Shenzhen Global Test Service Co.,Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong #### FCC PART 15 SUBPART C TEST REPORT #### **FCC PART 15.247** Report Reference No...... GTS20191218003-1-1 FCC ID.....: 2AMD8EP002 Compiled by (position+printed name+signature)..: File administrators Jimmy Wang Supervised by (position+printed name+signature)..: Test Engineer Aaron Tan Approved by (position+printed name+signature)..: Manager Jason Hu Date of issue...... Dec.19, 2019 Representative Laboratory Name.: Shenzhen Global Test Service Co., Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Pinghu Street, Longgang District, Shenzhen, Guangdong Applicant's name...... Shenzhen Ground Enterprises Co., Ltd. Xixiang,Bao An District,Shenzhen,China Test specification: Standard FCC Part 15.247 TRF Originator...... Shenzhen Global Test Service Co.,Ltd. #### Shenzhen Global Test Service Co.,Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test item description True Wireless Earbuds With Charging Case Trade Mark N/A Manufacturer Shenzhen Ground Enterprises Co.,Ltd. Model/Type reference...... BB2693 Listed Models EP-002 Modulation Type GFSK, Π/4DQPSK Operation Frequency...... From 2402MHz to 2480MHz Result..... PASS Report No.: GTS20191218003-1-1 Page 2 of 42 ### TEST REPORT | Test Report No. : | GTS20191218003-1-1 | Oct.08, 2019 | |-------------------|--------------------|---------------| | rest Report No | G1020191210003-1-1 | Date of issue | Equipment under Test : True Wireless Earbuds With Charging Case Model /Type : BB2693 Listed Models : EP-002 Applicant : Shenzhen Ground Enterprises Co., Ltd. Address : Room607, Building F, MingYueHuaDu, Gonghe Industrial Rd, Xixiang,Bao An District,Shenzhen,China Manufacturer : Shenzhen Ground Enterprises Co.,Ltd. Address : Room607, Building F, MingYueHuaDu, Gonghe Industrial Rd, Xixiang,Bao An District,Shenzhen,China | Test Result: | PASS | |--------------|------| |--------------|------| The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. Report No.: GTS20191218003-1-1 Page 3 of 42 # **Contents** | <u>1</u> | TEST STANDARDS | 4 | |-------------|---|----------| | | | | | <u>2</u> | SUMMARY | 5 | | 2.1 | General Remarks | 5 | | 2.2 | Product Description | 5 | | 2.3 | Equipment Under Test | 5 | | 2.4 | Short description of the Equipment under Test (EUT) | 5 | | 2.5 | EUT operation mode | 6 | | 2.6 | Block Diagram of Test Setup | 6 | | 2.7 | Related Submittal(s) / Grant (s) | 6 | | 2.8 | Modifications | 6 | | <u>3</u> | TEST ENVIRONMENT | 7 | | | | _ | | 3.1 | Address of the test laboratory | 7 | | 3.2 | Test Facility | 7 | | 3.3 | Environmental conditions Summary of measurement results | 7 | | 3.4
3.5 | Statement of the measurement uncertainty | 8
8 | | 3.6 | Equipments Used during the Test | 9 | | 0.0 | _qa.p | • | | <u>4</u> | TEST CONDITIONS AND RESULTS | 10 | | 4.1 | AC Power Conducted Emission | 10 | | 4.2 | Radiated Emission | 13 | | 4.3 | Maximum Peak Output Power | 19 | | 4.4 | 20dB Bandwidth | 20 | | 4.5 | Frequency Separation | 23 | | 4.6 | Number of hopping frequency | 25 | | 4.7 | Time of Occupancy (Dwell Time) | 27 | | 4.8 | Out-of-band Emissions | 30 | | 4.9
4.10 | Pseudorandom Frequency Hopping Sequence Antenna Requirement | 34
