | | | | (Ollilli) | 802.11a | 5825 | / | / | / | / | / | / | / | | | | | 802.11a | 5745 | 11.41 | 11.5 | 1.021 | 0.100 | 0.102 | 0.10 | 50# | | | | Handheld-Top
(0mm) | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.098 | 0.106 | 0.11 | 51# | | | | (Ollilli) | 802.11a | 5825 | 10.97 | 11.5 | 1.13 | 0.105 | 0.119 | 0.12 | 52# | | | | Handheld-Front | 802.11a | 5745 | / | / | / | / | / | / | / | | | | (0mm)
(Remove display | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.041 | 0.044 | 0.04 | 53# | | | | screen) | 802.11a | 5825 | / | / | / | / | / | / | / | | | Test Date: 2018/03/12 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g SAR (W/kg), Limit=1.6W/kg | | | | | | | |---------------------------|---------|-----------|---------------|---------------|-------------------------------|--------------|---------------|------------------|------|--|--| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | | 802.11a | 5745 | / | / | / | / | / | / | / | | | | Close to Body-Back (10mm) | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.116 | 0.125 | 0.13 | 54# | | | | (10mm) | 802.11a | 5825 | / | / | / | / | / | / | / | | | | | 802.11a | 5745 | 11.41 | 11.5 | 1.021 | 0.110 | 0.112 | 0.11 | 55# | | | | Close to Body-Top (10mm) | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.115 | 0.124 | 0.12 | 56# | | | | (10mm) | 802.11a | 5825 | 10.97 | 11.5 | 1.13 | 0.143 | 0.162 | 0.16 | 57# | | | | Close to Body-Front | 802.11a | 5745 | / | / | / | / | / | / | / | | | | (10mm)
(Remove display | 802.11a | 5785 | 11.16 | 11.5 | 1.081 | 0.054 | 0.058 | 0.06 | 58# | | | | screen) | 802.11a | 5825 | / | / | / | / | / | / | / | | | Test Date: 2018/03/12 ## Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction ΔSAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 42 of 61 | EUT | Bandwidth | Емадианач | Max.
Meas. | Max.
Rated | 10 g | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | | |-------------------------|-----------|-----------|---------------|---------------|------------------|--------------------------------|---------------|------------------|------|--|--| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | ** " 11 | | 2403.5 | / | / | / | / | / | / | / | | | | Handheld-Back (0mm) | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 0.174 | 0.178 | 0.18 | 59# | | | | (Ollilli) | | 2477.5 | / | / | / | / | / | / | / | | | | Handheld-Back | | 2403.5 | / | / | / | / | / | / | / | | | | (0mm) | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | < 0.01 | 0.01 | 0.01 | / | | | | Antenna Fold | | 2477.5 | / | / | / | / | / | / | / | | | | | | 2403.5 | 21.55 | 21.7 | 1.035 | 2.92 | 3.022 | 3.04 | 60# | | | | | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 2.86 | 2.92 | 2.92 | 61# | | | | | | 2477.5 | 19.29 | 19.5 | 1.05 | 2.15 | 2.258 | 2.26 | 62# | | | | | | 2405.5 | / | / | / | / | / | / | / | | | | Handheld-Top
(0mm) | 10 | 2441.5 | 18.69 | 18.8 | 1.026 | 1.65 | 1.693 | 1.69 | 63# | | | | (OIIIII) | | 2477.5 | / | / | / | / | / | / | / | | | | | | 2410.5 | / | / | / | / | / | / | / | | | | | 20 | 2441.5 | 19.03 | 19.2 | 1.04 | 1.58 | 1.643 | 1.64 | 64# | | | | | | 2472.5 | / | / | / | / | / | / | / | | | | Handheld-Front | | 2403.5 | / | / | / | / | / | / | / | | | | (0mm) | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 0.240 | 0.245 | 0.25 | 65# | |
| | (Remove display screen) | | 2477.5 | / | / | / | / | / | / | / | | | Report No.: RDG180206002-20A SAR Evaluation Report 43 of 61 | EUT | Dandwidth | Емадианач | Max.
Meas. | Max.
