

FCC ID: 2AMQ8-WIFI-021

1. Product Information

FCC ID	: 2AMQ8-WIFI-021
Applicant's Name	: Ningbo Litesun Electronics Co., Ltd
Address	: Simen Town Yuyao Zhejiang 315472 China
EUT	: Smart Plug
Test Model	: LA-WF2
Ratings	: Input: AC 125V, 60Hz, 10A, Max 1250W
Hardware Version	: 100
Software Version	: 1.1.17
Bluetooth	
Frequency Range	: 2402MHz~2480MHz
Channel Number	: 40 channels for Bluetooth V5.1 (DTS)
Channel Spacing	: 2MHz for Bluetooth V5.1 (DTS)
Modulation Type	: GFSK for Bluetooth V5.1 (DTS),only support 1Mbps
Bluetooth Version	: V5.1
Antenna Description	: PCB Antenna, 1.37dBi(Max.)
WIFI(2.4G Band)	:
Frequency Range	: 2412MHz-2462MHz
Channel Number	: 11 Channels for 20MHz bandwidth (2412~2462MHz)
	7 Channels for 40MHz bandwidth (2422~2452MHz)
Channel Spacing	: 5MHz 5 105 105 105 105 105 105 105 105 105 1
Modulation Type	: IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: PCB Antenna, 1.37dBi(Max.)
Exposure category	: General population/uncontrolled environment
EUT Type	: Production Unit
Device Type	: Mobile Device
Date of Test	: January 15, 2025 ~ February 25, 2025
Date of Report	: February 26, 2025

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

3. Limit

3. 1 Refer Evaluation Method

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices.

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Control	led Exposure	
0.3 - 3.0	614	1.63	(100) *	6
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6
30 – 300	61.4	0.163	1.0	6
300 – 1500	/	/	f/300	6
1500 – 100,000	/	1	5	6

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Elimito for Maximani i elimiosible Exposare (Mi E)/encentrollea Exposare							
Frequency	Frequency Electric Field		Power Density	Averaging Time			
Range(MHz)	Strength(V/m)	Strength(A/m) (mW/cm²)		(minute)			
1817	Limits for Occ	upational/Uncontro	lled Exposure	The state of the s			
0.3 - 3.0	614	1.63	(100) *	30			
3.0 - 30	3.0 – 30 824/f		(180/f ²)*	30			
30 – 300	27.5	0.073	0.2	30			
300 – 1500	/	1	f/1500	30			
1500 – 100,000	/	1	1.0	30			

F=frequency in MHz

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China

^{*=}Plane-wave equivalent power density

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

EUT can only use antennas certificated as follows provided by manufacturer;

201 dan only doe antoniae continuated as follows provided by managed on,									
Internal/External	ternal/External Antenna type and Operate frequency Maximum antenna								
Identification	antenna number	band	gain						
Internal	PCB Antenna	2400MHz-2500MHz	1.37dBi	BT/ WIFI Antenna					

LCS Testing Lab

LCS Testing Lab

| ISI 立所権測度to

LET LCS Tosting Lak

FCC ID: 2AMQ8-WIFI-021

6. Conducted Power

[BLE 1M]

Mode	Ohamad	Frequency	Peak Conducted Output Power
	Channel	(MHz)	(dBm)
GFSK	0	2402	0.69
	19	2440	0.87
	39	2480	-0.14

[2.4G WIFI]

			[2.4G WIFI]	
	Mode	Channel	Frequency (MHz)	Peak Conducted Output
	IVIOGE		Frequency (MITZ)	Power (dBm)
		1	2412	15.28
	IEEE 802.11b	6	2437	15.31
		11	2462	14.98
		1	2412	14.82
	IEEE 802.11g	6	2437	14.66
		11	2462	14.32
İ	IEEE 000 44	1	2412	13.37
	IEEE 802.11n HT20	6	2437	13.04
		11	2462	13.84
Ì	IEEE 000 44	3	2422	12.56
	IEEE 802.11n	6	2437	11.81
_ tīš	HT40	9	2452	12.6
Visa ro	3100	Visi Ice 163	181 res	VST LCS

7. Manufacturing Tolerance

7. M	7. Manufacturing Tolerance							
	(Elija kab	[BLE	E 1M]	- in Time				
	BLE 1M (Peak)							
	Channel	Channel 0	Channel 19	Channel 39				
	Target (dBm)	0	0	0				
	Tolerance ± (dB)	1.0	1.0	1.0				

LO VO MILLI

[2.4G WIFI]							
IEEE 802.11b(Peak)							
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	15.0	15.0	14.0				
Tolerance ± (dB)	1.0	1.0	1.0				
	IEEE 802	.11g(Peak)					
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	14.0	14.0	14.0				
Tolerance ± (dB) 1.0		1.0	1.0				
	IEEE 802.11n20(Peak)						
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	13.0	13.0	13.0				
Tolerance ± (dB)	1.0	1.0	1.0				
	IEEE 802.1	1n40(Peak)					
Channel	Channel 03	Channel 06	Channel 09				
Target (dBm)	12.0	11.0	12.0				
Tolerance ± (dB)	1.0	1.0	1.0				

8. Measurement Results

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

[BLE 1M]

			<u> </u>			
	Output	power	Antenna	Antenna	MPE	MPE
Modulation Type	dD _{ma}	m1/1/	Gain	Gain	(mW/cm2)	Limits
	dBm	mW	(dBi)	(linear)	(IIIVV/CIIIZ)	(mW/cm2)
GFSK	1.0	1.2589	1.37	1.3709	0.0003	1.0000

[2.4G WIFI]

	Out		Antenna	Antenna	MPE	MPE	
Modulation Type	dBm	mW	Gain	Gain	(mW/cm2)	Limits	
	UDIII	IIIVV	(dBi)	(linear)		(mW/cm2)	
IEEE 802.11b	16.0	39.8107	1.37	1.3709	0.0109	1.0000	
IEEE 802.11g	15.0	31.6228	1.37	1.3709	0.0086	1.0000	
IEEE 802.11n	14.0	25.1189	1.37	1.3709	0.0060	0.0069	1.0000
HT20	14.0	23.1109	1.37	1.3709	0.0009	1.0000	
IEEE 802.11n	13.0	19.9526	1.37	1.3709	0.0054	1.0000	
HT40	13.0	19.9320	1.37	1.5709	0.0054	1.0000	

Remark

- 1. Output power including tune-up tolerance:
- 2. Output power was adjust to duty cycle at 100% if measured duty cycle less than 98%:
- 3. MPE evaluate distance is 20cm from user manual provide by manufacturer.

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

10. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

-----THE END OF REPORT-----

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China