35 | | _ | | | | <u>5</u> | TEST SETUP PHOTOS OF THE EUT | 36 | | <u>6</u> | PHOTOS OF THE EUT | 37 | Report No.: GTS20191218003-1-1 Page 4 of 42 # 1 TEST STANDARDS The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules. Report No.: GTS20191218003-1-1 Page 5 of 42 # 2 SUMMARY ### 2.1 General Remarks | Date of receipt of test sample | : | Dec.07, 2019 | |--------------------------------|---|--------------| | | | | | | | | | Testing commenced on | : | Dec.07, 2019 | | | | | | | | | | Testing concluded on | : | Dec.19, 2019 | # 2.2 Product Description | Product Name: | True Wireless Earbuds With Charging Case | |--|--| | Model/Type reference: | BB2693 | | Power supply: | DC 3.70V from battery and DC 5V From Charging base | | Adapter information (Auxiliary test supplied by test Lab): | Model: AS5010B
Input: 100-240V~, 50/60Hz 0.15A
Output:DC5V===1000m A | | Bluetooth : | | | Supported Type: | Bluetooth BR/EDR | | Modulation: | GFSK, π/4DQPSK | | Operation frequency: | 2402MHz~2480MHz | | Channel number: | 79 | | Channel separation: | 1MHz | | Antenna type: | PCB antenna | | Antenna gain: | 0.00dBi | # 2.3 Equipment Under Test ### Power supply system utilised | Power supply voltage | : | 0 | 230V / 50 Hz | 0 | 120V / 60Hz | |----------------------|---|---|----------------------------------|---|-------------| | | | 0 | 12 V DC | 0 | 24 V DC | | | | • | Other (specified in blank below) | |) | DC 3.70V from battery and DC 5V From Charging base # 2.4 Short description of the Equipment under Test (EUT) This is a True Wireless Earbuds With Charging Case. For more details, refer to the user's manual of the EUT. Report No.: GTS20191218003-1-1 Page 6 of 42 ### 2.5 EUT operation mode The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test. #### **Operation Frequency:** | Channel | Frequency (MHz) | |---------|-----------------| | 00 | 2402 | | 01 | 2403 | | : | : | | 38 | 2440 | | 39 | 2441 | | 40 | 2442 | | : | i: | | 77 | 2479 | | 78 | 2480 | # 2.6 Block Diagram of Test Setup ### 2.7 Related Submittal(s) / Grant (s) This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. #### 2.8 Modifications No modifications were implemented to meet testing criteria. Report No.: GTS20191218003-1-1 Page 7 of 42 ## 3 TEST ENVIRONMENT #### 3.1 Address of the test laboratory ### Shenzhen Global Test Service Co.,Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz. #### 3.2 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### FCC-Registration No.: 165725 Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. #### A2LA-Lab Cert. No.: 4758.01 Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### CNAS-Lab Code: L8169 Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024. #### 3.3 Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15-35 ° C | |-----------------------|--------------| | | | | Humidity: | 30-60 % | | | | | Atmospheric pressure: | 950-1050mbar | Report No.: GTS20191218003-1-1 Page 8 of 42 ### 3.4 Summary of measurement results | Test
Specification
clause | Test case | Test
Mode | Test
Channel | Reco
In Re | | Pass | Fail | NA | NP | Remark | |---------------------------------|--|------------------|---|------------------|---|-------------|------|----|----|----------| | §15.247(a)(1) | Carrier
Frequency
separation | GFSK
П/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK
Π/4DQPSK | ⊠ Middle | \boxtimes | | | | complies | | §15.247(a)(1) | Number of
Hopping
channels | GFSK
П/4DQPSK | ⊠ Full | GFSK | ⊠ Full | | | | | complies | | §15.247(a)(1) | Time of
Occupancy
(dwell time) | GFSK
П/4DQPSK | ⊠ Lowest
⊠ Middle
⊠ Highest | GFSK
Π/4DQPSK | ⊠ Middle | | | | | complies | | §15.247(a)(1) | Spectrum bandwidth of a FHSS system 20dB bandwidth | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK
Π/4DQPSK | ✓ Lowest✓ Middle✓ Highest | \boxtimes | | | | complies | | §15.247(b)(1) | Maximum output power | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK
Π/4DQPSK | ✓ Lowest✓ Middle✓ Highest | \boxtimes | | | | complies | | §15.247(d) | Band edge
compliance
conducted | GFSK
Π/4DQPSK | | GFSK
Π/4DQPSK | | \boxtimes | | | | complies | | §15.205 | Band edge compliance radiated | GFSK
Π/4DQPSK | Lowest | GFSK | | \boxtimes | | | | complies | | §15.247(d) | TX spurious emissions conducted | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | \boxtimes | | | | complies | | §15.247(d) | TX spurious emissions radiated | GFSK
П/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK | | | | | | complies | | §15.209(a) | TX spurious
Emissions
radiated
Below 1GHz | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK | ⊠ Middle | | | | | complies | | §15.107(a)
§15.207 | Conducted
Emissions
9KHz-30
MHz | GFSK
Π/4DQPSK | ☑ Lowest☑ Middle☑ Highest | GFSK | ⊠ Middle | | | | | complies | ### Remark: - 1. The measurement uncertainty is not included in the test result. - 2. NA = Not Applicable; NP = Not Performed - 3. We tested all test mode and recorded worst case in report #### 3.5 Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen GTS laboratory is reported: | Test | Range | Measurement
Uncertainty | Notes | |-----------------------|------------|----------------------------|-------| | Radiated Emission | 30~1000MHz | 4.10 dB | (1) | | Radiated Emission | 1~18GHz | 4.32 dB | (1) | | Radiated Emission | 18-40GHz | 5.54 dB | (1) | | Conducted Disturbance | 0.15~30MHz | 3.12 dB | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. Report No.: GTS20191218003-1-1 Page 9 of 42 # 3.6 Equipments Used during the Test | Test Equipment | Manufacturer | Model No. | Serial No. | Calibration
Date | Calibration
Due Date | |-------------------------------|---|---------------------------|-----------------|---------------------|-------------------------| | LISN | R&S | ENV216 | 3560.6550.08 | 2019/09/20 | 2020/09/19 | | LISN | R&S | ESH2-Z5 | 893606/008 | 2019/09/20 | 2020/09/19 | | EMI Test Receiver | R&S | ESPI3 | 101841-cd | 2019/09/20 | 2020/09/19 | | EMI Test Receiver | R&S | ESCI7 | 101102 | 2019/09/20 | 2020/09/19 | | Spectrum Analyzer | Agilent | N9020A | MY48010425 | 2019/09/20 | 2020/09/19 | | Spectrum Analyzer | R&S | FSV40 | 100019 | 2019/09/20 | 2020/09/19 | | Vector Signal generator | Agilent | N5181A | MY49060502 | 2019/09/20 | 2020/09/19 | | Signal generator | Agilent | E4421B | 3610AO1069 | 2019/09/20 | 2020/09/19 | | Climate Chamber | ESPEC | EL-10KA | A20120523 | 2019/09/20 | 2020/09/19 | | Controller | EM Electronics | Controller EM 1000 | N/A | N/A | N/A | | Horn Antenna | Schwarzbeck | BBHA 9120D | 01622 | 2019/09/23 | 2020/09/22 | | Active Loop Antenna | Beijing Da Ze
Technology
Co.,Ltd. | ZN30900C | 15006 | 2019/10/12 | 2020/10/11 | | Bilog Antenna | Schwarzbeck | VULB9163 | 000976 | 2019/05/26 | 2020/05/25 | | Broadband Horn
Antenna | SCHWARZBECK | BBHA 9170 | 791 | 2019/09/20 | 2020/09/19 | | Amplifier | Schwarzbeck | BBV 9743 | #202 | 2019/09/20 | 2020/09/19 | | Amplifier | Schwarzbeck | BBV9179 | 9719-025 | 2019/09/20 | 2020/09/19 | | Amplifier | EMCI | EMC051845B | 980355 | 2019/09/20 | 2020/09/19 | | Temperature/Humidity
Meter | Gangxing | CTH-608 | 02 | 2019/09/20 | 2020/09/19 | | High-Pass Filter | K&L | 9SH10-
2700/X12750-O/O | KL142031 | 2019/09/20 | 2020/09/19 | | High-Pass Filter | K&L | 41H10-
1375/U12750-O/O | KL142032 | 2019/09/20 | 2020/09/19 | | RF Cable(below
1GHz) | HUBER+SUHNER | RG214 | RE01 | 2019/09/20 | 2020/09/19 | | RF Cable(above