Rated | 1 g | SAR (W | //kg), Lin | nit=1.6W/kg | <u> </u> | |---------------------------|--------------------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|----------| | Position | Bandwidth
(MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | 2403.5 | / | / | / | / | / | / | / | | Close to Body-Back (10mm) | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 0.193 | 0.197 | 0.20 | 66# | | (Tollilli) | | 2477.5 | / | / | / | / | / | / | / | | Close to Body-Back | | 2403.5 | / | / | / | / | / | / | / | | (10mm) | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | < 0.01 | 0.01 | 0.01 | / | | Antenna Fold | | 2477.5 | / | / | / | / | / | / | / | | | | 2403.5 | 21.55 | 21.7 | 1.035 | 1.09 | 1.128 | 1.14 | 67# | | | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 1.14 | 1.164 | 1.16 | 68# | | | | 2477.5 | 19.29 | 19.5 | 1.05 | 0.894 | 0.939 | 0.94 | 69# | | | | 2405.5 | / | / | / | / | / | / | / | | Close to Body-Top (10mm) | 10 | 2441.5 | 18.69 | 18.8 | 1.026 | 0.701 | 0.719 | 0.72 | 70# | | (Tollilli) | | 2477.5 | / | / | / | / | / | / | / | | | | 2410.5 | / | / | / | / | / | / | / | | | 20 | 2441.5 | 19.03 | 19.2 | 1.04 | 0.736 | 0.765 | 0.77 | 71# | | | | 2472.5 | / | / | / | / | / | / | / | | Close to Body-Front | | 2403.5 | / | / | / | / | / | / | / | | (10mm)
(Remove display | 1.4 | 2441.5 | 21.61 | 21.7 | 1.021 | 0.318 | 0.325 | 0.33 | 72# | | screen) | | 2477.5 | / | / | / | / | / | / | / | #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. For modes that peak SAR is too low to evaluate, a SAR value 0.01W/kg is considered as their Scaled SAR. - 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 44 of 61 #### Wi-Fi 2.4G Chain 1: | EUT | Bandwidth | Fraguency | Max.
Meas. | Max.
Rated | 10 g SAR (W/kg), Limit=4.0W/kg | | | | | | |--------------------------|-----------|-----------|---------------|---------------|--------------------------------|--------------|---------------|------------------|------|--| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | H 11 11 D 1 | 802.11b | 2412 | / | / | / | / | / | / | / | | | Handheld-Back (0mm) | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.011 | 0.012 | 0.01 | 73# | | | (omm) | 802.11b | 2462 | / | / | / | / | / | / | / | | | | 802.11b | 2412 | / | / | / | / | / | / | / | | | Handheld-Top
(0mm) | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.035 | 0.037 | 0.04 | 74# | | | (Ollilli) | 802.11b | 2462 | / | / | / | / | / | / | / | | | Handheld-Front | 802.11b | 2412 | 11.54 | 11.6 | 1.014 | 0.041 | 0.042 | 0.04 | 75# | | | (0mm)
(Remove display | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.043 | 0.045 | 0.05 | 76# | | | screen) | 802.11b | 2462 | 11.12 | 11.6 | 1.117 | 0.042 | 0.047 | 0.05 | 77# | | Test Date:2018/03/11 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g | SAR (W | //kg), Lim | it=1.6W/kg | 3 | |---------------------------|---------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|------| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | 802.11b | 2412 | / | / | / | / | / | / | / | | Close to Body-Back (10mm) | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.013 | 0.014 | 0.01 | 78# | | (1011111) | 802.11b | 2462 | / | / | / | / | / | / | / | | | 802.11b | 2412 | 11.54 | 11.6 | 1.014 | 0.045 | 0.046 | 0.05 | 79# | | Close to Body-Top (10mm) | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.040 | 0.042 | 0.04 | 80# | | (10mm) | 802.11b | 2462 | 11.12 | 11.6 | 1.117 | 0.047 | 0.052 | 0.05 | 81# | | Close to Body-Front | 802.11b | 2412 | / | / | / | / | / | / | / | | (10mm)
(Remove display | 802.11b | 2437 | 11.37 | 11.6 | 1.054 | 0.038 | 0.04 | 0.04 | 82# | | | 802.11b | 2462 | / | / | / | / | / | / | / | Test Date: 2018/03/11 #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction ΔSAR has a positive sign, the measured SAR results shall not be corrected. - 4. KDB 248227 D01-SAR measurement is not required for 2.4 GHz OFDM(801.11g/n20) when the highest reported SAR for DSSS(802.11b) is \leq 1.2 W/kg, and the output power for DSSS is not less than that for OFDM. SAR Evaluation Report 45 of 61 ## **SDR 5.8G Chain 1:** | EUT | Bandwidth | Fraguanay | Max.
Meas. | Max.
Rated | 10 ş | g SAR (V | V/kg), Lir | nit=4.0W/k | g | |-------------------------|-----------|-----------|---------------|---------------|------------------|--------------|---------------|------------------|------| | Position | (MHz) | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | II II 11 D 1 | | 5728.5 | / | / | / | / | / | / | / | | Handheld-Back
(0mm) | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.113 | 0.114 | 0.11 | 83# | | (Ollilli) | | 5846.5 | / | / | / | / | / | / | / | | Handheld-Back | | 5728.5 | / | / | / | / | / | / | / | | (0mm) Antenna Fold | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | < 0.01 | 0.01 | 0.01 | / | | | | 5846.5 | / | / | / | / | / | / | / | | | | 5728.5 | 17.95 | 19 | 1.274 | 0.437 | 0.557 | 0.56 | 84# | | | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.696 | 0.702 | 0.70 | 85# | | | | 5846.5 | 18.53 | 19 | 1.114 | 0.763 | 0.85 | 0.85 | 86# | | | | 5730.5 | / | / | / | / | / | / | / | | Handheld-Top
(0mm) | 10 | 5787.5 | 18.93 | 19 | 1.016 | 0.527 | 0.535 | 0.54 | 87# | | (Ollilli) | | 5844.5 | / | / | / | / | / | / | / | | | | 5735.5 | / | / | / | / | / | / | / | | | 20 | 5787.5 | 18.67 | 18.8 | 1.03 | 0.602 | 0.62 | 0.62 | 88# | | | | 5839.5 | / | / | / | / | / | / | / | | Handheld-Front | | 5728.5 | / | / | / | / | / | / | / | | (0mm) | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.097 | 0.098 | 0.10 | 89# | | (Remove display screen) | | 5846.5 | / | / | / | / | / | / | / | Test Date:2018/03/13 Report No.: RDG180206002-20A SAR Evaluation Report 46 of 61 | EUT | Dandwidth | Eugguanav | Max. | Max. | 1 g | SAR (W | //kg), Lin | SAR SAR / / 0.13 0.13 90# / / / / 0.01 0.01 / / 0.364 0.37 91# 0.344 0.35 92# 0.392 0.39 93# / / / | | | |---------------------------|--------------------|-----------|-------------------------|-------------------------|------------------|--------------|------------|--|------|--| | Position | Bandwidth
(MHz) | (MHz) | Meas.
