Exhibit C

Measurement Rerort

ACER PERIPHERALS, INC. FCC ID.:JVP669823 COLOR SCANNER

FCC CLASS B EMI TEST REPORT

of

EUT : Color Scanner

MODEL NO. : SNAPSCAN 1212U

FCC ID. : JVP669823

for

APPLICANT : ACER PERIPHERALS, INC.

ADDRESS : 157, Shan-Ying Rd., Kweishan, Taoyuan, 333,

Taiwan, R.O.C.

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN

NO. 8 LANE 29, WENMIMG ROAD, LOSHAN TSUN, KUI-SHAN HSIANG, TAOYUAN, TAIWAN, R.O.C.

> Tel:(03)3280026-32, Fax:(03)3280034

Report Number: ET87R-07-033-01

Issued Date : JUL. 28, 1998

TEST REPORT CERTIFICATION

Applicant	: ACER PERIPHERALS, INC.
-----------	--------------------------

157, Shan-Ying Rd., Kweishan, Taoyuan, 333,

Taiwan, R.O.C.

Manufacturer : ACER PERIPHERALS, INC.

157, Shan-Ying Rd., Kweishan, Taoyuan, 333,

Taiwan, R.O.C.

Description of EUT

: Color Scanner

a) Brand Name

: AGFA

b) Model No.

: SNAPSCAN 1212U

c) FCC ID.

: JVP669823

d) Adaptor

: Model: 481609R03CT

Input: 120VAC, 60Hz, 200W

Output: 16VDC/900mA

Regulation Applied

: FCC Rules and Regulations Part 15 Subpart B (1996)

I HEREBY CERTIFY THAT: The data shown in this report was in accordance with the procedures given in ANSI-63.4 and the energy emitted by the device was found to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The results of the testing report relate only to the items tested.

2. The testing report shall not be reproduced except in full, without the written approval of ETC.

Test Dated

JUL. 13, 1998

Test Engineer

Tien Lu Liau)

Approve & Authorized

Will Yauo, Supervisor

EMI Test Site of ELECTRONICS TESTING CENTER, TAIWAN

Table of Contents	Page
1. GENERAL INFORMATION	1
1.1 Product Description	1
1.2 Tested System Details	2
1.3 Test Methodology	2
1.4 Test Facility	2
2. PRODUCT LABELING AND USER INFORMATION	3
2.1 Class Definition	3
2.2 Class Limitations	
2.3 Labeling Requirement	5
2.4 User Information	6
3. SYSTEM TEST CONFIGURATION	7
3.1 Justification	7
3.2 Configuration of Tested System	7
4. MEASUREMENT PHOTOS	8
4.1 Conducted Measurement Photos	8
4.2 Radiated Measurement Photos	9
5. CONDUCTED EMISSION DATA	10
5.1 Conducted Test Results	10
6. RADIATED EMISSION DATA	14
6.1 Open Site Radiated Test Results	14
6.2 Field Strength Calculation	
7. TEST EQUIPMENT	
7.1 Test Setup	17
7.2 Conducted Test Equipments	18
7.3 Radiated Test Equipments	

1. GENERAL INFORMATION

1.1 Product Description

a) Description of EUT : Color Scanner

b) Brand Name : AGFA

c) Model No. : SNAPSCAN 1212U

d) FCC ID : JVP669823

e) Adaptor : Model: 481609R03CT

Input: 120VAC, 60Hz, 200W

Output: 16VDC/900mA

1.2 Tested System Details

The Tested System Detail equipment, plus description of all cables used in the tested system are:

Description	Model No.	FCC ID.	Manufacturer	Cable
	SNAPSCAN 1212U	JVP669823	ACER PERIPHERALS, INC.	1.8m Unshielded AC Adaptor Power Cord 1.5m Shielded USB Cable
Adaptor	481609R03CT		LEADER ELECTRONICS INC.	
Monitor	JC-1743UMA	A3DJC-1743UMA	NEC Co.	1.8m Shielded Cable with Core
				1.8m Unshielded AC Power Cord
P.C.	D4566N VL Series 5 5/133	Regulatory ID: DTPC-01 (Doc)	Hewlett-Packard	1.2m Unshielded AC Power Cord
Keyboard	E03633HLTW3-C	CIGE03633	Hewlett-Packard	1.8m Unshielded Cable
Modem	1200AT	EF56A51200AT	Smar TEAM Co.	1.8m Shielded Cable
				2.0m Unshielded AC Adaptor Power Cord
Mouse	M-S34	DZL211029	Hewlett-Packard	1.8m Unshielded Cable
Printer	2225C+	DSI6XU225	Hewlett-Packard	1.2m Shielded Cable
				2.0m Unshielded AC Power Cord

^{*1} EUT submitted for test.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4, Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the roof top of Building at No.34, 5 Lirn, Din Fu Tsun, Lin Kou, Taipei, Taiwan, R.O.C.

This site has been fully described in a report submitted to your office, and accepted in a letter dated Feb., 10,1997.

2. PRODUCT LABELING AND USER INFORMATION

2.1 Class Definition

Class A Digital Device: A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device: A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note: A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

2.2 Class Limitations

Report Number: ET87R-07-033-01

Class A Line Conducted Emission Limits:

Frequency MHZ	Emissions uV	Emissions dBuV
0.45 - 1.705	1000	60.0
1.705 - 30.0	3000	69.5

Class A Radiated Emission Limits:

Frequency MHZ	Distance Meters	Radiated dBuV/m	Radiated uV/m
30 - 88	10	39.0	90
88 - 216	10	43.5	150
216 - 960	10	46.4	210
above 960	10	49.5	300

Class B Line Conducted Emission Limits:

Frequency	Emissions	Emissions
MHZ	uV	dBuV
0.45 - 30.0	250	48.0

Class B Radiated Emission Limits:

Frequency MHZ	Distance Meters	Radiated dBuV/m	Radiated uV/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
above 960	3	54.0	500

2.3 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference
- (2) this device must accept any interference received, including interference that may cause undesired operation.

2.4 User Information

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

Sheet 7 of 18 sheets FCC ID.:JVP669823

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in EUT is Scanning.

The EUT was rotated to obtain the maximum level of radiated emissions. The antenna was varied in height above ground to obtain the maximum signal strength. The antenna height was varied from 1 to 4 meters.

All test results are listing on chapter 5 and 6.

3.2 Configuration of Tested System

Please Refer to Page 8 & Page 9

5. CONDUCTED EMISSION DATA

5.1 Conducted Test Results

Report Number: ET87R-07-033-01

The initial setup in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on following data pages, and these signals are the quasi-peaked.

CONDUCTED EMISSION DATA

Model No.