1GHz) | HUBER+SUHNER | RG214 | RE02 | 2019/09/20 | 2020/09/19 | | Data acquisition card | Agilent | U2531A | TW53323507 | 2019/09/20 | 2020/09/19 | | Power Sensor | Agilent | U2021XA | MY5365004 | 2019/09/20 | 2020/09/19 | | Test Control Unit | Tonscend | JS0806-1 | 178060067 | 2019/06/20 | 2020/06/19 | | Automated filter bank | Tonscend | JS0806-F | 19F8060177 | 2019/06/20 | 2020/06/19 | | EMI Test Software | Tonscend | JS1120-1 | Ver 2.6.8.0518 | / | / | | EMI Test Software | Tonscend | JS1120-3 | Ver 2.5.77.0418 | / | / | | EMI Test Software | Tonscend | JS32-CE | Ver 2.5 | / | / | | EMI Test Software | Tonscend | JS32-RE | Ver 2.5.1.8 | / | / | Note: The Cal.Interval was one year. Report No.: GTS20191218003-1-1 Page 10 of 42 ### 4 TEST CONDITIONS AND RESULTS #### 4.1 AC Power Conducted Emission #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013. - 2 Support equipment, if needed, was placed as per ANSI C63.10-2013 - 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013 - 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5 All support equipments received AC power from a second LISN, if any. - 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. - 8 During the above scans, the emissions were maximized by cable manipulation. #### **AC Power Conducted Emission Limit** For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following: | Fraguency range (MHz) | Limit (dBuV) | | | | | |--|--------------|-----------|--|--|--| | Frequency range (MHz) | Quasi-peak | Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | 60 | 50 | | | | | * Decreases with the logarithm of the frequency. | | | | | | ### **TEST RESULTS** #### Remark: - 1. All modes of GFSK, and Pi/4 DQPSKwere test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below: - 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below: | Suspected List | | | | | | | | | | | | | |----------------|--------------------|-------------------|----------------|------------------|-----------------|----------------|----------|------|--------|--|--|--| | NO. | Frequency
[MHz] | Reading
[dBµ∨] | Factor
[dB] | Result
[dBµ∀] | Limit
[dBµ∨] | Margin
[dB] | Detector | Line | Remark | | | | | 1 | 0.6495 | 30.21 | 10.21 | 40.42 | 56.00 | 15.58 | Qp | L1 | PASS | | | | | 2 | 0.6495 | 21.02 | 10.21 | 31.23 | 46.00 | 14.77 | AV | L1 | PASS | | | | | 3 | 1.1040 | 18.54 | 10.21 | 28.75 | 46.00 | 17.25 | AV | L1 | PASS | | | | | 4 | 1.1040 | 29.02 | 10.21 | 39.23 | 56.00 | 16.77 | Qp | L1 | PASS | | | | | 5 | 4.8075 | 36.38 | 10.35 | 46.73 | 56.00 | 9.27 | Qp | L1 | PASS | | | | | 6 | 4.8975 | 25.68 | 10.35 | 36.03 | 46.00 | 9.97 | AV | L1 | PASS | | | | | 7 | 6.2835 | 36.52 | 10.49 | 47.01 | 60.00 | 12.99 | Qp | L1 | PASS | | | | | 8 | 6.3690 | 24.33 | 10.50 | 34.83 | 50.00 | 15.17 | AV | L1 | PASS | | | | | 9 | 7.4850 | 42.67 | 10.54 | 53.21 | 60.00 | 6.79 | Qp | L1 | PASS | | | | | 10 | 7.5120 | 27.88 | 10.54 | 38.42 | 50.00 | 11.58 | AV | L1 | PASS | | | | | 11 | 8.3940 | 29.91 | 10.56 | 40.47 | 50.00 | 9.53 | AV | L1 | PASS | | | | | 12 | 8.4030 | 40.44 | 10.56 | 51.00 | 60.00 | 9.00 | Qp | L1 | PASS | | | | | NO. | Frequency
[MHz] | Reading
[dBµ∨] | Factor
[dB] | Result
[dBµ∀] | Limit
[dBµ∨] | Margin