Power
(dBm) | Rated
Power
(dBm) | Scaled
Factor | Meas.
SAR | | | Plot | | | | | 5728.5 | / | / | / | / | / | / | / | | | Close to Body-Back (10mm) | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.129 | 0.13 | 0.13 | 90# | | | (10mm) | | 5846.5 | / | / | / | / | / | / | / | | | Close to Body-Back | | 5728.5 | / | / | / | / | / | / | / | | | (10mm)
Antenna Fold | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | < 0.01 | 0.01 | 0.01 | / | | | | | 5846.5 | / | / | / | / | / | / | / | | | | | 5728.5 | 17.95 | 19 | 1.274 | 0.286 | 0.364 | 0.37 | 91# | | | | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.341 | 0.344 | 0.35 | 92# | | | | | 5846.5 | 18.53 | 19 | 1.114 | 0.352 | 0.392 | 0.39 | 93# | | | | | 5730.5 | / | / | / | / | / | / | / | | | Close to Body-Top (10mm) | 10 | 5787.5 | 18.93 | 19 | 1.016 | 0.337 | 0.342 | 0.34 | 94# | | | (10mm) | | 5844.5 | / | / | / | / | / | / | / | | | | | 5735.5 | / | / | / | / | / | / | / | | | | 20 | 5787.5 | 18.67 | 18.8 | 1.03 | 0.297 | 0.306 | 0.31 | 95# | | | | - | 5839.5 | / | / | / | / | / | / | / | | | Close to Body-Front | | 5728.5 | / | / | / | / | / | / | / | | | (10mm) | 1.4 | 5786.5 | 18.96 | 19 | 1.009 | 0.103 | 0.104 | 0.10 | 96# | | Report No.: RDG180206002-20A ## Note: (Remove display 1. When the SAR value is less than half of the limit, testing for other channels are optional. 5846.5 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. For modes that peak SAR is too low to evaluate, a SAR value 0.01W/kg is considered as their Scaled SAR. - 4. According to IEC 62209-2:2010 ,If the correction ΔSAR has a positive sign, the measured SAR results shall not be corrected. **SAR Evaluation Report** 47 of 61 ## Wi-Fi 5.2G Chain 1: | EUT | | Frequency | Max.
Meas. | Max.
Rated | 10 g | g SAR (V | V/kg), Lin | SAR SAR / / 0.044 0.04 / / 0.089 0.09 0.082 0.08 | | |-------------------------------------|---------|-----------|---------------|---------------|------------------|--------------|---------------
--|------| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | | Plot | | 11 11 11 11 11 11 | 802.11a | 5180 | / | / | / | / | / | / | / | | Handheld-Back (0mm) | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.041 | 0.044 | 0.04 | 97# | | (OIIIII) | 802.11a | 5240 | / | / | / | / | / | / | / | | ** " 11.5 | 802.11a | 5180 | 9.76 | 10 | 1.057 | 0.084 | 0.089 | 0.09 | 98# | | Handheld-Top
(0mm) | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.077 | 0.082 | 0.08 | 99# | | (Ollilli) | 802.11a | 5240 | 13.51 | 13.8 | 1.069 | 0.059 | 0.063 | 0.06 | 100# | | Handheld-Front | 802.11a | 5180 | / | / | / | / | / | / | / | | (0mm)
(Remove display
screen) | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.068 | 0.073 | 0.07 | 101# | | | 802.11a | 5240 | / | / | / | / | / | / | / | Test Date: 2018/03/14 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g | g SAR (W/kg), Limit=1.6W/kg | | | | |--------------------------------------|---------|-----------|---------------|---------------|------------------|-----------------------------|---------------|------------------|------| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | Close to Body-Back | 802.11a | 5180 | / | / | / | / | / | / | / | | (10mm) Antenna Fold | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.052 | 0.055 | 0.06 | 102# | | | 802.11a | 5240 | / | / | / | / | / | / | / | | | 802.11a | 5180 | 9.76 | 10 | 1.057 | 0.092 | 0.097 | 0.10 | 103# | | Close to Body-Top (10mm) | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.101 | 0.108 | 0.11 | 104# | | (1011111) | 802.11a | 5240 | 13.51 | 13.8 | 1.069 | 0.069 | 0.074 | 0.07 | 105# | | Close to Body-Front | 802.11a | 5180 | / | / | / | / | / | / | / | | (10mm)
(Remove display
screen) | 802.11a | 5200 | 14.22 | 14.5 | 1.067 | 0.066 | 0.07 | 0.07 | 106# | | | 802.11a | 5240 | / | / | / | / | / | / | / | ## Test Date: 2018/03/14 ## Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction ΔSAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 48 of 61 ## Wi-Fi 5.8G Chain 1: | EUT | | Frequency | Max.