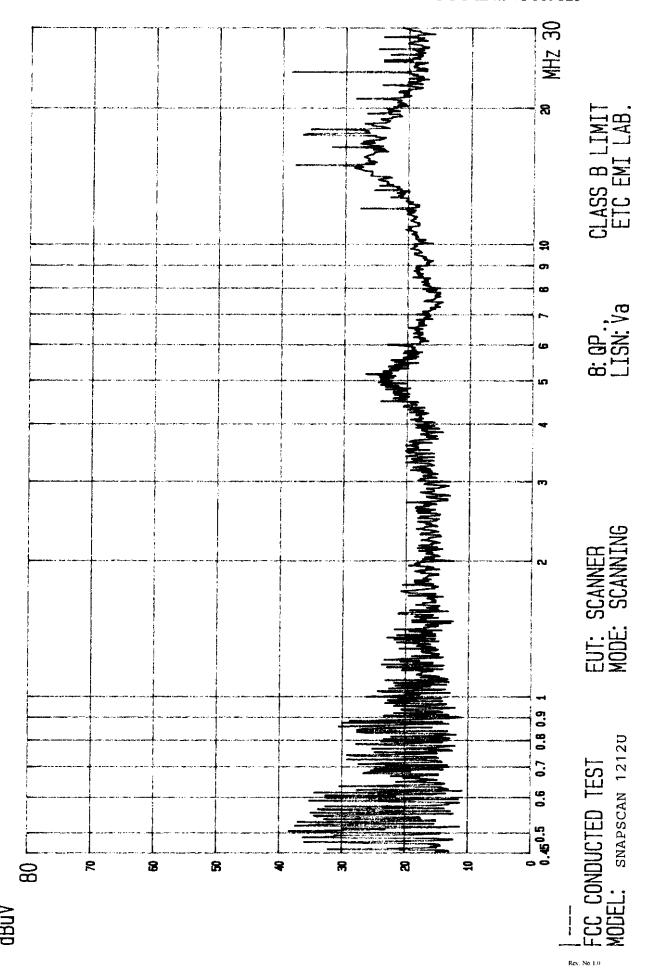
: SNAPSCAN 1212U

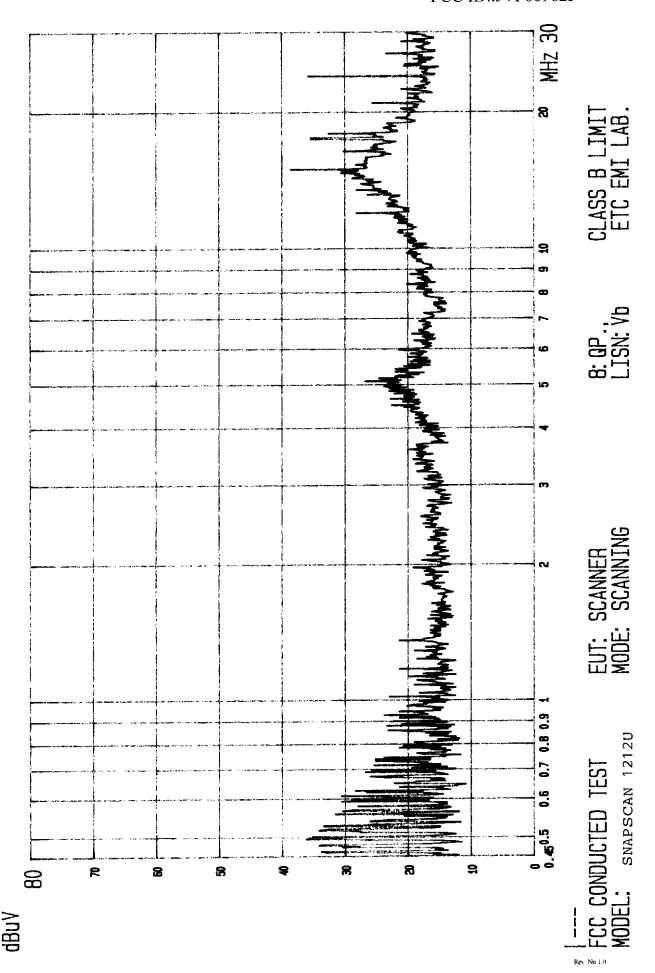
Operation Mode

: Scanning

Judgment

: Passed by 11.1 dB


Power Supply: 120V/60Hz


Test Date: <u>JUL. 13, 1998</u>

Temperature: 23 °C

Humidity: 50 %

Emission Frequency		Reading μV)	LISN Factor	1	sults μV)	Limit (dB μ V)	Margins (dB)
(MHz)	VA	VB	(dB)	VA	VB		
0.459	26.7	28.4	2.0	28.7	30.4	48.0	-17.6
0.526	28.9	27.5	0.2	29.1	27.7	48.0	-18.9
5.094	24.3	20.4	0.3	24.6	20.7	48.0	-23.4
14.991	33.4	33.9	0.8	34.2	34.7	48.0	-13.3
17.532	34.2	32.7	0.9	35.1	33.6	48.0	-12.9
23.986	35.9	35.1	1.0	36.9	36.1	48.0	-11.1

6. RADIATED EMISSION DATA

6.1 Open Site Radiated Test Results

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections),the corrected reading, and the limit. The result value is quasi-peaked by R & S Test Receiver. Explanation of the Correction Factor is given in paragraph 6.2.

RADIATED EMISSION DATA

Model No.