[dB] | Detector | Line | Remark | |-----|--------------------|-------------------|----------------|------------------|-----------------|----------------|----------|------|--------| | 1 | 0.6585 | 27.65 | 10.21 | 37.86 | 56.00 | 18.14 | Qp | N | PASS | | 2 | 0.6585 | 18.32 | 10.21 | 28.53 | 46.00 | 17.47 | AV | N | PASS | | 3 | 1.1355 | 18.12 | 10.21 | 28.33 | 46.00 | 17.67 | AV | N | PASS | | 4 | 1.1355 | 28.77 | 10.21 | 38.98 | 56.00 | 17.02 | Qp | N | PASS | | 5 | 1.5540 | 18.55 | 10.24 | 28.79 | 46.00 | 17.21 | AV | N | PASS | | 6 | 1.5630 | 30.49 | 10.24 | 40.73 | 56.00 | 15.27 | Qp | N | PASS | | 7 | 4.7535 | 38.99 | 10.35 | 49.34 | 56.00 | 6.66 | Qp | N | PASS | | 8 | 4.8435 | 27.06 | 10.35 | 37.41 | 46.00 | 8.59 | AV | N | PASS | | 9 | 6.1935 | 39.82 | 10.49 | 50.31 | 60.00 | 9.69 | Qp | N | PASS | | 10 | 6.3060 | 26.08 | 10.49 | 36.57 | 50.00 | 13.43 | AV | N | PASS | | 11 | 7.0530 | 28.87 | 10.51 | 39.38 | 50.00 | 10.62 | AV | N | PASS | | 12 | 7.1790 | 43.95 | 10.52 | 54.47 | 60.00 | 5.53 | Qp | N | PASS | Report No.: GTS20191218003-1-1 Page 13 of 42 #### 4.2 Radiated Emission ### **TEST CONFIGURATION** Frequency range 9 KHz - 30MHz Frequency range 30MHz - 1000MHz Frequency range above 1GHz-25GHz Report No.: GTS20191218003-1-1 Page 14 of 42 #### **TEST PROCEDURE** - The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz. - 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT. - 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 4. Repeat above procedures until all frequency measurements have been completed. - 5. Radiated emission test frequency band from 9KHz to 25GHz. - 6. The distance between test antenna and EUT as following table states: | Test Frequency range | Test Antenna Type | Test Distance | |----------------------|----------------------------|---------------| | 9KHz-30MHz | Active Loop Antenna | 3 | | 30MHz-1GHz | Ultra-Broadband Antenna | 3 | | 1GHz-18GHz | Double Ridged Horn Antenna | 3 | | 18GHz-25GHz | Horn Anternna | 1 | 7. Setting test receiver/spectrum as following table states: | Test Frequency range | Test Receiver/Spectrum Setting | Detector | |----------------------|--|----------| | 9KHz-150KHz | RBW=200Hz/VBW=3KHz,Sweep time=Auto | QP | | 150KHz-30MHz | RBW=9KHz/VBW=100KHz,Sweep time=Auto | QP | | 30MHz-1GHz | RBW=120KHz/VBW=1000KHz,Sweep time=Auto | QP | | | Peak Value: RBW=1MHz/VBW=3MHz, | | | 1GHz-40GHz | Sweep time=Auto | Peak | | 1G112-40GH2 | Average Value: RBW=1MHz/VBW=10Hz, | reak | | | Sweep time=Auto | | #### Field Strength Calculation The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: #### FS = RA + AF + CL - AG | Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) | |---------------------------|--| | RA = Reading Amplitude | AG = Amplifier Gain | | AF = Antenna Factor | | Transd=AF +CL-AG #### **RADIATION LIMIT** For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. | Frequency (MHz) | Distance
(Meters) | Radiated (dBµV/m) | Radiated (μV/m) | |-----------------|----------------------|----------------------------------|-----------------| | 0.009-0.49 | 3 | 20log(2400/F(KHz))+40log(300/3) | 2400/F(KHz) | | 0.49-1.705 | 3 | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz) | | 1.705-30 | 3 | 20log(30)+ 40log(30/3) | 30 | | 30-88 | 3 | 40.0 | 100 | | 88-216 | 3 | 43.5 | 150 | | 216-960 | 3 | 46.0 | 200 | | Above 960 | 3 | 54.0 | 500 | Report No.: GTS20191218003-1-1 Page 15 of 42 #### **TEST RESULTS** 10 30M - QP Limit #### Remark: - We measured Radiated Emission at GFSK and $\pi/4$ DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode. - 2. For below 1GHz testing recorded worst at GFSK DH5 middle channel. - Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found | Sus | pected Lis | st | | | | | | | | | | |-----|--------------------|------------------|----------------|--------------------|-------------------|----------------|-------------|-----------|----------|----------|--------| | NO. | Frequency
[MHz] | Reading [dBµV/m] | Factor
[dB] | Result
[dBµV/m] | Limit
[dBµV/m] | Margin