Meas. | Max. | Max. 10 g SAR (W/kg), Limit=4.0W/kg | | | | | |-------------------------------------|---------|-----------|---------------|-------------|-------------------------------------|--------------|---------------|------------------|------| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | 11 11 11 11 11 11 | 802.11a | 5745 | / | / | / | / | / | / | / | | Handheld-Back
(0mm) | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.053 | 0.058 | 0.06 | 107# | | (OIIIII) | 802.11a | 5825 | / | / | / | / | / | / | / | | XX 11 11 75 | 802.11a | 5745 | 12.53 | 12.6 | 1.016 | 0.078 | 0.079 | 0.08 | 108# | | Handheld-Top
(0mm) | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.079 | 0.086 | 0.09 | 109# | | (Ollilli) | 802.11a | 5825 | 12.08 | 12.6 | 1.127 | 0.081 | 0.091 | 0.09 | 110# | | Handheld-Front | 802.11a | 5745 | / | / | / | / | / | / | / | | (0mm)
(Remove display
screen) | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.057 | 0.062 | 0.06 | 111# | | | 802.11a | 5825 | / | / | / | / | / | / | / | Test Date: 2018/03/13 Report No.: RDG180206002-20A | EUT | | Frequency | Max.
Meas. | Max.
Rated | 1 g SAR (W/kg), Limit=1.6W/kg | | | | | |---------------------------|---------|-----------|---------------|---------------|-------------------------------|--------------|---------------|------------------|------| | Position | Mode | (MHz) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | Close to Body-Back | 802.11a | 5745 | / | / | / | / | / | / | / | | (10mm) Antenna Fold | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.058 | 0.063 | 0.06 | 112# | | | 802.11a | 5825 | / | / | / | / | / | / | / | | | 802.11a | 5745 | 12.53 | 12.6 | 1.016 | 0.130 | 0.132 | 0.13 | 113# | | Close to Body-Top (10mm) | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.129 | 0.14 | 0.14 | 114# | | (10mm) | 802.11a | 5825 | 12.08 | 12.6 | 1.127 | 0.124 | 0.14 | 0.14 | 115# | | Close to Body-Front | 802.11a | 5745 | / | / | / | / | / | / | / | | (10mm)
(Remove display | 802.11a | 5785 | 12.24 | 12.6 | 1.086 | 0.055 | 0.06 | 0.06 | 116# | | | 802.11a | 5825 | / | / | / | / | / | / | / | Test Date: 2018/03/13 #### Note: - 1. When the SAR value is less than half of the limit, testing for other channels are optional. - 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 3. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. SAR Evaluation Report 49 of 61 #### Corrected SAR Evaluation 62209-2 © IEC:2010 - 89 - # Annex F (normative) ## SAR correction for deviations of complex permittivity from targets #### F.2 SAR correction formula From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \epsilon_{r}$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by: $$\Delta SAR = c_{\epsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \qquad (F.1)$$ Report No.: RDG180206002-20A where $c_{\epsilon} = \partial(\Delta SAR)/\partial(\Delta \epsilon)$ is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power; $c_{\sigma} = \partial(\Delta SAR)/\partial(\Delta\sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power. The values of c_{ϵ} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR c_{ϵ} and c_{σ} are given by $$c_e = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$$ (F.2) $$c_{\sigma} = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.782 9$$ (F.3) where f is the frequency in GHz. For the 10 g averaged SAR, the variables c_{ϵ} and c_{σ} are given by: $$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,186 0$$ (F.4) $$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 \ 2f + 0,771 \ 7$$ (F.5) SAR Evaluation Report 50 of 61 ## **Corrected SAR Evaluation Table** Date: 2018/03/10 | Frequency