: SNAPSCAN 1212U

Operation Mode

: Scanning

Judgment

: Passed by 3.2 dB

Power Supply: 120V/60Hz

Test Date: <u>JUL. 11, 1998</u>

Temperature : $27^{\circ}C$

Humidity : <u>58 %</u>

Emission	Meter l	Reading	CORR'd	Res	sults	Limit	Margins
Frequency	(dB	$\mu \mathrm{V}$)	Factor	(dB μ	2 V/m)		
(MHz)	HOR.	VERT.	(dB)	HOR.	VERT.	$(dB \mu V/m)$	(dB)
60.029	39.9	53.0	-16.2	23.7	36.8	40.0	-3.2
119.979	46.0	42.0	-10.8	35.2	31.2	43.5	-8.3
123.057	45.4	41.8	-11.0	34.4	30.8	43.5	-9.1
135.014	46.7	39.2	-11.1	35.6	28.1	43.5	-7.9
199.421	43.6	38.9	-7.2	36.4	31.7	43.5	-7.1
432.070	42.6	44.1	-5.5	37.1	38.6	46.0	-7.4

6.2 Field Strength Calculation

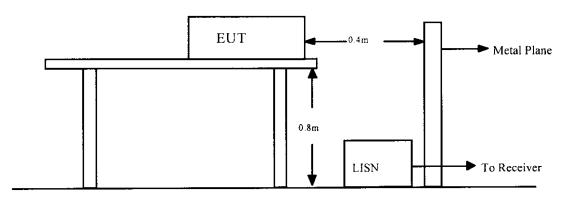
The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

Results = Meter Reading + CORR'd Factor

CORR'd Factor = AF + CF - AG

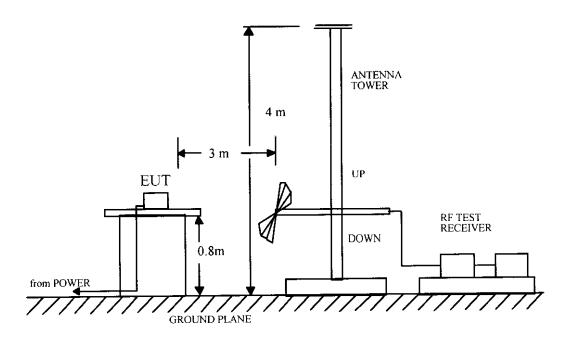
AF = Antenna Factor

CF = Cable Attenuation Factor


AG = Amplifier Gain

7. TEST EQUIPMENT

Report Number: ET87R-07-033-01


7.1 Test Setup

I. Conducted Test Setup Diagram

Metal floor surfaced with 30mm of insulating material

II. Open Field Test Site Setup Diagram

7.2 Conducted Test Equipments

The following test equipments are used during the conducted test.

Equipments	Manufacturer	Model No.	Next Cal. Date
Test Receiver	Rohde and Schwarz	ESH3	JAN. 04, 1999
Spectrum Monitor	Rohde and Schwarz	EZM	N.C.R.
Line Impedance Stabilization Network	Kyoritsu	KNW-407	AUG. 18, 1998
Line Impedance Stabilization Network	Rohde and Schwarz	ESH2-Z5	AUG. 18, 1998
Plotter	Hewlett-Packard	7440A	N/A
Shielded Room	Riken		N.C.R.

7.3 Radiated Test Equipments

The following test equipments are used during the radiated test.

Equipments	Manufacturer	Model No.	Next Cal. Date
Biconical Antenna	EMCO	3110B	AUG. 05, 1998
Log Periodic Antenna	EMCO	3146	DEC. 10, 1999
Spectrum Analyzer	Hewlett-Packard	8568B	OCT. 16, 1998
Quasi-Peak Adaptor	Hewlett-Packard	85650A	OCT. 07, 1998
RF Preselector	Hewlett-Packard	85685A	OCT. 16, 1998
Amplifier	Hewlett-Packard	8447D	DEC. 23, 1998
Test Receiver	Rohde and Schwarz	ESVS 30	DEC. 19, 1998