[dB] | Height [cm] | Angle [°] | Detector | Polarity | Remark | | 1 | 47.4600 | 32.73 | -6.51 | 26.22 | 40.00 | 13.78 | 100 | 322 | PK | Vertical | PASS | | 2 | 49.8850 | 32.97 | -6.58 | 26.39 | 40.00 | 13.61 | 100 | 178 | PK | Vertical | PASS | | 3 | 108.0850 | 32.46 | -8.50 | 23.96 | 43.50 | 19.54 | 100 | 31 | PK | Vertical | PASS | | 4 | 200.7200 | 31.91 | -9.18 | 22.73 | 43.50 | 20.77 | 100 | 82 | PK | Vertical | PASS | | 5 | 350.5850 | 32.36 | -5.95 | 26.41 | 46.00 | 19.59 | 100 | 306 | PK | Vertical | PASS | | 6 | 929.6750 | 31.63 | 5.26 | 36.89 | 46.00 | 9.11 | 100 | 311 | PK | Vertical | PASS | Frequency[Hz] 100M Report No.: GTS20191218003-1-1 Page 16 of 42 ### For 1GHz to 25GHz Note: GFSK and Pi/4 DQPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz) | Freque | ency(MHz) |): | 24 | .02 | Pola | arity: | HORIZONTAL | | | |--------------------|-----------|----|----------------------------|-------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | | | Limit Margin (dBuV/m) (dB) | | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4804.00 | 56.13 | PK | 74 | 17.87 | 54.23 | 31.42 | 6.98 | 36.5 | 1.9 | | 4804.00 | 43.75 | AV | 54 | 10.25 | 41.85 | 31.42 | 6.98 | 36.5 | 1.9 | | 7206.00 | 57.12 | PK | 74 | 16.88 | 46.52 | 37.03 | 8.87 | 35.3 | 10.6 | | 7206.00 | 43.88 | AV | 54 | 10.12 | 33.28 | 37.03 | 8.87 | 35.3 | 10.6 | | Freque | ncy(MHz) |): | 24 | 02 | Pola | arity: | VERTICAL | | | |--------------------|-------------------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | Emission
Level
(dBuV/m) | | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4804.00 | 56.19 | PK | 74 | 17.81 | 54.29 | 31.42 | 6.98 | 36.5 | 1.9 | | 4804.00 | 43.67 | AV | 54 | 10.33 | 41.77 | 31.42 | 6.98 | 36.5 | 1.9 | | 7206.00 | 55.88 | PK | 74 | 18.12 | 45.28 | 37.03 | 8.87 | 35.3 | 10.6 | | 7206.00 | 43.79 | AV | 54 | 10.21 | 33.19 | 37.03 | 8.87 | 35.3 | 10.6 | | Freque | Frequency(MHz): | | | 41 | Polarity: | | HORIZONTAL | | | |--------------------|-------------------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | Emission
Level
(dBuV/m) | | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4882.00 | 59.58 | PK | 74 | 14.42 | 57.52 | 30.98 | 7.58 | 36.5 | 2.06 | | 4882.00 | 44.85 | ΑV | 54 | 9.15 | 42.79 | 30.98 | 7.58 | 36.5 | 2.06 | | 7323.00 | 55.75 | PK | 74 | 18.25 | 44.83 | 37.66 | 8.56 | 35.3 | 10.92 | | 7323.00 | 43.84 | ΑV | 54 | 10.16 | 32.92 | 37.66 | 8.56 | 35.3 | 10.92 | | Freque | Frequency(MHz): | | | 41 | Polarity: | | VERTICAL | | | |--------------------|-------------------------------|----|----------------------------|-------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | Emission
Level
(dBuV/m) | | Limit Margin (dBuV/m) (dB) | | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4882.00 | 60.05 | PK | 74 | 13.95 | 57.99 | 30.98 | 7.58 | 36.5 | 2.06 | | 4882.00 | 44.63 | AV | 54 | 9.37 | 42.57 | 30.98 | 7.58 | 36.5 | 2.06 | | 7323.00 | 56.64 | PK | 74 | 17.36 | 45.72 | 37.66 | 8.56 | 35.3 | 10.92 | | 7323.00 | 43.49 | ΑV | 54 | 10.51 | 32.57 | 37.66 | 8.56 | 35.3 | 10.92 | | Freque | Frequency(MHz): | | | 80 | Pola | arity: | HORIZONTAL | | | |--------------------|-------------------------------|----|----------------------------|-------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | Emission
Level
(dBuV/m) | | Limit Margin (dBuV/m) (dB) | | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4960.00 | 58.20 | PK | 74 | 15.8 | 55.13 | 31.47 | 7.8 | 36.2 | 3.07 | | 4960.00 | 43.29 | AV | 54 | 10.71 | 40.22 | 31.47 | 7.8 | 36.2 | 3.07 | | 7440.00 | 55.61 | PK | 74 | 18.39 | 43.87 | 38.32 | 8.72 | 35.3 | 11.74 | | 7440.00 | 43.70 | PK | 54 | 10.3 | 31.96 | 38.32 | 8.72 | 35.3 | 11.74 | | Frequency(MHz): | | 2480 | | Polarity: | | VERTICAL | | | | |--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | _ | ssion