(MHz) | Liquid
Type | Сε | Δεr | Сδ | Δδ | △SAR
(%) | |--------------------|----------------|--------|-------|-------|-------|-------------| | 2403.5 | 10g Body | -0.158 | 3.07 | 0.268 | -0.05 | -0.50 | | 2412 | 10g Body | -0.158 | 2.85 | 0.267 | 0.26 | -0.38 | | 2437 | 10g Body | -0.159 | 3.13 | 0.262 | -0.1 | -0.52 | | 2441.5 | 10g Body | -0.159 | 1.21 | 0.261 | -0.05 | -0.21 | | 2450 | 10g Body | -0.159 | 0.03 | 0.259 | 0.36 | 0.09 | | 2462 | 10g Body | -0.159 | -1.25 | 0.257 | 0.36 | 0.29 | | 2477.5 | 10g Body | -0.160 | -1.6 | 0.254 | -0.35 | 0.17 | | 2403.5 | 1g Body | -0.225 | 3.07 | 0.490 | -0.05 | -0.72 | | 2412 | 1g Body | -0.225 | 2.85 | 0.489 | 0.26 | -0.51 | | 2437 | 1g Body | -0.225 | 3.13 | 0.483 | -0.1 | -0.75 | | 2441.5 | 1g Body | -0.225 | 1.21 | 0.482 | -0.05 | -0.30 | | 2450 | 1g Body | -0.225 | 0.03 | 0.480 | 0.36 | 0.17 | | 2462 | 1g Body | -0.225 | -1.25 | 0.478 | 0.36 | 0.45 | | 2477.5 | 1g Body | -0.225 | -1.6 | 0.474 | -0.35 | 0.19 | Report No.: RDG180206002-20A Date: 2018/03/11 | Frequency
(MHz) | Liquid
Type | Сε | Δεr | Сδ | Δδ | △SAR
(%) | |--------------------|----------------|--------|-------|-------|------|-------------| | 2403.5 | 10g Body | -0.158 | 3.17 | 0.268 | 0.05 | -0.49 | | 2412 | 10g Body | -0.158 | 3.07 | 0.267 | 0.68 | -0.30 | | 2437 | 10g Body | -0.159 | 2.79 | 0.262 | 0.41 | -0.34 | | 2441.5 | 10g Body | -0.159 | 1.32 | 0.261 | 0.77 | -0.01 | | 2450 | 10g Body | -0.159 | -0.05 | 0.259 | 0.87 | 0.23 | | 2462 | 10g Body | -0.159 | -1.29 | 0.257 | 0.76 | 0.40 | | 2477.5 | 10g Body | -0.160 | -1.54 | 0.254 | 0.4 | 0.35 | | 2403.5 | 1g Body | -0.225 | 3.17 | 0.490 | 0.05 | -0.69 | | 2412 | 1g Body | -0.225 | 3.07 | 0.489 | 0.68 | -0.36 | | 2437 | 1g Body | -0.225 | 2.79 | 0.483 | 0.41 | -0.43 | | 2441.5 | 1g Body | -0.225 | 1.32 | 0.482 | 0.77 | 0.07 | | 2450 | 1g Body | -0.225 | -0.05 | 0.480 | 0.87 | 0.43 | | 2462 | 1g Body | -0.225 | -1.29 | 0.478 | 0.76 | 0.65 | | 2477.5 | 1g Body | -0.225 | -1.54 | 0.474 | 0.4 | 0.54 | SAR Evaluation Report 51 of 61 Date: 2018/03/12 | Frequency
(MHz) | Liquid
Type | Сε | Δεr | Сδ | Δδ | △SAR
(%) | |--------------------|----------------|--------|------|--------|------|-------------| | 5728.5 | 10g Body | -0.255 | 2.27 | -0.036 | 0.59 | -0.60 | | 5745 | 10g Body | -0.255 | 1.97 | -0.035 | 1.23 | -0.55 | | 5785 | 10g Body | -0.255 | 1.21 | -0.033 | 2.91 | -0.40 | | 5786.5 | 10g Body | -0.255 | 1.17 | -0.033 | 2.99 | -0.40 | | 5787.5 | 10g Body | -0.255 | 1.15 | -0.033 | 2.89 | -0.39 | | 5800 | 10g Body | -0.254 | 0.92 | -0.032 | 3.45
| -0.34 | | 5825 | 10g Body | -0.254 | 0.44 | -0.030 | 4.39 | -0.24 | | 5846.5 | 10g Body | -0.254 | 0.04 | -0.028 | 4.15 | -0.13 | | 5728.5 | 1g Body | -0.199 | 2.27 | -0.045 | 0.59 | -0.48 | | 5745 | 1g Body | -0.199 | 1.97 | -0.045 | 1.23 | -0.45 | | 5785 | 1g Body | -0.199 | 1.21 | -0.045 | 2.91 | -0.37 | | 5786.5 | 1g Body | -0.199 | 1.17 | -0.045 | 2.99 | -0.37 | | 5787.5 | 1g Body | -0.199 | 1.15 | -0.045 | 2.89 | -0.36 | | 5800 | 1g Body | -0.199 | 0.92 | -0.045 | 3.45 | -0.34 | | 5825 | 1g Body | -0.199 | 0.44 | -0.044 | 4.39 | -0.28 | | 5846.5 | 1g Body | -0.198 | 0.04 | -0.044 | 4.15 | -0.19 | Date: 2018/03/13 | Frequency (MHz) | Liquid
Type | Сε | Δεr | Сδ | Δδ | △SAR
(%) | |-----------------|----------------|--------|------|--------|------|-------------| | 5728.5 | 10g Body | -0.255 | 2.51 | -0.036 | 0.25 | -0.65 | | 5745 | 10g Body | -0.255 | 2.23 | -0.035 | 1.38 | -0.62 | | 5785 | 10g Body | -0.255 | 1.52 | -0.033 | 1.92 | -0.45 | | 5786.5 | 10g Body | -0.255 | 1.48 | -0.033 | 2.07 | -0.44 | | 5787.5 | 10g Body | -0.255 | 1.46 | -0.033 | 1.99 | -0.44 | | 5800 | 10g Body | -0.254 | 1.25 | -0.032 | 4.42 | -0.46 | | 5825 | 10g Body | -0.254 | 0.8 | -0.030 | 4.73 | -0.34 | | 5846.5 | 10g Body | -0.254 | 0.42 | -0.028 | 4.55 | -0.24 | | 5728.5 | 1g Body | -0.199 | 2.51 | -0.045 | 0.25 | -0.51 | | 5745 | 1g Body | -0.199 | 2.23 | -0.045 | 1.38 | -0.51 | | 5785 | 1g Body | -0.199 | 1.52 | -0.045 | 1.92 | -0.39 | | 5786.5 | 1g Body | -0.199 | 1.48 | -0.045 | 2.07 | -0.39 | | 5787.5 | 1g Body | -0.199 | 1.46 | -0.045 | 1.99 | -0.38 | | 5800 | 1g Body | -0.199 | 1.25 | -0.045 | 4.42 | -0.45 | | 5825 | 1g Body | -0.199 | 0.8 | -0.044 | 4.73 | -0.37 | | 5846.5 | 1g Body | -0.198 | 0.42 | -0.044 | 4.55 | -0.28 | SAR Evaluation Report 52 of 61 Date: 2018/03/14 | Frequency (MHz) | Liquid
Type | Cε | Δεr | Сδ | Δδ | △SAR
(%) | |-----------------|----------------|--------|-------|--------|------|-------------| | 5180 | 10g Body | -0.256 | -1.05 | -0.053 | 1.02 | 0.21 | | 5200 | 10g Body | -0.256 | -1.14 | -0.053 | 1.43 | 0.22 | | 5240 | 10g Body | -0.256 | -1.19 | -0.053 | 0.58 | 0.27 | | 5250 | 10g Body | -0.256 | -1.33 | -0.053 | 0.73 | 0.30 | | 5180 | 1g Body | -0.202 | -1.05 | -0.024 | 1.02 | 0.19 | | 5200 | 1g Body | -0.201 | -1.14 | -0.026 | 1.43 | 0.19 | | 5240 | 1g Body | -0.201 | -1.19 | -0.028 | 0.58 | 0.22 | | 5250 | 1g Body | -0.201 | -1.33 | -0.029 | 0.73 | 0.25 | $$\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{\mathsf{r}} + c_{\sigma} \Delta \sigma$$ ## where # is the frequency in GHz. Corrected SAR = Measured SAR * $((100 + (\Delta SAR x - 1))/100)$ SAR Evaluation Report 53 of 61 ## **SAR Measurement Variability** In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results Report No.: RDG180206002-20A - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. ## The Highest Measured SAR Configuration in Each Frequency Band ## **Body SAR** | Frequency Band | E (MIL) | EUT David | Meas. SA | Largest to | | |--|-------------------------|-------------------|----------|------------|-----------------------| | | Freq.(MHz) EUT Position | | Original | Repeated | Smallest
SAR Ratio | | (2350-2500 MHz)
SDR 2.4G 1.4MHz Chain 0 | 2403.5 | Handheld-Top | 2.98 | 2.91 | 1.02 | | (2350-2500 MHz)
SDR 2.4G 1.4MHz Chain 0 | 2441.5 | Close to Body-Top | 1.08 | 1.05 | 1.03 | | (2350-2500 MHz)
SDR 2.4G 1.4MHz Chain 1 | 2403.5 | Handheld-Top | 2.92 | 2.87 | 1.02 | | (2350-2500 MHz)
SDR 2.4G 1.4MHz Chain 1 | 2441.5 | Close to Body-Top | 1.14 | 1.09 | 1.05 | #### Note: - 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. - 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required. - 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.. SAR Evaluation Report 54 of 61 # SAR SIMULTANEOUS TRANSMISSION DESCRIPTION ## **Simultaneous Transmission:** | Description of Simultaneous Transmit Capabilities | | | | | | |--|---------------|--|--|--|--| | Transmitter Combination | Simultaneous? | | | | | | SDR 2.4G Chain 0 + SDR 2.4G Chain 1 | × | | | | | | SDR 5.8G Chain 0 + SDR 5.8G Chain 1 | × | | | | | | Wi-Fi 2.4G Chain 0 + Wi-Fi 2.4G Chain 1 | $\sqrt{}$ | | | | | | Wi-Fi 5.2G Chain 0 + Wi-Fi 5.2G Chain 1 | √ | | | | | | Wi-Fi 5.8G Chain 0 + Wi-Fi 5.8G Chain 1 | √ | | | | | | SDR 2.4G Chain 0(Chain 1) + Wi-Fi 2.4G Chain 0(Chain 1) | × | | | | | | SDR 2.4G Chain 0(Chain 1) + Wi-Fi 5.8G Chain 0(Chain 1) | √ | | | | | | SDR 5.8G Chain 0(Chain 1) + Wi-Fi 2.4G Chain 0(Chain 1) | √ | | | | | | SDR 2.4G Chain 0(Chain 1) + Wi-Fi 