vel
V/m) | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 4960.00 | 59.18 | PK | 74 | 14.82 | 56.11 | 31.47 | 7.8 | 36.2 | 3.07 | | 4960.00 | 44.15 | AV | 54 | 9.85 | 41.08 | 31.47 | 7.8 | 36.2 | 3.07 | | 7440.00 | 56.63 | PK | 74 | 17.37 | 44.89 | 38.32 | 8.72 | 35.3 | 11.74 | | 7440.00 | 43.48 | PK | 54 | 10.52 | 31.74 | 38.32 | 8.72 | 35.3 | 11.74 | Report No.: GTS20191218003-1-1 Page 17 of 42 #### REMARKS: - Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. The other emission levels were very low against the limit. Report No.: GTS20191218003-1-1 Page 18 of 42 ### Results of Band Edges Test (Radiated) Note: GFSK and Pi/4 DQPSK all have been tested, only worse case GFSK is reported. GFSK | Frequency(MHz): | | 2402 Polarity: | | HORIZONTAL | | | | | | |--------------------|-----------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------| | Frequency
(MHz) | Emis
Le | ssion
vel
V/m) | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 2390.00 | 55.87 | PK | 74 | 18.13 | 61.28 | 27.49 | 3.32 | 36.22 | -5.41 | | 2390.00 | 44.82 | AV | 54 | 9.18 | 50.23 | 27.49 | 3.32 | 36.22 | -5.41 | | Freque | ncy(MHz) |): | 24 | 02 | Polarity: | | VERTICAL | | | | Frequency
(MHz) | Le | ssion
vel
V/m) | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 2390.00 | 57.52 | PK | 74 | 16.48 | 62.93 | 27.49 | 3.32 | 36.22 | -5.41 | | 2390.00 | 46.36 | AV | 54 | 7.64 | 51.77 | 27.49 | 3.32 | 36.22 | -5.41 | | Freque | ncy(MHz) |): | 2480 Polarity: | | HORIZONTAL | | | | | | Frequency
(MHz) | Le | ssion
vel
V/m) | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 2483.50 | 54.57 | PΚ | 74 | 27.76 | 60.08 | 27.45 | 3.38 | 36.34 | -5.51 | | 2483.50 | 43.81 | AV | 54 | 10.19 | 49.32 | 27.45 | 3.38 | 36.34 | -5.51 | | Freque | Frequency(MHz): | | 2480 Polarity: | | arity: | VERTICAL | | | | | Frequency
(MHz) | Le | ssion
vel
V/m) | Limit
(dBuV/m) | Margin
(dB) | Raw
Value
(dBuV) | Antenna
Factor
(dB/m) | Cable
Factor
(dB) | Pre-
amplifier
(dB) | Correction
Factor
(dB/m) | | 2483.50 | 56.67 | PK | 74 | 27.76 | 62.18 | 27.45 | 3.38 | 36.34 | -5.51 | | 2483.50 | 45.74 | AV | 54 | 8.26 | 51.25 | 27.45 | 3.38 | 36.34 | -5.51 | REMARKS: Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. Report No.: GTS20191218003-1-1 Page 19 of 42 # 4.3 Maximum Peak Output Power ### <u>Limit</u> The Maximum Peak Output Power Measurement is 125mW (20.97). ### **Test Procedure** Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor. ### **Test Configuration** ### **Test Results** | Туре | Channel | Output power (dBm) | Limit (dBm) | Result | |----------|---------|--------------------|-------------|--------| | | 00 | 1.27 | | | | GFSK | 39 | 1.56 | 20.97 | Pass | | | 78 | 2.42 | | | | | 00 | 0.95 | | | | π/4DQPSK | 39 | 1.01 | 20.97 | Pass | | | 78 | 1.79 | | | Note: 1.The test results including the cable lose. Report No.: GTS20191218003-1-1 Page 20 of 42 ### 4.4 20dB Bandwidth #### <u>Limit</u> For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth. ### **Test Procedure** The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. # **Test Configuration** #### **Test Results** | Modulation | Channel | 20dB bandwidth (MHz) | Result | |------------|---------|----------------------|--------| | | CH00 | 0.964 | | | GFSK | CH39 | 0.965 | | | | CH78 | 0.973 | Door | | | CH00 | 1.294 | Pass | | π/4DQPSK | CH39 | 1.294 | | | | CH78 | 1.292 | | CH78 Report No.: GTS20191218003-1-1 Page 23 of 42 ### 4.5 Frequency Separation #### **LIMIT** According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater. ### **TEST PROCEDURE** The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. #### **TEST CONFIGURATION** #### **TEST RESULTS** | Modulation | Channel | Channel Separation