5.2G Chain 0(Chain 1) | √ | | | | | | SDR 5.8G Chain 0(Chain 1) + Wi-Fi 5.2G Chain 0(Chain 1) | × | | | | | | SDR 5.8G Chain 0(Chain 1) + Wi-Fi 5.8G Chain 0(Chain 1) | × | | | | | | Wi-Fi 2.4G Chain 0 + Wi-Fi 2.4G Chain 1+ SDR 2.4G Chain 0(Chain 1) | × | | | | | | Wi-Fi 2.4G Chain 0 + Wi-Fi 2.4G Chain 1+ SDR 5.8G Chain 0(Chain 1) | √ | | | | | | Wi-Fi 5.2G Chain 0 + Wi-Fi 5.2G Chain 1+ SDR 2.4G Chain 0(Chain 1) | √ | | | | | | Wi-Fi 5.8G Chain 0 + Wi-Fi 5.8G Chain 1+ SDR 2.4G Chain 0(Chain 1) | √ | | | | | | Wi-Fi 5.2G Chain 0 + Wi-Fi 5.2G Chain 1+ SDR 5.8G Chain 0(Chain 1) | × | | | | | | Wi-Fi 5.8G Chain 0 + Wi-Fi 5.8G Chain 1+ SDR 5.8G Chain 0(Chain 1) | × | | | | | Report No.: RDG180206002-20A ## Simultaneous SAR test exclusion considerations: ## **Simultaneous(Worst Case):** # 10g Extremity SAR: | Mode(SAR1+SAR2+ | Position | Repo | Σ SAR < 4.0 | | | | |---|----------------|------|--------------------|------|------|--| | SAR3) | 1 objeton | SAR1 | SAR2 | SAR3 | W/kg | | | Wi-Fi 2.4G Chain 0 + Wi-Fi | Handheld-Back | 0.01 | 0.01 | 0.08 | 0.1 | | | 2.4G Chain 1+ SDR 5.8G | Handheld-Top | 0.05 | 0.04 | 0.88 | 0.97 | | | Chain 0 | Handheld-Front | 0.02 | 0.05 | 0.08 | 0.15 | | | Wi-Fi 2.4G Chain 0 + Wi-Fi
2.4G Chain 1+ SDR 5.8G
Chain 1 | Handheld-Back | 0.01 | 0.01 | 0.11 | 0.13 | | | | Handheld-Top | 0.05 | 0.04 | 0.85 | 0.94 | | | | Handheld-Front | 0.02 | 0.05 | 0.10 | 0.17 | | | Wi-Fi 5.2G Chain 0 + Wi-Fi
5.2G Chain 1+ SDR 2.4G
Chain 0 | Handheld-Back | 0.06 | 0.04 | 0.13 | 0.23 | | | | Handheld-Top | 0.09 | 0.09 | 3.05 | 3.23 | | | | Handheld-Front | 0.08 | 0.07 | 0.13 | 0.28 | | | Wi-Fi 5.2G Chain 0 + Wi-Fi
5.2G Chain 1+ SDR 2.4G
Chain 1 | Handheld-Back | 0.06 | 0.04 | 0.18 | 0.28 | | | | Handheld-Top | 0.09 | 0.09 | 3.04 | 3.22 | | | | Handheld-Front | 0.08 | 0.07 | 0.25 | 0.4 | | SAR Evaluation Report 55 of 61 | Mode(SAR1+SAR2+ | Position | Repo | ΣSAR < 4.0 | | | | |---|----------------|------|------------|------|------|--| | SAR3) | 1 00.0.0 | SAR1 | SAR2 | SAR3 | W/kg | | | Wi-Fi 5.8G Chain 0 + Wi-Fi
5.8G Chain 1+ SDR 2.4G
Chain 0 | Handheld-Back | 0.09 | 0.06 | 0.13 | 0.28 | | | | Handheld-Top | 0.12 | 0.09 | 3.05 | 3.26 | | | | Handheld-Front | 0.14 | 0.06 | 0.13 | 0.33 | | | Wi-Fi 5.8G Chain 0 + Wi-Fi
5.8G Chain 1+ SDR 2.4G
Chain 1 | Handheld-Back | 0.09 | 0.06 | 0.18 | 0.33 | | | | Handheld-Top | 0.12 | 0.09 | 3.04 | 3.25 | | | | Handheld-Front | 0.14 | 0.06 | 0.25 | 0.45 | | Report No.: RDG180206002-20A ## **Conclusion:** Sum of SAR: Σ SAR < 4.0 W/kg, simultaneous transmission SAR with Volume Scans is not required. ## 1g Body SAR: | Mode(SAR1+SAR2+ | Position | Rep | ΣSAR < | | | |---|---------------------|------|-----------|------|----------| | SAR3) | 1 osition | SAR1 | SAR1 SAR2 | | 1.6 W/kg | | Wi-Fi 2.4G Chain 0 + Wi-Fi | Close to Body-Back | 0.01 | 0.01 | 0.09 | 0.11 | | 2.4G Chain 1+ SDR 5.8G | Close to Body-Top | 0.04 | 0.05 | 0.41 | 0.5 | | Chain 0 | Close to Body-Front | 0.01 | 0.04 | 0.08 | 0.13 | | Wi-Fi 2.4G Chain 0 + Wi-Fi | Close to Body-Back | 0.01 | 0.01 | 0.13 | 0.15 | | 2.4G Chain 1+ SDR 5.8G | Close to Body-Top | 0.04 | 0.05 | 0.39 | 0.48 | | Chain 1 | Close to Body-Front | 0.01 | 0.04 | 0.10 | 0.15 | | Wi-Fi 5.2G Chain 0 + Wi-Fi | Close to Body-Back | 0.07 | 0.06 | 0.15 | 0.28 | | 5.2G Chain 1+ SDR 2.4G
Chain 0 | Close to Body-Top | 0.10 | 0.11 | 1.09 | 1.3 | | | Close to Body-Front | 0.04 | 0.07 | 0.15 | 0.26 | | Wi-Fi 5.2G Chain 0 + Wi-Fi | Close to Body-Back | 0.07 |
0.06 | 0.20 | 0.33 | | 5.2G Chain 1+ SDR 2.4G