(MHz) | Limit(MHz) | Result | |------------|---------|-----------------------------|-------------------|--------| | GFSK | CH39 | 0.993 | 25KHz or 2/3*20dB | Pass | | GFSK | CH40 | 0.993 | bandwidth | | | #/4DODSK | CH39 | 0.002 | 25KHz or 2/3*20dB | Pass | | π/4DQPSK | CH40 | 0.993 | bandwidth | | Note: We have tested all mode at high, middle and low channel, and recorded worst case at middle Report No.: GTS20191218003-1-1 Page 25 of 42 # 4.6 Number of hopping frequency ### **Limit** Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. ### **Test Procedure** The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW. ### **Test Configuration** ### **Test Results** | Modulation | Number of Hopping Channel | Limit | Result | | |------------|---------------------------|-------------|--------|--| | GFSK | 79 | \1 E | Door | | | π/4DQPSK | 79 | ≥15 | Pass | | Report No.: GTS20191218003-1-1 Page 27 of 42 # 4.7 Time of Occupancy (Dwell Time) ### **Limit** The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. #### **Test Procedure** The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz. #### **Test Configuration** ### **Test Results** | Modulation | Packet | Pulse time
(ms) | Dwell time
(s) | Limit (s) | Result | |------------|--------|--------------------|-------------------|-----------|--------| | | DH1 | 0.373 | 0.121 | | | | GFSK | DH3 | 1.629 | 0.261 | 0.40 | Pass | | | DH5 | 2.876 | 0.307 | | | | | 2-DH1 | 0.380 | 0.123 | | | | π/4DQPSK | 2-DH3 | 1.632 | 0.262 | 0.40 | Pass | | | 2-DH5 | 2.880 | 0.308 | | | #### Note: - 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. - 2. Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5 Report No.: GTS20191218003-1-1 Page 30 of 42 #### 4.8 Out-of-band Emissions #### Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. #### **Test Procedure** Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions. #### **Test Configuration** #### **Test Results** Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5 # Band-edge Measurements for RF Conducted Emissions: # 4.9 Pseudorandom Frequency Hopping Sequence ### TEST APPLICABLE ### For 47 CFR Part 15C section 15.247 (a) (1) requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### **EUT Pseudorandom Frequency Hopping Sequence Requirement** The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones. - Number of shift register stages:9 - Length of pseudo-random sequence:29-1=511 bits - Longest sequence of zeros:8(non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of pseudorandom frequency hopping sequence as follows: Each frequency used equally one the average by each transmitter. The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals. Report No.: GTS20191218003-1-1 Page 35 of 42 #### 4.10 Antenna Requirement #### Standard Applicable For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. #### Refer to statement below for compliance The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. ### **Antenna Connected Construction** The maximum gain of antenna was 0.00dBi. # 5 Test Setup Photos of the EUT # 6 Photos of the EUT Report No.: GTS20191218003-1-1 Page 38 of 42 Report No.: GTS20191218003-1-1 Page 39 of 42 Report No.: GTS20191218003-1-1 Page 40 of 42 Report No.: GTS20191218003-1-1 Page 41 of 42 Report No.: GTS20191218003-1-1 Page 42 of 42