Chain 1 | Close to Body-Top | 0.10 | 0.11 | 1.16 | 1.37 | | | Close to Body-Front | 0.04 | 0.07 | 0.33 | 0.44 | | Wi-Fi 5.8G Chain 0 + Wi-Fi | Close to Body-Back | 0.13 | 0.06 | 0.15 | 0.34 | | 5.8G Chain 1+ SDR 2.4G
Chain 0 | Close to Body-Top | 0.16 | 0.14 | 1.09 | 1.39 | | | Close to Body-Front | 0.06 | 0.06 | 0.15 | 0.27 | | Wi-Fi 5.8G Chain 0 + Wi-Fi
5.8G Chain 1+ SDR 2.4G
Chain 1 | Close to Body-Back | 0.13 | 0.06 | 0.20 | 0.39 | | | Close to Body-Top | 0.16 | 0.14 | 1.16 | 1.46 | | | Close to Body-Front | 0.06 | 0.06 | 0.33 | 0.45 | ## **Conclusion:** Sum of SAR: Σ SAR < 1.6 W/kg, simultaneous transmission SAR with Volume Scans is **not required**. SAR Evaluation Report 56 of 61 SAR Evaluation Report 57 of 61 # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the measurement system and is given in the following Table. ## Measurement uncertainty evaluation for IEEE1528-2013 SAR test | Source of uncertainty | Tolerance/
uncertainty
± % | Probability distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | |--|----------------------------------|--------------------------|----------|-------------|--------------|---------------------------------------|--|--|--| | | Measurement system | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | Probe positioner mech.
Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | Test sample | erelated | | | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | Device holder uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | Phantom an | d set-up | | | | _ | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | | Liquid conductivity target) | 5.0 | R | √3 | 0.64 | 0.43 | 1.8 | 1.2 | | | | Liquid conductivity meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | Liquid permittivity target) | 5.0 | R | √3 | 0.6 | 0.49 | 1.7 | 1.4 | | | | Liquid permittivity meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.0 | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.3 | 23.9 | | | SAR Evaluation Report 58 of 61 # Measurement uncertainty evaluation for IEC62209-2 SAR test | Source of uncertainty | Tolerance/
uncertainty
± % | Probability distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | |--|----------------------------------|--------------------------|-----------|-------------|--------------|---------------------------------------|--|--| | Measurement system | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | Modulation Response | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | Probe positioner mech.
Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | _ | Test sample | e related | | | | | | | Device holder Uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | Test sample positioning | 2.8 | Ν | 1 | 1 | 1 | 2.8 | 2.8 | | | Power scaling | 4.5 | R | √3 | 1 | 1 | 2.6 | 2.6 | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | _ | Phantom an | d set-up | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | Algorithm for correcting SAR for deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.1 | 0.9 | | | Liquid conductivity (meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | Liquid permittivity (meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | Temp. unc Conductivity | 1.7 | R | √3 | 0.78 | 0.71 | 0.8 | 0.7 | | | Temp. unc Permittivity | 0.3 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.1 | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.5 | 24.2 | | SAR Evaluation Report 59 of 61 SAR Evaluation Report 60 of 61 # APPENDIX C EUT TEST POSITION PHOTOS Please Refer to the Attachment. ***** END OF REPORT ***** Report No.: RDG180206002-20A SAR Evaluation Report 61 of 61